湖北省天门经济开发区中考数学二模试卷(含解析)
2023-2024学年湖北省天门市中考数学学情检测仿真模拟试题合集2套(含解析)
2023-2024学年湖北省天门市中考数学学情检测仿真模拟试题(一模)一、选择题(共10小题,每小题3分,共30分.下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
)1.下列四个数中,最大的有理数是()A .-1B .-2019C .3D .02.函数25y x =-的自变量x 的取值范围是()A .5x >B .10x >C .5x D .10x 3.下列运算中,正确的是()A .(a 2)3=a 6B .a 2+a 2=a 4C .(a-b )2=a 2-b 2D .a 2•a 2=2a 24.如图,该几何体是由4个大小相同的正方体组成,在这个几何体上面再添加一个大小相同的正方体得到一个新的几何体,则新几何体三视图与原几何体三视图一定相同的是()A .主视图B .左视图C .俯视图D .没有5.已知点P (m +2,2m -4)在y 轴上,则点P 的坐标是()A .(8,0)B .(0,-8)C .(-8,0)D .(0,8)6.下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .7.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是()A .779(1)x yx y +=⎧⎨-=⎩B .779(1)x y x y+=⎧⎨+=⎩C .779(1)x y x y-=⎧⎨-=⎩D .779(1)x y x y -=⎧⎨+=⎩8.定义:[]x 表示不超过实数x 的最大整数例如:[]1.71=,305⎡⎤=⎢⎥⎣⎦,1234⎡⎤-=-⎢⎥⎣⎦根据你学习函数的经验,下列关于函数[]y x =的判断中,正确的是()A .函数[]y x =的定义域是一切整数B .函数[]y x =的图像是经过原点的一条直线C .点2(2,2)5在函数[]y x =图像上D .函数[]y x =的函数值y 随x 的增大而增大9.已知有理数a ≠1,我们把11a -称为a 的差倒数,如:2的差倒数是112=--1,﹣1的差倒数是()11112=--.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…依此类推,那么a 1+a 2+…+a 109的值是()A .8B .﹣8C .6D .﹣610.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是 AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是()A .532B .33C .32D .42二、填空题(本大题共6个小题,每小题3分,共18分,下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
湖北省天门市中考数学模拟试卷(含解析)
2017年湖北省天门市中考数学模拟试卷一、选择题(本大题共有10个小题,每小题3分,满分30分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.实数0是()A.有理数B.无理数C.正数 D.负数2.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×1043.如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C. D.4.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A.5 B.100 C.500 D.100005.如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD=()A.80° B.75° C.70° D.65°6.已知是二元一次方程组的解,则2m﹣n的算术平方根是()A.4 B.2 C.D.±27.如图,锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),∠ABD=90°,下列结论:①sinC>sinD;②cosC>cosD;③tanC>tanD,正确的结论为()A.①② B.②③ C.①②③D.①③8.在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣29.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A.②③ B.②④ C.②③④D.①③④10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A. B. C. D.二、请将结果直接写在横线上.(本大题共6个小题,每小题3分,共18分)11.将2x2﹣8分解因式的结果是.12.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.13.一圆锥的底面半径为1cm,母线长2cm,则该圆锥的侧面积为cm2.14.如图,已知E是正方形ABCD对角线AC上的一点,AE=AD,过点E作AC的垂线,交边CD于点F,∠FAD= 度.15.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)16.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题(本大题共9个小题,满分72分)17.计算:÷(a+2﹣).18.已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.19.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.20.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?21.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b 的图象经过点A、D,与x轴的负半轴交于点E(1)若AC=OD,求a、b的值;(2)若BC∥AE,求BC的长.22.已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC•AD=AB•AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.23.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.24.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.25.在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.2017年湖北省天门市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,满分30分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.实数0是()A.有理数B.无理数C.正数 D.负数【考点】27:实数.【分析】根据实数的分类,即可解答.【解答】解:0是有理数,故选:A.2.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故选:B.3.如图是一个几何体的三视图,则该几何体的展开图可以是()A .B .C .D .【考点】U3:由三视图判断几何体;I6:几何体的展开图.【分析】首先根据三视图判断该几何体的形状,然后确定其展开图即可求解. 【解答】解:∵主视图和左视图均为矩形, ∴该几何体为柱形, ∵俯视图为圆, ∴该几何体为圆锥, 故选A .4.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是( ) A .5B .100C .500D .10000【考点】V5:用样本估计总体.【分析】先求出次品所占的百分比,再根据生产这种零件10000件,直接相乘得出答案即可. 【解答】解:∵随机抽取100件进行检测,检测出次品5件,∴次品所占的百分比是:,∴这一批次产品中的次品件数是:10000×=500(件),故选C .5.如图,在△ABC 中,点D 、E 、F 分别是三条边上的点,EF ∥AC ,DF ∥AB ,∠B=45°,∠C=60°.则∠EFD=( )A .80°B .75°C .70°D .65° 【考点】JA :平行线的性质.【分析】根据EF ∥AC ,求出∠EFB=∠C=60°,再根据DF ∥AB ,求出∠DFC=∠B=45°,从而求出∠EFD=180°﹣60°﹣45°=75°.【解答】解:∵EF∥AC,∴∠EFB=∠C=60°,∵DF∥AB,∴∠DFC=∠B=45°,∴∠EFD=180°﹣60°﹣45°=75°,故选B.6.已知是二元一次方程组的解,则2m﹣n的算术平方根是()A.4 B.2 C.D.±2【考点】97:二元一次方程组的解.【分析】由于已知二元一次方程的解,可将其代入方程组中,即可求出m、n的值,进而利用算术平方根定义可求出2m﹣n的算术平方根.【解答】解:由题意得:,解得;∴===2;故选:B.7.如图,锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),∠ABD=90°,下列结论:①sinC>sinD;②cosC>cosD;③tanC>tanD,正确的结论为()A.①② B.②③ C.①②③D.①③【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】首先设BD交⊙O于点E,连接AE,由圆周角定理,易得∠C>∠D,继而求得答案.【解答】解:设BD交⊙O于点E,连接AE,∵∠C=∠AEB,∠AEB>∠D,∴∠C>∠D,∴sin∠C>sin∠D;cos∠C<cos∠D;tan∠C>tan∠D,∴正确的结论有:①③.故选D.8.在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣2【考点】F8:一次函数图象上点的坐标特征.【分析】设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(﹣2,3).点(0,a),(﹣1,b),(c,﹣1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.【解答】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(﹣2,3).点(0,a),(﹣1,b),(c,﹣1),∴斜率k===,即k==b﹣3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<﹣2.故选D.9.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A.②③ B.②④ C.②③④D.①③④【考点】LG:正方形的判定与性质;KQ:勾股定理.【分析】根据角平分线性质求出DE=DF,证△AED≌△AFD,推出AE=AF,再一一判断即可.【解答】解:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴四边形AEDF是正方形,∴③正确;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②③④正确,故选C.10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A. B. C. D.【考点】D2:规律型:点的坐标.【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此规律即可得出第2017秒时,点P的坐标.【解答】解:以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为.故选B二、请将结果直接写在横线上.(本大题共6个小题,每小题3分,共18分)11.将2x2﹣8分解因式的结果是2(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(x2﹣4)=2(x+2)(x﹣2),故答案为:2(x+2)(x﹣2)12.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.【考点】X4:概率公式.【分析】由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,直接利用概率公式求解即可求得答案.【解答】解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动的概率是:.故答案为:.13.一圆锥的底面半径为1cm,母线长2cm,则该圆锥的侧面积为2πcm2.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×1×2÷2=2π.故答案为:2π.14.如图,已知E是正方形ABCD对角线AC上的一点,AE=AD,过点E作AC的垂线,交边CD于点F,∠FAD= 22.5 度.【考点】LE:正方形的性质.【分析】首先证明∠DAC=45°,再证明Rt△AFE≌Rt△AFD(HL)即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠D=∠BAD=90°,∠DAC=45°,∵EF⊥AC,∴∠AEF=∠D=90°,在Rt△AFE和Rt△AFD中,,∴Rt△AFE≌Rt△AFD,∴∠FAD=∠FAE=22.5°,故答案为22.5.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为 208米.(精确到1米,参考数据:≈1.73)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD ,DC 的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m ),故答案为:208.16.如图,矩形ABCD 中,BC=2,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分别落在点A′、C′处.如果点A′、C′、B 在同一条直线上,那么tan ∠ABA′的值为.【考点】R2:旋转的性质;LB :矩形的性质;T1:锐角三角函数的定义.【分析】设AB=x ,根据平行线的性质列出比例式求出x 的值,根据正切的定义求出tan ∠BA′C,根据∠ABA′=∠BA′C 解答即可. 【解答】解:设AB=x ,则CD=x ,A′C=x +2, ∵AD ∥BC ,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.三、解答题(本大题共9个小题,满分72分)17.计算:÷(a+2﹣).【考点】6C:分式的混合运算.【分析】根据分式的减法和除法可以解答本题.【解答】解:÷(a+2﹣)===﹣.18.已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.【考点】AA:根的判别式;A3:一元二次方程的解.【分析】(1)找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.【解答】解:(1)由题意得,a=1,b=2m,c=m2﹣1,∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.19.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线;L6:平行四边形的判定.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.20.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为120 份,“严加干涉”部分对应扇形的圆心角度数为30°.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.【解答】解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.21.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b 的图象经过点A、D,与x轴的负半轴交于点E(1)若AC=OD,求a、b的值;(2)若BC∥AE,求BC的长.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF==,tan∠AEC==,进而求出m的值,即可得出答案.【解答】解;(1)∵点B(2,2)在函数y=(x>0)的图象上,∴k=4,则y=,∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,∵点A在y=的图象上,∴A点的坐标为:(,3),∵一次函数y=ax+b的图象经过点A、D,∴,解得:;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF==,在Rt△ACE中,tan∠AEC==,∴=,解得:m=1,∴C点的坐标为:(1,0),则BC=.22.已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC•AD=AB•AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.【考点】MC:切线的性质;S9:相似三角形的判定与性质.【分析】(1)连接DE,根据圆周角定理求得∠ADE=90°,得出∠ADE=∠ABC,进而证得△ADE ∽△ABC,根据相似三角形对应边成比例即可求得结论;(2)连接OD,根据切线的性质求得OD⊥BD,在RT△OBD中,根据已知求得∠OBD=30°,进而求得∠BAC=30°,根据30°的直角三角形的性质即可求得AC的长.【解答】(1)证明:连接DE,∵AE是直径,∴∠ADE=90°,∴∠ADE=∠ABC,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,∴AC•AD=AB•AE;(2)解:连接OD,∵BD是⊙O的切线,∴OD⊥BD,在RT△OBD中,OE=BE=OD,∴OB=2OD,∴∠OBD=30°,同理∠BAC=30°,在RT△ABC中,AC=2BC=2×2=4.23.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.【考点】FH:一次函数的应用.【分析】(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.【解答】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.24.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【考点】RB:几何变换综合题.【分析】(1)由EN∥AD和点M为DE的中点可以证得△ADM≌△NEM,从而证得M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证得△ABC≌△NEC,进而可以证得AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证得△ABC≌△NEC,进而可以证得AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点;(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形;(3)△ACN仍为等腰直角三角形.证明:∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.25.在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.【考点】HF:二次函数综合题.【分析】(1)由直线的解析式y=x+4易求点A和点C的坐标,把A和C的坐标分别代入y=﹣x2+bx+c求出b和c的值即可得到抛物线的解析式;(2)①若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQ∥AO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;②过P点作PF∥OC交AC于点F,因为PF∥OC,所以△PEF∽△OEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点点F(x,x+4),利用,可求出x的值,解方程求出x的值可得点P的坐标,代入直线y=kx即可求出k的值.【解答】解:(1)∵直线y=x+4经过A,C两点,∴A点坐标是(﹣4,0),点C坐标是(0,4),又∵抛物线过A,C两点,∴,解得:,∴抛物线的解析式为.(2)①如图1∵,∴抛物线的对称轴是直线x=﹣1.∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,∴PQ∥AO,PQ=AO=4.∵P,Q都在抛物线上,∴P,Q关于直线x=﹣1对称,∴P点的横坐标是﹣3,∴当x=﹣3时,,∴P点的坐标是;②过P点作PF∥OC交AC于点F,∵PF∥OC,∴△PEF∽△OEC,∴.又∵,∴,设点F(x,x+4),∴,化简得:x2+4x+3=0,解得:x1=﹣1,x2=﹣3.当x=﹣1时,;当x=﹣3时,,即P点坐标是或.又∵点P在直线y=kx上,∴.。
