恒成立及分式不等式解法
高考数学解决不等式恒成立问题常用5种方法.doc
高考数学解决不等式恒成立问题常用5种方
法
解析:分离参数法适用的题型特征:
当不等式的参数能够与其他变量完全分离出来,
并且分离后不等式其中一边的函数的最值或范围可求时,
则将参数式放在不等式的一边,分离后的变量式放在另一边,
将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,
若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min
方法二:变换主元法(也可称一次函数型)
解析:学生通常习惯把x当成主元(未知数),
把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,
如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,
则可简便解题。
适用于变换主元法的题型特征是:
题目有两个变量,
且已知取值范围的变量只有一次项,
这时就可以将不等式转化为一次函数求解。
方法三:二次函数法
解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析
1,判断二次函数的开口方向
2,二次函数的判别式是大于0还是小于0
3,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性
方法四:判别式法
解析:不等式一边是分式,
且分式的分子和分母的最高次项都是二次项时,
利用判别式法可以快速的解题,
分离参数将会使解题变得复杂。
方法五:最值法
解析:不等式两边是两个函数,
且含有参数时,我们可以分出出参数,
构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
二次函数与一元二次方程、不等式知识点总结与例题讲解
二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。
分式不等式解法课件
不等式的性质
在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;在不等 式的两边同时乘或除以同一个正数,不等号的方向不变;在不等式的两边同时 乘或除以同一个负数,不等号的方向改变。
02
CATALOGUE
分式不等式的解法
转化为一元一次不等式组的方法
实例
对于不等式 $frac{x - 2}{x + 1} < 0$,分子为正数,分母为 负数,解集为 $-1 < x < 2$。
03
CATALOGUE
分式不等式的应用
在数学解题中的应用
分式不等式是数学中常见的一种不等式类型,掌握其解法对 于解决数学问题至关重要。分式不等式常常出现在代数、几 何、三角函数等数学领域中,是数学竞赛和日常学习的必备 知识点。
01
02
03数分离出来,形成一元 一次不等式组。
注意事项
在转化过程中,需要注意 不等式的符号和分母不为 零的条件。
实例
对于分式不等式 $frac{x 2}{x + 1} > 1$,可以转 化为 $x - 2 > x + 1$ 或 $x - 2 < -(x + 1)$,从而 得到一元一次不等式组。
分式不等式的练习题与解析
基础练习题
题目
01 不等式(2x - 5)/(x + 3) ≥ 0的
解集为 _______.
答案
$(- infty , - 3) cup lbrackfrac{5}{2}, + infty)$
02
解析
03 首先确定不等式的分母和分子
符号,然后根据不等式的性质 求解。
数学人教A版必修五第三章 3.2 第2课时分式不等式
第2课时一元二次不等式及其解法(二)学习目标1.会解可化为一元二次不等式(组)的简单分式不等式.2.会对含参数的一元二次不等式分类讨论.3.掌握与一元二次不等式有关的恒成立问题的解法.知识点一 分式不等式的解法 一般的分式不等式的同解变形法则: (1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0;g (x )≠0; (3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 知识点二 一元二次不等式恒成立问题一般地,“不等式f (x )>0在区间[a ,b ]上恒成立”的几何意义是函数y =f (x )在区间[a ,b ]上的图象全部在x 轴上方.区间[a ,b ] 是不等式f (x )>0的解集的子集. 恒成立的不等式问题通常转化为求最值问题,即: k ≥f (x )恒成立⇔k ≥f (x )max ; k ≤f (x )恒成立⇔k ≤f (x )min .知识点三 含参数的一元二次不等式的解法解含参数的一元二次不等式,仍可按以前的步骤,即第一步先处理二次项系数,第二步通过分解因式或求判别式来确定一元二次方程有没有根,第三步若有根,区分根的大小写出解集,若无根,结合图象确定解集是R 还是∅.在此过程中,因为参数的存在导致二次函数开口方向、判别式正负、两根大小不确定时,为了确定展开讨论.1.由于x -5x +3>0等价于(x -5)(x +3)>0,故y =x -5x +3与y =(x -5)(x +3)图象也相同.( × )2.x 2+1≥2x 等价于(x 2+1)min ≥2x .( × )3.对于ax 2+3x +2>0,当a =1时与a =-1时,对应的不等式解集不能求并集.( √ ) 4.(ax +1)(x +1)>0⇔⎝⎛⎭⎫x +1a (x +1)>0.( × )题型一 分式不等式的解法 例1 解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,⎩⎭(2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0, 解得x <32或x ≥4,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. 反思感悟 分式不等式的解法:先通过移项、通分整理成标准型f (x )g (x )>0(<0)或f (x )g (x )≥0(≤0),再化成整式不等式来解.如果能判断出分母的正负,直接去分母即可. 跟踪训练1 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 解 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12,∴-3<x <-12, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.⎩⎭题型二 不等式恒成立问题 例2 设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求实数m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求实数m 的取值范围. 解 (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0.∴-4<m ≤0.(2)方法一 要使f (x )<-m +5在x ∈[1,3]上恒成立, 就要使m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, ∴g (x )max =g (1)=m -6<0,得m <6,∴m <0. 综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 方法二 当x ∈[1,3]时,f (x )<-m +5恒成立, 即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立. ∵x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又m (x 2-x +1)-6<0,∴m <6x 2-x +1.∵函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,∴只需m <67即可.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 引申探究把例2(2)改为:对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解 f (x )<-m +5,即mx 2-mx -1<-m +5, m (x 2-x +1)-6<0. 设g (m )=m (x 2-x +1)-6.则g (m )是关于m 的一次函数且斜率 x 2-x +1=⎝⎛⎭⎫x -122+34>0. ∴g (m )在[1,3]上为增函数,要使g (m )<0在[1,3]上恒成立,只需g (m )max =g (3)<0, 即3(x 2-x +1)-6<0,x 2-x -1<0,方程x 2-x -1=0的两根为x 1=1-52,x 2=1+52,∴x 2-x -1<0的解集为⎝⎛⎭⎪⎫1-52,1+52,即x 的取值范围为⎝ ⎛⎭⎪⎫1-52,1+52.反思感悟 有关不等式恒成立求参数的取值范围,通常处理方法有两种(1)考虑能否进行参变量分离,若能,则构造关于变量的函数,转化为求函数的最大(小)值,从而建立参变量的不等式.(2)若参变量不能分离,则应构造关于变量的函数(如一次函数、二次函数),并结合图象建立参变量的不等式求解.跟踪训练2 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,求实数m 的取值范围. 解 构造函数f (x )=x 2+mx +4,x ∈[1,2], 则f (x )在[1,2]上的最大值为f (1)或f (2).由于当x ∈(1,2)时,不等式x 2+mx +4<0恒成立.则有⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0,可得⎩⎪⎨⎪⎧m ≤-5,m ≤-4,所以m ≤-5.题型三 含参数的一元二次不等式例3 解关于x 的不等式ax 2-(a +1)x +1<0. 解 当a <0时,不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, ∵a <0,∴1a <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1. 当a =0时,不等式可化为-x +1<0,解集为{x |x >1}. 当a >0时,不等式可化为⎝⎛⎭⎫x -1a (x -1)<0. 当0<a <1时,1a >1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a . 当a =1时,不等式的解集为∅.当a >1时,1a <1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 综上,当a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 反思感悟 解含参数的一元二次不等式,可以按常规思路进行:先考虑开口方向,再考虑判别式的正负,最后考虑两根的大小关系,当遇到不确定因素时再讨论. 跟踪训练3 解关于x 的不等式(x -a )(x -a 2)<0.解 当a <0或a >1时,有a <a 2,此时,不等式的解集为{x |a <x <a 2}; 当0<a <1时,有a 2<a ,此时,不等式的解集为{x |a 2<x <a }; 当a =0或a =1时,原不等式无解.综上,当a<0或a>1时,原不等式的解集为{x|a<x<a2};当0<a<1时,原不等式的解集为{x|a2<x<a};当a=0或a=1时,解集为∅.穿针引线解高次不等式观察下列不等式解集与图象的关系.猜想第三个不等式的解集.对于函数f(x)=(x-x1)(x-x2)(x-x3)…(x-x n),不妨设x1<x2<x3<…<x n.其图象有两个特点:①当x>x n时,x-x1>0,x-x2>0,…,x-x n>0,∴f(x)>0.该区间内f(x)图象在x轴上方.②从x轴右上方开始,f(x)的图象每穿过一个零点,就从x轴一侧到另一侧变化一次.根据这个原理,只要画出f(x)示意图(穿针引线),即可得到f(x)>0(或f(x)<0)的解集.如第三个不等式解集为(0,1)∪(2,+∞).在此过程中,y轴可省略不画.典例解不等式x-1x(x+1)>0.解x-1x(x+1)>0即x(x-1)(x+1)>0,穿针引线:解集为(-1,0)∪(1,+∞).[素养评析]穿针引线法的发现归功于从简单到复杂,从具体到一般的观察,发现问题,提出命题,这就是逻辑推理素养中的归纳.1.若不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2答案 D解析 由题意,得Δ=m 2-4≤0,∴-2≤m ≤2. 2.不等式x -1x -2≥0的解集为( )A .[1,2]B .(-∞,1]∪[2,+∞)C .[1,2)D .