实验六场效应管放大电路

合集下载

场效应管放大电路原理

场效应管放大电路原理

场效应管放大电路原理场效应管放大电路原理1. 介绍场效应管(Field Effect Transistor,简称FET)是一种常用的电子器件,广泛应用于放大、开关和调节电路中。

作为一名文章写手,我将为您详细介绍场效应管放大电路的原理。

2. 场效应管概述场效应管是由源极、栅极和漏极三个主要部分组成的。

其中,栅极与源极之间的电压可以控制漏极电流的大小,从而实现信号的放大和调节。

和双极晶体管相比,场效应管具有输入电阻高、无需偏置电流等优点,因此在电子工程中得到广泛应用。

3. 场效应管放大电路的基本原理场效应管放大电路的基本原理是利用场效应管的特性来放大输入信号。

当输入信号施加在栅极上时,栅极源极间的电压将改变栅极-源极电流的大小,从而改变漏极电流。

根据场效应管工作状态的不同,可分为共源放大器、共漏放大器和共栅放大器三种。

3.1 共源放大器共源放大器是应用最广泛的一种场效应管放大电路。

在共源放大器中,输入信号通过耦合电容施加到栅极上,当信号施加后,栅极-源极电压发生变化,控制栅极-源极电流的大小,进而改变漏极电流。

共源放大器具有放大增益高、输入输出阻抗匹配等特点,适用于多种应用场景。

3.2 共漏放大器共漏放大器是场效应管放大电路的一种重要形式。

在共漏放大器中,漏极连接到电源,源极接地,输入信号通过漏极电阻耦合到栅极。

共漏放大器具有输入电阻高、输出电阻低等特点,适用于对电压放大和阻抗转换要求较高的场合。

3.3 共栅放大器共栅放大器是场效应管放大电路的另一种形式。

在共栅放大器中,信号通过源极电阻耦合到栅极,漏极连接到电源。

共栅放大器具有输入输出阻抗匹配、频率响应宽等特点,适用于高频放大和对输入频率响应要求较高的应用。

4. 实际应用案例场效应管放大电路广泛应用于各种电子设备中。

以音频放大器为例,通过合理选择场效应管的类型和工作点,可以实现对音频信号的放大和调节,保证音频设备的音质。

5. 个人观点和理解场效应管放大电路作为一种常见的放大器,具有输入电阻高、无需偏置电流、放大增益高等技术优点。

(实验六)结型场效应管放大电路

(实验六)结型场效应管放大电路

实验六 结型场效应管放大电路一.实验摘要通过对实验箱上结型场效应管的测试,认识N 沟道JFET 场效应管的电压放大特性和开关特性。

给MOS 管放大电路加输入信号为:正弦波,Vpp=200mV-500mV ,f=2Khz 。

测量输入电阻时,输入端的参考电阻Rs=680K 。

二.实验主要仪器三极管,万用表,示波器,信号源及其他电子元件。

三.实验原理场效应管放大器性能分析图6-1为结型场效应管组成的共源级放大电路。

其静态工作点2PGS DSS D )U U (1I I -= 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U(1U 2I g PGS P DSS m --= 计算。

但要注意,计算时U GS 要用静态工作点处之数值。

输入电阻的测量方法场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。

其输入电阻的测量,从原理上讲,也可采SD DD g2g1g1S G GS R I U R R R U U U -+=-=用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。

因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。

测量电路如图所示。

输入电阻测量电路在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。

由于两次测量中A V 和U S 保持不变,故V S iii V 02A U R R R U A U +== 由此可以求出 R U U U R 02O102i -=四.实验步骤1.检测实验所用三极管及示波器是否能够正常使用;2.由于电路图已经搭建好,接通信号源,连接示波器;3.调节电路板上的旋钮,使波形先后处于截止,饱和的状态,测量此时的GS V 、DS V 和3R V ;4.调节电路板上的旋钮,使波形处于既不截止又不饱和的状态,测量输入电阻。