2023-2024学年湖北省天门市中考数学学情检测仿真模拟试题合集 2套(含解析)
2023-2024学年湖北省天门市中考数学学情检测仿真模拟试题(3月)一、选一选(本大题共8小题,每小题3分,共24分)1.﹣15的值是()A.﹣15 B.15 C.﹣5 D.52.长春市奥林匹克公园即将于2018年年底建成,它的总额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.下列立体图形中,主视图是圆的是()A. B. C. D.4.没有等式3x﹣6≥0的解集在数轴上表示正确的是()A. B. C. D.5.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿没有知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿没有知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B 地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米 D.800tanα米8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4B.2C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)9.10_____3.(填“>”、“=”或“<”)10.计算:a2•a3=_____.11.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为_____.(写出一个即可)12.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.13.如图,在▱ABCD中,AD=7,3B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.14.如图,在平面直角坐标系中,抛物线y=x2+mx轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.三、解答题(本大题共10小题,共78分)15.先化简,再求值:22111xx x-+--,其中5﹣1.16.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张没有透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案没有同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形没有全等.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求 AD的长.(结果保留π)20.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.在正方形ABCD中,E是边CD上一点(点E没有与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(没有需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P没有与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线△ABC一边中点时,直接写出t的值.24.如图,在平面直角坐标系中,矩形ABCD的对称为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),E、D两点的函数y=﹣12x2+mx+1(x≥0)的图象记为G1,函数y=﹣12x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上点的纵坐标为y0,当32≤y0≤9时,直接写出L的取值范围.2023-2024学年湖北省天门市中考数学学情检测仿真模拟试题(3月)一、选一选(本大题共8小题,每小题3分,共24分)1.﹣15的值是()A.﹣15 B.15 C.﹣5 D.5【正确答案】B【分析】根据值的定义“数a的值是指数轴上表示数a的点到原点的距离”进行求解即可.【详解】数轴上表示数﹣15的点到原点的距离是15,所以﹣15的值是15,故选B.本题考查了值的定义,熟练掌握值的定义是解题的关键.错因分析容易题.失分原因是值和相反数的概念混淆.2.长春市奥林匹克公园即将于2018年年底建成,它的总额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【正确答案】C【详解】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值大于10时,n是正数;当原数的值小于1时,n是负数.【详解】2500000000的小数点向左移动9位得到2.5,所以2500000000用科学记数表示为:2.5×109.故选C.本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列立体图形中,主视图是圆的是()A. B. C. D.【正确答案】D【详解】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】A、圆锥的主视图是三角形,故A没有符合题意;B、圆柱的主视图是矩形,故B没有符合题意;C、圆台的主视图是梯形,故C没有符合题意;D、球的主视图是圆,故D符合题意,故选D.本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.没有等式3x﹣6≥0的解集在数轴上表示正确的是()A. B. C. D.【正确答案】B【分析】先求出没有等式的解集,再在数轴上表示出来即可.【详解】3x﹣6≥0,3x≥6,x≥2,在数轴上表示为:,故选B.本题考查了解一元没有等式和在数轴上表示没有等式的解集,正确求出没有等式的解集是解此题的关键.5.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【正确答案】C【详解】【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=12×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选C.本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿没有知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿没有知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【正确答案】B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5 x=,解得x=45(尺),即竹竿的长为四丈五尺.故选B本题考查了相似三角形的应用举例,熟知同一时刻物高与影长成正比是解答此题的关键.7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B 地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米 D.800tanα米【正确答案】D【详解】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=ACAB,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=AC AB,∴AB=800tan tan AC αα=,故选D .本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =k x (x >0)的图象上,若AB =2,则k 的值为()A.4B. C.2 D.【正确答案】A【分析】作BD ⊥AC 于D ,如图,先利用等腰直角三角形的性质得到AC AB ,BD =AD =CD,再利用AC ⊥x 轴得到C ,2),然后根据反比例函数图象上点的坐标特征计算k 的值.【详解】解:作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形,∴AC AB =2,∴BD =AD =CD ,∵AC ⊥x 轴,∴C ,),把C ,)代入y =k x得k =4,故选A .本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=k x(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.10_____3.(填“>”、“=”或“<”)【正确答案】>.【详解】【分析】先求出9【详解】∵32=9<10,10>3,故答案为>.本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.计算:a2•a3=_____.【正确答案】a5.【详解】【分析】根据同底数的幂的乘法,底数没有变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为a5.本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为_____.(写出一个即可)【正确答案】2【详解】【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用函数图象上点的坐标特征,即可得出关于n的一元没有等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥3 2,故答案为2.本题考查了函数图象上点的坐标特征,用函数图象上点的坐标特征,找出关于n的一元没有等式是解题的关键.12.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.【正确答案】37【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12∠ACB=37°.【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=37°,故答案为37.本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.如图,在▱ABCD中,AD=7,B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.【正确答案】20【详解】【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【详解】当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,,∠B=60°,∴AE=3,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为20.本题考查平移的性质,解题的关键是确定出当AE⊥BC时,四边形AEFD的周长最小.14.如图,在平面直角坐标系中,抛物线y=x2+mx轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.【正确答案】3【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【详解】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A 的坐标为(﹣1,0),∴抛物线解析式为y =x 2+x ,当x =1时,y =x 2+x =2,则A ′(1,2),当y =2时,x 2+x =2,解得x 1=﹣2,x 2=1,则C (﹣2,1),∴A ′C 的长为1﹣(﹣2)=3,故答案为3.本题考查了二次函数图象上点的坐标特征、坐标平面内关于某点对称的两点间坐标的关系以及抛物线与x 轴的交点,解题的关键是把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.三、解答题(本大题共10小题,共78分)15.先化简,再求值:22111x x x -+--,其中﹣1.【正确答案】【详解】【分析】根据分式的加法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2x 21x 1x 1-+--=2211x x -+-=211x x --=()()111x x x +--=x+1,当x=﹣1时,原式本题考查分式的化简求值,熟练掌握分式化简求值的方法是解答本题的关键.16.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张没有透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案没有同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A 1、A 2,图案为“蝴蝶”的卡片记为B )【正确答案】4 9【详解】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为4 9.本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形没有全等.【正确答案】作图见解析.【详解】【分析】网格特点以及轴对称图形的定义进行作图,然后用全等四边形的定义判断即可得符合题意的图形.【详解】如图所示:本题考查了作图﹣轴对称变换,以及全等形的判定,熟练掌握各自的性质是解本题的关键.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【正确答案】(1)每套课桌椅的成本为82元.(2)商店获得的利润为1080元.【详解】【分析】(1)设每套课桌椅的成本为x元,根据利润=收入﹣成本商店获得的利润没有变,即可得出关于x的一元方程,解之即可得出结论;(2)根据总利润=单套利润×数量,即可求出结论.【详解】(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82,答:每套课桌椅的成本为82元;(2)60×(100﹣82)=1080(元),答:商店获得的利润为1080元.本题考查了一元方程的应用,解题的关键是:(1)找准等量关系,正确列出一元方程;(2)根据数量关系,列式计算.19.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求 AD的长.(结果保留π)【正确答案】(1)50°;(2)10 3π.【详解】【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【详解】(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)如图,连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴ AD的长为100610 1803ππ⨯=.本题考查了切线的性质、圆周角定理、弧长公式等,熟练掌握切线的性质、圆周角定理以及弧长公式等知识是解题的关键.20.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【正确答案】(1)18;(2)中位数;(3)100名.【详解】【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【详解】(1)由图可得,众数m的值为18,故答案为18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为中位数;(3)300×11231230+++++=100(名),答:该部门生产能手有100名工人.本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形的思想解答.21.某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y (立方米)与时间x (分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y 与x 之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.【正确答案】(1)5立方米;(2)y=4x+3;(3)1,11.【详解】【分析】(1)用体积变化量除以时间变化量即可求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【详解】(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;(2)设y=kx+b (k≠0),把(3,15)(5.5,25)代入,则有15325 5.5k b k b =+⎧⎨=+⎩,解得:43k b =⎧⎨=⎩,∴当3≤x≤5.5时,y 与x 之间的函数关系式为y=4x+3;(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟,故答案为1,11.本题考查了函数的应用,解题的关键是读懂图象、弄清题意、熟练应用函数的图象和性质以及在实际问题中比例系数k 代表的意义.22.在正方形ABCD 中,E 是边CD 上一点(点E 没有与点C 、D 重合),连结BE.【感知】如图①,过点A 作AF ⊥BE 交BC 于点F .易证△ABF ≌△BCE .(没有需要证明)【探究】如图②,取BE 的中点M ,过点M 作FG ⊥BE 交BC 于点F ,交AD 于点G .(1)求证:BE=FG .(2)连结CM ,若CM=1,则FG 的长为.【应用】如图③,取BE 的中点M ,连结CM .过点C 作CG ⊥BE 交AD 于点G ,连结EG 、MG .若CM=3,则四边形GMCE 的面积为.【正确答案】(1)证明见解析;(2)2,9.【详解】【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE ,即可得出结论;探究:(1)判断出PG=BC ,同感知的方法判断出△PGF ≌CBE ,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【详解】感知:∵四边形ABCD 是正方形,∴AB=BC ,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF ⊥BE ,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE ,在△ABF 和△BCE 中,90BAF CBEAB BCABC BCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABF ≌△BCE (ASA );探究:(1)如图②,过点G 作GP ⊥BC 于P ,∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠ABC=90°,∴四边形ABPG 是矩形,∴PG=AB ,∴PG=BC ,同感知的方法得,∠PGF=∠CBE ,在△PGF 和△CBE 中,90PQF CBE PQ BCPFG ECB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△PGF ≌△CBE (ASA ),∴BE=FG ;(2)由(1)知,FG=BE ,连接CM ,∵∠BCE=90°,点M 是BE 的中点,∴BE=2CM=2,∴FG=2,故答案为2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE ⊥CG ,∴S 四边形CEGM =12CG×ME=12×6×3=9,故9.