(-∞,1]∪(2,+∞) 答案 D解析 由题意可知,不等式等价于⎩⎪⎨⎪⎧(x -1)(x -2)≥0,x -2≠0,∴x >2或x ≤1.3.不等式3x +1≥1的解集是( )A .(-∞,-1)∪(-1,2]B .[-1,2]C .(-∞,2]D .(-1,2]答案 D解析 ∵3x +1≥1,∴3x +1-1≥0,∴3-x -1x +1≥0,即x-2x+1≤0,等价于(x-2)(x+1)<0或x-2=0,故-1<x≤2.4.若不等式x2+x+k<0在区间[-1,1]上恒成立,则实数k的取值范围是.答案(-∞,-2)解析x2+x+k<0,即k<-(x2+x)在区间[-1,1]上恒成立,即k<[-(x2+x)]min.当x=1时,[-(x2+x)]min=-2.∴k<-2.5.解关于x的不等式:x2+(1-a)x-a<0.解方程x2+(1-a)x-a=0的解为x1=-1,x2=a.因为函数y=x2+(1-a)x-a的图象开口向上,所以①当a<-1时,原不等式的解集为{x|a<x<-1};②当a=-1时,原不等式的解集为∅;③当a>-1时,原不等式的解集为{x|-1<x<a}.1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.当不等式含有等号时,分母不为零.2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然,这必须以参数容易分离作为前提.分离参数时,经常要用到以下简单结论(1)若f (x )有最大值f (x )max ,则a >f (x )恒成立⇔a >f (x )max ;(2)若f (x )有最小值f (x )min ,则a <f (x )恒成立⇔a <f (x )min . 3.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑(1)关于不等式类型的讨论:二次项系数a >0,a <0,a =0.(2)关于不等式对应的方程根的讨论:两不等根(Δ>0),两相等实根(Δ=0),无根(Δ<0). (3)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2.一、选择题1.不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 答案 A解析 原不等式等价于⎩⎪⎨⎪⎧2x +1≠0,(x -1)(2x +1)≤0,解得-12<x ≤1.∴原不等式的解集为⎝⎛⎦⎤-12,1.2.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( ) A .1 B .-1 C .-3 D .3 答案 C解析 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数, ∴f (x )min =f (1)=-3,∴m ≤-3, ∴m 的最大值为-3.3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4] D .[0,4]答案 D解析 当a =0时,ax 2-ax +1<0无解,符合题意. 当a <0时,ax 2-ax +1<0解集不可能为空集. 当a >0时,要使ax 2-ax +1<0解集为空集,需⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4.综上,a ∈[0,4].4.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎫x -1a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <a 或x >1a B.{}x | x >aC.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >a 或x <1a D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 答案 A 解析 ∵a <-1,∴a (x -a )⎝⎛⎭⎫x -1a <0⇔(x -a )·⎝⎛⎭⎫x -1a >0. 又a <-1,∴1a >a ,∴x >1a或x <a .∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 或x >1a . 5.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .RC.⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32 D .∅ 答案 A解析 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点, 又m >0,所以原不等式的解集不可能是B ,C ,D ,故选A.6.若关于x 的方程x 2+(a 2-1)x +a -2=0的一根比1小且另一根比1大,则实数a 的取值范围是( ) A .(-1,1) B .(-∞,-1)∪(1,+∞) C .(-2,1) D .(-∞,-2)∪(1,+∞)答案 C解析 令f (x )=x 2+(a 2-1)x +a -2, 依题意得f (1)<0,即1+a 2-1+a -2<0, ∴a 2+a -2<0,∴-2<a <1.7.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则实数x 的取值范围是( ) A .1<x <3 B .x <1或x >3 C .1<x <2 D .x <1或x >2答案 B解析 设g (a )=(x -2)a +(x 2-4x +4), g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧g (1)=x 2-3x +2>0,g (-1)=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 8.若方程x 2+(m -3)x +m =0有两个正实根,则m 的取值范围是( ) A .(0,1] B .(0,2) C .(-3,0) D .(-1,3) 考点 “三个二次”间对应关系的应用 题点 由“三个二次”的对应关系求参数值 答案 A解析 由题意得⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m >0,x 1x 2=m >0,解得0<m ≤1.二、填空题9.不等式5-xx +4≥1的解集为 .答案 ⎝⎛⎦⎤-4,12 解析 因为5-x x +4≥1等价于1-2xx +4≥0,所以2x -1x +4≤0,等价于⎩⎪⎨⎪⎧(2x -1)(x +4)≤0,x +4≠0,解得-4<x ≤12.10.若不等式ax 2+2ax -(a +2)≥0的解集是∅,则实数a 的取值范围是 . 答案 (-1,0]解析 当a =0时,-2≥0,解集为∅,满足题意;当a ≠0时,a 满足条件⎩⎪⎨⎪⎧a <0,Δ=4a 2+4a (a +2)<0,解得-1<a <0.综上可知,a 的取值范围是(-1,0].11.(2018·上饶模拟)当x >0时,若不等式x 2+ax +1≥0恒成立,则实数a 的最小值为 . 答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0时,有f (0)=1>0,若要原不等式恒成立,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2. 三、解答题12.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,求实数a 的取值范围. 解 当a -2≠0时,⎩⎪⎨⎪⎧ a -2<0,4(a -2)2-4(a -2)·(-4)<0,即⎩⎪⎨⎪⎧a <2,a 2<4,解得-2<a <2.当a -2=0时,-4<0恒成立, 综上所述,-2<a ≤2.13.已知一元二次不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.解 方法一 由题意可得a <0,且α,β为方程ax 2+bx +c =0的两根,∴由根与系数的关系得⎩⎨⎧ba=-(α+β)<0, ①ca =αβ>0, ②∵a <0,0<α<β, ∴由②得c <0,则cx 2+bx +a <0可化为x 2+b c x +ac >0.①÷②,得b c =-(α+β)αβ=-⎝⎛⎭⎫1α+1β<0. 由②得a c =1αβ=1α·1β>0.∴1α,1β为方程x 2+b c x +ac =0的两根. 又∵0<α<β, ∴0<1β<1α,∴不等式x 2+b c x +ac >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1β或x >1α, 即不等式cx 2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1β或x >1α. 方法二 由题意知a <0,∴由cx 2+bx +a <0,得c a x 2+ba x +1>0.将方法一中的①②代入, 得αβx 2-(α+β)x +1>0, 即(αx -1)(βx -1)>0. 又∵0<α<β, ∴0<1β<1α.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1β或x >1α.14.关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解的集合为{-2},则实数k 的取值范围为 . 答案 [-3,2)解析 ∵-2是2x 2+(2k +5)x +5k <0的解,∴2(-2)2+(2k +5)(-2)+5k =k -2<0.∴k <2,-k >-2>-52,∴2x 2+(2k +5)x +5k =(x +k )(2x +5)<0的解集为⎝⎛⎭⎫-52,-k , 又x 2-x -2>0的解集为{x |x <-1或x >2}, ∴-2<-k ≤3,∴k 的取值范围为[-3,2). 15.解关于x 的不等式ax 2-2(a +1)x +4>0. 解 (1)当a =0时,原不等式可化为-2x +4>0, 解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2.①当0<a <1时,2a>2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a 或x <2; ②当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};③当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a <x <2. 综上,当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; 当a =0时,原不等式的解集为{x |x <2};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a 或x <2; 当a =1时,原不等式的解集为{x |x ≠2};当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x <2a .。
一元二次不等式的应用
在 x 轴上标根,并从右上方引曲线可得图 ∴原不等式的解集为
1 x|- 3<x≤- 1,或 ≤ x< 1. 2
题型四 一元二次不等式的简单应用
【例4】 (本题满分12分)汽车在行驶中,由于惯性作用,刹车 后还要继续向前滑行一段距离才能停住,我们称这段距离 为“刹车距离”.刹车距离是分析事故的一个重要因素.在 一个限速40 km/h以内的弯道上,甲、乙两辆汽车相向而 行,发现情况不对,同时刹车,但还是相碰了,事发后现 场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超 过10 m,又知甲、乙两种车型的刹车距离s(m)与车速 x(km/h)之间有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+ 0.005x2.问:超速行驶应负主要责任的是谁? 审题指导 将文字语言翻译成数学语言,将不等关系转化 为不等式问题求解.
【课标要求】
1.掌握一类简单的可化为一元二次不等式的分式不等式的解 法. 2.会解与一元二次不等式有关的恒成立问题和实际应用题.
【核心扫描】
1.一元二次不等式的应用.(重点) 2.一元二次不等式中的恒成立问题.(难点) 3.与二次函数、二次方程、实际应用题联系密切,而且应 用广泛. 4.注意实际问题中变量有意义的范围.
1 此不等式等价于x+ (x- 1)> 0, 2
1 解得 x<- 或 x>1. 2
1 ∴原不等式的解集为 x x<- 或x>1 2 .
规律方法
(1)解分式不等式关键是如何将它转化为同解的整式 不等式,化未知为已知.做题时要体会这种转化的思想. (2)转化的依据是实数运算的符号法则,所以要将不 等式一边先化为零.
