陕西省咸阳市2017-2018学年高二下学期第三次月考数学(文)试题Word版含答案

合集下载

陕西省咸阳市实验中学2020-2021学年高二上学期第一次月考数学(理)试卷Word版含答案

陕西省咸阳市实验中学2020-2021学年高二上学期第一次月考数学(理)试卷Word版含答案

数学〔理科〕试题一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.数列1,3,6,10,⋅⋅⋅的一个通项公式是( )A .21n a n n =-+.21n a n =- C .(1)2n n n a +=D .(1)2n n n a -= 2.在ABC ∆中,角,,A B C 成等差数列,那么角B 的大小为 〔 〕A .B .C .D .3.设11a b >>>-,那么以下不等式中恒成立的是 ()A .2a b > B. 2a b < C.11a b < D .11a b> 4.设22221,4a x y x y b =+-++=-,那么实数,a b 的大小关系 ( )A .a b <B .a b >C .a b =D .与,x y 取值有关5.数列{}n a 中,112,1,n n a a a n N ++=+=∈,那么10a =( )A .18B .19C .20D .216.在ABC∆中,假设()()3a b c c b a bc+++-=,那么角A =( )A .B .C .D .7.等比数列{}n a 的各项均为正数,且569a a =,那么3132310log log log a a a ++⋅⋅⋅+=( )A .12B .10C .31log 5+D .32log 5+8.等差数列{}n a 的前10项和为30,前30项和为210,那么前20项和为( )A .100B .120C .390D .5409.函数2,0()21,0x x f x x x ⎧≤=⎨->⎩,那么不等式()1f x ≥的解集是 ()A .(,1)-∞-B .(,0)[1,)-∞+∞C .[1,)+∞D .(,1][1,)-∞-+∞2和8之间插入n 个正数,使这2n +数成等比数列,那么该数列的公比是 ( )A .12nB .14nC .1+14n D .1+12n11.在ABC ∆中,假设cos cos cos a b cA B C==,那么ABC ∆是( ) A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形12.假设两个等差数列{},{}n n a b 的前n 项和分别为,n n S T ,且212n n S n T n +=+,那么77a b =( ) A .95 B .53C .2D .3117二、填空题(此题共4小题,每题5分,共20分).13.在ABC ∆中,30,1A a ==,那么_____.sin sin b cB C+=+14.等比数列,22,33,a a a ++⋅⋅⋅的第4项为_______.210x ax ++≥对任意1(0,]2x ∈恒成立,那么实数a 的最小值为_____.16.在一个数列中,如果每一项与它的后一项的积为同一个常数,那么这个数列称为等积数列,这个常数称为该数列的公积.数列{}n a 是等积数列,且12a =-,公积为5,那么这个数列的前2020项的和为.三、解答题(本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤) 17.(本小题10分) 在ABC ∆中, 角,,A B C 的对边分别是,,,a b c 求证:222a b c =+2cos bc A -.18. (本小题12分)关于x 的不等式20ax bx c ++>解集为{1x x -<解关于x 不等式20cx bx a ++<19.(本小题12分)如图,在圆内接四边形ABCD 中,2,AB =6,4BC CD AD ===,求四边形ABCD 的面积.20.(本小题12分) 数列{}n a 满足12311112482n n a a a a +++⋅⋅⋅+={}n a 的通项公式和前n 项和为n S .21.(本小题12分) 在ABC ∆中, 角,,A B C 的对边分别是,,,a b c ABC ∆的面积为23sin a A. (1)求sin sin B C ; (2)假设13,cos cos 6a B C ==,求a b c ++. 