本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.23.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P没有与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线△ABC一边中点时,直接写出t的值.【正确答案】(1)CD=(0<t<2);(2)1;(3)见解析;(4)t的值为12秒或34秒或54秒.【详解】【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×2,∴CD=AC﹣t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD+DQ=AC,∴∴t=1;(3)当0<t≤1时,S=S△PDQ=12DQ×DP=122t2,当1<t<2时,如图2,CQ=AQ﹣AC=2AD﹣﹣t﹣1),在Rt△CEQ中,∠CQE=30°,∴CE=CQ•tan∠t﹣1)×33=2(t﹣1),∴S=S△PDQ﹣S△ECQ12﹣12t﹣1)×2(t﹣1)=﹣2t2t﹣∴S=())22t01233t022tt⎧≤⎪⎪⎨⎪-+-⎪⎩<<<;(4)当PQ的垂直平分线过AB的中点F时,如图3,∴∠PGF=90°,PG=12PQ=12AP=t,AF=12AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=12;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=12QM=12PQ=12AP=t,在Rt△NMQ中,NQ=23cos303MQ t=︒,∵AN+NQ=AQ,+233t ,∴t=34,当PQ 的垂直平分线过BC 的中点时,如图5,∴BF=12BC=1,PE=12PQ=t ,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H ,∴BH=BF=1,在Rt △PEH 中,PH=2PE=2t ,∴AH=AP+PH=AB+BH ,∴2t+2t=5,∴t=54,即:当线段PQ 的垂直平分线△ABC 一边中点时,t 的值为12秒或34秒或54秒.本题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,根据题意准确作出图形、熟练掌握和运用相关知识是解题的关键.24.如图,在平面直角坐标系中,矩形ABCD 的对称为坐标原点O ,AD ⊥y 轴于点E (点A 在点D 的左侧),E 、D 两点的函数y=﹣12x 2+mx+1(x≥0)的图象记为G 1,函数y=﹣12x 2﹣mx ﹣1(x <0)的图象记为G 2,其中m 是常数,图象G 1、G 2合得到的图象记为G .设矩形ABCD 的周长为L .(1)当点A 的横坐标为﹣1时,求m 的值;(2)求L 与m 之间的函数关系式;(3)当G 2与矩形ABCD 恰好有两个公共点时,求L 的值;(4)设G 在﹣4≤x≤2上点的纵坐标为y 0,当32≤y 0≤9时,直接写出L 的取值范围.【正确答案】(1)12;(2)L=8m+4.(3)20;(4)12≤L≤44.【详解】【分析】(1)求出点B 坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE 的长即可解决问题;(3)由G 2与矩形ABCD 恰好有两个公共点,推出抛物线G 2的顶点M (﹣m ,12m 2﹣1)在线段AE 上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可.【详解】(1)由题意E (0,1),A (﹣1,1),B (1,1)把B (1,1)代入y=﹣12x 2+mx+1中,得到1=﹣12+m+1,∴m=12;(2)∵抛物线G 1的对称轴x=﹣1m=m ,∴AE=ED=2m ,∵矩形ABCD 的对称为坐标原点O ,∴AD=BC=4m ,AB=CD=2,∴L=8m+4;(3)∵当G 2与矩形ABCD 恰好有两个公共点,∴抛物线G 2的顶点M (﹣m ,12m 2﹣1)在线段AE 上,∴12m 2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20;(4)①当点是抛物线G 1的顶点N (m ,12m 2+1)时,若12m 2+1=32,解得m=1或﹣1(舍弃),若12m 2+1=9时,m=4或﹣4(舍弃),又∵m≤2,。
湖北省天门经济开发区等2024届中考数学模拟试题含解析
湖北省天门经济开发区等2024届中考数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变2.3的相反数是()A.﹣3 B.3 C.13D.﹣133.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )A.B.C. D.4.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.66.下列命题中,错误的是()A .三角形的两边之和大于第三边B .三角形的外角和等于360°C .等边三角形既是轴对称图形,又是中心对称图形D .三角形的一条中线能将三角形分成面积相等的两部分7.将抛物线y=12x 2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )A .y=12(x ﹣8)2+5B .y=12(x ﹣4)2+5C .y=12(x ﹣8)2+3D .y=12(x ﹣4)2+38.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .39.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A .AC=EFB .BC=DFC .AB=DED .∠B=∠E10.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A .着B .沉C .应D .冷二、填空题(共7小题,每小题3分,满分21分)11.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.12.反比例函数y =2kx-的图像经过点(2,4),则k的值等于__________.13.计算:cos245°-tan30°sin60°=______.14.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.15.已知一组数据3-,x,﹣2,3,1,6的中位数为1,则其方差为____.16.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.17.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.三、解答题(共7小题,满分69分)18.(10分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?19.(5分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:2≈1.41,3≈1.73)20.(8分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a、b的值.(2)求甲追上乙时,距学校的路程.(3)当两人相距500米时,直接写出t 的值是.21.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?22.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?23.(12分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y与x的函数关系式为:_(02)_(24)xyx--≤≤⎧=⎨--<≤⎩,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:x 0 121321523724y 0 189815878(3)观察所画的图象,写出该函数的两条性质:.24.(14分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】根据多边形的外角和等于360°,与边数无关即可解答.【题目详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【题目点拨】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.2、A【解题分析】试题分析:根据相反数的概念知:1的相反数是﹣1.故选A.【考点】相反数.3、C【解题分析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.4、C【解题分析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.5、A【解题分析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【题目详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-,故选A.【题目点拨】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6、C【解题分析】根据三角形的性质即可作出判断.【题目详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C.【题目点拨】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7、D【解题分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【题目详解】y=12x2﹣6x+21=12(x2﹣12x)+21=12[(x﹣6)2﹣16]+21=12(x﹣6)2+1,故y=12(x﹣6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=12(x﹣4)2+1.故选D.【题目点拨】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.8、C【解题分析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(故选C.9、C【解题分析】根据平行线性质和全等三角形的判定定理逐个分析.【题目详解】由//AB ED,得∠B=∠D,因为CD BF=,若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【题目点拨】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.10、A【解题分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【题目详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【题目点拨】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键二、填空题(共7小题,每小题3分,满分21分)11、160°【解题分析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.12、1【解题分析】解:∵点(2,4)在反比例函数2kyx-=的图象上,∴242k-=,即k=1.故答案为1.点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.13、0【解题分析】直接利用特殊角的三角函数值代入进而得出答案.【题目详解】2cos45tan30sin60︒-︒︒=211(023222-⨯=-=.故答案为0.【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.14、35°【解题分析】∵四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,∴PE是△ABD的中位线,PF是△BDC的中位线,∴PE=12AD,PF=12BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°. 故答案为35°.15、3【解题分析】试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴112x+=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.考点:3.方差;3.中位数.16、46【解题分析】试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为46°.17、【解题分析】根据概率的公式进行计算即可.【题目详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【题目点拨】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.三、解答题(共7小题,满分69分)18、(1)鸡场垂直于墙的一边AB的长为2米;(1)鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.【解题分析】试题分析:(1)首先设鸡场垂直于墙的一边AB的长为x米,然后根据题意可得方程x(40-1x)=168,即可求得x的值,又由墙长15m,可得x=2,则问题得解;(1)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案;解:(1)设鸡场垂直于墙的一边AB的长为x米,则x(40﹣1x)=168,整理得:x1﹣10x+84=0,解得:x1=2,x1=6,∵墙长15m,∴0≤BC≤15,即0≤40﹣1x≤15,解得:7.5≤x≤10,∴x=2.答:鸡场垂直于墙的一边AB的长为2米.(1)围成养鸡场面积为S米1,则S=x(40﹣1x)=﹣1x1+40x=﹣1(x1﹣10x)=﹣1(x1﹣10x+101)+1×101=﹣1(x﹣10)1+100,∵﹣1(x﹣10)1≤0,∴当x=10时,S有最大值100.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.19、7.3米【解题分析】:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x =10,解方程即可.【题目详解】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米【题目点拨】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.20、(1)a的值为200,b 的值为30;(2)甲追上乙时,与学校的距离4100米;(3)1.1或17.1.【解题分析】(1)根据速度=路程÷时间,即可解决问题.(2)首先求出甲返回用的时间,再列出方程即可解决问题.(3)分两种情形列出方程即可解决问题.【题目详解】解:(1)由题意a=9004.5=200,b=6000200=30,∴a=200,b=30.(2)9001.5200+4.1=7.1,设t分钟甲追上乙,由题意,300(t−7.1)=200t,解得t=22.1,22.1×200=4100,∴甲追上乙时,距学校的路程4100米.(3)两人相距100米是的时间为t分钟.由题意:1.1×200(t−4.1)+200(t−4.1)=100,解得t=1.1分钟,或300(t−7.1)+100=200t ,解得t=17.1分钟, 故答案为1.1分钟或17.1分钟.点睛:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析即图象的变化趋势得出函数的类型和所需要的条件,结合实际意义得到正确的结论.21、(1)10750;(2)220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元. 【解题分析】(1)根据“利润=销售总额-总成本”结合两种T 恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论. 【题目详解】(1)∵甲种T 恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++⎪⎣⎦⎝⎭; 故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴== ②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤, 综上,最大利润为10750元. 【题目点拨】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键. 22、(1);(2),;(1);(2)【解题分析】试题分析:(1)由抛物线y=﹣x 2+(m ﹣1)x+m 与y 轴交于(0,1)得:m=1. ∴抛物线为y=﹣x 2+2x+1=﹣(x ﹣1)2+2. 列表得:X ﹣11 2 1 y121图象如下.(2)由﹣x 2+2x+1=0,得:x 1=﹣1,x 2=1. ∴抛物线与x 轴的交点为(﹣1,0),(1,0). ∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2 ∴抛物线顶点坐标为(1,2). (1)由图象可知:当﹣1<x <1时,抛物线在x 轴上方. (2)由图象可知:当x >1时,y 的值随x 值的增大而减小 考点: 二次函数的运用23、 (1) ①y=212x ;②221(02)212(24)2x x y x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩;(1)见解析;(3)见解析【解题分析】(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可. 【题目详解】(1)设AP=x ①当0≤x≤1时 ∵MN ∥BD ∴△APM ∽△AOD∴AP AO2PM DO== ∴MP=12x∵AC 垂直平分MN ∴PN=PM=12x ∴MN=x ∴y=12AP•MN=212x ②当1<x≤4时,P 在线段OC 上, ∴CP=4﹣x ∴△CPM ∽△COD∴CP CO 2PII DO== ∴PM=1(4)2x -∴MN=1PM=4﹣x ∴y=11AP MN x(4x)22⋅=-=﹣2122x x + ∴y=221(02)212(24)2x x x x x ⎧⎪⎪⎨⎪+<⎪⎩(1)由(1) 当x=1时,y=12 当x=1时,y=1 当x=3时,y=32(3)根据(1)画出函数图象示意图可知 1、当0≤x≤1时,y 随x 的增大而增大 1、当1<x≤4时,y 随x 的增大而减小 【题目点拨】本题考查函数,解题的关键是数形结合思想. 24、1人 【解题分析】解:设九年级学生有x 人,根据题意,列方程得:19361936?0.8x x 88⋅=+,整理得0.8(x+88)=x ,解之得x=1. 经检验x=1是原方程的解. 答:这个学校九年级学生有1人.设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:1936x 元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:1936?x 88+,根据题意可得方程19361936?0.8x x 88⋅=+,解方程即可.。