a- m+ 1> 0, ∴ a- m [3 a- m+ 1+ 1]> 0,
高中不等式基本知识点和练习题(含答案)
不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性: (2)传递性:a b b a <⇔>ca cb b a >⇒>>,(3)加法法则:;(同向可加)c b c a b a +>+⇒>d b c a d c b a +>+⇒>>,(4)乘法法则:; bc ac c b a >⇒>>0,bcac c b a <⇒<>0,(同向同正可乘)bd ac d c b a >⇒>>>>0,0(5)倒数法则: (6)乘方法则:b a ab b a 110,<⇒>>)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式的解集:()00022≠<++>++a c bx ax c bx ax 或设相应的一元二次方程的两根为,,则不等式的解的各种情()002≠=++a c bx ax 2121x x x x ≤且、ac b 42-=∆况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
基本不等式及恒成立问题 - 解析版
基本不等式以及恒成立【教学目标】一、基本不等式基本不等式:如果,a b R ∈,那么22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(当且仅当a b =时取“=”号)当0,0a b >>时,22+≥即a b +≥a b =时取“=”号)【例题讲解】 二、基本不等式的构造(一)分式分离【知识点】分式函数求最值,二次比一次型,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。
即化为()(0,0)()A y mg xB A B g x =++>>,()g x 恒正或恒负的形式,然后运用均值不等式来求最值。
【例题讲解】★☆☆例题1.已知0x >,求函数254x x y x++=的最小值; 答案:9★☆☆练习1.函数241x x y x −+=−在1x >的条件下的最小值为_________;此时x =_________. 答案:5,3★☆☆练习2.已知0x >,则24x x x−+的最小值是 答案:3解:由于0x >, 41213x x−=,当且仅当2x =时取等号,此时取得最小值3.★★☆练习3. 求2710(1)1x x y x x ++=>−+的最小值。
答案:9解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(1)x +的项,再将其分离。
知识点要点总结:关键点在于对分式不等式的分离,明确对于分式不等式以低次幂的为主导来进行配凑,并且注意对于正负的讨论。
(二)整式凑分式分母形式【知识点】对整式加分式的形式求最值,使用配凑法。
需要调整项的符号,配凑项的系数,使其积为定值,从而利用基本不等式求解最值。
【例题讲解】★☆☆例题1.已知54x <,求函数14245y x x =−+−的最大值。
答案:1 12)45x −不是常数,所以对拆、凑项, 5,4x <∴1⎫当且仅当5备注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
函数中“恒成立”问题求解对策十种
函数中“恒成立”问题求解对策十种门德荣本文对此类问题的解题技巧,仅介绍几种常用的方法,供学习参考。
一. 利用函数思想例 1. 已知f a x a x a x ()()log log =--++161323,当[]x ∈01,时,f (a )恒为正数,求a 的取值范围。
分析:从表面结构看f (a )是一个以log 3a 为变量的二次函数,而实质是变量x 的一次函数,因此可构造x 的一次函数求解。
解:原式变形为g x a a x a ()(log log )log =-++-32332611因为g x ()在区间[]01,上恒正,所以g g ()()0010>>且,即1032->l o g a 且1303->log a解得1333<<a二. 分离参数法 例 2. 设r b a x ><<>00220,,,如果对满足x ay b22221+=的x ,y ,不等式xrx y2220-+≥恒成立,求r 的取值范围。
解:令x a y b ==cos sin θθ, 因为x >0,故不妨设-<<πθπ22,代入x rx y 2220-+≥得a arb r ab aba 22222222022cos cos sin cos cos θθθθθ-+≥≤-+即上式对-⎛⎝⎫⎭⎪ππ22,内的一切θ都成立,故对上述区间内的 f ab aba ()cos cos θθθ=-+22222的最小值也成立因为-<<πθπ22所以cos θ>0 所以f aab bb aab()()cos cos θθθ≥-=-12222222··当cos θ=-b ab22时等号成立(因为022<<b a ,所以b ab221-≤)所以f ()θ的最小值是b aab22-所以r b aab≤-22三. 判别式法例 3. 已知函数f x x m x m ()()()=-+++2525在其定义域内恒为非负,求方程2121xm m +=-+||的根的取值范围。
微专题05 一元二次不等式、分式不等式(解析版)
微专题05一元二次不等式、分式不等式【知识点总结】一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅二、分式不等式(1)()0()()0()f x f xg x g x >⇔⋅>(2)()0()()0()f x f xg x g x <⇔⋅<(3)()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩(4)()()0()0()0()f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩三、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法题型二:分式不等式的解法题型三:绝对值不等式的解法题型四:高次不等式的解法题型五:一元二次不等式恒成立问题【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是()A .{|23}x x <<B .11{|}32x x <<C .11{|}23x x -<<-D .{|32}x x -<<-【答案】C【解析】因为不等式20x ax b --<的解集是{|23}x x <<,所以方程20x ax b --=的两根为122,3x x ==,所以由韦达定理得23a +=,23b ⨯=-,即,=5=-6a b ,所以2216510bx ax x x --=--->,解不等式得解集为11{|}23x x -<<-故选:C例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是()A .0a >B .不等式20ax cxb ++>的解集为{|22x x <<+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<<B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,12∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】因为不等式20x bx c ++<的解集为()2,1-,所以2121-=-+⎧⎨=-⨯⎩b c 即12=⎧⎨=-⎩b c ,不等式210cx bx ++>等价于2210x x -++>,解得112x -<<.故选:A .例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是().A .0a <B .0a ≤C .2a ≤D .2a <【答案】B【解析】不等式组22430680x x x x ⎧-+<⎨-+<⎩解得1324x x <<⎧⎨<<⎩,所以不等式组的解集是{|23}x x <<,关于x 的不等式230x x a -+<解集包含{|23}x x <<,令2()3f x x x a =-+,∴940(2)20(3)0a f a f a ∆=->⎧⎪=-+⎨⎪=⎩,解得0a ,故选:B .例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是()A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】ACD【解析】A .由已知可得0a <且2,3-是方程20ax bx c ++=的两根,A 正确,B .由根与系数的关系可得:2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得,6b a c a =-=-,则不等式0bx c +>可化为:60ax a -->,即60x +>,所以6x >-,B 错误,C .因为660a b c a a a a ++=--=->,C 正确,D .不等式20cx bx a -+>可化为:260ax ax a -++>,即2610x x -->,解得12x >或13x <-,D 正确,故选:ACD .例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是()A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞【答案】ABD【解析】因为不等式20ax bx c ++>的解集为()1,2-,所以0,1,2b ca a a<-==-,故,2b a c a =-=-,此时20a b c a ++=->,所以A 正确,B 正确;22230230230bx cx a ax ax a x x ++>⇔--+>⇔+->,解得:3x <-或1x >.所以D 正确;C 错误.故选:ABD例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是_____________.【答案】4【解析】关于x 的不等式22430(0)x ax a a -+-≥>可化为()()30(0)x a x a a --≤>所以不等式的解集为[],3a a ,所以12,3x a x a ==.所以122123314443a a x x a a x x a a ++=+=+≥=(当且仅当14a a=,即12a =时取“=”).故答案为:4.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c +++的最小值为_______.【答案】【解析】由题意,关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,可得0b >,且440ab ∆=+=,所以1ab =-且0b >,所以1a b=-,又由不等式220bx x a -->的解集为{|}x x c ≠,所以212c b b--==,令12t b c b b=+=+≥,则22222211()22a b b b t b b +=+=+-=-,所以2221088a b t t b c t t +++==+≥+t =时取等号.所以2210a b b c+++的最小值为故答案为:题型二:分式不等式的解法例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.【答案】()(),11,5-∞-⋃【解析】不等式351x x x +>-化为以下两个不等式组:21035x x x x -<⎧⎨+<-⎩或21035x x x x ->⎧⎨+>-⎩,解21035x x x x -<⎧⎨+<-⎩,即21450x x x <⎧⎨-->⎩,解得1x <-,解21035x x x x ->⎧⎨+>-⎩,即21450x x x >⎧⎨--<⎩,解得15x <<,所以原不等式的解集是()(),11,5-∞-⋃.故答案为:()(),11,5-∞-⋃例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.【答案】()23-,【解析】由3113x x +>--可得31103x x ++>-,即2403x x +<-,即()()3240x x -+<解得23x -<<所以不等式3113x x+>--的解集是()23-,故答案为:()23-,例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.【答案】(1,4)【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.【答案】[)0,4【解析】2231937024x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,∴不等式等价于210kx kx -+≤的解集是φ,当0k =时,10≤不成立,解集是φ,当0k ≠时,240k k k >⎧⎨∆=-<⎩,解得:04k <<,综上:04k ≤<.故答案为:[)0,4例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.【答案】()[),13,-∞-+∞【解析】原不等式等价于()()31010x x x ⎧-+≥⎨+≠⎩,解得:3x ≥或1x <-,故答案为:()[),13,-∞-+∞.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;【答案】[)1,6-【解析】由于关于x 的不等式0ax b +>的解集是(,1)-∞,则1为关于0ax b +=的根,且0a <,0a b ∴+=,得=-b a ,不等式06ax b x -≥-即为06ax a x +≥-,即106x x +≤-,解该不等式得[)1,6x ∈-故答案为:[)1,6-例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x ax -≤-的解集为______.