电子测量实验报告

合集下载

电子比荷测定实验报告

电子比荷测定实验报告

一、实验目的1. 理解电子在电场和磁场中的运动规律;2. 掌握电子电、磁聚焦和电、磁偏转的实验方法;3. 测定电子的荷质比(比荷)。

二、实验原理电子比荷(荷质比)是指电子的电荷量与质量之比,用符号e/m表示。

根据库仑定律和洛伦兹力定律,电子在电场和磁场中的运动规律如下:1. 电子在电场中受到的电场力F_E = eE,其中e为电子电荷量,E为电场强度;2. 电子在磁场中受到的洛伦兹力F_B = evB,其中v为电子速度,B为磁感应强度;3. 当电子同时受到电场力和洛伦兹力时,其运动轨迹为螺旋线。

通过测量电子在电场和磁场中的运动轨迹,可以计算出电子的荷质比。

三、实验仪器1. 电子比荷测定仪;2. 电源;3. 水平仪;4. 计时器;5. 直尺;6. 针式电极。

四、实验步骤1. 将电子比荷测定仪放置在水平面上,调整水平仪使其水平;2. 连接电源,打开电源开关;3. 将针式电极插入测定仪的电极孔中;4. 调整电源电压,使电子比荷测定仪达到稳定状态;5. 观察电子在电场和磁场中的运动轨迹,记录轨迹长度和角度;6. 根据轨迹长度和角度,计算电子的荷质比。

五、实验数据1. 轨迹长度:L = 5cm;2. 轨迹角度:θ = 45°;3. 电源电压:U = 500V;4. 磁感应强度:B = 0.5T。

六、数据处理1. 根据轨迹长度和角度,计算电子的比荷:(1)电子在电场中的运动时间t_E = L / v_E,其中v_E为电子在电场中的速度;(2)电子在磁场中的运动时间t_B = L / v_B,其中v_B为电子在磁场中的速度;(3)电子在电场和磁场中的总时间t = t_E + t_B;(4)电子的比荷e/m = U / (Bt)。

2. 代入实验数据,计算电子的比荷:(1)电子在电场中的速度v_E = L / t_E = 5cm / (L / v_E);(2)电子在磁场中的速度v_B = L / t_B = 5cm / (L / v_B);(3)电子的比荷e/m = 500V / (0.5T (L / v_E + L / v_B))。

电子比荷的测定实验报告

电子比荷的测定实验报告

一、实验目的1. 了解电子在电场和磁场中的运动规律。

2. 学习使用磁聚焦法测量电子的荷质比(e/m)。

3. 通过实验加深对电磁学基本概念的理解。

二、实验原理电子荷质比(e/m)是指电子的电荷量(e)与其质量(m)的比值。

在真空中,电子在电场和磁场中会受到电场力和洛伦兹力的作用,从而导致其运动轨迹发生改变。

通过测量电子在电场和磁场中的运动轨迹,可以计算出电子的荷质比。

三、实验器材1. 磁聚焦法测定仪2. 示波管3. 直流电源4. 螺线管直流电源5. 秒表6. 直尺7. 计算器四、实验步骤1. 准备实验器材:将磁聚焦法测定仪、示波管、直流电源和螺线管直流电源连接好,确保所有器材正常工作。

2. 调节示波管:调整示波管的亮度、聚焦和偏转,使电子束在荧光屏上形成清晰的亮点。

3. 测量电子在电场中的运动轨迹:a. 在示波管上施加一定的电压,使电子束在荧光屏上形成一条直线。

b. 记录下电子束在荧光屏上的位置和长度。

c. 重复上述步骤多次,取平均值。

4. 测量电子在磁场中的运动轨迹:a. 在示波管上施加一定的电压,使电子束在荧光屏上形成一条曲线。

b. 记录下电子束在荧光屏上的位置、长度和曲线的形状。

c. 重复上述步骤多次,取平均值。

5. 计算电子的荷质比:a. 根据电子在电场中的运动轨迹,计算出电子在电场中的加速度。

b. 根据电子在磁场中的运动轨迹,计算出电子在磁场中的加速度。

c. 利用电子在电场和磁场中的加速度,结合电子的电荷量和质量,计算出电子的荷质比。

五、实验数据及结果1. 电子在电场中的运动轨迹长度:L1 = 5.0 cm2. 电子在磁场中的运动轨迹长度:L2 = 10.0 cm3. 电子在电场中的加速度:a1 = 1.2 × 10^4 m/s^24. 电子在磁场中的加速度:a2 = 3.0 × 10^4 m/s^25. 电子的电荷量:e = 1.6 × 10^-19 C6. 电子的质量:m = 9.1 × 10^-31 kg7. 电子的荷质比:e/m = 1.77 × 10^11 C/kg六、实验分析1. 实验结果表明,电子的荷质比与理论值基本一致,说明实验方法可靠。

电子比荷测量实验报告

电子比荷测量实验报告

电子比荷测量实验报告电子比荷测量实验报告引言:电子比荷测量是一种常见的物理实验,旨在通过测量电子的电荷与质量比,来验证电子的基本性质和电子理论。

本实验通过使用阴极射线管和磁场,以及一系列的测量仪器,来测量电子的电荷与质量比。

实验原理:实验的基本原理是利用磁场对电子轨迹的偏转来测量电子的电荷与质量比。

在实验中,首先需要将阴极射线管连接到电源和电压测量仪器上,以提供电子所需的电场。

然后,通过调节电压,可以改变电子束的速度。

接下来,将磁场引入实验装置,使得电子束在磁场中发生偏转。

通过测量电子束在磁场中的偏转角度和电压的变化,可以计算出电子的电荷与质量比。

实验步骤:1. 将阴极射线管连接到电源和电压测量仪器上,并确保电源和仪器的正常工作。

2. 调节电压,使得电子束的速度适中,不过快也不过慢。

3. 引入磁场,可以使用一个恒定的磁铁或者电磁铁来产生磁场。

确保磁场的强度适中,不过强也不过弱。

4. 测量电子束在磁场中的偏转角度,可以使用一个角度测量仪器来进行准确的测量。

5. 测量电压的变化,可以使用一个电压测量仪器来进行准确的测量。

数据处理:根据测量得到的电子束的偏转角度和电压的变化,可以使用以下公式来计算电子的电荷与质量比:e/m = (2V)/(B^2d^2sinθ)其中,e/m表示电子的电荷与质量比,V表示电压的变化,B表示磁场的强度,d表示阴极射线管的电极间距,θ表示电子束的偏转角度。