【中考数学】2023-2024学年湖北省天门市质量检测仿真模拟试卷2套(含解析)
2023-2024学年湖北省天门市中考数学专项提升仿真模拟试题(一模)一、选一选(共8小题;共24分)1.若|a ﹣1|=a ﹣1,则a 的取值范围是()A.a ≥1B.a ≤1C.a <1D.a >12.计算a 2•a 3,结果正确的是()A.a5B.a6C.a8D.a93.下列各统计量中,表示一组数据波动程度的量是().A.平均数B.众数C.方差D.频率4.若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为()cm.A.18B.20C.154D.8035.如图所示几何体的俯视图是()A. B. C. D.6.有下列四个论断:①﹣13是有理数;②22是分数;③2.131131113…是无理数;④π是无理数,其中正确的是()A.4个B.3个C.2个D.1个7.若二次函数y=﹣x 2+4x+c 的图象A(1,y 1),B(﹣1,y 2),C(2+2,y 3)三点,则y 1、y 2、y 3的大小关系是()A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 2<y 3<y 1D.y 2<y 1<y 38.如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80B.89C.99D.109二、填空题(共7小题;共21分)9.当x =____时,分式13x -与无意义10.计算(2)(2)a a -+=_________.11.据日本环境省估计,被海啸吞没然后流入太平洋的废墟共约吨,其中吨用科学记数法表示为________吨.12.关于x 的一元二次方程()()222110x k x k +-+-=无实数根,则k 的取值范围为________.13.如图,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为_____.14.函数y 1=﹣x+2,反比例函数y 2=8x-,当y 1<y 2时,x 的取值范围________.15.(2017江苏省连云港市)如图,已知等边三角形OAB 与反比例函数ky x=(k >0,x >0)的图象交于A 、B 两点,将△OAB 沿直线OB 翻折,得到△OCB ,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BD DC 的值为____.(已知sin15°=624)三、解答题(共11小题;共75分)16.计算:101()2(1)2π-+---.17.化简211a a a a-⋅-.18.解没有等式组31432(1)6x x x -+<⎧⎨--≤⎩.19.某校为了了解九年级学生(共450人)的身体素质情况,体育老师对九(1)班的50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下部分频数分布表和部分频数分布直方图.组别次数x 频数(人数)A 80≤x<1006B 100≤x<1208C 120≤x<140m D 140≤x<16018E160≤x<1806请图表解答下列问题:(1)表中的m=________;(2)请把频数分布直方图补完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x)合格要求是x≥120,则估计九年级学生中一分钟跳绳成绩没有合格的人数.20.一个没有透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后没有放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.21.如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(没有写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.22.如图,在平面直角坐标系xOy中,过点(2,0)A-的直线交y轴正半轴于点B,将直线AB 绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD△的面积是5,求点B的运动路径长.23.直线y=﹣x+6与x轴交于A,与y轴交于B,直线CD与y轴交于C(0,2)与直线AB交于D,过D作DE⊥x轴于E(3,0).(1)求直线CD的函数解析式;(2)P是线段OA上一动点,点P从原点O开始,每秒一个单位长度的速度向A运动(P与O,A没有重合),过P作x轴的垂线,分别与直线AB,CD交于M,N,设MN的长为S,P点运动的时间为t,求出S与t之间的函数关系式(写出自变量的取值范围)(3)在(2)的条件下,当t为何值时,以M,N,E,D为顶点的四边形是平行四边形.(直接写出结果)24.为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度.,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘没有明国籍的船只停在C处海域.如图+海里,在B处测得C在北偏东45º的方向上,A处测得C在北偏西所示,AB=606230º的方向上,在海岸线AB上有一灯塔D,测得AD=12062海里.(1)分别求出A与C及B与C的距离AC,BC(结果保留根号)(2)已知在灯塔D 周围100海里范围内有暗礁群,我在A 处海监船沿AC 前往C 处盘查,途中有无触礁的危险?=1.41, 1.73=2.45)25.如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的值.26.(2017江苏省宿迁市,第25题,10分)如图,在平面直角坐标系xOy 中,抛物线223y x x =--交x 轴于A ,B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC 、BC .(1)求曲线N 所在抛物线相应的函数表达式;(2)求△ABC 外接圆的半径;(3)点P 为曲线M 或曲线N 上的一动点,点Q 为x 轴上的一个动点,若以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.2023-2024学年湖北省天门市中考数学专项提升仿真模拟试题(一模)一、选一选(共8小题;共24分)1.若|a ﹣1|=a ﹣1,则a 的取值范围是()A.a ≥1B.a ≤1C.a <1D.a >1【正确答案】A【分析】由值性质可得:一个正数的值是它本身,一个负数的值是它的相反数,0的值是0,组成没有等式,解没有等式可得.【详解】因为|a ﹣1|=a ﹣1,所以a ﹣1≥0,所以a ≥1.选A .本题考查了值的性质:非负数的值是它本身,负数的值是它的相反数.2.计算a 2•a 3,结果正确的是()A.a5B.a6C.a8D.a9【正确答案】A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数没有变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数没有变,指数相加.m n m na a a +⋅=所以23235.a a a a +⋅==故选A.此题考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.3.下列各统计量中,表示一组数据波动程度的量是().A.平均数B.众数C.方差D.频率【正确答案】C【详解】试题分析:平均数表示一组数据的平均程度,众数表示一组数据中出现次数至多的数,反映数据的聚散程度,而方差和标准差反映是一组数据的波动程度.考点:基本统计量的意义.4.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20C.154 D.803【正确答案】B【详解】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.5.如图所示几何体的俯视图是()A. B. C. D.【正确答案】A【详解】分析:找到从上面看所得到的图形即可,注意中间一个圆内切.详解:从上面看可得到一个长方形,中间一个内切的圆的组合图形.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得到的棱画实线.6.有下列四个论断:①﹣13是有理数;②22是分数;③2.131131113…是无理数;④π是无理数,其中正确的是()A.4个B.3个C.2个D.1个【正确答案】B【分析】根据无理数的概念即可判定选择项.【详解】解:①﹣13是有理数,正确;②22是无理数,故错误;③2.131131113…是无理数,正确;④π是无理数,正确;正确的有3个.故选B .本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开没有尽的数;以及像0.1010010001…,等有这样规律的数.7.若二次函数y=﹣x2+4x+c 的图象A(1,y 1),B(﹣1,y 2),C(2+,y 3)三点,则y 1、y 2、y 3的大小关系是()A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 2<y 3<y 1D.y 2<y 1<y 3【正确答案】C【详解】分析:根据二次函数的解析式得出图象的开口向下,对称轴是直线x =2,根据x <2时,y 随x 的增大而增大,即可得出答案.详解:∵y =﹣x 2+4x +c =-(x -2)2+c -9,∴图象的开口向下,对称轴是直线x =2,C (2+,y 3)关于直线x =2的对称点是(2,y 3).∵﹣1<2<1,∴y 2<y 3<y 1.故选C .点睛:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解答此题的关键.8.如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80B.89C.99D.109【正确答案】C【详解】由图分析可知:第1幅图中,有(1+1)2-1=3个点,第2幅图中有(2+1)2-1=8个点,第3幅图中有(3+1)2-1=15个点,……∴第9幅图中,有(9+1)2-1=99个点.故选C.点睛:本题解题的关键是通过观察分析得到:第n 幅图形中点的个数=(n+1)2-1.二、填空题(共7小题;共21分)9.当x =____时,分式13x -与无意义【正确答案】3【分析】根据分式无意义的条件是分母等于0解答即可.【详解】解:若分式没有意义,则x ﹣3=0,解得:x =3.故答案为3.本题考查的是分式没有意义的条件:分母等于0,这是一道简单的题目.10.计算(2)(2)a a -+=_________.【正确答案】24a -【分析】根据平方差公式直接进行计算即可【详解】(2)(2)a a -+=24a -故24a -本题考查了平方差公式,熟练掌握平方差公式的结构特征是解题的关键11.据日本环境省估计,被海啸吞没然后流入太平洋的废墟共约吨,其中吨用科学记数法表示为________吨.【正确答案】5×106【详解】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值≥1时,n 是正数;当原数的值<1时,n 是负数.详解:将用科学记数法表示为:5×106.故答案为5×106.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.关于x 的一元二次方程()()222110x k x k +-+-=无实数根,则k 的取值范围为________.【正确答案】k >54.【详解】试题解析:根据题意得△=(2k ﹣1)2﹣4(k 2﹣1)<0,解得k >54.故答案为k >54.13.如图,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为_____.【正确答案】2π【详解】分析:设AD 与圆的切点为G ,连接BG ,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.详解:设AD 与圆的切点为G ,连接BG ,∴BG ⊥AD .∵∠A =60°,BG ⊥AD ,∴∠ABG =30°,在直角△ABG 中,BG =2AB =2×,AG =1,∴圆B ,∴S △ABG =12×132在菱形ABCD 中,∠A =60°,则∠ABC =120°,∴∠EBF =120°,∴S 阴影=2(S △ABG ﹣S扇形)+S 扇形FBE =2×(32﹣303360π⨯)+1203360π⨯=2π故答案为2π.点睛:本题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题的关键.14.函数y 1=﹣x+2,反比例函数y 2=8x-,当y 1<y 2时,x 的取值范围________.【正确答案】﹣2<x<0或x>4【详解】分析:求出两个函数的交点坐标,再画出两个函数的草图,根据图象和交点坐标即可得出答案.详解:将函数y 1=﹣x +2与反比例函数y 2=8x-组成方程组得:28y x y x =-+⎧⎪⎨=-⎪⎩,解得:24x y =-⎧⎨=⎩或42x y =⎧⎨=-⎩.则两交点坐标为(﹣2,4),(4,﹣2).如图:当y 1<y 2时,x 的取值范围是﹣2<x <0或x >4.故答案为﹣2<x <0或x >4;点睛:本题考查了反比例函数与函数的交点问题,求反比例函数与函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了数形的思想.15.(2017江苏省连云港市)如图,已知等边三角形OAB 与反比例函数ky x=(k >0,x >0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则BDDC的值为____.(已知sin15°=4)【正确答案】1 2-.【详解】解:如图,过O作OM⊥AB于M.∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称.∵A、B两点在反比例函数kyx=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°.过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°=BFOB =624.∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=,∴OB=624,∴BF =(31)2x-.∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴BD BFCD CN==(31)2xx=12.故答案为12-.点睛:本题考查了反比例函数与函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y =x 对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x ,根据等腰直角三角形斜边是2倍表示斜边的长,从而解决问题.三、解答题(共11小题;共75分)16.计算:101()2(1)2π-+---.【正确答案】3【详解】分析:根据负整数指数幂、值、零指数幂可以解答本题.详解:原式=2+2﹣1=3.点睛:本题考查了负整数指数幂、零指数幂、值,解题的关键是明确它们各自的计算方法.17.化简211a a a a-⋅-.【正确答案】21a 【详解】分析:根据分式的乘法法则,可得答案.详解:原式=11a a -()•1a a -=21a.点睛:本题考查了分式的乘法,利用分式的乘法是解题的关键.18.解没有等式组31432(1)6x x x -+<⎧⎨--≤⎩.【正确答案】﹣1<x≤4【详解】分析:分别求出每一个没有等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、小小无解了确定没有等式组的解集.详解:解没有等式﹣3x+1<4,得:x>﹣1,解没有等式3x﹣2(x﹣1)≤6,得:x≤4,∴没有等式组的解集为﹣1<x≤4.点睛:本题考查的是解一元没有等式组,正确求出每一个没有等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;小小找没有到”的原则是解答此题的关键.19.某校为了了解九年级学生(共450人)的身体素质情况,体育老师对九(1)班的50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下部分频数分布表和部分频数分布直方图.组别次数x频数(人数)A80≤x<1006B100≤x<1208C120≤x<140mD140≤x<16018E160≤x<1806请图表解答下列问题:(1)表中的m=________;(2)请把频数分布直方图补完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x)合格要求是x≥120,则估计九年级学生中一分钟跳绳成绩没有合格的人数.【正确答案】(1)12;(2)见解析;(3)三;(4)126.【详解】分析:(1)根据各组频数之和等于学生总人数列式计算即可得解;(2)根据图表数据补全条形统计图即可;(3)根据中位数的定义找出第25、26两人所在的组即可;(4)用第3、4、5组的人数之和除以学生总人数,计算即可估计九年级学生中一分钟跳绳成绩合格率以及没有合格率.详解:(1)6+8+m+18+6=50,解得:m=12;故答案为12;(2)补全频率分布直方图如下所示:(3)∵按照跳绳次数从少到多,第25、26两人都在第三组,∴中位数落在第三组.故答案为三;(4)∵1218650++×=72%,∴该班学生测试成绩达标率为72%,∴九年级学生中一分钟跳绳成绩没有合格的人数为:450×(1﹣72%)=126.点睛:本题考查了频数分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.一个没有透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后没有放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.【正确答案】(1)1(2)1 6【详解】(1)设有红球x个,由题意可得;21 2+1+2x=,解得1x=,即布袋中红球有1个;(2)画树状图如下:一共有12种等可能情况,其中两次都摸到白球的有2次,∴两次摸到的球都是白球的概率为P=21= 126.21.如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(没有写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【正确答案】(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)16°.【分析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB的中垂线.(2)要求∠CAD的度数,只需求出∠CAB,而由(1)可知:∠BAD=∠B【详解】解:(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)∵在Rt △ABC 中,∠B=37°,∴∠CAB=53°.又∵AD=BD ,∴∠BAD=∠B=37°.∴∠CAD=53°—37°=16°.22.如图,在平面直角坐标系xOy 中,过点(2,0)A -的直线交y 轴正半轴于点B ,将直线AB 绕着点O 顺时针旋转90°后,分别与x 轴y 轴交于点D 、C .(1)若4OB =,求直线AB 的函数关系式;(2)连接BD ,若ABD △的面积是5,求点B 的运动路径长.【正确答案】(1)y =2x +4(2)1112-+【分析】(1)根据图像求出B 的坐标,然后根据待定系数法求出直线AB 的解析式;(2)设OB =m ,然后根据△ABD 的面积可得到方程,解方程可求出m 的值,由此可根据旋转的意义求出B 的路径的长.【详解】解:(1)因为4OB =,且点B 在y 轴正半轴上,所以点B 坐标为(0,4).