22.(本小题12分) 数列{}n a 的前n 项和为1,n n S a λ=+其中0λ≠.(1)证明:数列{}n a 是等比数列; (2)假设53132S =,求λ. 理科数学参考答案一、选择题CDABB CBADC BA二、填空题13.2 ; 14.272-; 15.52-; 16.4545-. 三、解答题(本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤) 17.(本小题10分)证明:法1;222()a BC AC AB ==- 即222a b c =+2cos bc A -………………10分法2:建立如下图的坐标系,那么(,0)C b ,(cos ,sin )B c A c A ,因此即222a b c =+2cos bc A -………………10分 18. (本小题12分)解法1:依题意知,1-和2是方程20ax bx c ++=两根,易得012212a a b b a a c ac a ⎧⎪<<⎧⎪⎪⎪-+=-⇒=-⎨⎨⎪⎪=-⎩⎪-⨯=⎪⎩………………5分于是不等式20cx bx a ++<,即220(0)ax ax a a --+<< 整理得2210(21)(1)0x x x x +-<⇔-+< 解得 {112x x ⎫-<<⎬⎭………………12分 解法2:2212(2)(1)02020x x x x x x x -<<⇔-+<⇔--<⇔-++> 与20ax bx c ++>同解,易得112(0)a a b c-==< 即,2(0)b a c a a =-=-<, 于是不等式20cx bx a ++<,即220(0)ax ax a a --+<< 以下同解法1,略 ………………12分19. (本小题12分)解:如图,连接BD ,根据余弦定理,在ABD ∆中,222222cos 42242cos BD AD AB AD AB A A =+-⋅=+-⋅⋅⋅ 在CBD ∆中,222222cos 64264cos BD CD CB CD CB A C =+-⋅=+-⋅⋅⋅5248cos C =-………………6分 ∴2016cos A -5248cos C =-注意到180A C +=,得cos cos C A =-,解得1cos 2A =-所以sin sin A C ==xb于是1142642222ABCD ABD CBD S S S ∆∆=+=⨯⨯⨯+⨯⨯⨯=………………12分20. (本小题12分)解: (1) 当1n =时,1172a =,解得114a =; 当2n ≥时,12311111112524822n n n n a a a a a n --+++⋅⋅⋅++=+ 两式相减得112(2)22n n n na n a +=≥⇔= 综上得114,12,2n n n a n +=⎧=⎨≥⎩………………6分〔2〕显然1114S a ==;当2n ≥时,3134122(21)14222142621n n n n S -++-=+++⋅⋅⋅+=+=+-综上得226n n S +=+………………12分21. (本小题12分)解: (1)依题意,21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =,即2sin sin 3B C =………………6分(2)由题设及(1)得11cos cos sin sin cos()22B C B C B c -=-⇔+=- 可得120,60B C A +==由题设得21sin 23sin a bc A A=,即8bc =由余弦定理得2229()39b c bc b c bc +-=⇔+-=,得b c +=所以3a b c ++=+12分 22. (本小题12分)(1)证明:当1n =时,111,a a λ=+得111,1,01a a λλ=≠≠-; 当2n ≥时,由1,n n S a λ=+及-1-11,n n S a λ=+得1n n n a a a λλ-=- 即1(1)n n a a λλ--=,由11,0a λ≠≠,知0n a ≠,所以1(2)1n n a n a λλ-=≥- 因此,数列{}n a 是首项为11λ-,公比为1λλ-的等比数列11()11n n a λλλ-=--………………6分 (2)解:由(1)得1()1n n S λλ=--,由53132S = 得5311()132λλ-=-,解得=1λ-………………12分。