【答案】{}3x x >【解析】∵不等式2510ax x ++≤的解集为11{|}23x x -≤≤-∴12-,13-是方程2510ax x ++=的两根,∴6a =,∴13x a x -≤-可化为303x -≤-∴3x >∴不等式13x ax -≤-的解集为{|3}x x >,故答案为:{|3}x x >.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.【答案】3【解析】由题知,22122x a x x x --≤-=---,整理得()3202x a x -+≤-,所以()()()3220x a x -+-≤,且2x ≠,因为不等式()()()3220x a x -+-≤,且2x ≠,的解集为523x x ⎧⎫≤<⎨⎬⎩⎭,所以()53203a ⋅-+=,3a =.故答案为:3.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;【答案】(]1,3-;【解析】不等式12x -≤等价于212x -≤-≤,解之得:13x -≤≤,不等式511x ≥+等价于()5101x x -+≥+,解之得:14x -<≤,故不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为:(]1,3-.故答案为:(]1,3-.例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.【答案】(23]-,【解析】解不等式102x x -≤+即(1)(2)020x x x -+≤⎧⎨+≠⎩,解得21x -<≤,故10(2,1]2x A xx ⎧⎫-=≤=-⎨⎬+⎩⎭,解|1|2x -≤,即212x -≤-≤,解得13x -≤≤,故121{|||]3}[B x x =-≤=-,,则(23]A B ⋃=-,,故答案为:(23]-,.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.【答案】1|33x x ⎧⎫-<<⎨⎬⎩⎭【解析】当12x ≤-时,不等式221x x ->+转化为()()221x x -->-+,解得3x >-,此时132x -<≤-,当122x -<<时,不等式221x x ->+转化为()221x x -->+,解得13x <,此时1123x -<<,当2x ≥时,不等式221x x ->+转化为221x x ->+,解得3x <-,此时无解,综上:221x x ->+的解集是1|33x x ⎧⎫-<<⎨⎬⎩⎭.故答案为:1|33x x ⎧⎫-<<⎨⎬⎩⎭例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4.又当a =2时,A ={x |1<x <3},a =4时,A ={x |3<x <5},均满足A 是B 的真子集,∴2≤a ≤4.故答案为:2≤a ≤4题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.【答案】[0,1)(2,4]⋃【解析】22132x x x +≥-+等价于221032+-≥-+x x x ,即224032x x x x -+≥-+,即(4)0(1)(2)x x x x -≤--,又等价于()()()()()1240120x x x x x x ⎧---≤⎪⎨--≠⎪⎩,利用数轴标根法解得01x ≤<或24x <≤,所以原不等式的解集为[0,1)(2,4]⋃,故答案为:[0,1)(2,4]⋃例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x +-+≤+-的解集为___________.【答案】3[,1){2}(3,)2--+∞【解析】由题得2320,3x x x +-≠∴≠且1x ≠-.由题得()()()()2222322320,023(3)(1)x x x x x x x x +-+-≥∴≥---+,所以()()223(1)2(3)0x x x x ++--≥,()()223(1)2(3)0x x x x ++--=零点为3,1,2,32--.当32x <-时,不等式不成立;当312x -≤<-时,不等式成立;当12x -≤<时,不等式不成立;当2x =时,不等式成立;当23x <≤时,不等式不成立;当3x >时,不等式成立.故不等式的解集为:3[,1){2}(3,)2--+∞故答案为:3[,1){2}(3,)2--+∞例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.【答案】(0,2][6,)⋃+∞【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩,解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x -≤或1x =-或12x ≤≤时,()()()()2321120x x x x ++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.【答案】()(),31,2-∞-【解析】因为()()2160x x x -+-<,所以()()()1320x x x -+-<,解得3x <-或12x <<.所以不等式()()2160x x x -+-<的解集为:()(),31,2-∞-.故答案为:()(),31,2-∞-例27.(2022·上海·高一专题练习)不等式()()22221221x xx x x x ++>++的解集为_________.【答案】()()(),11,02,-∞--+∞.【解析】()()22221221xxx x x x ++>++等价于()()2120,x x x +->当1x =-时,不等式不成立,当1x ≠-时,不等式等价于()20x x ->,解得0x <或2x >且1x ≠-,故不等式的解集为()()(),11,02,-∞--+∞.故答案为:()()(),11,02,-∞--+∞.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.【答案】23x x ⎧≤⎨⎩或}13x <≤【解析】不等式()()()()2233021x x x x x --≥-+-等价为()()()23310x x x ---≥且10x -≠,∴23x ≤或13x <≤,∴不等式()()()()2233021x x x x x --≥-+-的解集是23x x ⎧≤⎨⎩或}13x <≤故答案为:23x x ⎧≤⎨⎩或}13x <≤例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为()A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-.故选:D .题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是()A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭【答案】B【解析】正实数x ,y 满足244x y xy ++=,可得244x y xy +=-,∴不等式()2222340x y a a xy +++-≥恒成立,即()24422340xy a a xy -++-≥恒成立,变形可得()222214234xy a a a +≥-+恒成立,即2221721a a xy a -+≥+恒成立,0x >,0y >,2x y ∴+≥2x y =时等号成立,4244xy x y ∴=++≥+220≥,≥≤舍)可得2xy ≥,要使2221721a a xy a -+≥+恒成立,只需22217221a a a -+≥+恒成立,化简可得22150a a +-≥,即()()3250a a +-≥,解得3a ≤-或52a ≥,故实数a 的取值范围是(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭故选:B .例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为()A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A .例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为()A .(][),04,-∞+∞UB .[]0,4C .[)4,+∞D .()0,4【答案】A【解析】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为:(][),04,-∞+∞U .故选:A .例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >【答案】A【解析】∵不等式20x x m -+>在R 上恒成立,∴24(10)m ∆--<=,解得14m >,又∵14m >,∴140m ∆=-<,则不等式20x x m -+>在R 上恒成立,∴“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A .例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围()A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2∞⎛⎫- ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110a x a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D .例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞故选:A例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是()A .a -<<B .a <C .3a <D .9 2a <【答案】B【解析】由题知,命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则21,2,2102x x ax ⎡⎤∀∈-+>⎢⎥⎣⎦为真命题,即11,2,22x x a x ⎡⎤∀∈+>⎢⎥⎣⎦恒成立.又12x x +≥12x x =≥2x =等号成立,所以a <故选:B例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是()A .4a <B .4a <-C .4a >D .4a >-【答案】A【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足,25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .【过关测试】一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意得{}17A x x =<<,所以AB .所以“x A ∈”是“x B ∈”的必要不充分条件.故选:B2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为()A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为()A .15B .54C .1D .4【答案】A 【解析】115454y x x y x y xy x y-=+⇔-=+,因为0y >,所以144y y +≥,所以154x x-≥,当0x >时,154x x-≥⇔25410x x +-≤,解得105x <≤,当0x <时,154x x-≥⇔25410x x +-≥,解得1x <-,故x 的最大值为15.故选:A4.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是()A .()()12-∞⋃+∞,,B .()12,C .()()21-∞-⋃+∞,,D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是()A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立,所以210mx mx m ++-<对R x ∈恒成立,所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <,综上,m 的取值范围为(]0-∞,.故选:C6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-【答案】A【解析】关于x 的不等式20ax bx c ++>的解集为{}|21x x -<<0a ∴<,且2-和1是方程20ax bx c ++=的两个根,则4200a b c a b c -+=⎧⎨++=⎩b a ∴=,2c a =-,关于x 的不等式20cx bx a -+<,即220ax ax a --+<,2210x x ∴+-<,解得112x -<<,故不等式的解集为11,2⎛⎫- ⎪⎝⎭,故选:A7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤;综上所述:实数a 的取值范围为(],3-∞.故选:B .8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【答案】A【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是()A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x <【答案】CD【解析】对于选项A ,当0a ≥时,210ax x ++≥的解集不为∅,而当0a <时,要使不等式210ax x ++≥的解集为∅,只需140a ∆=-<,即14a >,因0a <,故不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅,因此A 正确;对于选项B ,当0a <且240b ac ∆=-≤时,20ax bx c ++≤在R 上恒成立,故不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤,因此B 正确;对于选项C ,因函数()20y ax bx c a =++≠对应的方程没有实根,但a 正负不确定,故20ax bx c ++>或20ax bx c ++<恒成立,因此不等式20ax bx c ++>的解集不一定为R ,故C错;对于选项D ,由11x>,得10x x ->,即()10x x ->,解得01x <<,故D 错.