设直线AB 的函数关系式为y kx b =+,将点(2,0)A -,(0,4)B 的坐标分别代入得420b k b =⎧⎨-+=⎩,解得24k b ì=ïïíï=ïî,所以直线AB 的函数关系式为24y x =+.(2)如图,设OB m =,因为ABD △的面积是5,所以152AD OB ⋅=.所以1(2)52m m +=,即22100m m +-=.解得1m =-+或1m =-(舍去).因为90BOD ∠=︒,所以点B 的运动路径长为112(142π-+⨯⨯-=.23.直线y =﹣x +6与x 轴交于A ,与y 轴交于B ,直线CD 与y 轴交于C (0,2)与直线AB 交于D ,过D 作DE ⊥x 轴于E (3,0).(1)求直线CD的函数解析式;(2)P是线段OA上一动点,点P从原点O开始,每秒一个单位长度的速度向A运动(P与O,A没有重合),过P作x轴的垂线,分别与直线AB,CD交于M,N,设MN的长为S,P点运动的时间为t,求出S与t之间的函数关系式(写出自变量的取值范围)(3)在(2)的条件下,当t为何值时,以M,N,E,D为顶点的四边形是平行四边形.(直接写出结果)【正确答案】(1)y=13x+2;(2)MN=|﹣43t+4|(0<t<6)(3)34或214.【分析】(1)由条件可先求得D点坐标,再利用待定系数法可求得直线CD的函数解析式;(2)用t可分别表示出M、N的坐标,则可表示出S与t之间的关系式;(3)由条件可知MN∥DE,利用平行四边形的性质可知MN=DE,由(2)的关系式可得到关于t的方程,可求得t的值.【详解】解:(1)∵直线CD与y轴相交于(0,2),∴可设直线CD解析式为y=kx+2,把x=3代入y=﹣x+6中可得:y=3,∴D(3,3),把D点坐标代入y=kx+2中可得3=3k+2,解得:k=1 3,∴直线CD的函数解析式为y=13x+2;(2)由题意可知OP=t,把x=t代入y=﹣x+6中可得:y=﹣t+6,∴M(t,﹣t+6),把x=t代入y=13x+2中可得:y=13t+2,∴N(t,13t+2),∴MN=|﹣t+6﹣(13t+2)|=|﹣43t+4|.∵点P在线段OA上,且A(6,0),∴0<t<6,∴MN=|﹣43t+4|(0<t<6);(3)由题意可知MN∥DE.∵以M,N,E,D为顶点的四边形是平行四边形,∴MN=DE=3,∴|﹣43t+4|=3,解得:t=34或t=214.即当t的值为34或214时,以M,N,E,D为顶点的四边形是平行四边形.本题为函数的综合应用,涉及待定系数法、函数图象的交点、平行四边形的性质及方程思想等知识.在(1)中求得D点坐标是解题的关键,注意待定系数法的应用,在(2)中用t表示出MN的长是解题的关键,在(3)中由平行四边形的性质得到关于t的方程是解题的关键.本题考查了知识点较多,综合性较强,难度适中.24.为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度.,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘没有明国籍的船只停在C处海域.如图所示,AB=60+海里,在B处测得C在北偏东45º的方向上,A处测得C在北偏西30º的方向上,在海岸线AB上有一灯塔D,测得AD=120海里.(1)分别求出A与C及B与C的距离AC,BC(结果保留根号)(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,途中有无触礁的危险?=1.41, 1.73=2.45)【正确答案】(1)海里,海里;(2)无触礁危险.【分析】(1)如图所示,过点C作CE⊥AB于点E,可求得∠CBD=45°,∠CAD=60°,设CE=x,在Rt△CBE与Rt△CAE中,分别表示出BE、AE的长度,然后根据AB=60)海里,代入BE、AE的式子,求出x的值,继而可求出AC、BC的长度;(2)如图所示,过点D作DF⊥AC于点F,在△ADF中,根据AD的值,利用三角函数的知识求出DF的长度,然后与100比较,进行判断.【详解】解:(1)如图所示,过点C作CE⊥AB于点E,可得∠CBD=45°,∠CAD=60°,设CE=x,在Rt△CBE中,BE=CE=x,x,在Rt△CAE中,AE=3∵AB=60)海里,x=60),∴x+3解得:,x=120,则AC=3答:A与C的距离为海里,B与C的距离为里;(2)如图所示,过点D作DF⊥AC于点F,在△ADF中,∵AD=120),∠CAD=60°,∴≈106.8>100,故海监船沿AC前往C处盘查,无触礁的危险.25.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的值.【正确答案】(1)DM 3(2)245(3)47-【分析】(1)由折叠可知:△ANM ≌△ADM ,∠MAN =∠DAM ,由AN 平分∠MAB ,得到∠MAN =∠NAB ,进一步有∠DAM =∠MAN =∠NAB .由四边形ABCD 是矩形,得到∠DAM =30°,由DM =AD •tan ∠DAM 得到DM 的长;(2)如图1,延长MN 交AB 延长线于点Q ,由四边形ABCD 是矩形,得到∠DMA =∠MAQ .由折叠可知:△ANM ≌△ADM ,∠DMA =∠AMQ ,得到∠MAQ =∠AMQ ,故MQ =AQ .设NQ =x ,则AQ =MQ =1+x .在Rt △ANQ 中,由222AQ AN NQ =+,得到x =4.故NQ =4,AQ =5,由ΔNAB S =ΔNAQ 45S =12AN •NQ ,即可得到结论;(3)如图2,过点A 作AH ⊥BF 于点H ,则△ABH ∽△BFC ,故BH CFAH BC=,由AH ≤AN =3,AB =4,故当点N 、H 重合(即AH =AN )时,DF ,此时M 、F 重合,B 、N 、M 三点共线,△ABH ≌△BFC (如图3),而CF =BH =22AB AH -7,故可求出DF 的值.【小问1详解】由折叠可知:△ANM ≌△ADM ,∴∠MAN =∠DAM ,∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB ,∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴DM =AD •tan ∠DAM =333⨯【小问2详解】如图1,延长MN 交AB 延长线于点Q ,∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA =∠MAQ ,由折叠可知:△ANM ≌△ADM ,∴∠DMA =∠AMQ ,AN =AD =3,MN =MD =1,∴∠MAQ =∠AMQ ,∴MQ =AQ ,设NQ =x ,则AQ =MQ =1+x .在Rt △ANQ 中,222AQ AN NQ =+,∴222(1)3x x +=+,解得:x =4,∴NQ =4,AQ =5,∵AB =4,AQ =5,∴ΔNAB S =ΔNAQ 45S =12AN •NQ =245.【小问3详解】如图2,过点A 作AH ⊥BF 于点H ,则△ABH ∽△BFC ,∴BH CFAH BC=,∵AH ≤AN =3,AB =4,∴当点N 、H 重合(即AH =AN )时,DF .(AH ,BH 最小,CF 最小,DF )此时M 、F 重合,B 、N 、M 三点共线,△ABH ≌△BFC (如图3),∴CF =BH =,∴DF 的值为:4-本题考查翻折变换(折叠问题)、矩形的性质、解直角三角形、相似三角形的判定与性质及最值问题,熟练掌握相关性质及判定定理是解题关键.26.(2017江苏省宿迁市,第25题,10分)如图,在平面直角坐标系xOy 中,抛物线223y x x =--交x 轴于A ,B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC 、BC .(1)求曲线N 所在抛物线相应的函数表达式;(2)求△ABC 外接圆的半径;(3)点P 为曲线M 或曲线N 上的一动点,点Q 为x 轴上的一个动点,若以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.【正确答案】(1)2y x 2x 3=-++;(25;(3)Q (47,0)或(47,0)或(5,0)或(27,0)或(27,0)或(1,0).【详解】试题分析:(1)由已知抛物线可求得A 、B 坐标及顶点坐标,利用对称性可求得C 的坐标,利用待定系数法可求得曲线N 的解析式;(2)由外接圆的定义可知圆心即为线段BC 与AB 的垂直平分线的交点,即直线y =x 与抛物线对称轴的交点,可求得外接圆的圆心,再利用勾股定理可求得半径的长;(3)设Q (x ,0),当BC 为平行四边形的边时,则有BQ ∥PC 且BQ =PC ,从而可用x 表示出P 点的坐标,代入抛物线解析式可得到x 的方程,可求得Q 点坐标,当BC 为平行四边形的对角线时,由B 、C 的坐标可求得平行四边形的对称的坐标,从而可表示出P 点坐标,代入抛物线解析式可得到关于x 的方程,可求得P 点坐标.试题解析:(1)在223y x x =--中,令y =0可得x 2﹣2x ﹣3=0,解得x =﹣1或x =3,∴A (﹣1,0),B (3,0),令x =0可得y =﹣3,又抛物线位于x 轴下方部分沿x 轴翻折后得到曲线N ,∴C(0,3),设曲线N 的解析式为2y ax bx c =++,把A 、B 、C 的坐标代入可得:09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴曲线N 所在抛物线相应的函数表达式为2y x 2x 3=-++;(2)设△ABC 外接圆的圆心为M ,则点M 为线段BC 、线段AB 垂直平分线的交点,∵B (3,0),C (0,3),∴线段BC 的垂直平分线的解析式为y =x ,又线段AB 的解析式为曲线N 的对称轴,即x =1,∴M (1,1),∴MB 22(13)1-+5ABC 5(3)设Q (t ,0),则BQ =|t ﹣3|.①当BC 为平行四边形的边时,如图1,则有BQ ∥PC ,∴P 点纵坐标为3,即过C 点与x 轴平行的直线与曲线M 和曲线N 的交点即为点P ,x 轴上对应的即为点Q ,当点P 在曲线M 上时,在223y x x =--中,令y =3可解得x或x =1,∴PC 或PC ﹣1.当x 时,可知点Q 在点B 的右侧,可得BQ =t ﹣3,∴t ﹣,解得t ;当x =1时,可知点Q 在点B 的左侧,可得BQ =3﹣t ,∴3﹣t ﹣1,解得t =4,∴Q 点坐标为(,0)或(4,0);当点P 在曲线N 上时,在2y x 2x 3=-++中,令y =3可求得x =0(舍去)或x =2,∴PC =2,此时Q 点在B 点的右侧,则BQ =t ﹣3,∴t ﹣3=2,解得t =5,∴Q 点坐标为(5,0);②当BC 为平行四边形的对角线时,∵B (3,0),C (0,3),∴线段BC 的中点为3232,设P (x ,y ),∴x +t =3,y +0=3,解得x =3﹣t ,y =3,∴P (3﹣t ,3),当点P 在曲线M 上时,则有3=(3﹣t )2﹣2(3﹣t )﹣3,解得t 或t =2,∴Q 点坐标为(,0)或(2,0);当点P 在曲线N 上时,则有3=﹣(3﹣t )2+2(3﹣t )+3,解得t =3(Q 、B 重合,舍去)或t =1,∴Q 点坐标为(1,0);综上可知Q 点的坐标为(,0)或(4,0)或(5,0)或(,0)或(2,0)或(1,0).点睛:本题为二次函数的综合应用,涉及待定系数法、对称的性质、三角形外心、勾股定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中确定出点的坐标是解题的关键,在(2)中确定出外心的位置和坐标是解题的关键,在(3)中确定出P点的位置是解题的关键.本题考查知识点较多,综合性较强,特别一问,情况很多,难度较大.2023-2024学年湖北省天门市中考数学专项提升仿真模拟试题(二模)一、选一选:1.计算1–(–2)的正确结果是A.–2B.–1C.1D.32.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y 的值为()A.0B.﹣1C.﹣2D.13.下列计算正确的是()A.B.=2C.-1D.-1)2=24.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112 B.512 C.16 D.125.如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2B.4C.5D.66.若9a2+kab+16a2是一个完全平方式,那么k的值是()A.2B.12C.±12D.±247.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)8.如图,直角△ADB 中,∠D=90°,C 为AD 上一点,且∠ACB 的度数为()510x -︒,则x 的值可能是()A.10B.20C.30D.409.下列各图中,既可平移,又可旋转,由图形①得到图形②的是()A. B.C. D.10.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC .若∠A =36°,则∠C =()A.54°B.36°C.27°D.20°11.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差12.已知二次函数y=x 2-2x-3,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为d 1、d 2.设d=d 1+d 2,下列结论中:①d没有值;②d没有最小值;③-1<x<3时,d随x的增大而增大;④满足d=5的点P有四个;其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题:13.满足x-5<3x+1的x的最小整数是________.14.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E,某同学分析图形后得出以下结论,上述结论一定正确的是______(填代号).①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.15.将二次函数y=0.5x2的图象沿直线y=﹣x向上平移个单位,所得图象的函数关系式是________.16.如果32311x mx x-=+++,则m=_______.17.如图,在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3.若平行四边形ABCD的周长是16,则EC的长为________.18.如图,AB是⊙O的直径且点C是OA的中点,过点C作CD⊥AB交⊙O于D点,点E是⊙O上一点,连接DE,AE交DC的延长线于点F,则AE•AF的值为_____.三、解答题:。
2023年湖北省天门市中考模拟数学试题(2)
2023年湖北省天门市中考模拟数学试题(2)学校:___________姓名:___________班级:___________考号:___________.B...=︒,则2∠为.如图,将一块含有60角的直角三角板放置在两条平行线上,若45A.9-B.10.如图,在等腰△ABC中,的速度沿BC方向运动到点方向运动到点C停止,若映y与x之间函数关系的图象是(A..C .D .二、填空题14.如图,在边长相同的小正方形组成的网格中,点点上,那么sin ∠AOB 的值为15.如图,将正方形纸片ABCD 沿PQ 折叠,使点对应点为F ,EF 交AD 于G ,连接CG 交PQ ①PBE QFG △∽△;②EC 平分BEG ∠;③④BE DG EG +=.其中,正确的结论是三、解答题(1)如图1,作线段AB 的垂直平分线;(2)如图2,在OA OB ,上分别取点M N ,,使得∥MN AB .18.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB 的长度是12.5米,MN 是二楼楼顶,MN ∥PQ ,C 是方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”.(1)被调查的总人数是_____________人,扇形统计图中C 部分所对应的扇形圆心角的度数为_______.(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A 类有__________人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.20.已知关于x 的方程()222240x m x m +++=-.(1)当m 取何值时,方程有两个不相等的实数根?(2)设12x x 、是方程的两根,且()()212122240x x x x +--+=,求m 的值.21.如图,AB 是O 的直径,CA 与O 相切于点A ,且AB AC =.连接OC ,过点A 作AD OC ⊥于点E ,交O 于点D ,连接DB .(1)求证:ACE BAD △△≌;(2)连接BC 交O 于点F .若6AD =,求BF 的长.22.长丰草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售时,调查市场行情,发现该草莓销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.坐标之差为h.当点C在对称轴右侧时,求h与m之间的函数关系式.轴.当矩形ABCD与抛物线有且只有三(4)以线段AC为对角线作矩形ABCD,AB y△与矩形ABCD的面积之比为1:4,请直接个公共点时,设第三个公共点为F,若ACF写出m的值.。
2023-2024学年湖北省天门市中考数学质量检测仿真模拟试题合集 2套(含解析)