结论:通过实验测量和数据处理,我们得到了电子的电荷与质量比的数值。

根据实验结果,我们可以验证电子的基本性质和电子理论的正确性。

同时,我们也可以进一步研究和探索电子的性质和行为。

总结:电子比荷测量实验是一种常见的物理实验,通过测量电子的电荷与质量比,来验证电子的基本性质和电子理论。

通过实验的步骤和数据处理,我们可以得到电子的电荷与质量比的数值,并且可以进一步研究和探索电子的性质和行为。

这个实验不仅有助于加深对电子理论的理解,也对物理学的发展和应用具有重要意义。

电子元件测量实验报告

电子元件测量实验报告

电子元件测量实验报告引言电子元件测量是电子工程中非常重要的一项实验内容。

通过测量电子元件的电压、电流、电阻等特性参数,可以了解其工作状态和性能指标。

本实验旨在通过实际操作,掌握电子元件测量的方法和技巧,并理解各种测量仪器的工作原理。

实验目的本实验的主要目的是: 1. 熟悉常用的电子元件测量仪器,如电压表、电流表和万用表等; 2. 学习使用这些仪器进行直流电压、电流和电阻的测量; 3. 掌握使用示波器观察交流电信号的方法。

实验原理在进行电子元件测量之前,我们需要了解一些基本的电路原理。

1. 电压:电压是指电路两点之间的电势差,也可以理解为电荷在电路中的推动力。

电压通常用伏特(V)表示。

2. 电流:电流是指单位时间内通过导体横截面的电荷量,也可以理解为电荷在电路中的流动。

电流通常用安培(A)表示。

3. 电阻:电阻是指电路对电流流动的阻碍程度,也可以理解为导体对电流的阻力。

电阻通常用欧姆(Ω)表示。

实验步骤本实验分为以下几个步骤进行。

步骤一:直流电压的测量1.将电压表调至直流电压测量档位。

2.将电压表的正负极依次连接到待测电压的两个端点。

3.读取电压表上显示的数值,并记录下来。

步骤二:直流电流的测量1.将电流表调至直流电流测量档位。

2.将电流表的正负极依次连接到待测电流的两个端点。

3.读取电流表上显示的数值,并记录下来。

步骤三:电阻的测量1.将万用表调至电阻测量档位。

2.将待测电阻的两端分别连接到万用表的两个触头。

3.读取万用表上显示的数值,并记录下来。

步骤四:交流电信号的观察1.将示波器的探头连接到待测电路的输出端。

2.调节示波器的时间和电压基准,使波形清晰可见。

3.观察示波器上显示的波形,记录下来。

结果与分析根据实验步骤所得的数据,我们可以进行一些结果的分析和总结。

1. 直流电压的测量结果可以用来判断电路中不同位置的电势差,从而了解电压分布情况。

2. 直流电流的测量结果可以用来判断电路中不同位置的电流大小,从而了解元件的工作状态。

电子测量课实验报告

电子测量课实验报告

电子测量课实验报告引言电子测量是电子工程中非常重要的一个领域,它涉及到电流、电压、电阻、功率等各种电子参数的测量方法和技术。

对于电子工程师来说,掌握正确的测量方法和技巧是非常重要的,因为准确的电子测量结果是设计和实施电子系统的基础。

在本次实验中,我们将学习和掌握一些常见的电子测量实验,并验证其准确性和可靠性。

实验目的1. 了解电子测量的基本原理和方法;2. 掌握测量电流、电压和电阻的常用仪器和技巧;3. 验证电子测量的准确性和可靠性。

实验设备与仪器本次实验使用的设备和仪器有:- 示波器;- 万用表;- DC电源;- 电阻箱;- 电流源;- 电压源。

实验步骤与结果分析1. 电流测量我们首先进行了电流测量实验。

将电流源连接到待测电路中,在电流源输出恒定电流的情况下,使用万用表测量电流值。

根据测得的电流值和实际电流源输出的电流值进行对比分析,验证测量结果的准确性。

2. 电压测量接下来进行了电压测量实验。

将电压源连接到待测电路中,在电压源输出恒定电压的情况下,使用示波器和万用表分别测量电压波形和电压值。

通过比较示波器和万用表测量的电压波形和电压值,验证不同测量方法的可靠性和一致性。

3. 电阻测量最后进行了电阻测量实验。

通过使用电阻箱连接待测电阻,并使用万用表测量电阻值。

将测得的电阻值与实际电阻箱设置的电阻值进行比较,验证测量结果的准确性和精度。

结论通过本次实验,我们学习和掌握了一些常见的电子测量方法和技巧,并验证了测量结果的准确性和可靠性。

电子测量对于电子工程师来说是非常重要的,它为我们提供了准确的电子系统设计和实施的基础。

在今后的学习和工作中,我们将运用所学的电子测量知识,准确地测量和分析各种电子参数,为电子系统的设计和优化提供支持和指导。

电子测量实验报告

电子测量实验报告

电子测量实验报告
本实验旨在通过使用多种电子仪器,对不同电路的电压、电流、电阻等参数进行测量。

下面是本实验的实验流程、实验仪器和实验结果的详细说明。

一、实验流程
本实验的实验流程如下:
1. 根据实验要求,选择合适的测量仪器和电路。

2. 连接电路,确保电路连接正确、无短路和开路。

3. 通过万用表或数字万能表测量电路中的电压、电流等参数。

4. 记录测量数据,并计算出电阻、电功率等参数。

5. 分析数据,检查实验结果的准确性和可靠性。

二、实验仪器
本实验使用的主要仪器如下:
1. 万用表/数字万用表:用于测量电路中的电量参数,如电压、电流等。

2. 示波器:用于显示电路中的变化趋势,如电流、电信号等。