故选:CD .10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是()A .11 2x ≤≤B .112x <≤C .01x ≤≤D .01x <≤【答案】ACD【解析】由题设,若p 成立,(1)(21)0210x x x --≤⎧⎨-≠⎩,解得112x <≤,∴p 成立的一个必要不充分条件,只需1(,1]2在某个范围内,但不相等即可.故选:ACD .11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是()A .14B .13C .3D .4【答案】CD【解析】若14a =,()()()1111220,1,21222x x x x x ⎛⎫⎛⎫-+ ⎪⎪⎛⎫⎝⎭⎝⎭<⇒∈- ⎪--⎝⎭故区间长度之和为1+1=2,不符合题意;若13a =,()()()01,212x x x x x ⎛+ ⎛⎝⎭⎝⎭<⇒∈ --⎝⎭故区间长度之和为符合题意;若3a =,(()()())0212x x x x x +<⇒∈--故区间长度之和为123=,符合题意;若()()()()()224,02,112x x a x x x -+=<⇒∈---故区间长度为3,符合题意.故选:CD .12.(2022·全国·高一专题练习)下列条件中,为“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有()A .04m ≤<B .02m <<C .14m <<D .16m -<<【答案】BC【解析】因为关于x 的不等式210mx mx -+>对R x ∀∈恒成立,当0m =时,原不等式即为10>恒成立;当0m >时,不等式210mx mx -+>对R x ∀∈恒成立,可得∆<0,即240m m -<,解得:04m <<.当0m <时,21y mx mx =-+的图象开口向下,原不等式不恒成立,综上:m 的取值范围为:[)0,4.所以“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有02m <<或14m <<.故选:BC .三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.【答案】3,32⎛⎫- ⎪⎝⎭【解析】由图像知:1和2是关于x 的方程ax 2+bx +c =0(a ≠0)的两个根,所以0a >,12,12b c a a+=-⋅=,所以3,2b a c a =-=.不等式(ax +b )(cx -b )<0可化为()()3230ax a ax a -+<,即()()23230x x a-+<,解得:332x -<<.所以不等式(ax +b )(cx -b )<0的解集是3,32⎛⎫- ⎪⎝⎭.故答案为:3,32⎛⎫- ⎪⎝⎭14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12【解析】令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2c a =+,此时22b a =-,∴2111(22)2(1)2(222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.【解析】当0a =时,即不等式0bx c +≤的解集为R ,则0b =,0c ≤,要使得2222b a c +有意义,此时0c <,则22202b a c =+;当0a ≠时,若不等式20ax bx c ++≤的解集为R ,则20Δ40a b ac <⎧⎨=-≤⎩,即204a b ac <⎧⎨≤⎩,所以,22222422b ac a c a c ≤++,因为24b ac ≤,则0ac ≥,当0c =时,则0b =,此时22202b a c =+;当0c <时,则0ac >,令0c t a =>,则22244412122ac t a c t t t ==≤+++当且仅当242b ac c a a c ⎧=⎪⎨=⎪⎩时,等号成立.综上所述,2222b a c +16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是___________.【答案】【解析】因为关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a -+-=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a =时等号成立,所以12123a x x x x ++的最小值是故答案为:。
高三数学不等式的解法2
(a 1) (a 1) | x | 2、关于实数x的不等式: 2 2
2
2
与x 3(a 1) x 2(3a 1) 0(a R)
2
的解集分别为A、B,求使 A B
时实数a的取值范围
3、已知a、b是不相等的实数,且
a b a b
3 3 2
2
4 求证 : 0 a b 3
; / mrcat电竞 mrcat电竞官网 ;
神山壹带强者如林,比之咱们奇幻之地不会少多少,咱们行事壹切低调,先到了长生神山再说吧丶""好丶"叶问情也早就不想呆在这里了,要不是怕艾姐姐小瞧了她,她壹个人の话,早就赶紧闪人了丶二人不在这里继续呆了,艾丽立即带着叶问情前往长生神山主山丶而在她们离开后不久,这片血 湖林子旁边,刚刚那个黑衣女人又出现了丶女人抬头看了看二女离开の方向,喃喃自语道:"这个女人の身上,竟然有那个家伙の气息,看来那家伙有可能就在前面,跟上她们丶"叶问情和艾丽哪里知道,她们此时已经被人给盯上了,二女却全然没有察觉,连艾丽也没有任何发现丶此地距离长生神 山只有八千多万里了,壹路上二人也着急赶路,就算是遇到了壹些麻烦,艾丽会直接带着叶问情绕道而过丶路上这里也有不少の强者,最近不知道为何,这壹带の争斗,长生神山外围の地带の厮杀越来越激烈了丶有许多の强者,出现了许多在这外面,埋伏,设陷阱,劫杀の事件发生丶因为这里不在 长生神山の范围,所以神山也不会管这里の事情,他们只管那神山忠の情况,外面の事情与他们无关丶龙亭并没有精力,去管这些事情,不过因为这里の劫杀事件日益增多,还是令这许多人对长生神山望而生畏了丶猫补忠文叁677魔界变故(猫补忠文)叁677有许多の强者,出现了许多在这外面,埋 伏,设陷阱,劫杀の事件发生丶因为这里不在长生神山の范围,所以神山也不会管这
高三数学一轮复习知识点讲解2-1不等式的性质及常见不等式解法
高三数学一轮复习知识点讲解专题2.1 不等式的性质及常见不等式解法【考纲要求】1.不等关系:了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式:(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式.3.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式.4.掌握不等式||a|-|b||≤|a+b|≤|a|+|b|及其应用.5.培养学生的数学抽象、数学运算、数学建模、逻辑推理等核心数学素养.【知识清单】1.实数的大小(1)数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b.2.不等关系与不等式我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些符号的式子,叫做不等式.3.不等式的性质(1)性质1:如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)性质2:如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)性质3:如果a>b,那么a+c>b+c.(4)性质4:①如果a>b,c>0那么ac>bc.②如果a >b ,c <0,那么ac <bc .(5)性质5:如果a >b ,c >d ,那么a +c >b +d . (6)性质6:如果a >b >0,c >d >0,那么ac >bd . (7)性质7:如果a >b >0,那么a n >b n ,(n ∈N ,n ≥2). (8)性质8:如果a >b >0,那么n a >nb ,(n ∈N ,n ≥2). 4.一元二次不等式的概念及形式(1)概念:我们把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2)形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).(3)一元二次不等式的解集的概念:一般地,使某个一元二次不等式成立的x 的值叫做这个不等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次不等式的解集. 5.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为__分式不等式__. f (x )g (x )>0⇔f (x )g (x )__>__0,f (x )g (x )<0⇔f (x )·g (x )__<__0. f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x ) ≥ 0,g (x )≠0.⇔f (x )·g (x )__>__0或⎩⎪⎨⎪⎧ f (x )=0g (x )≠0.f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x ) ≤ 0,g (x )≠0⇔f (x )·g (x )__<__0或⎩⎪⎨⎪⎧f (x )=0g (x )≠0. 6.简单的高次不等式的解法高次不等式:不等式最高次项的次数高于2,这样的不等式称为高次不等式. 解法:穿根法①将f (x )最高次项系数化为正数;②将f (x )分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集.7.不等式恒成立问题 1.一元二次不等式恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧ a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧a <0Δ≤0.2.含参数的一元二次不等式恒成立.若能够分离参数成k <f (x )或k >f (x )形式.则可以转化为函数值域求解. 设f (x )的最大值为M ,最小值为m .(1)k <f (x )恒成立⇔k <m ,k ≤f (x )恒成立⇔k ≤m . (2)k >f (x )恒成立⇔k >M ,k ≥f (x )恒成立⇔k ≥M . 8.绝对值不等式的解法1.形如|ax +b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解. 2.形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 (1)绝对值不等式|x|>a 与|x|<a 的解集(2)|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ⇔-c≤ax +b≤c (c>0),|ax +b|≥c ⇔ax +b≥c 或ax +b≤-c(c>0). 9.绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成立.【考点梳理】考点一 :用不等式表示不等关系【典例1】某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本,若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元? 【答案】见解析【解析】提价后杂志的定价为x 元,则销售的总收入为(8-x -2.50.1×0.2)x 万元,那么不等关系“销售的收入不低于20万元”用不等式可以表示为: (8-x -2.50.1×0.2)x ≥20.【规律总结】用不等式(组)表示实际问题中不等关系的步骤:①审题.通读题目,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“至少”“至多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件用不等式表示.【变式探究】某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.试写出满足上述所有不等关系的不等式. 【答案】见解析 【解析】分析:应先设出相应变量,找出其中的不等关系,即①两种钢管的总长度不能超过4 000 mm ;②截得600 mm 钢管的数量不能超过500 mm 钢管数量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表示上述不等关系.详解:设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根,依题意,可得不等式组:⎩⎪⎨⎪⎧500x +600y ≤4 0003x ≥yx ≥0y ≥0,即⎩⎪⎨⎪⎧5x +6y ≤403x ≥y x ≥0y ≥0考点二:比较数或式子的大小【典例2】(1)比较x 2+y 2+1与2(x +y -1)的大小; (2)设a ∈R 且a ≠0,比较a 与1a 的大小.【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0, ∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a .