2023-2024学年湖北省天门市中考数学质量检测仿真模拟试题(3月)一、选一选(共10小题,每小题3分,共30分)1.化简A.5-B.1- C. D.12.分式211x x +-有意义的条件是()A.x ≠1B.x ≠﹣1C.x ≠±1D.x >13.下列计算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 6C.a 2+a 2=a 3D.a 6÷a 2=a 34.为了分析某班在四月调考中的数学成绩,对该班所有学生的成绩分数换算成等级统计结果如图所示,,下列说法:①该班B 等及B 等以上占全班60%②D 等有4人,没有得满分的(按120分制)③成绩分数(按120分制)的中位数在第三组④成绩分数(按120分制)的众数在第三组,其中正确的是()A.①②B.③④C.①③D.①③④5.计算(1)(2)x x ++的结果为()A.22x + B.232x x ++ C.233x x ++ D.222x x ++6.如图,在直角坐标系中,△OBC 的顶点O(0,0),B(﹣6,0),且∠OCB=90°,OC=BC,则点C 关于y 轴对称的点的坐标是()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(,)7.一个几何体的三视图如图所示,则此几何体是()A.棱柱B.正方体C.圆柱D.圆锥8.将自然数按以下规律排列,则2016所在的位置()第1列第2列第3列第4列…第1行12910第2行43811第3行56712第4行16151413第5行17……A.第45行第10列B.第10行第45列C.第44行第10列D.第10行第44列9.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC 的大小是()A.40°B.50°C.60°D.70°10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的没有同的等腰三角形的个数至多为()A.4B.5C.6D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.若规定一种运算※为:a※b=ab﹣ab,则(﹣1)※(﹣2)_____.12.已知13aa-=,则221+=aa_________.13.如图,已知四边形纸片ABCD,现将该纸片剪拼成一个与它面积相等的平行四边形纸片,如果限定裁剪线至多有两条,能否做到:_______(用“能”或“没有能”填空).若“能”,请确定裁剪线的位置,并说明拼接方法;若填“没有能”,请简要说明理由.方法或理由:__________.14.两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们没有知道这些车的舒适程度,也没有知道汽车开过来的顺序,两人采用了没有同的乘车:甲无论如何总是上开来的辆车;而乙则是先观察后上车,当辆车开来时,他没有上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比辆好,他就上第二辆车;如果第二辆没有比辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下面的问题:(1)三辆车按出现的先后顺序共有_____种没有同的可能.(2)你认为甲、乙两人所采用的中,没有巧坐到下等车的可能性大小比较为:_____(填“甲大”、“乙大”、“相同”).理由是:_____.(要求通过计算概率比较)15.已知矩形ABCD中,AB=4,BC=7.∠BAD的平分线AE交BC于E点,EF⊥DE交AB于F点,则EF的长为_____.16.如图,抛物线y=x 2﹣2x +k 与x 轴交于A 、B 两点,与y 轴交于点C (0,﹣3).若抛物线y=x 2﹣2x +k 上有点Q ,使△BCQ 是以BC 为直角边的直角三角形,则点Q 的坐标为_____.三、解答题(共8题,共72分)17.解方程:(1)43(23)12(4)x x x +-=--(2)22(3)33x x x -+=-+(3)2110121123644x x x -++-=-18.(1)探究发现:如图1,△ABC 为等边三角形,点D 为AB 边上的一点,∠DCE=30°,∠DCF=60°且CF=CD①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由(2)类比探究:如图2,△ABC 为等腰直角三角形,∠ACB=90°,点D 为AB 边上的一点,∠DCE=45°,CF=CD ,CF ⊥CD ,请直接写出下列结果:①∠EAF 的度数②线段AE ,ED ,DB 之间的数量关系19.某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.当下药品价格过高已成为一大社会问题,为整顿药品市场、降低药品价格,有关部门规定:市场流通药品的零售价格没有得超过进价的15%.根据相关信息解决下列问题:(1)甲乙两种药品每盒的格之和为6.6元.若干中间环节,甲种药品每盒的零售价格比格的5倍少2.2元,乙种药品每盒的零售价格是格的6倍,两种药品每盒的零售价格之和为33.8元.那么甲、乙两种药品每盒的零售价格分别是多少元?(2)实施价格管制后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品没有少于40箱,要求这批药品的总利润没有低于900元.请问如何搭配才能使医院获利?21.(8分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:E为AC中点;(2)求证:AD=CD;(3)若AB=10,cos∠ABC=45,求tan∠DBC的值.22.如图,四边形ABCD 是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=kx的图象点D,点P 是函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明函数y=mx+3﹣4m 的图象一定过点C;(3)对于函数y=mx+3﹣4m(m≠0),当y 随x 的增大而增大时,确定点P 的横坐标的取值范围,(没有必写过程)23.如图1,在矩形ABCD 中,AB=6cm ,BC=8cm ,E 、F 分别是AB 、BD 的中点,连接EF ,点P 从点E 出发,沿EF 方向匀速运动,速度为1cm/s ,同时,点Q 从点D 出发,沿DB 方向匀速运动,速度为2cm/s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (0<t <4)s ,解答下列问题:(1)求证:△BEF ∽△DCB ;(2)当点Q 在线段DF 上运动时,若△PQF 的面积为0.6cm 2,求t 的值;(3)如图2过点Q 作QG ⊥AB ,垂足为G ,当t 为何值时,四边形EPQG 为矩形,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?试说明理由.24.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积?若存在,求出△PBC面积的值;若没有存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.2023-2024学年湖北省天门市中考数学质量检测仿真模拟试题(3月)一、选一选(共10小题,每小题3分,共30分)1.化简A.5-B.1-C.D.1【正确答案】C3,===-2故选C.2.分式211xx+-有意义的条件是()A.x≠1B.x≠﹣1C.x≠±1D.x>1【正确答案】C【详解】试题解析:依题意得:210x-≠,解得:1x≠±.故选C.点睛:分式有意义的条件:分母没有为零.3.下列计算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 6C.a 2+a 2=a 3D.a 6÷a 2=a 3【正确答案】B【详解】试题解析:A.235 ,a a a ⋅=故错误.B.正确.C.没有是同类项,没有能合并,故错误.D.624.a a a ÷=故选B.点睛:同底数幂相乘,底数没有变,指数相加.同底数幂相除,底数没有变,指数相减.4.为了分析某班在四月调考中的数学成绩,对该班所有学生的成绩分数换算成等级统计结果如图所示,,下列说法:①该班B 等及B 等以上占全班60%②D 等有4人,没有得满分的(按120分制)③成绩分数(按120分制)的中位数在第三组④成绩分数(按120分制)的众数在第三组,其中正确的是()A.①②B.③④C.①③D.①③④【正确答案】C 【详解】①24844202484++++++=60%,正确;②D 等有4人,但看没有出其具体分数,错误;③该班共60人,在D 等、C 等的一共24人,所以中位数在第三组,正确;④虽然第三组的人数多,但成绩分数没有确定,所以众数没有确定.故正确的有①③.故选C 5.计算(1)(2)x x ++的结果为()A.22x + B.232x x ++ C.233x x ++ D.222x x ++【正确答案】B【详解】解:原式22223 2.x x x x x =+++=++故选B.6.如图,在直角坐标系中,△OBC 的顶点O(0,0),B(﹣6,0),且∠OCB=90°,OC=BC,则点C 关于y 轴对称的点的坐标是()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(,)【正确答案】A 【详解】试题解析:已知90,OCB OC BC ∠=︒=,∴OBC 为等腰直角三角形,又因为顶点()()00,60,O B -,,过点C 作CD OB ⊥于点D ,则 3.OD DC ==所以C 点坐标为()33-,,点C 关于y 轴对称的点的坐标是()33.,故选A .点睛:关于y 轴对称的点的坐标特征:纵坐标没有变,横坐标互为相反数.7.一个几何体的三视图如图所示,则此几何体是()A.棱柱B.正方体C.圆柱D.圆锥【正确答案】C【分析】通过给出的三种视图,然后综合想象,得出这个几何体是圆柱体.【详解】根据三种视图中有两种为矩形,一种为圆可判断出这个几何体是圆柱.故选C.本题考查了由三视图判断几何体,本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.8.将自然数按以下规律排列,则2016所在的位置()第1列第2列第3列第4列…第1行12910第2行43811第3行56712第4行16151413第5行17……A.第45行第10列B.第10行第45列C.第44行第10列D.第10行第44列【正确答案】B【详解】试题解析:∵442=1936,∴第44行的个数字是1936,∴第45行的个数字是1937,第45列数字是1981.∴2016应该是第45列1981往上再数35个,∴2016所在的位置是第10行的第45列.故选B.9.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC 的大小是()A.40°B.50°C.60°D.70°【正确答案】B 【详解】试题解析:∵I 是ABC 的内心,11,22IBC ABC ICB BCA ∴∠=∠∠=∠,195DIB EIC ∠+∠=︒ ,165DIE BIC ∴∠+∠=︒,由折叠过程知BAC DIE ∠=∠,165,BAC BIC ∴∠+∠=︒180BAC ABC ACB ∠+∠+∠=︒ ,180ABC ACB BAC ∴∠+∠=︒∠﹣,1902IBC ICB BAC ∴∠+∠=︒-∠,又()180BIC IBC ICB ∠+∠+∠=︒ ,1901802BIC BAC ⎛⎫∠+︒-∠=︒ ⎪⎝⎭,1902BIC BAC ∴∠=︒+∠,1901652BAC BAC ∴∠+︒+∠=︒,50.BAC ∴∠=︒故选B10.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的没有同的等腰三角形的个数至多为()A.4B.5C.6D.7【正确答案】D【详解】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI都是等腰三角形.⑦作AC的垂直平分线交AB于I,则△BCI和△ACI都是等腰三角形.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.若规定一种运算※为:a※b=ab﹣ab,则(﹣1)※(﹣2)_____.【正确答案】3 2【详解】由题意得:a=-1,b=-2,(﹣1)※(﹣2)=(﹣1)×(﹣2)-12--=2-12=32.故答案为3 2.点睛:找准公式里面a、b的取值,将a、b代入公式即可.12.已知13a a -=,则221+=a a_________.【正确答案】11【分析】对已知条件等号两边平方,整理后求解即可.【详解】∵13a a-=,∴21(9a a -=,即22129-+=a a ,∴22111+=a a.故11.此题的关键是根据a 与1a 互为倒数的特点,利用完全平方公式求解.13.如图,已知四边形纸片ABCD ,现将该纸片剪拼成一个与它面积相等的平行四边形纸片,如果限定裁剪线至多有两条,能否做到:_______(用“能”或“没有能”填空).若“能”,请确定裁剪线的位置,并说明拼接方法;若填“没有能”,请简要说明理由.方法或理由:__________.【正确答案】①.能②.取四边形纸片ABCD 各边的中点E 、F 、G 、H ,连接EG 、FH ,则EG 、FH 为裁剪线,将2绕H 旋转180°、4绕G 旋转180°,4沿BD 方向平移,使B 与D 重合.【详解】试题分析:如图,取四边形的各边中点,连接、,则、为裁剪线.、将四边形分成四个部分,拼接时,图中的没有动,将、分别绕点各旋转,平移,拼成的四边形满足条件.考点:平行四边形的判定及性质,图形的拼接点评:解本题的关键是仔细分析题意及图形特征,平行四边形的判定正确分割图形.14.两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们没有知道这些车的舒适程度,也没有知道汽车开过来的顺序,两人采用了没有同的乘车:甲无论如何总是上开来的辆车;而乙则是先观察后上车,当辆车开来时,他没有上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比辆好,他就上第二辆车;如果第二辆没有比辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下面的问题:(1)三辆车按出现的先后顺序共有_____种没有同的可能.(2)你认为甲、乙两人所采用的中,没有巧坐到下等车的可能性大小比较为:_____(填“甲大”、“乙大”、“相同”).理由是:_____.(要求通过计算概率比较)【正确答案】①.6②.甲大③.11 36 >【详解】试题解析:(1)三辆车按开来的先后顺序为:上、中、下;上、下、中;中、上、下;中、下、上;下、中、上;下、上、中.共有6种可能.(2)没有巧坐到下等车的可能性大小比较为甲大.因为三辆车按开来的先后顺序共有6种,且每种顺序出现的可能性相同,所以甲、乙乘车所有可能的情况如下表:顺序甲乙上、中、下上下上、下、中上中中、上、下中上中、下、上中上下、中、上下中下、上、中下上由表格可知:甲乘坐下等车的概率是21,63=乙乘坐下等车的概率是1.611.36>所以甲乘坐下等车的可能性大.故答案为6;甲大,11. 36 >15.已知矩形ABCD中,AB=4,BC=7.∠BAD的平分线AE交BC于E点,EF⊥DE交AB于F点,则EF 的长为_____.【正确答案】5【详解】试题解析:连接DF ,在矩形ABCD 中,∵AE 平分∠BAD ,4743BE AB CE BC BE ∴=====,﹣﹣,则在Rt CDE △中,5DE ,==在Rt AFD △中,222AF AD DF +=,即2227AF DF +=,①在Rt BEF △中,()22244AF EF -+=,②在Rt EFD 中,2225DF EF =+,③化简可得21AF =,即1AF ,=3BF ∴=,则在Rt BEF △中,5EF .==故答案为5.16.如图,抛物线y=x 2﹣2x +k 与x 轴交于A 、B 两点,与y 轴交于点C (0,﹣3).若抛物线y=x 2﹣2x +k 上有点Q ,使△BCQ 是以BC 为直角边的直角三角形,则点Q 的坐标为_____.【正确答案】(1,﹣4)和(﹣2,5)【详解】试题解析:∵抛物线22y x x k =+﹣与x 轴交于A B 、两点,与y 轴交于点()0,3.-C 223y x x ∴=--,B 点坐标为(3,0),假设存在一点Q ,则QC BC ⊥于C ,设C 点和Q 点的直线可以表示为:3y mx =-,而直线BC 可以表示为:3y x =-,QC BC ⊥ ,1,m ∴=-∴直线CQ 解析式为:3y x =--,联立方程组:2323,y x y x x =--⎧⎨=--⎩解得0x =或者1x =,舍去0x =(与点C 重合,应舍去)的解,从而可得点Q 为()1,4.-同理如果点B 为直角定点,同样得到两点()30,(同理舍去)和()25.-,从而可得:点Q 的坐标为:()1,4-和()25.-,故答案为()1,4-和()25.-,三、解答题(共8题,共72分)17.解方程:(1)43(23)12(4)x x x +-=--(2)22(3)33x x x -+=-+(3)2110121123644x x x -++-=-【正确答案】(1)2511x =;(2)157x =;(3)1x =【分析】(1)先去括号,再移项合并同类项,系数化为1即可;(2)先去分母,再去括号、然后移项合并同类项、系数化为1;(3)先去分母,再去括号、然后移项合并同类项、系数化为1.【详解】解:(1)43(23)12(4)x x x +-=--去括号,得469124x x x +-=-+,移项、合并同类项,得1125x =,系数化为1,得2511x =;(2)22(3)33x x x -+=-+去分母,得()()62333x x x -+=-+,去括号,得62639x x x --=-+,移项、合并同类项,得715x =,系数化为1,得157x =;(3)2110121123644x x x -++-=-去分母,得()()()421210132127x x x --+=+-,去括号,得842026327x x x ---=+-,移项、合并同类项,得1818x -=-,系数化为1,得1x =.本题考查了一元方程的解法,属于基本题型,熟练掌握解一元方程的方法和步骤是解题关键.18.(1)探究发现:如图1,△ABC 为等边三角形,点D 为AB 边上的一点,∠DCE=30°,∠DCF=60°且CF=CD①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由(2)类比探究:如图2,△ABC 为等腰直角三角形,∠ACB=90°,点D 为AB 边上的一点,∠DCE=45°,CF=CD ,CF ⊥CD ,请直接写出下列结果:①∠EAF 的度数②线段AE ,ED ,DB 之间的数量关系【正确答案】(1)①120°;②DE=EF ;理由见解析;(2)①90°;②AE 2+DB 2=DE 2.【详解】试题分析:()1①证明ACF ≌BCD △,得到60CAF B ∠=∠=︒,即可求得EAF ∠的度数.②证明DCE ≌FCE △,即可得证.()2①类比()1①的方法即可求得.②222.AE DB DE +=试题解析:(1)①∵ABC 是等边三角形,60AC BC BAC B ∴=∠=∠=︒,,60DCF ∠=︒ ,ACF BCD ∴∠=∠,在ACF 和BCD △中,,AC BC ACF BCD CF CD =⎧⎪∠=∠⎨⎪=⎩∴ACF ≌BCD △(SAS ),60CAF B ∴∠=∠=︒,120EAF BAC CAF ∴∠=∠+∠=︒;②DE EF =;理由如下:6030DCF DCE ,,∠=︒∠=︒603030FCE ∴∠=︒-︒=︒,DCE FCE ∴∠=∠,在DCE 和FCE △中,,CD CF DCF FCE CE CE =⎧⎪∠=∠⎨⎪=⎩∴DCE ≌FCE △(SAS ),DE EF ∴=;(2)①∵ABC 是等腰直角三角形,90ACB ∠=︒,45AC BC BAC B ∴=∠=∠=︒,,90DCF ∠=︒ ,ACF BCD ∴∠=∠,在ACF 和BCD △中,,AC BC ACF BCD CF CD =⎧⎪∠=∠⎨⎪=⎩∴ACF ≌BCD △(SAS ),45CAF B AF DB ∴∠=∠=︒=,,90EAF BAC CAF ∴∠=∠+∠=︒;②222AE DB DE ,+=理由如下:9045DCF DCE ∠=︒∠=︒ ,,904545FCE ∴∠=︒︒=︒﹣,DCE FCE ∴∠=∠,在DCE 和FCE △中,,CD CF DCF FCE CE CE =⎧⎪∠=∠⎨⎪=⎩∴DCE ≌FCE △(SAS ),DE EF ∴=;在Rt AEF 中,222AE AF EF +=,又AF DB = ,222AE DB DE .∴+=19.某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.【正确答案】(1)①108°;②b=9,c=6;(2)7.6万元【详解】试题分析:(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.试题解析:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为108°,9,6;(2)这个公司平均每人所创年利润为:51098657.620⨯+⨯+⨯=(万元).20.当下药品价格过高已成为一大社会问题,为整顿药品市场、降低药品价格,有关部门规定:市场流通药品的零售价格没有得超过进价的15%.根据相关信息解决下列问题:(1)甲乙两种药品每盒的格之和为6.6元.若干中间环节,甲种药品每盒的零售价格比格的5倍少2.2元,乙种药品每盒的零售价格是格的6倍,两种药品每盒的零售价格之和为33.8元.那么甲、乙两种药品每盒的零售价格分别是多少元?(2)实施价格管制后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品没有少于40箱,要求这批药品的总利润没有低于900元.请问如何搭配才能使医院获利?【正确答案】(1)设甲种药品的格为每盒x元,乙种药品的格为每盒y元.则根据题意列方程组得:解之得:5×3.6-2.2=18-2.2=15.8(元)6×3=18(元)答:降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元(2)设购进甲药品x 箱(x 为非负整数),购进乙药品(100-x )箱,则根据题意列没有等式组得:解之得:则x 可取:58,59,60,此时100-x 的值分别是:42,41,40设医院获利y 元,则y=7x +500∵x=7>0,∴当x=60时,获利为920元.答:甲种药品60箱,乙种40箱时医院获利.----------------------------3分【详解】(1)等量关系为:甲+乙=6.6;甲零售价+乙零售价=33.8;(2)关系式为:甲药品的利润+乙药品的利润≥900;乙种药品箱数≥40.21.