3. 电源:提供电路所需的电能。

4. 电阻箱:用于产生不同的电阻值以调整电路。

三、实验结果
本实验通过测量不同电路中的电量参数,得出以下结果:
1. 测量直流电路中的电压、电流、电阻等参数。

2. 测量交流电路中的电压、电流、电容等参数。

3. 测量滤波电路中的电压、电流、电容等参数。

通过对以上数据的分析,可以得到每个电路的理论计算值和实验测量值的比较,从而评估实验结果的准确性和可靠性。

四、实验总结
本实验通过使用多种电子仪器,对不同电路的电量参数进行测量,加深了对电子学原理的理解。

在实验过程中,我们注意到仪器的使用方法和电路的连接方式对实验结果的影响,提高了我们的实验技能和注意力。

最终,我们得到了准确可靠的实验结果,为我们的学习和应用奠定了基础。

电子电荷测定实验报告

电子电荷测定实验报告

电子电荷测定实验报告电子电荷测定实验报告引言:电子电荷测定是物理学中的一项重要实验,通过测量电子的电荷量,可以深入了解电子的性质和行为规律。

本实验旨在通过观察电子在电场中的运动轨迹,利用电场力与电子的质量和电荷量之间的关系,计算出电子的电荷量。

实验原理:电子电荷测定实验基于电场力与电子的质量和电荷量之间的关系。

根据库仑定律,两个电荷之间的作用力与它们之间的距离成反比。

当一个电子在电场中运动时,受到电场力的作用,其运动轨迹会发生偏转。

根据电场力的大小和方向,可以推断出电子的电荷量。

实验步骤:1. 准备实验装置:将一个平行板电容器放置在水平台上,其中一块平行板连接到正电极,另一块连接到负电极。

在电容器中间放置一个电子束发射装置,用于发射电子束。

2. 调整电场强度:通过调节电容器的电压,使得电场强度达到所需的数值。

记录下电场强度的数值。

3. 发射电子束:打开电子束发射装置,发射一束电子。

4. 观察电子轨迹:使用显微镜观察电子在电场中的运动轨迹,并记录下来。

5. 测量电子轨迹半径:使用尺子或显微镜测量电子轨迹的半径,并记录下来。

6. 计算电子电荷量:根据电场力与电子质量和电荷量之间的关系公式,计算出电子的电荷量。

实验结果与讨论:根据实验数据,我们可以得到电子轨迹半径与电场强度之间的关系。

通过绘制电子轨迹半径与电场强度的曲线,可以求得电子的电荷量。

在实验中,我们发现电子轨迹半径随电场强度的增加而增加。

这与我们的预期一致,因为电场力与电子电荷量成正比,电子轨迹半径的增加意味着电子的电荷量增加。

通过计算,我们得到了电子的电荷量为1.6×10^-19 库仑。

这个结果与已知的电子电荷量非常接近,验证了我们的实验方法的准确性。

结论:通过电子电荷测定实验,我们成功地测量了电子的电荷量,并得到了与已知数值相符的结果。

这个实验不仅帮助我们更深入地了解了电子的性质,还验证了电场力与电子质量和电荷量之间的关系。

电子电荷测定实验在物理学研究和应用中具有重要意义,对于电子学、电磁学等领域的发展起到了积极的推动作用。

电子测量实验报告_电阻

电子测量实验报告_电阻

一、实验目的1. 熟悉电子测量仪器的使用方法;2. 掌握电阻的测量原理和方法;3. 提高实验操作技能和数据处理能力。

二、实验原理电阻是电路中的一种基本元件,用于限制电流的流动。

电阻的测量可以通过多种方法实现,本实验采用伏安法测量电阻。

伏安法是通过测量电阻两端的电压和通过电阻的电流,根据欧姆定律(U=IR)计算电阻值。

三、实验仪器与设备1. 指针式万用表2. 可调直流电源3. 电阻箱4. 电阻5. 滑动变阻器6. 开关7. 导线若干四、实验步骤1. 将电阻、滑动变阻器、开关和导线按照电路图连接好;2. 将万用表选择到电压挡,调整直流电源的输出电压,使电阻两端的电压在合适的范围内;3. 闭合开关,读取电阻两端的电压值U;4. 将万用表选择到电流挡,调整滑动变阻器,使通过电阻的电流在合适的范围内;5. 读取通过电阻的电流值I;6. 重复步骤3和4,至少测量3次,记录数据;7. 根据欧姆定律,计算电阻的平均值。

五、实验数据及处理1. 电压U(V):1.23、1.25、1.272. 电流I(A):0.25、0.26、0.273. 电阻R(Ω)=U/I- 第一次测量:R1 = 1.23V / 0.25A = 4.92Ω- 第二次测量:R2 = 1.25V / 0.26A = 4.81Ω- 第三次测量:R3 = 1.27V / 0.27A = 4.71Ω4. 电阻平均值:R = (R1 + R2 + R3) / 3 = 4.83Ω六、实验结果与分析通过实验测量,得到电阻的平均值为4.83Ω。

实验结果表明,伏安法可以有效地测量电阻值。

在实验过程中,电压和电流的测量值存在一定的误差,这是由于测量仪器的精度和实验操作的不准确性所导致的。

为了提高测量精度,可以采取以下措施:1. 使用高精度的万用表和直流电源;2. 仔细操作,确保电路连接正确;3. 多次测量取平均值,以减小误差。

七、实验总结本次实验通过伏安法测量电阻,掌握了电阻的测量原理和方法,提高了实验操作技能和数据处理能力。

电子测量实验报告

电子测量实验报告

电子测量实验报告电子测量实验报告实验目的:本实验旨在学习和掌握基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。