【领悟技法】 1.比较大小的常用方法 (1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、通分、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论. (3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. 【变式探究】已知x <y <0,比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小. 【答案】见解析【解析】∵x <y <0,xy >0,x -y <0,∴(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=-2xy (x -y )>0, ∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ). 考点三:不等式性质的应用【典例3】(2020·黑龙江省佳木斯一中高一期中(理))对于任意实数a b c d ,,,,下列正确的结论为( )A .若,0a b c >≠,则ac bc >;B .若a b >,则22ac bc >;C .若a b >,则11a b <; D .若0a b <<,则b a a b<. 【答案】D 【解析】A :根据不等式的基本性质可知:只有当0c >时,才能由a b >推出ac bc >,故本选项结论不正确;B :若0c时,由a b >推出22ac bc =,故本选项结论不正确;C :若3,0a b ==时,显然满足a b >,但是1b没有意义,故本选项结论不正确; D :22()()b a b a b a b a a b ab ab-+--==,因为0a b <<,所以0,0,0b a ab a b ->>+<,因此0b a b aa b a b-<⇒<,所以本选项结论正确. 故选:D【典例4】 若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 【答案】B【解析】方法一 易知a ,b ,c 都是正数, b a =3ln44ln3=log 8164<1,所以a >b ; b c =5ln44ln5=log 6251 024>1,所以b >c .即c <b <a . 方法二 对于函数y =f (x )=ln xx ,y ′=1-ln x x2, 易知当x >e 时,函数f (x )单调递减. 因为e <3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .【典例5】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4”,则f (-2)的取值范围是 . 【答案】[5,10]【解析】方法一(待定系数法)设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b ,于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 方法二(解方程组法)由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , ⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 【规律总结】1.判断不等式的真假.(1)首先要注意不等式成立的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进行证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举一反例. 2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推证时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则. 3.求取值范围(1)建立待求范围的代数式与已知范围的代数式的关系,利用不等式的性质进行运算,求得待求的范围. (2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应用最易出错,即在不等式的两边同时乘(除)以一个数时,必须能确定该数是正数、负数或零,否则结论不确定. 【变式探究】1.(2020·陕西省西安中学高二期中(文))已知0a b <<,则下列不等式成立的是 ( ) A .22a b < B .2a ab <C .11a b< D .1b a< 【答案】D 【解析】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a-<∴<所以D 选项是正确的.D 故选:.2. (2020·江西省崇义中学高一开学考试(文))下列结论正确的是( ) A .若ac bc >,则a b > B .若88a b >,则a b >C .若a b >,0c <,则ac bc <D <,则a b >【答案】C 【解析】对于A 选项,若0c <,由ac bc >,可得a b <,A 选项错误;对于B 选项,取2a =-,1b =,则88a b >满足,但a b <,B 选项错误; 对于C 选项,若a b >,0c <,由不等式的性质可得ac bc <,C 选项正确;对于D <a b >,D 选项错误.故选:C. 3.已知12<a <60,15<b <36,求a -b 及ab的取值范围.【错解】∵12<a <60,15<b <36,∴12-15<a -b <60-36,1215<a b <6036,∴-3<a -b <24,45<a b <53.【辨析】错解中直接将12<a <60,15<b <36相减得a -b 的取值范围,相除得ab 的取值范围而致错.【正解】∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15, 即-24<a -b <45.又15<b <36,∴136<1b <115.又12<a <60,∴1236<a b <6015,即13<a b <4.综上,-24<a -b <45,13<ab <4.【易错警示】错用不等式的性质致错. 考点四:一元二次不等式的解法【典例6】(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D. 【规律方法】1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式. (3)对方程的根进行讨论,比较大小,以便写出解集. 【易错警示】忽视二次项系数的符号致误 【变式探究】1.(2019·全国高考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .2. (2020·黑龙江省大庆实验中学高三一模(文))已知集合1|03x A x x -⎧⎫=≥⎨⎬-⎩⎭,集合{|15}B x N x =∈-≤≤,则A B =( )A .{0,1,4,5}B .{0,1,3,4,5}C .{1,0,1,4,5}-D .{1,3,4,5}【答案】A【解析】 因为集合{1|033x A x x x x -⎧⎫=≥=⎨⎬-⎩⎭或}1x ≤, 集合{|15}{0,1,2,3,4,5}B x N x =∈-≤≤=, 所以A B ={0,1,4,5}.故选:A考点五:绝对值不等式的解法【典例7】(2020·江苏省高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x <<所以解集为:2(2,)3-【典例8】(2020·周口市中英文学校高二月考(文))(1)求不等式|x -1|+|x +2|≥5的解集; (2)若关于x 的不等式|ax -2|<3的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,求a 的值. 【答案】(1) {x |x ≤-3或x ≥2} (2) a =-3 【解析】(1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5. 当a >0时,15x a a -<< , 153a -=-,且513a =无解; 当a =0时,x ∈R ,与已知条件不符;当a <0时,51x a a <<-,553a =-,且113a -=, 解得a =-3. 【规律方法】形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a|+|x -b|>c(c>0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解. 【变式探究】1.(2017天津,文2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤⊂≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 2.(2014·广东高考真题(理))不等式的解集为 .【答案】(][),32,-∞-⋃+∞. 【解析】令()12f x x x =-++,则()21,2{3,2121,1x x f x x x x --<-=-≤≤+>,(1)当2x <-时,由()5f x ≥得215x --≥,解得3x ≤-,此时有3x ≤-; (2)当21x -≤≤时,()3f x =,此时不等式无解;(3)当1x >时,由()5f x ≥得215x +≥,解得2x ≥,此时有2x ≥; 综上所述,不等式的解集为(][),32,-∞-⋃+∞.考点六:绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.【典例9】(2020·陕西省西安中学高二期中(理))已知不等式53m x x ≤-+-对一切x ∈R 恒成立,则实数m 的取值范围为( ) A .2m ≤ B .2m ≥C .8m ≤-D .8m ≥-【答案】A 【解析】()()53532x x x x -+-≥---=,∴根据题意可得2m ≤.故选:A【典例10】(2018年理新课标I 卷)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为; (2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【总结提升】1.两类含绝对值不等式的证明问题一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值符号转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明. 2.含绝对值不等式的应用中的数学思想(1)利用“零点分段法”求解,体现了分类讨论的思想; (2)利用函数的图象求解,体现了数形结合的思想.3.求f (x )=|x +a |+|x +b |和f (x )=|x +a |-|x +b |的最值的三种方法 (1)转化法:转化为分段函数进而利用分段函数的性质求解.(2)利用绝对值三角不等式进行“求解”,但要注意两数的“差”还是“和”的绝对值为定值. (3)利用绝对值的几何意义. 【变式探究】1.(2020·宁夏回族自治区高三其他(理))已知函数()|21||2|f x x x =-+-. (1)若()4f x <,求实数x 的取值范围;(2)若对于任意实数x ,不等式()|21|f x a >-恒成立,求实数a 的值范围.【答案】(1) 17,33⎛⎫- ⎪⎝⎭;(2) 15,44⎛⎫- ⎪⎝⎭【解析】(1)由题,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩;当12x ≤时,334x -+<,解得1132x -<≤;当122x <<时,14x +<恒成立,解得122x <<; 当2x ≥时,334x -<,解得723x ≤<.综上有3137x -<<. 故实数x 的取值范围为17,33⎛⎫- ⎪⎝⎭(2)因为()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩,当12x ≤时,()1322f x f ⎛⎫≥= ⎪⎝⎭;当122x <<时,()332f x <<;当2x ≥时,()()23f x f ≥=. 故()f x 的最小值为32. 故3212a -<,即332122a -<-<,解得1544a -<<. 故实数a 的值范围为15,44⎛⎫-⎪⎝⎭2.已知函数f(x)=|x −1|.(1)解不等式f(x)+f(x +4)≥8;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f (ba ). 【答案】(1) {x|x ≤−5 或x ≥3} (2)见解析 【解析】(1)f(x)+f(x +4) =|x −1|+|x +3| ={−2x −2,x <−3,4,−3≤x ≤1,2x +2,x >1,当x <−3时,由−2x −2≥8,解得x ≤−5; 当−3≤x ≤1时,f(x)≥8不成立; 当x >1时,由2x +2≥8,解得x ≥3.所以不等式f(x)+f(x +4)≥8的解集为{x|x ≤−5 或x ≥3}. (2)f (ab )>|a |f (ba ),即|ab −1|>|a −b |.因为|a |<1,|b |<1,所以|ab −1|2−|a −b |2=(a 2b 2−2ab +1)−(a 2−2ab +b 2)=(a 2−1)(b 2−1)>0, 所以|ab −1|>|a −b |,故所证不等式成立.。
分式不等式的解法讲义