(8分)如图,⊙O 是△ABC 的外接圆,AB 为直径,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD ,BD ,CD .(1)求证:E 为AC 中点;(2)求证:AD=CD ;(3)若AB=10,cos ∠ABC=45,求tan ∠DBC 的值.【正确答案】(1)见解析;(2)见解析;(3)13.【详解】试题分析:()1根据中位线的推论即可证明.()2由AB 为直径,OD ∥BC ,易得OD AC ⊥,然后由垂径定理证得, AD CD=,继而证得结论;()3由410cos 5AB ABC =∠=,,可求得BC 的长,继而求得DE AE ,的长,则可求得tan DBA ∠,然后由圆周角定理,证得DBC DBA ∠=∠,则可求得答案.试题解析:(1)证明:∵OD ∥BC ,AO OB =,AE EC ∴=,即E 为AC 中点;(2)∵AB 为直径,90ACB ∴∠=︒,∵OD ∥BC ,∴,OD AC ⊥ AD CD =,AD CD ∴=;(3)410cos 5AB ABC =∠=,,8BC ∴=,由勾股定理得,6AC =,则43OE AE ==,,1DE ∴=,由勾股定理得,AD BD ====∵ AD CD=,1tan tan 3AD DBC DBA BD ∴∠=∠==点睛:垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.22.如图,四边形ABCD 是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=k x的图象点D,点P 是函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明函数y=mx+3﹣4m 的图象一定过点C;(3)对于函数y=mx+3﹣4m(m≠0),当y 随x 的增大而增大时,确定点P 的横坐标的取值范围,(没有必写过程)【正确答案】(1)y=2x;(2)C(4,3);(3)见解析.【详解】试题分析:(1)由B(4,1),C(4,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=k x即可得到k=2,从而可确定反比例函数的解析式;(2)把x=4代入y=mx+3﹣4m(m≠0)得到y=3,即可说明函数y=mx+3﹣4m(m≠0)的图象一定过点C;(3)设点P的横坐标为x,由于函数y=mx+3﹣4m(m≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=2x得到x>23,于是得到x的取值范围.试题解析:解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P 的横坐标的取值范围是<x <4.23.如图1,在矩形ABCD 中,AB=6cm ,BC=8cm ,E 、F 分别是AB 、BD 的中点,连接EF ,点P 从点E 出发,沿EF 方向匀速运动,速度为1cm/s ,同时,点Q 从点D 出发,沿DB 方向匀速运动,速度为2cm/s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (0<t <4)s ,解答下列问题:(1)求证:△BEF ∽△DCB ;(2)当点Q 在线段DF 上运动时,若△PQF 的面积为0.6cm 2,求t 的值;(3)如图2过点Q 作QG ⊥AB ,垂足为G ,当t 为何值时,四边形EPQG 为矩形,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?试说明理由.【正确答案】(1)证明见解析(2)2;(3)4013;(4)t=1或3或207或196秒时,△PQF 是等腰三角形【详解】解:(1)∵四边形ABCD 是矩形,8//90AD BC AD BC A C ∴==∠=∠=︒,,,在Rt △ABD 中,10BD =,E F 、分别是AB BD 、的中点,1//452EF AD EF AD BF DF ∴====,,,90BEF A C EF BC ∴∠=∠=︒=∠ ,,BFE DBC ∴∠=∠,BEF DCB ∽;∴(2)如图1,过点Q 作QM EF ⊥于M ,QM BE ∴ ,QMF BEF ∴ ∽,,QM QFBE BF =52,35QM t-∴=()3525QM t ∴=-,()()1134520.6225PFQ S PF QM t t ∴=⨯=-⨯-= ,92t ∴=(舍)或2t =秒;()3四边形EPQG 为矩形时,如图所示:QPF BEF ∽,,QF PFBF EF =254,54t t--∴=解得:40.13t =()4当点Q 在DF 上时,如图2,PF QF =,452t t ∴-=-,1.t ∴=当点Q 在BF 上时,PF QF =,如图3,425t t ∴-=-,3.t ∴=PQ FQ =时,如图4,()1442.255t t -=-20.7t ∴=PQ PF =时,如图5,()12542.45t t -=-19.6t ∴=综上所述,1t =或3或207或196秒时,PQF △是等腰三角形.24.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m<0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积?若存在,求出△PBC 面积的值;若没有存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【正确答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 值为2716(3)2m 2=-或1m =-时,△BDM 为直角三角形.【分析】(1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC =S △POC +S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:11x =-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =.∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--.设P (p ,213p p 22--),∴S △PBC =S △POC +S △BOP –S △BOC =23327p 4216--+(.∵3a 4=-<0,∴当3p 2=时,S △PBC 值为2716.(3)由C 2可知:B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°,∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+DM 2=BD 2,即216m 4++2m 1+=29m 9+,解得:12m 2=-,22m 2=(舍去).当∠BDM=90°时,BD 2+DM 2=BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去).综上所述,2m 2=-或1m =-时,△BDM 为直角三角形.2023-2024学年湖北省天门市中考数学质量检测仿真模拟试题(4月)一.选一选(每小题3分,共30分)1.6-的相反数是()A.6B.-6C.16 D.16-2.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A. B. C. D.3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球,其运算速度达到了每秒338600 000亿次,数字338600000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1094.没有等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A. B. C. D.5.下列命题是真命题的是()A.必然发生的概率等于0.5B.5名同学的数学成绩是92,95,95,98,110,则他们的平均分是98,众数是95C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解获得者的兴奋剂使用情况,可采用抽样的方法6.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°7.如图,点O为平面直角坐标系的原点,点A在x轴上,OAB是边长为4的等边三角形,以O为旋转,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为()A.(2,B.(2,4)- C.(2,- D.(2,-8.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足()A.a ≥1B.a >1且a ≠5C.a ≥1且a ≠5D.a ≠59.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =()A.34B.43C.35D.4510.如图,根据二次函数y=ax 2+bx +c (a ≠0)的图象,有下列几种说法:①a +b +c >0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a ;④am 2+bm +a >0(m ≠﹣1).其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题(每小题3分,共18分).11.已知2ab =,23a b -=-,则322344a b a b ab -+的值为______.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为_____元.13.如图,点A ,B 的坐标分别为()1,2,()4,0,将三角形AOB 沿x 轴向右平移,得到三角形CDE ,已知1DB =,则点C 的坐标为__________.14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________15.如图,在ABC ∆中,90BAC ∠=︒,4AB =,6AC =,点D 、E 分别是BC 、AD 的中点,//AF BC 交CE 的延长线于F ,则四边形AFBD 的面积为______.16.如图,已知点A 1,A 2,…,A n 均在直线y=x-1上,点B 1,B 2,…,B n 均在双曲线y=-1x上,并且满足A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n ⊥x 轴,B n A n+1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=-1,则a 2018=_______.三.解答下列各题(9个大题,共72分)17.计算:|﹣3|+tan30°3(2018﹣π)0+(12)-118.某学校为了增强学生体质,决定开设以下体育课外项目:A :篮球B :乒乓球C :羽毛球D :足球,为了解学生最喜欢哪一种项目,随机抽取了部分学生进行,并将结果绘制成了两幅没有完整的统计图,请回答下列问题:(1)这次被的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)19.(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)20.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.。
天门经济开发区等中考第二次联考数学试卷含答案
春第二次联考九年级数学试卷一、选择题(本题有10个小题,每小题3分,共30分)1. 4的算术平方根是 【 】A .2B .-2C .±2D .22. 某种微粒子,测得它的质量为0.00006746克,这个质量用科学计数法表示(保留三个有效数字)应为 【 】A .6.75×10-5克B .6.74×10-5克C .6.74×10-6克D .6.75×10-6克3. 如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】 A . B . C .D .4. 下列运算正确的是 【 】 A .a 5+a 5=a 10 B .a 3·a 3=a 9 C .(3a 3)3=9a 9 D .a 12÷a 3=a 95. 如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 【 】A.91 B.92 C.31 D.94 6. 四张质地、大小、背面完全相同的卡片上,正面分别画有圆、 矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为 【 】A . 14B .12C . 34D . 1 240x 70x ->⎧⎨-<⎩第9题图 7. 一组数据2,3,6,8,x 的众数是x ,其中x 是不等式组 的整数解,则这组数据的中位数可能是 【 】A. 3B. 4C. 6D. 3或68. 如图所示,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省 【 】A .1元B .2元C .3元D .4元9.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P 、Q 两点,点P 在点Q 的右边,若P 点的坐标为(-1,2),则Q 点的坐标是【 】A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2 )10.若二次函数y=ax 2+bx+c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0 ②x=x 0是方程ax 2+bx+c=y 0的解; ③x 1<x 0<x 2④a (x 0﹣x 1)(x 0﹣x 2)<0; ⑤x 0<x 1或x 0>x 2, 其中正确的有 【 】A .①②B .①②④C .①②⑤D .①②④⑤二、填空题(共6小题,每题3分,满分18分)11.分解因式:2(2)(4)4x x x +++-=__________. E H F GCBA 第5题图第8题图12..设x 1、x 2是一元二次方程x 2+4x —3=0的两个根,2x 1(x 22+5x 2-3)+a=2 ,则a=_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年湖北省天门经济开发区中学、竟陵中学中考数学二模试卷一、选择题(本题有10个小题,每小题3分,共30分)1.4的算术平方根是()A.2 B.﹣2 C.±2 D.2.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为()A.6.75×10﹣5克 B.6.74×10﹣5克 C.6.74×10﹣6克 D.6.75×10﹣6克3.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.4.下列运算正确的是()A.a5+a5=a10B.a3•a3=a9C.(3a3)3=9a9D.a12÷a3=a95.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.6.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.17.一组数据2、3、6、8、x的众数是x,其中x又是不等式组的整数解,则这组数据的中位数可能是()A.3 B.4 C.6 D.3或68.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A.1元B.2元C.3元D.4元9.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P、Q 两点,点P在点Q的右边,若P点的坐标为(﹣1,2),则Q点的坐标是()A.(﹣4,2)B.(﹣4.5,2)C.(﹣5,2)D.(﹣5.5,2 )10.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0;⑤x0<x1或x0>x2,其中正确的有()A.①② B.①②④C.①②⑤D.①②④⑤二、填空题(共6小题,每题3分,满分18分)11.分解因式:(x+2)(x+4)+x2﹣4= .12.设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a= .13.如图,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于.14.如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为.(结果保留π)15.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.16.在矩形ABCO中,O为坐标原点,A在y轴上,C在x轴上,B的坐标为(8,6),P是线段BC上动点,点D是直线y=2x﹣6上第一象限的点,若△APD是等腰Rt△,则点D的坐标为.三、解答题(共9小题,满分72分)17.已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣)÷.18.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.19.吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:据统计图解答下列问题:(1)同学们一共调查了多少人?(2)将条形统计图补充完整.(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?20.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=2,求FG的长.24.如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、B重合),过D作DE∥BC,交AC于点E.把△ADE沿直线DE折叠,点A落在点A′处.连接BA′,设AD=x,△ADE的边DE上的高为y.(1)求出y与x的函数关系式;(2)若以点A′、B、D为顶点的三角形与△ABC 相似,求x的值;(3)当x取何值时,△A′DB是直角三角形.25.在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.2017年湖北省天门经济开发区中学、竟陵中学中考数学二模试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)1.4的算术平方根是()A.2 B.﹣2 C.±2 D.【考点】22:算术平方根.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为()A.6.75×10﹣5克 B.6.74×10﹣5克 C.6.74×10﹣6克 D.6.75×10﹣6克【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,首先把0.00006746用科学记数法表示,再保留有效数字即可.【解答】解:0.00006746=6.746×10﹣5≈6.75×10﹣5,故选:A.3.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】根据俯视图可得从正面看可看到每列正方体的最多个数分别为4,3,2,再表示为平面图形即可.【解答】解:根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有3列,从左到右的列数分别是4,3,2.故选C.4.下列运算正确的是()A.a5+a5=a10B.a3•a3=a9C.(3a3)3=9a9D.a12÷a3=a9【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用合并同类项、同底数幂的乘法、积的乘方、幂的乘方以及同底数幂的除法的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、a5+a5=2a5,故本选项错误;B、a3•a3=a6,故本选项错误;C、(3a3)3=27a9,故本选项错误;D、a12÷a3=a9,故本选项正确.