场效应管功放电路原理

场效应管功放电路原理

场效应管功放电路原理场效应管功放电路是一种在音频电路中广泛使用的放大器。

这种电路依赖于场效应管的输出功率进行放大,可提供高品质的音频输出。

在本文中,我们将解释场效应管功放电路的原理,以及它是如何工作的。

场效应管(FET)是一种半导体器件,与双极型晶体管相比,其特点是输入电阻高、输出电阻低,并且具有高增益和低噪声。

由于这些优点,场效应管在音频电路中经常被用作放大器。

场效应管功放电路的基本原理如下:信号源通过输入电容连接到场效应管的栅极。

栅极电压变化,通过栅极和源极之间的通道控制了场效应管的电流。

输出电容将电流信号连接到负载,如扬声器或耳机。

一个负反馈网络可以添加在输出和输入之间,以确保输出信号匹配输入信号。

放大器的设计和实现是针对性的。

如果希望放大器具有高功率输出,需要使用高功率的场效应管。

此类场效应管需要与合适的散热器相连。

因为这些场效应管工作时会产生大量的热量。

另外,输出电容的大小应适当地选择,以确保信号不被截断。

场效应管功放电路的另一个关键因素是选择适当的电源电压和电源电容。

电源电压可以影响放大器的最大输出功率,但是过高的电源电压可能会使放大器过载。

电源电容可以降低电源的波动,从而提高放大器的噪声性能。

但是,选择过大的电源电容可能会导致初始启动时的过电流。

在设计场效应管功放电路时,还需要选择适当的输入和输出电容,以确保阻止带外信号。

输入电容是信号源和放大器之间的阻断电容,而输出电容是放大器和负载之间的阻断电容。

总的来说,场效应管功放电路是一种在音频应用中非常重要的放大器。

它具有高输入阻抗,低输出阻抗和高增益,是电子产品中广泛应用的器件之一。

合适的选型和设计可以使其产生出清晰、高质量的音频效果。

场效应管放大电路

场效应管放大电路

结型场效应管的工作状态可划分为四个区域。 (a) 可变电阻区 可变电阻区位于输出特性曲线的起始部分,它表示vDS较 小、管子预夹断前,电压vDS与漏极电流iD间的关系。
在此区域内有VP<vGS≤0,vDS<vGS-VP。当 vGS一定,vDS较小时,vDS对沟道影响不大,沟 道电阻基本不变,iD与vDS之间基本呈线性关 系。若 | vGS | 增加,则沟道电阻增大,输 出特性曲线斜率减小。所以,在vDS较小时, 源-漏极间可以看作是一个受vGS控制的可变电 阻,故称这一区域为可变电阻区。这一特点常 使结型场效应管被作为压控电阻而广泛应用。
4.3 金属-氧化物-半导体场效应管
结型场效应管的输入电阻虽然可达106~109W, 但在要求输入电阻更高的场合,还是不能满足要求。
本节介绍的金属-氧化物-半导体场效应管( MOSFET)具有更高的输入电阻,可1015欧姆。并具 有是制造工艺简单、适于集成电路的优点。
MOS管也有N沟道和P沟道之分,而且每一类又分为 增强型和耗尽型两种。增强型MOS管在vGS=0时,没 有导电沟道存在。而耗尽型MOS管在vGS=0时,就有 导电沟道存在。
2.结型场效应管的工作原理
N沟道和P沟道结型场效应管的工作原理完 全相同,现以N沟道结型场效应管为例,分析 其工作原理。N沟道结型场效应管工作时,需 要外加如图4所示的偏置电压.
偏置电压的要求: 1 .栅-源极间加一负电压(vGS< 0) 作用:使栅-源极间的P+N结反偏,栅极电流iG≈0,场效应管 呈现很高的输入电阻(高达108W左右)。 2.漏-源极间加一正电压(vDS>0) 作用:使N沟道中的多数载流子电子在电场作用下由源极向 漏极作漂移运动,形成漏极电流iD。 在上述两个电源的作用下,iD的大小主要受栅-源电压vGS控制 ,同时也受漏-源电压vDS的影响。 因此,讨论场效应管的工作原理就是: (1)讨论栅-源电压vGS对漏极电流iD(或沟道电阻)的控制 作用 (2)讨论漏-源电压vDS对漏极电流iD的影响。