实验仪器:数字电压表(DMM)、示波器(OSC)和信号发生器(SG)。

实验原理:1. 数字电压表:用于测量电路中的电压值,采用数码显示,具有较高的精度和稳定性。

在电路中需要将表针式电压表或模拟电压表替换为数字电压表,以便更准确地测量电路中的电压。

2. 示波器:用于显示电压随时间的变化情况,具有测量信号幅度、频率、相位等特性的功能。

示波器内置了扫描信号发生器和偏移电压源,可以在显示屏上显示出电压随时间的波形图。

3. 信号发生器:用于产生各种稳定的信号源,包括正弦波、方波、脉冲等。

可以通过调节信号发生器的频率和幅度来产生所需的信号。

实验步骤:1. 将数字电压表连接到待测电路的电压接线点,将测量量程调整到合适的范围,读取并记录测量结果。

2. 将示波器连接到待测电路的电压接线点,调整示波器的时间和电压量程,观察并记录电压随时间的波形图。

3. 将信号发生器连接到待测电路的输入端,调节信号发生器的频率和幅度,观察并记录输出信号的波形和频率。

实验结果:1. 使用数字电压表测量待测电路的电压,记录并比较了不同量程下的测量结果。

2. 使用示波器观察了待测电路在不同时间段内电压的波形变化,分析并记录了示波器上显示的波形图。

3. 使用信号发生器产生了不同频率和幅度的信号,并观察了待测电路对信号的响应情况,记录并分析了输出信号的波形和频率。

实验结论:通过本实验的操作,我们学习并掌握了基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。

通过实验观察和测量,我们能够准确地测量电路中的电压,并通过示波器显示电压随时间的波形图,以及通过信号发生器产生各种信号源,验证待测电路对信号的响应情况。

电子测量 实验报告

电子测量 实验报告

电子测量实验报告实验报告:电子测量引言:电子测量是电子学中非常重要的一部分,通过电子测量,可以对电流、电压、电阻、电感、电容和功率等参数进行准确的测量和分析。

本实验旨在通过实际操作,了解并掌握一些基本的电子测量方法和仪器的使用。

实验目的:1. 了解常见的电子测量仪器,例如数字万用表、示波器和信号发生器等。

2. 掌握测量直流电流、直流电压、交流电压、交流电流、电阻、电容和电感的方法和技巧。

3. 学习使用示波器测量电压、频率和相位差等信号参数。

实验步骤和结果:1. 实验一:测量直流电流和直流电压a. 将数字万用表的选择旋钮拨到直流电流测量档位,并连接正确的电路。

b. 通过电源控制直流电流的大小,观察数字万用表的读数并记录。

c. 将数字万用表的选择旋钮拨到直流电压测量档位,连接正确的电路并测量直流电压。

2. 实验二:测量交流电压和交流电流a. 使用示波器测量交流电压和交流电流。

b. 设置示波器的时间和幅度尺度,观察波形,并测量其峰值和有效值。

3. 实验三:测量电阻、电容和电感a. 使用数字万用表测量电阻,并计算真值和误差。

b. 使用数字万用表测量电容,并记录相应的读数。

c. 使用示波器和信号发生器测量电感的感抗和品质因数。

讨论与分析:通过以上实验,我们可以得到以下的结论和分析:1. 电子测量仪器的使用:通过实验,我们了解了常见的电子测量仪器的使用方法,例如数字万用表、示波器和信号发生器。

这些仪器能够提供准确的测量结果,为电子工程师的工作提供了很大的帮助。

2. 直流电流和直流电压的测量:通过实验一,我们学会了使用数字万用表来测量直流电流和直流电压。

我们可以通过调节电源的电压和连接正确的电路来测量不同的电流和电压值。

3. 交流电压和交流电流的测量:实验二中,我们使用示波器来测量交流电压和交流电流。

通过观察波形,并测量其峰值和有效值,我们可以了解信号的振幅和频率等特性。

4. 电阻、电容和电感的测量:实验三中,我们使用数字万用表测量电阻和电容,并计算出真值和误差。

实验报告电子测量

实验报告电子测量

一、实验目的1. 熟悉电子测量仪器的基本原理和使用方法。

2. 掌握常用电子测量仪器的操作技巧。

3. 提高电子测量实验技能,培养严谨的科学态度。

二、实验原理电子测量是指利用电子技术和电子仪器对各种物理量进行测量。

本实验主要涉及以下测量原理:1. 电压测量:利用电压表直接测量电路中的电压值。

2. 电流测量:利用电流表直接测量电路中的电流值。

3. 电阻测量:利用欧姆定律,通过测量电压和电流,计算出电阻值。

4. 频率测量:利用频率计测量信号源的频率值。

5. 信号发生器:产生各种频率、幅度和波形的标准信号。

三、实验仪器1. 双踪示波器2. 数字万用表3. 欧姆表4. 频率计5. 信号发生器6. 滑动变阻器7. 电容8. 电感9. 电源四、实验内容1. 示波器使用方法(1)观察正弦波(2)观察矩形波(3)观察三角波(4)观察李萨如图形2. 电压测量(1)测量直流电压(2)测量交流电压3. 电流测量(1)测量直流电流(2)测量交流电流4. 电阻测量(1)测量固定电阻(2)测量可变电阻5. 频率测量(1)测量正弦波频率(2)测量矩形波频率6. 信号发生器使用(1)产生正弦波(2)产生矩形波(3)产生三角波五、实验步骤1. 示波器使用方法(1)打开示波器电源,调整亮度、对比度等参数。

(2)将示波器探头连接到待测电路,调整探头衰减倍数。

(3)观察波形,调整示波器参数,使波形清晰可见。

2. 电压测量(1)将电压表的正极探头连接到电路中待测电压点,负极探头接地。

(2)选择合适的量程,读取电压值。

3. 电流测量(1)将电流表串联接入电路中待测电流点。

(2)选择合适的量程,读取电流值。

4. 电阻测量(1)将待测电阻接入电路。

(2)选择合适的量程,读取电阻值。

5. 频率测量(1)将频率计探头连接到待测信号源。

(2)选择合适的量程,读取频率值。

6. 信号发生器使用(1)将信号发生器输出端连接到待测电路。

(2)调整信号发生器参数,产生所需波形。

电子测量实验报告

电子测量实验报告

电子测量实验报告电子测量实验报告引言:电子测量是电子工程领域中至关重要的一环,它涵盖了各种测量技术和仪器的应用。

在本次实验中,我们将探索电子测量的原理和方法,并通过实际操作来验证这些理论。

一、实验目的本次实验的目的是通过测量电阻、电容和电感等元件的参数,加深对电子测量原理的理解,并掌握相应的测量方法和技巧。

二、实验仪器和材料1. 电源:提供电流和电压源。

2. 万用表:用于测量电阻、电压和电流等参数。

3. 电阻箱:用于调节不同阻值的电阻。

4. 电容箱:用于调节不同容值的电容。

5. 电感箱:用于调节不同感值的电感。

6. 示波器:用于观察电压和电流的波形。

三、实验步骤1. 电阻测量:a. 将电阻箱的阻值调节到一个已知值,例如100欧姆。

b. 将电阻箱与万用表相连,选择电阻测量档位,记录测量结果。

c. 重复以上步骤,测量不同阻值的电阻。

2. 电容测量:a. 将电容箱的容值调节到一个已知值,例如10微法。

b. 将电容箱与万用表相连,选择电容测量档位,记录测量结果。

c. 重复以上步骤,测量不同容值的电容。

3. 电感测量:a. 将电感箱的感值调节到一个已知值,例如100毫亨。

b. 将电感箱与万用表相连,选择电感测量档位,记录测量结果。

c. 重复以上步骤,测量不同感值的电感。

四、实验结果与分析1. 电阻测量:我们测量了不同阻值的电阻,结果如下:- 100欧姆:测量值为99.8欧姆- 200欧姆:测量值为200.1欧姆- 500欧姆:测量值为500.2欧姆通过对比测量值和已知值,我们可以发现测量结果的准确性较高。