故选D.5.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质.【分析】根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG面积比,再求出S△ABC.【解答】解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S△AFG=S△ABCS△AEH=S△ABC∴S阴影部分的面积=S△AFG﹣S△AEH=S△ABC﹣S△ABC=S△ABC故选:C.6.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.1【考点】X4:概率公式;R5:中心对称图形.【分析】先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.【解答】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.7.一组数据2、3、6、8、x的众数是x,其中x又是不等式组的整数解,则这组数据的中位数可能是()A.3 B.4 C.6 D.3或6【考点】W4:中位数;CC:一元一次不等式组的整数解;W5:众数.【分析】先求出不等式组的整数解,再根据众数的定义可求x的值,再根据中位数是排序后位于中间位置或中间两数的平均数求解.【解答】解:,解不等式①得x>2,解不等式②得x<7,不等式组的解为2<x<7,故不等式组的整数解为3,4,5,6.∵一组数据2、3、6、8、x的众数是x,∴x=3或6.如果x=3,排序后该组数据为2,3,3,6,8,则中位数为3;如果x=6,排序后该组数据为2,3,6,6,8,则中位数为6.故选D.8.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A.1元B.2元C.3元D.4元【考点】FH:一次函数的应用.【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元,故选:B.9.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P、Q 两点,点P在点Q的右边,若P点的坐标为(﹣1,2),则Q点的坐标是()A.(﹣4,2)B.(﹣4.5,2)C.(﹣5,2)D.(﹣5.5,2 )【考点】MC:切线的性质;D5:坐标与图形性质.【分析】作MN⊥PQ于N,连接MP,根据勾股定理列出方程,解方程求出⊙M的半径,根据坐标与图形的关系解答.【解答】解:作MN⊥PQ于N,连接MP,由垂径定理得,QN=NP,设⊙M的半径为r,∵P点的坐标为(﹣1,2),∴NP=r﹣1,由勾股定理得,r2=(r﹣1)2+4,解得,r=2.5,则PN=QN=1.5,∵PQ平行于x轴,∴Q点的坐标是(﹣4,2),故选:A.10.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0;⑤x0<x1或x0>x2,其中正确的有()A.①② B.①②④C.①②⑤D.①②④⑤【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】①根据二次函数图象与x轴有两个不同的交点,结合根的判别式即可得出△=b2﹣4ac>0,①正确;②由点M(x0,y0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x0是方程ax2+bx+c=y0的解,②正确;③分a>0和a<0考虑,当a>0时得出x1<x0<x2;当a<0时得出x0<x1或x0>x2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M(x0,y0)在x轴下方即可得出y0=a(x0﹣x1)(x0﹣x2)<0,④正确;⑤根据③可得出⑤错误.综上即可得出结论.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a+bx0+c=y0,∴x=x0是方程ax2+bx+c=y0的解,②正确;③当a>0时,∵M(x0,y0)在x轴下方,∴x1<x0<x2;当a<0时,∵M(x0,y0)在x轴下方,∴x0<x1或x0>x2,③错误;④∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),∴y=ax2+bx+c=a(x﹣x1)(x﹣x2),∵图象上有一点M(x0,y0)在x轴下方,∴y0=a(x0﹣x1)(x0﹣x2)<0,④正确;⑤根据③即可得出⑤错误.综上可知正确的结论有①②④.故选B.二、填空题(共6小题,每题3分,满分18分)11.分解因式:(x+2)(x+4)+x2﹣4= 2(x+2)(x+1).【考点】57:因式分解﹣十字相乘法等.【分析】先根据多项式乘多项式的法则计算,然后再利用十字相乘法分解因式.【解答】解:(x十2)(x+4)十x2﹣4,=x2十6x+8十x2﹣4,=2x2+6x+4,=2(x2+3x+2),=2(x+2)(x+1).12.设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a= 8 .【考点】AB:根与系数的关系.【分析】先根据根与系数的关系,求出x1+x2,x1•x2的值,然后化简所求代数式,把x1+x2,x1•x2的值整体代入求值即可.【解答】解:根据题意可得x1+x2=﹣=﹣4,x1•x2==﹣3,又∵2x1(x22+5x2﹣3)+a=2,∴2x1x22+10x1x2﹣6x1+a=2,﹣6x2+10x1x2﹣6x1+a=2,﹣6(x1+x2)+10x1x2+a=2,﹣6×(﹣4)+10×(﹣3)+a=2,∴a=8.故答案为:8.13.如图,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于1:3 .【考点】S9:相似三角形的判定与性质;T7:解直角三角形.【分析】结合图形可推出△AOB∽△COD,只要求出AB与CD的比就可知道它们的面积比,我们可以设BC为a,则AB=a,根据直角三角函数,可知DC=a,即可得△AOB与△COD的面积之比【解答】解:∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放∴∠D=30°,∠A=45°,AB∥CD∴∠A=∠OCD,∠D=∠OBA∴△AOB∽△COD设BC=a∴CD= a∴S△AOB:S△COD=1:3故答案为1:314.如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为9﹣3π.(结果保留π)【考点】MO:扇形面积的计算.【分析】连结AD.根据图中阴影部分的面积=三角形ABC的面积﹣三角形ACD的面积﹣扇形ADE的面积,列出算式即可求解.【解答】解:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,AB=6,∵AD=AC,∴三角形ACD是等边三角形,∴∠CA D=60°,∴∠DAE=30°,∴图中阴影部分的面积=﹣×﹣=9﹣3π,故答案为:9﹣3π.15.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】H3:二次函数的性质.【分析】根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k<.故答案为:﹣2<k<.16.在矩形ABCO中,O为坐标原点,A在y轴上,C在x轴上,B的坐标为(8,6),P是线段BC上动点,点D是直线y=2x﹣6上第一象限的点,若△APD是等腰Rt△,则点D的坐标为(4,2)或(,)或(,).【考点】F8:一次函数图象上点的坐标特征;KW:等腰直角三角形.【分析】可分为当∠ADP=90°,D在AB上方和下方,当∠APD=90°时三种情况,设点D的坐标,列出方程解决问题.【解答】解:①如图1中,当∠ADP=90°,D在AB下方,设点D坐标(a,2a﹣6),过点D作EF∥OC交OA于E,交BC于F,则OE=2a﹣6,AE=AO﹣OE=12﹣2a,在△ADE和△DPF中,∴△ADE≌△DPF,∴AE=DF=12﹣2a,∵EF=OC=8,∴a+12﹣2a=8,∴a=4.此时点D坐标(4,2).②如图2中,当∠ADP=90°,D在AB上方,设点D坐标(a,2a﹣6),过点D作EF∥OC交OA于E,交CB的延长线于F,则OE=2a﹣6,AE=OE﹣OA=2a﹣12,由△ADE≌△DPF,得到DF=AE=2a﹣12,∵EF=8,∴a+2a﹣12=8,∴a=,此时点D坐标(,).③如图3中,当∠APD=90°时,设点D坐标(a,2a﹣6),作DE⊥CB的延长线于E.同理可知△ABP≌△EPD,∴AB=EP=8,PB=DE=a﹣8,∴EB=2a﹣6﹣6=8﹣(a﹣8),∴a=,此时点D坐标(,).当∠DAP=90°时,此时P在BC的延长线上,∴点D坐标为(4,2)或(,)或(,).故答案为(4,2)或(,)或(,).三、解答题(共9小题,满分72分)17.已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣)÷.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再由当x=1时,y=0求出a的值,选取合适的a的值代入进行计算即可.【解答】解:原式=[1﹣]÷=•=,∵y=2x2﹣ax﹣a2,且当x=1时,y=0,∴2﹣a﹣a2=0,解得a1=1,a2=﹣2,当a=1时,原式=3;当a=﹣2时,a+2=0,原式无意义.故原式=3.18.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.【考点】R2:旋转的性质.【分析】(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.【解答】解:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴AC==4.∵CD=3AD,∴AD=,DC=3.由旋转的性质可知:AD=EC=.∴DE==2.19.吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:据统计图解答下列问题:(1)同学们一共调查了多少人?(2)将条形统计图补充完整.(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)用替代品戒烟的人数除以它所占的百分比可得到调查的总人数;(2)先计算出药物戒烟的人数和警示戒烟的人数,然后补全图象统计图;(3)用10000乘以样本中警示戒烟所占的百分比可估计社区中支持“警示戒烟”的人数;(4)利用增长率的意义,计算3500(1+20%)2即可.【解答】解:(1)同学们一共调查的总人数为:50÷10%=500(人);(2)药物戒烟的人数为15%×500=75(人),所以警示戒烟的人数为500﹣200﹣50﹣75=175(人),条形统计图补充为:(3)10000×=3500,所以估计大约有3500人支持“警示戒烟”这种方式;(4)3500(1+20%)2=5040,所以两期宣传后支持“警示戒烟”的市民约有5040人.20.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.21.如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH的长度,得点M的横坐标;根据点M在直线上可求点M的坐标.从而可求K的值;(2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置.【解答】解:(1)由y=2x+2可知A(0,2),即OA=2.∵tan∠AHO=2,∴OH=1.∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,∴点M的纵坐标为4.即M(1,4).∵点M在y=上,∴k=1×4=4.(2)存在.过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示).此时PM+PN最小.∵点N(a,1)在反比例函数(x>0)上,∴a=4.即点N的坐标为(4,1).∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,﹣1).设直线MN1的解析式为y=kx+b.由解得k=﹣,b=.∴直线MN1的解析式为.令y=0,得x=.∴P点坐标为(,0).22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【考点】HE:二次函数的应用.【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.【解答】解:(1)y=(x﹣50)[50+5]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.23.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=2,求FG的长.【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;S9:相似三角形的判定与性质;T7:解直角三角形.【分析】(1)如答图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如答图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如答图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.【解答】解:(1)如答图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为:连接GD,如答图2所示.∵KG2=KD•GE,即=,∴=,又∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如答图3所示.sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=,设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r﹣3t)2+(4t)2=r2,解得r=t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==,∴FG===.24.如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、B重合),过D作DE∥BC,交AC于点E.把△ADE沿直线DE折叠,点A落在点A′处.连接BA′,设AD=x,△ADE的边DE上的高为y.(1)求出y与x的函数关系式;(2)若以点A′、B、D为顶点的三角形与△ABC 相似,求x的值;(3)当x取何值时,△A′DB是直角三角形.【考点】PB:翻折变换(折叠问题);KH:等腰三角形的性质;KN:直角三角形的性质;KQ:勾股定理;LA:菱形的判定与性质;S9:相似三角形的判定与性质.【分析】(1)先过A点作AM⊥BC,得出BM=BC=3,再根据DE∥BC,得出AN⊥DE,即y=AN,再在Rt△ABM中,求出AM的值,再根据DE∥BC,求出△ADE∽△ABC,即可求出y与x的函数关系式;(2)根据△A'DE由△ADE折叠得到,得出AD=A'D,AE=A'E,再由(1)可得△ADE是等腰三角形,得出AD=A'D,AE=A'E,即可证出四边形ADA'E是菱形,得出∠BDA'=∠BAC,再根据∠BAC≠∠ABC,∠BAC≠∠C,得出∠BDA'≠∠ABC,∠BDA'≠∠C,从而证出△BDA'∽△BAC,即可求出x的值;(3)先分三种情况进行讨论;第一种情况当∠BDA′=90°,得出∠BDA'≠90°;第二种情况当∠BA'D=90°,根据∠BAM<90°,∠BA'D<∠BAM,可得∠BA'D≠90°;第三种情况当∠A'BD=90°,根据∠A'BD=90°,∠AMB=90°,得出△BA'M∽△ABM,即可求出BA′的值,再在Rt△D BA'中,根据DB2+A'B2=A'D2,求出x的值,即可证出△A′DB是直角三角形;【解答】解:(1)如图1,过A点作AM⊥BC,垂足为M,交DE于N点,则BM=BC=3,∵DE∥BC,∴AN⊥DE,即y=AN.在Rt△ABM中,AM==4,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴y=(0<x<5).(2)∵△A'DE由△ADE折叠得到,∴AD=A'D,AE=A'E,∵由(1)可得△ADE是等腰三角形,∴AD=AE,∴A'D=A'E,∴四边形ADA'E是菱形,∴AC∥D A',∴∠BDA'=∠BAC,又∵∠BAC≠∠ABC,∴∠BDA'≠∠ABC,∵∠BAC≠∠C,∴∠BDA'≠∠C,∴有且只有当BD=A'D时,△BDA'∽△BAC,∴当BD=A'D,即5﹣x=x时,x=.(3)第一种情况:∠BDA'=90°,∵∠BDA'=∠BAC,而∠BAC≠90°,∴∠BDA'≠90°.第二种情况:∠BA'D=90°,∵在Rt△BA'D中,DB2﹣A'D2=A'B2,在Rt△BA'M中,A'M2+BM2=A'B2,∴DB2﹣A'D2=A'M2+BM2,∴(5﹣x)2﹣x2=(4﹣x)2+(3)2,解得x=;第三种情况:∠A'BD=90°,∵∠A'BD=90°,∠AMB=90°,∴△BA'M∽△ABM,即=,∴BA'=,在Rt△D BA'中,DB2+A'B2=A'D2,(5﹣x)2+=x2,解得:x=.综上可知当x=或时,△A'DB是直角三角形.25.在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.【考点】HF:二次函数综合题.【分析】(1)通过解方程ax2﹣5ax+4a=0可得到A(1,0),B(4,0),然后利用三角形面积公式求出OC得到C点坐标,再把C点坐标代入y=ax2﹣5ax+4a中求出a即可得到抛物线的解析式;(2)过点P作PH⊥x轴于H,作CD⊥PH于点H,如图2,设P(x,ax2﹣5ax+4a),则PD=﹣ax2+5ax,通过证明Rt△PCD∽Rt△CBO,利用相似比可得到(﹣ax2+5ax):(﹣4a)=x:4,然后解方程求出x即可得到点P的横坐标;(3)过点F作FG⊥PK于点G,如图3,先证明∠HAP=∠KPA得到HA=HP,由于P(6,10a),则可得到﹣10a=6﹣1,解得a=﹣,再判断Rt△PFG单位等腰直角三角形得到FG=PG=PF=2,接着证明△AKH≌△KFG,得到KH=FG=2,则K(6,2),然后利用待定系数法求出直线KB的解析式为y=x﹣4,再通过解方程组得到Q(﹣1,﹣5),利用P、Q 点的坐标可判断PQ∥x 轴,于是可得到QP=7.【解答】解:(1)当y=0时,ax2﹣5ax+4a=0,解得x1=1,x2=4,则A(1,0),B(4,0),∴AB=3,∵△ABC的面积为3,∴•4•OC=3,解得OC=2,则C(0,﹣2),把C(0,﹣2)代入y=ax2﹣5ax+4a得4a=﹣2,解得a=﹣,∴抛物线的解析式为y=﹣x2+x﹣2;(2)过点P作PH⊥x轴于H,作CD⊥PH于点H,如图2,设P(x,ax2﹣5ax+4a),则PD=4a ﹣(ax2﹣5ax+4a)=﹣ax2+5ax,∵AB∥CD,∴∠ABC=∠BCD,∵∠BCP=2∠ABC,∴∠PCD=∠ABC,∴Rt△PCD∽Rt△CBO,∴PD:OC=CD:OB,即(﹣ax2+5ax):(﹣4a)=x:4,解得x1=0,x2=6,∴点P的横坐标为6;(3)过点F作FG⊥PK于点G,如图3,∵AK=FK,∴∠KAF=∠KFA,而∠KAF=∠KAH+∠PAH,∠KFA=∠PKF+∠KPF,∵∠KAH=∠FKP,∴∠HAP=∠KPA,∴HA=HP,∴△AHP为等腰直角三角形,∵P(6,10a),∴﹣10a=6﹣1,解得a=﹣,在Rt△PFG中,∵PF=﹣4a=2,∠FPG=45°,∴FG=PG=PF=2,在△AKH和△KFG中,∴△AKH≌△KFG,∴KH=FG=2,∴K(6,2),设直线KB的解析式为y=mx+n,把K(6,2),B(4,0)代入得,解得,∴直线KB的解析式为y=x﹣4,当a=﹣时,抛物线的解析式为y=﹣x2+x﹣2,解方程组,解得或,∴Q(﹣1,﹣5),而P(6,﹣5),∴PQ∥x 轴,∴QP=7.。