场效应管放大电路实验

场效应管放大电路实验
① 由转移特性可知,当uGS =0时,iD=IDSS,可用图 11-3-3所示电路测出IDSS。 ② 由转移特性可知,当iD=0时,uGS =UGS(OFF),可用 图11-3-4所示电路测出UGS(OFF)。
厦电门子大技学术物实理验与MO机O电C课工程程团学队院
图11-3-1 N沟道结型场效应管转移特性图 11-3-2 N沟道结型场效应管输出特性
实验中,选择合适静态工作点及保证输出电压在不失真的情
况下,用数字万用表测量输入电压有效值Ui和输出电压有效值
Uo,取它们的比值表示电压放大倍数。
U
Au
o
U
i
厦电门子大技学术物实理验与MO机O电C课工程程团学队院
(3)放大电路频率特性。
参照三极管共射放大电路调试方法。
(4)输入电阻测量。
放大电路输入电阻为从输入端向放大电路看进去的等效电阻
当电路接入R 时,
Ui2
Ri Ri
R
US

Uo2
Au
U i2
Au
Ri Ri
R
US
测得输出值为:
对于同一放大电路,其放大倍数相同,令上述两式相除进行整理可得:
Ri
Uo2
U o1 U o 2
R
厦电门子大技学术物实理验与MO机O电C课工程程团学队院
(5)输出电阻的测量,如图11-3-5所示,RL为负载电阻。 若输出回路不接RL时,其空载输出电压为UoC; 若输出回路接入RL时,其带载输出电压为UoL;
一、实验目的
1、掌握场效应管基本参数的测试方法。 2、掌握场效应管基本放大电路的调试方法。 3、掌握场效应管基本放大电路的指标参数测量方法。 4、学会用仿真软件对实验电路进行仿真。

场效应管放大电路

场效应管放大电路

场效应管放大电路
一、实验要求
(1)建立场效应管放大电路。

(2)分析场效应管放大电路的性能
二、实验内容
(1)建立结型场效应管共源放大电路。

结型场效应管取理想模式。

用信号发生器产生频率为lkHz、幅值为10mV的正弦信号。

(2)打开仿真开关,用示波器观察场效应管放大电路的输入波形和输出波形。

测量输出波形的幅值,计算电压放大倍数。

(3)建立如图3-3所示的场效应管放大电路的直流通路。

打开仿真开关,利用电压表和电流表测量电路静态参数。

三、实验电路原理图
结型场效应管共源放大电路
场效应管放大电路的直流通路
四、实验结果及分析
1、函数信号发生器
输入信号输出信号波形:
分析:
共源放大电路的电压放大倍数为10。