2. 电容测量:我们测量了不同容值的电容,结果如下:- 10微法:测量值为10.1微法- 20微法:测量值为19.9微法- 50微法:测量值为50.3微法测量结果与已知值相比,存在一定的误差,这可能是由于电容箱的精度限制或测量方法的不完善导致的。

3. 电感测量:我们测量了不同感值的电感,结果如下:- 100毫亨:测量值为99.9毫亨- 200毫亨:测量值为200.2毫亨- 500毫亨:测量值为500.1毫亨测量结果与已知值相比,误差较小,说明测量方法的准确性较高。

电子元件测量实验报告

电子元件测量实验报告

电子元件测量实验报告电子元件测量实验报告引言:电子元件是现代科技发展中不可或缺的重要组成部分,对其性能进行准确测量和评估是保证电子设备正常运行的关键。

本实验旨在通过测量不同电子元件的电阻、电容和电感等基本参数,探究其特性和性能。

实验一:电阻测量电阻是电流通过的阻碍物,是电子元件中常见的一种被动元件。

在本实验中,我们采用万用表测量了几种不同电阻的阻值,并观察了其温度系数和线性特性。

实验结果表明,电阻值与电流成正比,与电压成反比。

此外,我们还发现了电阻的温度系数,即随着温度的升高,电阻值会发生变化。

这一发现对电子设备的设计和工作环境选择具有重要意义。

实验二:电容测量电容是电子元件中存储电荷的元件,广泛应用于滤波、耦合和存储等电路中。

在本实验中,我们使用LCR表测量了不同电容的容值,并研究了其频率特性和损耗因子。

实验结果表明,电容的容值与频率成反比,即电容在高频率下的容值会减小。

此外,我们还观察到电容的损耗因子,即电容元件对电流的能量损耗。

这对电子设备的功耗和效率具有重要影响。

实验三:电感测量电感是电子元件中储存磁场能量的元件,常用于滤波、变压器和振荡电路等应用中。

在本实验中,我们使用LCR表测量了不同电感的感值,并研究了其频率特性和磁耗因子。

实验结果表明,电感的感值与频率成正比,即电感在高频率下的感值会增大。

此外,我们还观察到电感的磁耗因子,即电感元件对电流的磁能损耗。

这对电子设备的磁场干扰和效率具有重要影响。

结论:通过本实验,我们对电子元件的测量和特性有了更深入的理解。

电阻、电容和电感作为电子元件的基本参数,对电子设备的性能和稳定性具有重要影响。

因此,在电子设备的设计和制造过程中,准确测量和评估电子元件的特性是必不可少的。

值得注意的是,在实验过程中,我们还发现了电子元件的温度系数、频率特性和损耗因子等重要特性。

这些特性对于电子设备的工作环境选择和性能优化具有重要意义。

总之,通过本实验,我们不仅加深了对电子元件的理解,还为电子设备的设计和制造提供了重要的参考依据。

电子测量技术实验报告

电子测量技术实验报告

电子测量技术实验报告实验一:示波器的一般应用一、实验目的:了解通用电子示波工器工作原理的基础上,学会正确使用示波器测量各种电参数的方法。

二、实验仪器:1、函数信号发生器,SG1646,1台;2、双踪示波器,型号CA8000系列,数量1台。

三、实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。

它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。

我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。

电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的_偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。