2021-2022学年陕西省咸阳市秦都区高二年级上册学期期末数学(文)试题【含答案】

2021-2022学年陕西省咸阳市秦都区高二年级上册学期期末数学(文)试题【含答案】

2021-2022学年陕西省咸阳市秦都区高二上学期期末数学(文)试题一、单选题1.不等式的解集是( )()()120x x -->A .或B .{|1x x <2}x >{}12x x <<C .或D .{|1x x ≤2}x ≥{}12x x ≤≤【答案】A【分析】根据一元二次不等式的解法求解即可.【详解】由不等式,()()120x x -->解得或,1x <2x >所以不等式的解为:或.{|1x x <2}x >故选:A.2.已知命题:,.则命题的否定是( )p x ∃∈R 21xx ≤+p A .,B .,x ∃∈R 21xx >+x ∃∈R 21xx ≥+C .,D .,x ∀∈R 21xx ≤+x ∀∈R 21xx >+【答案】D【分析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题:,.则命题的否定是,,p x ∃∈R 21x x ≤+p x ∀∈R 21xx >+故选:D.3.已知椭圆的左、右焦点分别为、,为椭圆上一点,若,则2212516x y +=1F 2F P 17PF =( )2PF =A .9B .7C .5D .3【答案】D【分析】根据椭圆的定义求得正确答案.【详解】根据椭圆的定义可知:,12210PF PF a +==所以.21103PF PF =-=故选:D4.已知实数,满足,则下列不等式成立的是( )a b 0b a <<A .B .C .D .11b a >22a b>0b a ->b a a b<【答案】A【分析】根据不等式的性质、特殊值、差比较法等知识确定正确答案.【详解】依题意,,所以,所以C 选项错误.0b a <<0,0b a a b -<->,所以,A 选项正确.110a b b a ab --=>11b a >时,,但,所以B 选项错误.2,1b a =-=-0b a <<22a b <时,,但,所以D 选项错误.2,1b a =-=-0b a <<b a a b =故选:A5.下列求导运算正确的是( )A .B .()2cos 2sin x x x x'=-'=C .D .ππsin cos33'⎛⎫= ⎪⎝⎭()555log xxx'=【答案】B【分析】利用导数运算求得正确答案.【详解】A 选项,,A 选项错误.()()()2222cos cos cos 2cos sin xx x x x x x x x x '''=⨯+⨯=-B 选项,,B 选项正确.11112221122x x x -'⎛⎫'====⎪⎝⎭C 选项,,C 选项错误.πsin 03'⎛⎫= ⎪⎝⎭D 选项,,D 选项错误.()55ln 5xx'=故选:B 6.已知等差数列中,,,则的前项和的最小值为( ){}n a 70a >2110a a +<{}n a n n S A .B .C .D .4S 5S 6S 7S 【答案】C【分析】由确定正确答案.760,0a a ><【详解】依题意,621710a a a a =++<而,所以,70a >60a <所以数列的公差,{}n a 0d >且数列的前项为负数,从第项起为正数,{}n a 67所以的最小值为.n S 6S 故选:C7.设,则“”是“”的( )x ∈R 01x <<11x >A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】结合分式不等式的解法以及充分、必要条件的知识确定正确答案.【详解】由得,11x >()11101001x x x x x x --=>⇔-<⇔<<所以“”是“”的充要条件.01x <<11x >故选:C 8.如图是函数的导函数的图象,下列说法正确的是( )()y f x =()y f x '=A .函数在上是增函数()y f x =()2,2-B .函数在上是减函数()y f x =()1,+∞C .是函数的极小值点=1x -()y f x =D .是函数的极大值点1x =()y f x =【答案】A【分析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,()2,2x ∈-()0f x '≥()2,x ∈+∞()0f x '<在上单调递增,在上单调递减,可知B 错误,A 正确;()f x \()2,2-()2,∞+是极大值点,没有极小值,和不是函数的极值点,可知C ,D 错误.2x =1x ∴=-1x =故选:A9.