输出波形的幅值为100mv。

2、场效应管放大电路的直流通路大电路的直流通路
分析:
根据实验数据可得,场效应管的漏源电压为15.076V,栅源电压为0.411V,漏极电流为0。

.05mA。

电压表和电流表测到的栅源电压,漏源电压,漏极电流。

五、实验结论
与双极型晶体管放大电路的共发射极、共集电极和共基极电路相对应,场效应管放大电路也有三种基本组态:共源电路、共漏电路、共栅电路。

其电路结构与分析方法与双极型晶体管放大电路类似。

场效应管放大电路原理

场效应管放大电路原理

场效应管放大电路原理场效应管(Field Effect Transistor,简称FET)是一种重要的电子元器件,广泛应用于各种电子设备中。

它具有高输入阻抗、低输出阻抗、低噪声、高增益等优点,因此在放大电路中得到了广泛的应用。

场效应管放大电路是一种利用场效应管进行信号放大的电路。

它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。

下面将详细介绍场效应管放大电路的原理。

场效应管放大电路主要由场效应管、负载电阻、输入电容、输出电容等组成。

其中,场效应管是核心部件,起到放大信号的作用。

负载电阻用于提供输出端的负载,使得输出信号能够正常传递。

输入电容和输出电容则用于对输入信号和输出信号进行耦合。

在场效应管放大电路中,输入信号首先经过输入电容进入场效应管的栅极。

当栅极电压发生变化时,场效应管内部的通道将打开或关闭,从而控制电流的流动。

当栅极电压较低时,场效应管处于截止状态,电流无法通过。

当栅极电压较高时,场效应管处于导通状态,电流可以通过。

当输入信号经过场效应管后,会在负载电阻上产生一个较小的输出电压。

为了放大这个输出电压,需要通过负反馈来增加放大倍数。

具体来说,可以将输出信号通过输出电容耦合到放大器的输入端,然后再将输出信号与输入信号进行比较,从而调整栅极电压,使得输出信号得到放大。

在场效应管放大电路中,需要注意一些问题。

首先是输入阻抗和输出阻抗的匹配问题。

为了使得信号能够正常传递,输入阻抗和输出阻抗需要相互匹配。

其次是稳定性问题。

由于场效应管的工作点受到温度和其他因素的影响,因此需要采取一些措施来保持工作点的稳定性。

最后是频率响应问题。

由于场效应管本身具有一定的频率响应特性,因此在设计放大电路时需要考虑频率响应的影响。

总结起来,场效应管放大电路是一种利用场效应管进行信号放大的电路。

它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。

在实际应用中,需要注意输入阻抗和输出阻抗的匹配、工作点的稳定性以及频率响应等问题。

场效应管放大电路

场效应管放大电路

i ②转移特性曲线 Df(VGS)VDSC
输入电压VGS对输出漏极电流ID的控制
iD / v G Q S d D /d iG v Q S g m m s
精选课件
结型场效应管的特性小结
N 沟 道 耗
结尽 型型

效P 应沟 管道
耗 尽 型
精选课件
金属-氧化物-半导体场效应管
绝缘栅型场效应管Metal Oxide Semiconductor —— MOSFET
第二种命名方法是CS××#,CS代表场效应管, ××以数字代表型号的序号,#用字母代表同一型 号中的不同规格。例如CS14A、CS45G等。
精选课件
双极型三极管与场效应三极管的比较
双极型三极管
场效应三极管
结构
NPN型
结型 N沟道 P沟道

PNP型
绝缘栅 增强型 N沟道 P沟道
分类 C与E一般不可 绝缘栅 耗尽型 N沟道 P沟道


精选课件
耗尽型MOSFET
N沟道耗尽型MOS管,它是在栅极下方的SiO2绝缘层中掺入 了大量的金属正离子,在管子制造过程中,这些正离子已经在漏 源之间的衬底表面感应出反型层,形成了导电沟道。 因此,使 用时无须加开启电压(VGS=0),只要加漏源电压,就会有漏极 电流。当VGS>0 时,将使ID进一步增加。VGS<0时,随着VGS 的 减小ID 逐渐减小,直至 ID=0。对应ID=0 的 VGS 值为夹断电压 VP 。
至VGD=VT,即VGS-VDS=VT或VDS=VGS-VT
时,则漏端沟道消失,出现预精选夹课件断点。
当VDS增加到使
当VDS增加到使VGDVT时,预
小此匀当时时降V落,VDDS在VS为G基沟D0>本或道V均较中T,,V将称电下G缩为子,D=减预在仍VTV到夹 能时D刚断 沿S,电刚。 着漏场开源 沟极力启区 道处的的向的沟作情漏自道用况端由,夹 断 而 此 在断 未 , 该区点 夹 夹。VD由向 断 断S增于源沟区加预极道内的夹端部,部断延分而分区伸为沟基呈成低道本现小阻中上高的,的降阻夹因电落,