若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。

因此,只有当_偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。

一般说来,Y偏转板上所加的待观测信号的周期与_偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。

这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。

近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。

只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。

在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。

交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。

电子测量技术实验报告

电子测量技术实验报告

电子测量技术实验报告实验名称:电子测量技术实验实验目的:1. 熟悉电子测量仪器的使用方法。

2. 掌握基本的电子测量技术,包括电压、电流、频率等参数的测量。

3. 理解测量误差的来源及其对测量结果的影响。

实验原理:电子测量技术是利用电子仪器对电子电路中的电参数进行定量分析的技术。

常见的电子测量仪器包括示波器、万用表、频率计等。

本实验主要通过这些仪器对电路中的电压、电流、频率等参数进行测量,以验证电路设计的正确性及性能指标。

实验设备:1. 示波器2. 万用表3. 频率计4. 信号发生器5. 待测电路板及相关连接线实验步骤:1. 检查实验设备是否完好,确保所有仪器均处于正常工作状态。

2. 根据实验要求,搭建待测电路,并连接相应的测量仪器。

3. 使用示波器测量电路中的波形,记录波形的幅度和频率。

4. 使用万用表测量电路中的电压和电流,记录测量值。

5. 使用频率计测量信号的频率,记录频率值。

6. 分析测量结果,与理论值进行比较,计算误差。

7. 根据实验结果,调整电路参数,优化电路性能。

实验结果:1. 示波器测量结果显示,波形幅度为X伏特,频率为Y赫兹。

2. 万用表测量结果显示,电路中的电压为Z伏特,电流为A安培。

3. 频率计测量结果显示,信号频率为B赫兹。

误差分析:1. 示波器测量误差可能来源于仪器的校准精度以及操作者读数的准确性。

2. 万用表测量误差可能来源于仪器的内部误差以及接触不良。

3. 频率计测量误差可能来源于信号源的稳定性以及测量环境的干扰。

实验结论:通过本次实验,我们成功地掌握了电子测量技术的基本操作,并对电路中的电压、电流、频率等参数进行了准确的测量。

实验结果与理论值相比,误差在可接受范围内,说明电路设计基本正确,性能指标符合预期。

通过误差分析,我们了解到了测量误差的来源,为今后的实验提供了宝贵的经验。

实验心得:在本次实验中,我深刻体会到了电子测量技术在电子电路分析中的重要性。

通过实际操作,我不仅学会了如何使用各种电子测量仪器,还学会了如何分析测量结果,评估电路性能。

电子测量实验报告脉搏

电子测量实验报告脉搏

电子测量实验报告脉搏实验目的:通过电子测量仪器测量脉搏信号的频率和幅值,并分析脉搏信号的特征。

实验仪器和材料:电子测量仪、电极贴片、导线、计算机。

实验原理:1. 脉搏信号是心脏每搏一次所产生的,脉搏信号在人体各部位都可以测得,但最常见的是手腕上的脉搏。

2. 脉搏信号是由心脏收缩产生的,它经过血管传导到各个部位,使得血液在血管内流动起伏,形成脉搏波形。

3. 脉搏信号的频率和幅值可以反映人体的生理状况,如心率、血压、心肌功能等。

实验步骤:1. 将电极贴片正确地贴在手腕上,保持良好的接触。

2. 将接地线连接到电子测量仪上的接地端口。

3. 将正极线连接到电子测量仪上的正极端口。

4. 打开电子测量仪的电源,并进行相应的设置。

5. 通过电子测量仪测量脉搏信号的频率和幅值。

6. 记录测量结果,并进行分析。

实验结果:通过电子测量仪测量脉搏信号,我们得到了脉搏信号的频率和幅值。

实验结果显示,脉搏信号的频率为X次/分钟,幅值为X伏。

实验分析:根据实验结果,我们可以得出以下结论:1. 脉搏信号的频率可以反映心率。

心率是心脏每分钟搏动的次数,一般以“次/分钟”为单位。

正常成人的心率范围是60-100次/分钟,若心率低于60次/分钟或高于100次/分钟,则可能存在心脏疾病或其他健康问题。

2. 脉搏信号的幅值可以反映血流量和血压。

脉搏信号的幅值越大,说明血流量越大,血压越高;反之,脉搏信号的幅值越小,说明血流量越小,血压越低。

通过测量脉搏信号的幅值,可以初步判断血压水平是否正常。

3. 脉搏信号的形态也具有一定的参考价值。

正常情况下,脉搏信号应该是周期稳定、波形规则、上升较快、下降较慢的波形。

若脉搏信号的波形异常,如存在剧烈的波动、波形不规则等,可能存在心脏病或其他疾病。

实验结论:通过本次实验,我们成功地使用电子测量仪器测量了脉搏信号的频率和幅值,初步了解了脉搏信号的特征。

脉搏信号的频率、幅值和形态可以反映人体的生理状况,如心率、血压、心肌功能等。

电 子 测 量 实 验 报 告

电 子 测 量 实 验 报 告

电子测量实验报告学院:电气工程学院班级:0910班姓名:于冰学号:09292054 指导教师:秦芳实验一示波器波形参数测量一、实验目的1、学会用示波器测量电压信号峰峰值及其直流分量。

2、学会用示波器测量电压信号周期及频率。

3、学会用示波器测量两信号的相位差。

二、实验设备1、信号发生器2、示波器3、电阻、电容等三、实验步骤1、测量1kHz的三角波以及经阻容移相平波后的正旋波信号的峰峰值及其直流分量。

2、测量1kHz的三角波的周期及频率。

3、用单踪方式测量两信号间的相位差。

4、用双踪方式测量两信号间的相位差。

5、信号改为100Hz,重复上述步骤1—4。

四、实验电路五、实验数据1、1kHz时:三角波峰峰值V pp1=4.71V,周期T1=0.978ms,频率f1=1.0215kHz;正弦波峰峰值V pp2=0.621V,直流分量V=17.0mV;单踪方式测相位差△t1=0.222ms,则△Φ1=81.72°双踪方式测相位差△t2=0.225ms,则△Φ2=82.82°2、100Hz时:三角波峰峰值V pp1=4.70V,周期T1=9.86ms,频率f1=101.69Hz;正弦波峰峰值V pp2=3.44V,直流分量V=20.0mV;单踪方式测相位差△t1=0.860ms,则△Φ1=31.40°双踪方式测相位差△t2=0.850ms,则△Φ2=31.03°六、思考题1、调整信号发生器的直流偏移电压,当偏置过大时,为什么产生波形失真?是示波器的原因还是信号发生器的问题?答:信号发生器的直流偏置电压与三角波叠加,使Y偏转过大,波形失真。

产生失真是示波器的原因。

要使示波器正常显示,调节Y偏转因数。

2、测量相位差时,你认为双踪、单踪测量哪种方式更准确?为什么?答:单踪方式测相位差更准确。

选用双踪方式时,使用两个输入通道,这样产生的系统误差会更大;采用单踪方式时信号只需要从一个通道输入,不会产生过大的差异。

电子测量实验报告

电子测量实验报告

电子测量实验报告本次实验主要是为了学习电子测量的基本原理和方法,并掌握其在实际应用中的运用。

通过了解电子测量的基本概念和理论,我深刻认识到电子测量在现代科技领域中的重要作用。

在本文中,我将分享我的实验经验以及对电子测量的一些认识。

一、实验目的及原理1. 实验目的:(1)掌握电子测量系统的工作原理;(2)了解电子仪器在实际应用中的优势和不足;(3)学会使用示波器、万用表等基本电子仪器进行测量和分析。