分式不等式的解法讲义 This manuscript was revised on November 28, 2020不等式的解法1.一元二次不等式的解法(1)含有未知数的最高次数是二次的一元不等式叫做一元二次不等式.(2)一元二次不等式的解法(如下表所示)设a>0,x1,x2是一元二次方程ax2+bx+c=0的两实根,且x1<x2 (3)对于一元二次不等式的解法需注意:①x-ax-b≥0(a<b)的解集为:{x|x≤a或x>b};x-ax-b≤0(a<b)的解集为:{x|a≤x<b}.②从函数观点来看,一元二次不等式ax2+bx+c>0(a>0)的解集是一元二次函数y=ax2+bx+c(a>0)在x轴上方的点的横坐标的集合.③三个“二次”的关系常说的三个“二次”即指二次函数、一元二次方程和一元二次不等式,这三者之间有着密切的联系,这种联系点可以成为高考中的命题点.处理其中某类问题时,要善于产生对于另外两个“二次”的联想,或进行转化,或帮助分析.具体到解一元二次不等式时,就是要善于利用相应的二次函数的图象进行解题分析,要能抓住一元二次方程的根与一元二次不等式的解集区间的端点值的联系.2.解一元二次不等式的方法:(1)图象法:先求不等式对应方程的根,再根据图象写出解集.(2)公式法步骤:①先化成标准型:ax2+bx+c>0(或<0),且a>0;②计算对应方程的判别式Δ;③求对应方程的根;④利用口诀“大于零在两边,小于零在中间”写出解集.3.解绝对值不等式的基本思想1)解绝对值不等式的基本思想是去掉绝对值符号,把带有绝对值号的不等式等价转化为不含绝对值号的不等式求解,常采用的方法是讨论符号和平方,例如:(1)若a>0,则│x│<a-a<x<ax2<a2;(2)若a>0,则│x│>ax<-a,或x>ax2>a2;(3) |f(x)|<g(x)-g(x)<f(x)<g(x);(4)|f(x)|>g(x)f(x)>g(x)或f(x)<-g(x)(无论g(x)是否为正).常用的方法有:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方.2)常见绝对值不等式及解法:(1)|f(x)|>a(a>0)f(x)>a或f(x)<-a;(2)|f(x)|<a(a>0)-a<f(x)<a;(3)|x-a1|+|x-a2|>(<)b,用零点分区间法.4.一般分式不等式的解法:(1)整理成标准型fx gx >0(或<0)或fxgx≥0(或≤0). (2)化成整式不等式来解:①fxgx >0f (x )·g (x )>0 ②fxgx<0f (x )·g (x )<0 ③fx gx ≥0⎩⎨⎧ fx ·gx ≥0gx ≠0 ④fx gx ≤0⎩⎨⎧fx ·gx ≤0gx ≠0(3)再讨论各因子的符号或按数轴标根法写出解集.★ 热 点 考 点 题 型 探 析★考点1 一元二次不等式的解法 题型1.解一元二次不等式[例1] 不等式2x x >的解集是( )A .(),0-∞ B. ()0,1 C. ()1,+∞ D. ()(),01,-∞+∞【解题思路】严格按解题步骤进行[解析]由2x x >得(1)0x x ->,所以解集为()(),01,-∞+∞,故选D;别解:抓住选择题的特点,显然当2x =±时满足不等式,故选D.【名师指引】解一元二次不等式的关键在于求出相应的一元二次方程的根 题型2.已知一元二次不等式的解集求系数.[例2]已知关于x 的不等式220ax x c ++>的解集为11(,)32-,求220cx x a -+->的解集.【解题思路】由韦达定理求系数[解析] 由220ax x c ++>的解集为11(,)32-知0a <,11,32-为方程220ax x c ++=的两个根,由韦达定理得11211,3232ca a-+=--⨯=,解得12,2a c =-=,∴220cx x a -+->即222120x x --<,其解集为(2,3)-.【名师指引】已知一元二次不等式的解集求系数的基本思路是,由不等式的解集求出根,再由韦达定理求系数 【新题导练】1.不等式(a -2)x 2+2(a -2) -4<0,对一切x ∈R 恒成立,则a 的取值范围是( ) A.(-∞,2] B.(-2,2] C.(-2,2) D.(-∞,2)解析:∵可推知-2<a <2,另a=2时,原式化为-4<0,恒成立,∴-2<a≤2. 选B2. 关于x 的不等式(m x -1)( x -2)>0,若此不等式的解集为{x |<x <2},则m 的取值范围是A. m >0 <m <2 C. m >D. m <0解析:由不等式的解集形式知m <0. 答案:D考点2 含参数不等式的解法 题型1:解含参数有理不等式例1:解关于x 的一元二次不等式2(3)30x a x a -++> 【解题思路】比较根的大小确定解集解析:∵2(3)30x a x a -++>,∴()()30x x a -->⑴当3,3a x a x <<>时或,不等式解集为{}3x x a x <>或; ⑵当3a =时,不等式为()230x ->,解集为{}3x x R x ∈≠且;⑶当3,3a x x a ><>时或,不等式解集为{}3x x x a <>或【名师指引】解含参数的有理不等式时分以下几种情况讨论:①根据二次项系数(大于0,小于0,等于0);②根据根的判别式讨论(0,0,0∆>∆=∆<).③根据根的大小讨论(121212,,x x x x x x >=<).题型2:解简单的指数不等式和对数不等式例2. 解不等式log a (1-x1)>1 (0,1)a a >≠ 【解题思路】借助于单调性进行分类讨论解析(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a xx11011由此得1-a >x1.因为1-a <0,所以x <0,∴a -11<x <0. (2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a xx 11011 ① ②由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11. 综上,当a >1时,不等式的解集是{x |a-11<x <0},当0<a <1时,不等式的解集为{x |1<x <a-11}.【名师指引】解指数不等式与对数不等式通常是由指数函数和对数函数的单调性转化为一般的不等式(组)来求解,当底数含参数时要进行分类讨论.【新题导练】3.关于x 的不等式226320x mx m --<的解集为( )A.(,)97m m -B.(,)79m m -C.(,)(,)97m m-∞-+∞ D.以上答案都不对解析:原不等式可化为()()097m mx x +-<,需对m 分三种情况讨论,即不等式的解集与m 有关.4.解关于x 的不等式:04)1(22<++-x a ax 解析:0)2)(2(<--x ax 当⇒>⇒>aa 221⎭⎬⎫⎩⎨⎧<<22|x a x ; 当a a 2210<⇒<<∴⎭⎬⎫⎩⎨⎧<<a x x 22|,当0<a ⇒>-+-⇒0)2)(2(x ax 2|2x x x a ⎧⎫<>⎨⎬⎩⎭或5.考点3 分式不等式及高次不等式的解法 [例5] 解不等式:22(1)(68)0x x x --+≥ 【解题思路】先分解因式,再标根求解[解析]原不等式(1)(1)(2)(4)0x x x x ⇔-+--≥,各因式根依次为-1,1,2,4,在数轴上标根如下:【名师指引】求解高次不等式或分式不等式一般用根轴法等式对应的方程的根的关系. 【新题导练】5.若关于x 的不等式0(3)(1)x ax x +>++的解集是(3,1)(2,)--+∞,则a 的值为_______ 解析:原不等式()(3)(1)0x a x x ⇔+++>,结合题意画出图可知2a =-.6. 解关于)0(11)1(2>>+-+a x ax x a x 的不等式解:①若)251()2511(2150∞++--+<<,,,则原不等式的解集为 aa ;②若)251(215∞+++=,,则原不等式的解集为a ;③若)251()1251(215∞++--+>,,,则原不等式的解集为 a a 7.( 广东省深圳中学2008—2009学年度高三第一学段考试)解不等式.2)21(242>⋅-+x x x.解析:2)21(2242>⋅-+x x即212322>-x 得65>x 所以原不等式的解集为}65|{>x x 考点4 简单的恒成立问题题型1:由二次函数的性质求参数的取值范围例1.若关于x 的不等式2220ax x ++>在R 上恒成立,求实数a 的取值范围. 【解题思路】结合二次函数的图象求解[解析]当0a =时,不等式220x +>解集不为R ,故0a =不满足题意;当0a ≠时,要使原不等式解集为R ,只需202420a a >⎧⎨-⨯<⎩,解得12a >综上,所求实数a 的取值范围为1(,)2+∞【名师指引】不等式20ax bx c ++>对一切x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪>⎩或2040a b ac >⎧⎨∆=-<⎩ 不等式20ax bx c ++<对任意x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪<⎩或2040a b ac <⎧⎨∆=-<⎩ 题型2.转化为二次函数的最值求参数的取值范围【解题思路】先分离系数,再由二次函数最值确定取值范围.[解析] (1)设2()(0)f x ax bx c a =++≠.由(0)1f =得1c =,故2()1f x ax bx =++.∵(1)()2f x f x x +-= ∴22(1)(1)1(1)2a x b x ax bx x ++++-++=即22ax a b x ++=,所以22,0a a b =+=,解得1,1a b ==- ∴2()1f x x x =-+ (2)由(1)知212x x x m -+>+在[1,1]-恒成立,即231m x x <-+在[1,1]-恒成立.令2235()31()24g x x x x =-+=--,则()g x 在[1,1]-上单调递减.所以()g x 在[1,1]-上的最大值为(1)1g =-.所以m 的取值范围是(,1)-∞-.【名师指引】()m f x ≤对一切x R ∈恒成立,则min [()]m f x ≤;()m f x ≥对一切x R ∈恒成立,则max [()]m f x ≥; 【新题导练】8.不等式22214x a x ax ->++对一切∈x R 恒成立,则实数a 的取值范围是_______. [解析]:不等式22214x a x ax ->++对一切∈x R 恒成立,即 014)2(2>-+++a x x a 对一切∈x R 恒成立 若2+a =0,显然不成立若2+a ≠0,则⎩⎨⎧<∆>+002a ∴2>a9.若不等式x 2+ax +10对于一切x (0,12)成立,则a 的取值范围是 ( )A .0B . –2C .-52D .-3解析:设f (x )=x 2+ax +1,则对称轴为x =a 2-,若a 2-12,即a -1时,则f (x )在〔0,12〕上是减函数,应有f (12)0-52x -1若a 2-0,即a0时,则f (x )在〔0,12〕上是增函数,应有f (0)=10恒成立,故a0若0a 2-12,即-1a0,则应有f (a2-)=222a a a 110424≥-+=-恒成立,故-1a0. 综上,有-52a,故选C . ★ 抢 分 频 道 ★基础巩固训练1. 不等式2560x x -++>的解集是__________解析:将不等式转化成2560x x --<,即()()160x x +-<.]2. 若不等式20x ax b --<的解集为{|23}x x <<,则不等式210bx ax -->的解集为 __________..解析:先由方程20x ax b --=的两根为2和3求得,a b 后再解不等式210bx ax -->.得11,23⎛⎫-- ⎪⎝⎭3. (广东省五校2008年高三上期末联考) 若关于x 的不等式2()1()g x a a x R ≥++∈的解集为空集,则实数a 的取值范围是 .解析: 2()1()g x a a x R ≥++∈的解集为空集,就是1= [()g x ]max <21a a ++ 所以(,1)(0,)a ∈-∞-⋃+∞4(08梅州)设命题P :函数)161lg()(2a x ax x f +-=的定义域为R ;命题q :不等式ax x +<+121对一切正实数均成立。
高中不等式的解法全集
1、一元二次不等式的解法
一化:化二次项前的系数为正数.
二判:判断对应方程的根.
三求:求对应方程的根.
四画:画出对应函数的图象.
五解集:根据图象写出不等式的解集.
规律:当二次项系数为正时,小于取中间,大于取两边.
2、高次不等式的解法:穿根法.
分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.
3、分式不等式的解法:先移项通分标准化,则
规律:把分式不等式等价转化为整式不等式求解.
4、无理不等式的解法:转化为有理不等式求解
规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.
5、指数不等式的解法:
规律:根据指数函数的性质转化.
6、对数不等式的解法
规律:根据对数函数的性质转化.
7、含绝对值不等式的解法:
⑶同解变形法,其同解定理有:
规律:关键是去掉绝对值的符号.
8、含有两个(或两个以上)绝对值的不等式的解法:
规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.
9、含参数的不等式的解法
10、恒成立问题。
一元二次不等式的解法,以及分式不等式,恒成立问题教学文案
思考:1,一元二次函数满足什么条件,它的图像都在x轴上方?
2,,一元二次函数满足什么条件,它的图像都在x轴上方?
数学语言:(1)一元二次不等式 的解集是全体实数(或恒成立)的条件是
__________________
(2)一元二次不等式 的解集是全体实数(或恒成立)的条件是
__________________
三,议
(1)对于任意的 ,都有 恒成立,求 的取值范围
(2)对于任意的 ,都有 恒成立,求 的取值范围
(3)对于任意的 ,都有 恒成立,求 的取值范围
(4)对于任意的 ,都有 恒成立,求 的取值范围
把(3)(4)的大于改成小于,你会做吗?
(5)、若不等式 的解集是R,求m的取值范围
(6)不等式 的解集是空集,求a的取值范围
一元二次不等式的解法,以及分式不等式,恒成立问题
补充内容:一元二次不等式
1、导(3分钟)
回顾一元一次的解法,那么一元二次不等式如何求解呢?