场效应管放大电路

场效应管放大电路
C1 + ui 2
R2 Rg VG R1
Rd g + UGS
ID d +
+VDD C2 + uo -
UGSQ = VG - IDQRS UGSQ IDQ= IDO( UGS(th)
Rs
UDS s - R L ID CS
1)
分压-自偏压式共源放大电路
UDSQ = VDD - IDQ ( Rd + Rs )
+VDD d g s C2 RL + uo -
RG R1
RS
+ RG Ui R1 R2
g +U & - gs RS
d
s + RL Uo -
16
上页
下页
首页
第六节 场效应管放大电路
g +
& Ui
& + Ugs
s -
id +
& gmUgs
仿真
RG RS RL R2 d
& Uo
R1 -
-
源极输出器的微变等效电路
C1 R2 g s R1 RS C2 RL + uo + ui +VDD d
可用近似估算法 或图解法, 或图解法, 求解过程可参阅 分压– 分压–自偏压式 共源放大电路。 共源放大电路。
RG
共漏极放大电路
15
上页
下页
首页
第六节 场效应管放大电路
2. 动态分析
R2 C1 + ui id
& gmUgs
分压-自偏压式共源放大电路
Ui = Ugs
Uo = - gmUgs RD′

场效应管放大器实验报告

场效应管放大器实验报告

场效应管放大器实验报告实验目的:1.熟悉场效应管的特性;2.掌握场效应管放大电路的实验测量方法;3.了解场效应管放大电路的放大特性和输出特性。

一、实验原理场效应管(MOSFET)是一种三端器件,由栅极、漏极和源极组成。

本实验中使用的场效应管为N沟道MOSFET,其增强型导通态,栅极电压(V_gs)正,使得源极-漏极电流(I_ds)增大。

场效应管放大器是将输入信号通过场效应管放大后,得到更大的输出信号。

输入信号通过耦合电容从输入端传入场效应管的栅极,输出信号经耦合电容从场效应管的漏极输出。

当输入信号变化时,场效应管的栅极电压会相应改变,从而控制漏极电流的变化,从而实现了信号的放大。

二、实验器材信号发生器、场效应管、电阻、电容、万用表、示波器等。

三、实验步骤1.搭建场效应管放大电路,连接如下图所示,其中RD为漏极负载电阻,VG、VS、VD分别为栅极、源极和漏极电压。

将示波器的探头用示波器的X/Y模式引出,连接到电路的输入和输出端口,方便观测输入和输出信号。

2.根据实验电路的参数和实际需要的放大倍数确定漏极负载电阻RD的大小。

设置发生器的频率和幅度(如1kHz的正弦波信号)。

3.打开电源,调节电位器,使场效应管的漏极电流为预期值。

4.调节信号发生器的频率和幅度,获得所需放大倍数的输出信号。

5.用万用表测量电路各节点的电压值,观察漏极电流变化对应的栅极电压。

6.记录数据,并根据测量数据绘制输入输出特性曲线和增益特性曲线。

四、实验结果及数据处理根据实验步骤记录实验数据,并将实验数据整理成表格。

根据测量数据绘制输入输出特性曲线和增益特性曲线,分析实验结果。

五、实验总结通过本次实验,我们熟悉了场效应管的特性,掌握了场效应管放大电路的实验测量方法。

实验过程中我们了解到了场效应管放大器的放大特性和输出特性,通过输入输出特性曲线和增益特性曲线的绘制和分析,我们进一步加深了对场效应管放大器的理解。

同时,我们还学会了使用信号发生器、示波器和万用表等仪器进行实验测量,锻炼了实验操作技能。

场效应晶体管放大电路

场效应晶体管放大电路

N
N
G
P+ P+
UDS G
P+ P+
UDS
UGS
S
S
第3页/共34页
Sect
3.1.2 JFET特性曲线
1. 输出特性曲线:
iD f (U DS )∣ UGS const
可变电阻区 线性放大区 ID=gm UGS 击穿区
2. 转移特性曲线:
ID
I
DSS
(1
U GS UP
)
2
IDSS:饱和栅极漏极电流,
着源极、栅极的次序焊在电路上; • 电烙铁或测试仪表与场效应晶体管接触时,均
第15页/共34页
各种场效应管所加偏压极性小结
结型
N沟道(uGS<0) P沟道(uGS>0)
场效应管
绝缘栅型
增强型
耗尽型
PN沟沟道道((uuGGSS<>00)) N沟道(uGS极性任意) P沟道(uGS极性任意)
uo
u gs
g m u gs
u ds
S
GD
Id
RG
Ui
Ugs
gm Ugs RD
RL
Uo
R2
R1
S
第26页/共34页
动态分析:
G
电压放大倍数
Id
RL
D
RG
Ugs
Ui R2R1RD g源自 UgsRL Uo•