2. 原理电子测量是一种使用电子仪器对电路中的电压、电流、频率、电阻、电容等参数进行测量的方法。

电子测量系统由各种电子仪器组成,其中更加常用的是示波器和万用表。

示波器是一种能够显示波形的电子仪器,它可以显示信号的振幅、频率、相位等参数。

示波器的工作原理是将电压信号转换为电流信号,并通过电子管进行放大,最终在显像管上形成图象。

波形的形状可以反映电路中存在的各种问题,如幅值、频率、相位、波形失真等。

万用表是一种通用测量仪器,它能够测量电压、电流、电阻等不同类型的参数。

万用表的原理是通过电阻进行测量,通过电阻计算出被测量的参数。

由于万用表能够自动调整量程,因此它也是一种非常常用的电子仪器。

二、实验操作及结果在实验中,我们首先使用万用表对电路进行初步测试,测量各节点的电压和电阻值。

接下来,我们使用示波器对电路中的信号进行测量,如测量不同频率下的信号波形、测量滤波器的截止频率等。

最终,我们还使用示波器进行信号发生器的调整和测量,以学习如何生成各种信号和测量示波器的性能。

通过实验,我对电子测量的基本原理和方法有了更深入的了解。

同时,我也认识到电子仪器在实际应用中存在的各种问题,如精度、量程、滞后等。

电子测量需要精密的仪器和高超的技能,因此在日常的实践中需要谨慎、细致地进行。

三、实验结论及心得通过本次实验,我对电子测量有了更系统的认识,并掌握了一些基本的技能和方法。

在实际应用中,电子测量起着至关重要的作用,它在各个行业中都有应用,如通讯、电力、航空等。

测量电子元件实验报告

测量电子元件实验报告

一、实验目的本次实验旨在让学生掌握电子元件的测量方法,熟悉常用电子元件的特性,提高学生在电子电路设计、制作与调试中的实际操作能力。

二、实验原理电子元件的测量方法主要有直接测量和间接测量两种。

直接测量是指使用仪器直接测量元件的物理量,如电阻、电容、电感等;间接测量是指通过测量电路中的其他物理量,间接推算出元件的参数,如测量电路中的电流、电压等。

三、实验仪器与材料1. 仪器:数字万用表、稳压电源、信号发生器、示波器、电阻箱、电容箱、电感箱等。

2. 材料:电阻、电容、电感、二极管、三极管、集成电路等常用电子元件。

四、实验步骤1. 电阻的测量(1)使用数字万用表设置在电阻测量挡,将红表笔和黑表笔分别连接到电阻两端。

(2)观察万用表显示的电阻值,即为所测电阻的阻值。

2. 电容的测量(1)使用数字万用表设置在电容测量挡,将红表笔和黑表笔分别连接到电容两端。

(2)观察万用表显示的电容值,即为所测电容的电容值。

3. 电感的测量(1)使用数字万用表设置在电感测量挡,将红表笔和黑表笔分别连接到电感两端。

(2)观察万用表显示的电感值,即为所测电感的电感值。

4. 二极管的测量(1)使用数字万用表设置在二极管测量挡,将红表笔和黑表笔分别连接到二极管的两端。

(2)观察万用表显示的电压值,正值表示二极管导通,负值表示二极管截止。

5. 三极管的测量(1)使用数字万用表设置在二极管测量挡,将红表笔和黑表笔分别连接到三极管的基极和发射极。

(2)观察万用表显示的电压值,正值表示三极管导通,负值表示三极管截止。

6. 集成电路的测量(1)使用数字万用表设置在二极管测量挡,将红表笔和黑表笔分别连接到集成电路的相应引脚。

(2)观察万用表显示的电压值,根据集成电路的规格书,判断集成电路是否正常工作。

五、实验结果与分析1. 电阻的测量结果与分析实验中测量了不同阻值的电阻,测量值与标称值基本一致,说明测量方法正确。

2. 电容的测量结果与分析实验中测量了不同电容值的电容,测量值与标称值基本一致,说明测量方法正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建农林大学计算机与信息学院课程名称:姓名:系:专业:年级:学号:指导教师:职称:信息工程类实验报告电子测量技术电子信息工程系电子信息工程年月日实验项目列表福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程系专业:电子信息工程年级:姓名:学号:实验课程:电子测量技术基础实验室号:_田406 实验设备号:10 实验时间:指导教师签字:成绩:实验一:示波器、信号发生器的使用1.实验目的和要求1)了解示波器的结构。

2)掌握波形显示的基本原理、扫描及同步的概念。

3)了解电子示波器的分类及主要技术性能指标。

4)掌握通用示波器的基本组成及各部分的作用。

5)了解各种信号发生器如正弦信号发生器、低频信号发生器、超低频信号发生器、函数信号发生器等的工作原理和性能指标以及信号选择。

2.实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。

它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。

我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。

电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的x偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。

若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。

因此,只有当x偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。

一般说来,y偏转板上所加的待观测信号的周期与x偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。

这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。

近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。

只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。

在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。

交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。

由于双踪显示时两个通道都有信号输入,因此还可以工作于叠加方式,这时是将两个信号逐点相加起来后送到y偏转板的。

这种工作方式可模拟谐波叠加,波形失真等问题。

同时,如果改变其中一个的极性,也可以实现相减的显示功能。

这相当于两个函数的相加减。

示波器除了用于观测信号的时间波形外,还可将两个相同或不同的信号分别加于垂直和水平系统,以观测两信号在x?y平面上正交叠加所组成的图形,如李沙育图形,它可用于观测两个信号之间的幅度、相位和频率关系。

3.主要仪器设备(实验用的软硬件环境)1)函数信号发生器,型号yb1634,指标:0.2hz-2mhz,数量2台; 2)双踪示波器,型号yb4320a,指标:20mhz,数量1台。

3)其它实验室常用工具。

4.操作方法与实验步骤 4.1操作方法1)作好使用示波器前的调亮、聚焦、校正等准备工作。

2)用示波器测量方波的上升时间和下降时间。

3)用示波器显示、测量正弦波的重复周期及电压峰—峰值。

4)用示波器显示、测量三角波的波形对称度。

4.2实验步骤1)作好使用示波器前的调亮、聚焦和校正等准备工作(1)打开示波器的电源开关后,先将示波器的两个通道的耦合方式置为地,然后分别通过调节示波器的辉度按钮“rw1”来改变荧光屏亮点的辉度即荧光屏的亮度,调节聚焦按钮“rw2”和辅助聚焦按钮“rw3”来使得电子束具有较细的截面,射到荧光屏上,以便在荧光屏上显示出清晰的聚焦很好的波形曲线。

(2)分别对示波器的两个通道进行调零,然后调节示波器的ch1的“位移”旋钮及ch2的“位移”旋钮,分别将通道1的扫描线及通道2的扫描线调至中心位置,以便更好的观察波形。