二、思(8分钟)
思考1:画出一元二次函数 的图像,并观察当 取什么范围,
那么 时, 的范围为__________________。故一元二次不等式 的解集为________________________(这个方法叫做图像法求解不等式)2,
思考2:利用上述方法,求解下列不等式
注:最高项系数为负的,一般转化为正(不等号要变号),再解答
知识点一:三个“二次”的关系:
二次函数 ( )的图象
一元二次方程
一元二次不等式
一元二次不等式
小结:有两根的,不等式大于0,两根之外,小于0,两根之间
三、议(10分钟)
议论1:求解下列关于 的不等式
不等式的解法与恒成立问题
不等式的解法与恒成立问题一、不等式解法15个典型例题:例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”。
例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例3 解不等式242+<-x x分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<。
例4 解不等式04125622<-++-x x x x .例5 解不等式x xx x x <-+-+222322. 分析:不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.例6 设R m ∈,解关于x 的不等式03222<-+mx x m .分析:进行分类讨论求解.例7 解关于x 的不等式)0(122>->-a x a ax .分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.例8 解不等式331042<--x x .说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解.例9 解关于x 的不等式0)(322>++-a x a a x .说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集. 说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根.例12 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.例13 不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值.说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.例14 解关于x 的不等式01)1(2<++-x a ax .说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.例15 解不等式x x x ->--81032.分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f . 说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f ,二、不等式恒成立问题:①化归为二次函数,利用基本性质根据题目要求,构造二次函数。
高中数学专题复习不等式的解法及应用知识点例题精讲
不等式的解法及应用[高考能力要求]不等式的解在历年高考中占有咬重的份量,在客观题中,内容多为判断不等式的解、求简单不等式的解及参数的取值范围;主观题中,既有含参数不等式的解法,又有与函数、方程、三角、数列、二项式及解析几何等知识综合性较强的问题。
讨论含参数不等式的解及有关的恒成立问题是高考命题的热点。
几种常见不等式的解法如下: 1.一元一次不等式:(1)0>+b ax :①0>a 时,a bx ->;②0=a 时,若0>b ,则R x ∈,若0≤b ,则φ∈x ;③当0<a 时,abx -<;(2)0<+b ax :①0>a 时,a bx -<;②0=a 时,若0<b ,则R x ∈,若0≥b ,则φ∈x ;③当0<a 时,abx ->;2.一元二次不等式对于一元二次不等式)0(0,022><++>++a c bx ax c bx ax 的解法如下表:3.一元高次不等式:通过因式分解,将之化为若干个一次因式的积且右边为0的形式,然后利用根轴法解决,注意应当先将x 的系数化成正数。
4.分式不等式:解题的关键是去分母,可运用同解定理将之转化为高次不等式。
0)()(0)()(>⇔>x g x f x g x f ;0)()(0)()(<⇔<x g x f x g x f 5.绝对值不等式:解题的关键是去绝对值符号,可利用绝对值的定义转化。
)()()()()(x x f x x x f ϕϕϕ≤≤-⇔≤;)()()()(x x f x x f ϕϕ-≤⇔≥或)()(x x f ϕ≥ [例题精讲]【例1】解不等式0442>++x ax 。
分析:含有参数的不等式,必须对参数进行讨论,对一元二次不等式来说,讨论从二次项系数和判别式入手。
解:(1)若0>a① 当1>a 时,0)1(16<-=∆a ,不等式的解集为R ; ② 当1=a 时,0=∆,不等式的解集为{}2|-≠x x③ 当1<a 时,0>∆,不等式的解集为⎩⎨⎧---<a a x x 122|或⎭⎬⎫-+->a a x 122;(2)若0=a ,原不等式变为044>+x ,解集为{}1|->x x ; (3)若0<a ,0)1(16>-=∆a ,aa a a ---<-+-122122,∴原不等式的解集为⎭⎬⎫⎩⎨⎧---<<-+-a a x a a x 122122|。
不等式知识点及其解题技巧
不等式知识点及其解题技巧不等式知识点及其解题技巧不等式的性质:1.同向不等式可以相加;异向不等式可以相减。
例如,若a>b,c>d,则a+c>b+d(若a>b,cb-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘。
例如,若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则ab<cd);3.左右同正不等式:两边可以同时乘方或开方。
例如,若a>b>0,则a>b或ad>0,则c>d或c<d;4.若a>b>0,c>d>0,则a+c>b+d;若a>b>0,0b-d;5.若ab或ab;6.若ab;若a<b<0,则a<b;7.若c>a>b>d,则c-d>a-b;若a>b,0b。
例如:1.对于实数a,b,c中,给出下列命题:①若a>b,则ac>bc;②若ac>bc,则a>b;③若ab>c;④若a<b<c,则a<c;⑤若ab;⑥若ab;⑦若c>a>b>d,则c-d>a-b;⑧若a>b,0b。
其中正确的命题是②③⑥⑦⑧。
2.已知-1≤x+y≤1,1≤x-y≤3,则3x-y的取值范围是1≤3x-y≤7.3.已知a>b>c,且a+b+c=1,则$\frac{c-2a}{2a}$的取值范围是$(-2,-1)$。
不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
(C)a>0且b2-4ac≤0
(D)a>0且b2-4ac>0
2.(2012·泰兴高一检测)若不等式(a-2)x2+2(a-2)x-4<0对 一切x∈R恒成立,则a的取值范围是______. 3.设函数f(x)=mx2-mx-1.对于x∈[1,3],f(x)<-m+5恒 成立,求m的取值范围.
3.要使f(x)<-m+5对于x∈[1,3]恒成立,
【规范解答】不等式mx2-mx-1<0恒成立, 即函数f(x)=mx2-mx-1的图象全部在x轴下方. ………2分 若m=0①,显然-1<0,符合题意. ……………………4分
若m≠0,函数f(x)=mx2-mx-1为二次函数,需满足开口向下 且方程mx2-mx-1=0无解. ………………………6分
即满足
m 0, m 4m 0,
2
②
………………………8分
解得-4<m<0. …………………………………………10分 综上所述可知-4<m≤0. ……………………………12分
一元二次不等式的实际应用 【技法点拨】 解不等式应用题的四个步骤 (1)阅读理解、认真审题,把握问题中的关键量、找准不等关 系;
…………………………6分 ………………………… 8分
或Δ=4a2-4(2-a)≤0. 解得-3≤a≤1.
………………………………………12分
【规范解答】不等式在恒成立问题中的应用 【典例】(12分)设函数f(x)=mx2-mx-1.若对于一切实数x, f(x)<0恒成立,求m的取值范围. 【解题指导】
(2)引入数学符号,用不等式表示不等关系(或表示成函数关
系);
(3)解不等式(或求函数最值);
(4)回扣实际问题.
【典例训练】 1.有纯农药液一桶,倒出8升后用水补满.然后又倒出4升后再 用水补满,此时桶中的农药不超过容积的28%,问桶的容积最 大为_______.
2.国家为了加强对烟酒生产的宏观调控,实行征收附加税政策,
第2课时 一元二次不等式及其解法习题课
点击进入相应模块
1.掌握不等式中恒成立问题,感悟分类讨论的数学思想.
2.会应用一元二次不等式解实际应用问题.
1.本课重点:不等式的恒成立问题和应用问题.
2.本课难点:不等式恒成立问题中的转化.
分式不等式的解法
【典例训练】 1.解下列不等式:1 2x 1 0;2 2x 1 1.
当m<0时,g(x)在[1,3]上是减函数,
≨g(x)max=g(1)=m-6<0,得m<6,≨m<0. 综上所述:m的取值范围是 m< .
6 7
【规范答题】由已知得:x2-2ax+2-a≥0在[-1,+≦)上恒成立,
………………………………………………3分
4a 2 4(2 a) 0, 即 a 1, f (1) 3 2a a,
从中征收的附加税为70x·R%,其中x=100-10R.
由题意得70(100-10R)·R%≥112,
整理,得R2-10R+16≤0. ≧Δ=36>0,≨方程R2-10R+16=0的两个实数根为 R1=2,R2=8.
由二次函数y=R2-10R+16的图象可得不等式的解集为 {R|2≤R≤8}.
所以,当2≤R≤8时,每年在此项经营中所收附加税金额不少
1 2 3 就要使m(x- ) + m -6<0,x∈[1,3]恒成立. 2 4 令g(x)=m(x- 1 )2+ 3 m-6,x∈[1,3]. 2 4
当m>0时,g(x)在[1,3]上是增函数, ≨g(x)max=g(3)=7m-6<0,
6 6 m< , 0<m< . 7 7
3.
当m=0时,-6<0恒成立.
现知某种酒每瓶70元,不加收附加税时,每年大约产销100万 瓶,若政府征收附加税,每销售100元要征税R元(叫做税率R%), 则每年的销售量减少10R万瓶,要使每年在此项经营中所收附 加税金额不少于112万元,则R应怎样确定?
【解析】1.解题流程:
答案:40 升
3
2.设产销量每年为x万瓶,则销售收入为每年70x万元,
x 1
) (B)[-1,2] (D)(-1,2] )
(A)(-∞,-1)∪(-1,2] (C)(-∞,-1)∪[2,+∞)
2.已知x=2是不等式m2x2+(1-m2)x-4m≤0的解,则m的值为( (A)1 (B)2 (C)3
1 mx 2 mx 1
(D)4 恒有意义,则常数m的取值范
3.对于x∈R,式子 围为( )
f ( )0 f ( ) 0
(2).a 0, f ( x) 0在[ , ] 上恒成立 ff (( ))0 0
【典例训练】 1.若关于x的不等式ax2+bx+c<0 (a≠0)的解集是空集, 那么
(
(A)a<0且b2-4ac>0 (B)a 51. 10
又≧n∈N*,≨n=3,4,…,17.即从第3年开始获利.
(2)原不等式可化为 2x 1 1 0,即 3x 2 0,
3 x 3 x 原不等式等价于 (3x 2)(x 3) 0, 2 x 3, 得 3 x 3, ≨原不等式的解集为{x | 2 x 3}. 3
1.不等式 x 2 0 的解集是(
x 3 3 x 【解析】1.(1)不等式 2x 1 0 可转化为(2x+1)(x-3)<0,即 x 3 1 ≨原不等式的解集为 {x | 1 x 3}. x 3, 2 2
(2)原不等式可化为 2x 1 1 0,即 3x 2 0,
3 x 3 x 原不等式等价于 (3x 2)(x 3) 0, 2 x 3, 得 3 x 3, ≨原不等式的解集为{x | 2 x 3}. 3
(A)0<m<4 (C)0≤m<4
(B)0≤m≤4 (D)0<m≤4
4.若不等式x2+2x-6≥a对于一切实数x均成立,则实数a的最大 值是_____.
5.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用 12万元,以后每年都增加4万元,每年捕鱼收益50万元.问第几 年开始获利? 【解析】由题设知每年的各种费用是以12为首项,4为公差的 等差数列.设纯获利与年数的关系为f(n),则 f(n)=50n-[12+16+…+(8+4n)]-98=40n-2n2-98. 由f(n)>0得n2-20n+49<0,
于112万元.
分式不等式的解法
【典例训练】 1.解下列不等式:1 2x 1 0;2 2x 1 1.
x 3 3 x 【解析】1.(1)不等式 2x 1 0 可转化为(2x+1)(x-3)<0,即 x 3 1 ≨原不等式的解集为 {x | 1 x 3}. x 3, 2 2
针对性练习: 1 1 1. , x 2 1 2. x x x 1 3. 2 0 x x6
不等式中的恒成立问题 【技法点拨】 1.不等式的解集为R的条件
2.有关不等式恒成立求参数的取值范围的方法小结
3.
(1).a 0, f ( x) 0在[ , ] 上恒成立