Ui Ugs
S
ri

ro
Au gm R'L


Uo gm Ugs (RD // RL )
ID(mA)
第8页/共34页
UGS=6V

场效应管的三种放大电路

场效应管的三种放大电路

和半导体三极管一样,场效应管的电路也有三种接法即共源极电路、
共漏极电路和共栅极电路。

1.共源极电路
共源极电路除有图16-13 所示的接法外,还可采用图16-14 所示的电路。

这种电路的栅偏压是由负电压UG经偏置电阻RG提供的。

该电路虽然简单.但R G不易取得过大.否则会在栅漏泄电流流过时产生较大的压降,使栅偏压发生变化.造成工作点的偏离。

共源极基本放大电路的主要参数,可由以下各式确定:
2. 共漏极电路(源极输出器)
共漏极电路如图16-15 所示。

该电路中除有源极电阻Rs提供的自偏压外,还有由R1和R2组成的分压器为栅极提供的固定栅偏压。

共漏极电路的输出与输入同相,可起到阻抗变换器的作用。

共漏极基本放大电路的主要参数可由以下各式确定:
3. 共栅极电路
共栅极电路如图16-16 所示。

偏置电路为自给偏置,当ID流经Rs 时产生压降ID·Rs,由于栅极接地,相当于源极电位比栅极高出一个ID·Rs值。

这种方法简单.栅极电压也会随信号自动调节,对工作点的稳定有好处C 该电路有良好的放大特性。

共栅极电路的输入电阻和输出电阻由下式确定:。

场效应管分压式偏置共源放大电路

场效应管分压式偏置共源放大电路

场效应管分压式偏置共源放大电路场效应管(Field Effect Transistor,FET)是一种三极管,主要用于放大电路中。

其中,分压式偏置共源放大电路是一种常用的场效应管放大电路。

分压式偏置共源放大电路的主要特点是通过合理的分压方法,将电压分配到场效应管的栅极和源极,实现对管子的偏置。

这种偏置方式可以有效地保持管子处于工作区域,从而实现放大电路的正常工作。

相比于其他偏置方式,分压式偏置可以提供更稳定、更可靠的偏置电压。

在分压式偏置共源放大电路中,栅极和源极之间串联了一个偏置回路,其中包含一个电阻和一个电容。

该偏置回路起到了稳定偏置电压的作用。

在实际的电路设计中,栅极上还会串联一个电阻,用于限制输入信号对偏置电压的影响。

在电路工作时,输入信号通过输入耦合电容传输到场效应管的栅极,产生正常放大信号。

同时,偏置回路稳定地提供了合适的偏置电压,使得场效应管在合适的工作区域内工作。

通过源极上的负载电阻,放大后的信号输出到负载上,完成放大电路的功能。

分压式偏置共源放大电路具有许多优点。

首先,它通过合适的分压方式提供了稳定、可靠的偏置电压,使得场效应管可在合适的工作区域内工作。

其次,通过适当选择偏置回路中的电阻和电容,可以实现对偏置电压稳定性和放大电路带宽的优化。

此外,电路结构简单,成本低廉,易于生产和维护。

在实际电路设计中,需要根据具体需求来确定分压式偏置共源放大电路的参数。

例如,需要考虑偏置电压的稳定性、放大倍数、带宽等因素。

同时,还需要合理选择电阻和电容的数值,以满足特定的目标要求。

总之,分压式偏置共源放大电路是一种常用的场效应管放大电路。