(3)调节“扫描微调”旋钮至校准位,将校准信号接入通道1,观测显示是否正确(其中示波器提供的是标准的1khz)。

(4)按下“ch2”按钮,显示通道2的扫描线,调节“触发电平”旋钮至锁定位置。

2)各种波形参数测量(1)方波①上升时间tr测量对示波器进行调零完之后,再用同轴电缆将示波器和信号发生器连接起来,在波形选择档选择方波的波形,当得到所要的方波波形之后,调节示波器的时基旋钮将波形展开,使波形放大,接着按下扫描因数³5的扩展键,调篇二:电子测量实验报告电气工程学院电子测量课程实验报告姓名:蜗牛的染色体学号:同组人:指导教师:曾国宏实验日期: 2012年10月28日示波器波形参数测量实验成绩评定表指导教师签字:年月日示波器波形参数测量实验报告姓名:学号指导教师:曾国宏实验台号: 17一、实验目的本实验利用示波器测量波形的参数,进一步巩固和加强示波器的基础知识,熟练掌握示波器的使用方法和测量技巧。

具体包括三个内容:1. 熟练掌握用示波器测量电压信号峰峰值,有效值及其直流分量。

2. 熟练掌握用示波器测量电压信号周期及频率。

3. 熟练掌握用示波器在单踪方式和双踪方式下测量两信号的相位差。

二、实验预习在做此实验前,预习工作主要由以下几个方面:1、在做实验以前,熟悉了整个实验的内容以及实验过程中应该注意的注意事项有哪些;2、认真查阅了示波器的型号以及其功能,凭借以往的经验,对示波器有了更深一步的认识;3、学习示波器,对示波器的校准和各个键位功能进行进一步确定,了解怎样用示波器测定峰峰值以及确定其直流分量,另外确定波形的周期继频率;4、了解单踪示波器和双踪示波器的差别,其次了解怎样用单踪方法和双踪方法分别测定相位差。

三、实验仪器与设备 1、 ss7802a型示波器 a、主要参数:ss-7802模拟示波器²具有能够选择场方式、线路的tv/视频同步功能²附有光标和读出功能²5位数计数器规格及性能²显像管:6英寸、方型8³10p(1p=10mm)约16kv²垂直灵敏度:2mv/p~5v/p(1-2-5档)(通道1、通道2)精度:±2%²频率范围:20mhz²时间轴扫描a²100ns/p~500ms/p²tv/视频同步:能够选择场方式、能够选择odd、even、both、扫描线路²b、主要功能描述示波器操作板如图所示:? 包括如下五个操作控制区域:水平控制区【?position?】:将【?position?】向右旋转,波形右移。

fine 指示灯亮时,旋转【?position?】可作微调。

mag³10 :扫描速率提高10 倍,波形将基于中心位置向左右放大。

alt chop :选择alt(交替,两个或多个信号交替扫描)或chop(断续,两个或多个信号交替扫描)。

? 垂直控制区input :输入连接器(ch1、ch2),连接输入信号。

ext input :用外触发信号做触发源。

外信号通过前面板的ext input 接入。

【volts/div】:调节【volts/div】选择偏转因数。

按下【volts/div】;偏转因数显示“?”符号。

在该屏幕下,可执行微调程序。

【▲position▼】:垂直位移,向右旋转,波形上移。

ch1 、 ch2 :通道选择,按下 ch1 或ch2 选择通道显示或不显示。

gnd :按下 gnd 打开接地开关。

dc/ac: 选择直流(dc)或交流(ac)耦合。

add 、inv :显示(ch1+ch2)(相加〈add〉)或(ch1-ch2)(相减〈inv〉)。

? 触发及扫描控制区【time/div】:选择扫描速率。

【trig level】:调整触发电平。

slope :选择触发沿(+、―)。

source :选择触发来源(ch1、ch2、line、ext、vert)。

coupl :选择触发耦合方式(ac、dc 、hf rej 或lf rej)。

tv :视频信号触发选择(both、odd、even、或tv-h)。

trig’d 指示灯:当触发脉冲产生时灯亮着。

ready 指示灯:等待触发信号时灯亮着。

auto 、norm :选择重复扫描。

sgl/rst :选择单次扫描。

? 功能选择及控制区【function】:可用此旋钮设定延迟时间、光标位置等。

旋转时做为微调使用。

如需粗调时,可单次或连续按下此钮,而光标移动方向为之前此钮旋转的方向。

→光标←: △v-△t-off :选择△t(时间变化测量),选择△v(电压变化测量),或off。

tck/c2 :选择光标移动形式(c2 或tracking)。

holdoff :选择释抑时间。

? 整体控制区power:用于开启电源(on)或进入预备(stby)状态屏幕灰度等的调整校准信号及接地端口cal 连接器:输出校准电压信号,此信号用于本仪器之操作检查及调整探头波形屏幕显示分为以下三个区域: ? 触发及扫描信息显示区在显示屏的上方,依次为:扫描速度、触发源、触发极性、触发耦合方式、触发电平、释抑时间等项目。

? 波形显示区显示信号波形。

? 信号源状态、测量结果显示区位于屏幕的下方。

四、实验内容及步骤:1、测量1khz的三角波信号的峰峰值及其直流分量:步骤:a、打开示波器,并对示波器进行校准;b、将探头一段接到ch1另一端接到cal连接器,其扫描模式设置为acto,然后经过一系列操作,使示波器显示如下图的波形:篇三:电子测量技术实验报告《电子测量技术》实验报告姓名:xxxxxxx学号:xxxxxxxxxxx班级:电气xxxxx班组员:xxxxxxxxxxx 指导教师:xxxxxxxx 实验日期:xxxxxxxxxxxx 实验一示波器波形参数测量一实验目的通过示波器的波形参数测量,进一步巩固加强示波器的波形显示原理的掌握,熟悉示波器的使用技巧。

1. 熟练掌握用示波器测量电压信号峰峰值,有效值及其直流分量。

2. 熟练掌握用示波器测量电压信号周期及频率。

3. 熟练掌握用示波器在单踪方式和双踪方式下测量两信号的相位差。

二实验设备1. 信号发生器, 示波器2. 电阻、电容等三实验步骤1.测量1khz的三角波信号的峰峰值及其直流分量。

2.测量1khz的三角波经下图阻容移相平波后的信号的峰峰值及其直流分量。

3.测量1khz的三角波的周期及频率。

4.用单踪方式测量三角波、两信号间的相位差。

相关文档
最新文档