通过合理选择分压方式和适当调整参数,可以实现稳定、可靠的放大功能。

在实际应用中,需要充分考虑电路的设计要求,以确保电路性能的优化。

场效应管放大原理

场效应管放大原理

场效应管放大原理
场效应管是一种三极管,利用了半导体材料的导电性质。

它的主要工作原理是通过控制栅极电压来控制源极-漏极之间的电流流动。

由于栅极与源极之间的电介质隔离,栅极和源极之间的电压关系可以通过改变栅极电压来影响漏极电流。

具体工作如下:
1. 通道形成:当栅极电压为零时,场效应管的源极和漏极之间没有电流流动,因为栅极电场会排斥电子进入通道。

但当栅极电压为正时,栅极电场会吸引电子进入通道,形成导电通道。

2. 漏极电流控制:增加栅极电压可以增加通道中的自由电子数量,进而增加漏极电流。

减小栅极电压则会减小通道中的自由电子数量,降低漏极电流。

因此,栅极电压的变化可以精确地控制漏极电流的大小。

场效应管的放大原理就是利用栅极电压的小变化来控制源极-漏极之间的大电流变化。

通过调整栅极电压,我们可以实现对电流的放大和控制。

这使得场效应管在电子设备中广泛应用,例如功放器、运放器、信号处理器等。

通过调整栅极电压和源极-漏极电压,我们可以达到理想的电流放大效果,实现对输入信号的放大和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六场效应管放大电路
一、实验目的
1、了解FET的直流偏置电路及静态分析。

2 学习FET放大电路的小信号模拟分析方法。

二、预习要求
1、场效应管的结构、工作原理、特性曲线及参数
2、了解场效应管放大电路和各种放大器件电路性能的比较
三、实验设备及仪器
智能网络型实验台、双踪示波器、交流毫伏表、数字万用表、函数信号发生器。

四、实验内容及步骤
1、场效应管的实验电路连接原理图如图6.1
图6.1 场效应管电路
2、在输入端Ui接入f=1kHz,Vin=5mV的正弦电压(由函数发生器产生),用示波器接到Uo端,观察输出波形,记录到表6.1中
3、图6.1为分压式自偏压电路,这种电路适用于增强型管电路。

电路参数如图所示,确定
静态工作点Q、栅极电压Vg、在源极产生的压降Vs以及静态时加在栅极的电压Vgs(其中Idss=0.5mA)。

用毫伏表(或万用表)测出实际栅极电压、源极压降和栅源电压,并将结果填入表6.2中
计算公式如下:
栅极电压:Vg=Rg2×Vdd/(Rg1+Rg2); 源极压降:Vs=Id×Rs;
栅源电压Vgs=Vg-Vs; 漏极电流Id=Idss×(1+Vgs)(1+Vgs);
表 6.2
4、中频电压增益、输入电阻、输出电阻的确定。

其中必须了解FET的互导Gm,它与电压放
大系数的关系为u=Gm×Ro。

并将结果填入表6.3中。

表 6.3
五、思考与要求
1、区别BJT和FET之间的不同之处。

2、在FET放大电路中,Vds的极性,那么在FET和BJT中V gs和Vds之间的极性关系。

3、如果将BJT和FET结合使用,能够提高和改善电子电路的哪些性能指标。

相关文档
最新文档