在明朝程大位《算法统宗》中有首依等算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、已、庚三人共261钱,求各人钱数.”根据上面的已知条件,丁有( )A .107钱B .102钱C .101钱D .94钱【答案】C【分析】根据等差数列的知识列方程,求得首项和公差,从而求得正确答案.【详解】设等差数列的公差为,{}n a d 依题意,,12567237261a a a a a +=⎧⎨++=⎩112237315261a d a d +=⎧⎨+=⎩解得,所以丁有钱.11227a d =⎧⎨=-⎩41312221101a a d =+=-=故选:C10.已知命题:“到点的距离比到直线的距离小1的动点的轨迹是抛物线”,命题:p ()1,02x =-q “1和100的等比中项大于4和14的等差中项”,则下列命题中是假命题的是( )A .B .C .D .p q ∨p q∧()¬p q ∧()¬p q ∨【答案】B【分析】对于命题,设动点的坐标为,则根据条件可得动点的轨迹方程,从而可判断该命p (),x y 题的正误.对于命题,求出等比中项和等差中项后可判断其正误,再结合复合命题的真假判断方法q可得正确的选项.【详解】对于命题,设动点的坐标为,p (),x y 21x =+-当时,有;2x ≥-24y x =当时,有,但此时,故不成立,<2x -288y x =+880x +<288y x =+故动点的轨迹方程为,轨迹为抛物线,故正确.24y x =p 对于,“1和100的等比中项为,而4和14的等差中项为9,q10±故两者大小关系不确定,从而错误.q故四个命题中,,,均为真命题,为假命题,p q ∨()¬p q ∧()¬p q ∨p q ∧故选:B.11.第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O 1,O 2,O 3,O 4,O 5,若双曲线C 以O 1,O 3为焦点、以直线O 2O 4为一条渐近线,则C 的离心率为( )A B C .D .21311【答案】A【分析】建立直角坐标系,结合图形可得渐近线斜率,再根据公式可得.e =【详解】如图建立直角坐标系,过向x 轴引垂线,垂足为A ,易知,4O 411O A =213O A =1113b a ∴=e ∴==故选:A12.已知定义在上的函数的导函数为,且满足,,则R ()f x ()f x '()()0f x f x +'>()31f =的解集为( )()3e e xf x ⋅>A .B .C .D .(),1-∞()1,+∞(),3-∞()3,+∞【答案】D【分析】利用构造函数法,结合导数判断出所构造函数的单调性,从而求得正确答案.【详解】构造函数,()()e x F xf x =⋅,()()()e 0x F x f x f x ''=+>⎡⎤⎣⎦所以在上递增,,()F x R ()()333e 3e F f =⨯=由于,()()()3e e 3x f x F x F ⋅>⇔>根据的单调性解得,()F x 3x >所以的解集.()3e e xf x ⋅>()3,+∞故选:D二、填空题13.若抛物线的准线方程为,则的值为______.22x py =1y =-p 【答案】2【分析】根据抛物线的准线求得的值.p 【详解】依题意.1,22pp ==故答案为:214.在中,内角的对边分别为,则角的大小为______.ABC ,,A B C ,,a b c sin cos Aa B =B 【答案】π6【分析】利用正弦定理边化角可求得,由此可得.tan B B ,sin sin cos B A A B=,,,即()0,πA ∈ sin 0A ∴≠cos B B =tan B =又,.()0,πB ∈π6B ∴=故答案为:.π615.若变量,满足约束条件,则目标函数的最大值为______.x y 20204x y x y y +-≥⎧⎪-+≤⎨⎪≤⎩2z x y =-【答案】4-【分析】画出可行域,平移基准直线到可行域边界位置,结合图像求得的最大值.20x y -=z 【详解】.200202x y x x y y +-==⎧⎧⇒⎨⎨-+==⎩⎩画出可行域如下图所示,由图可知,当平移基准直线到可行域边界点时,20x y -=()0,2取得最大值为.z 0224-⨯=-故答案为:4-16.已知椭圆,为椭圆上的一个动点,定点,则()222:11y C x a a +=>P C ()1,0A -的最大值为______.PA【答案】2【分析】根据椭圆的离心率求得,结合两点间的距离公式以及二次函数的知识求得的最大值.a PA【详解】依题意c e a ======由于,所以解得的方程为,1a >a =C 2212y x +=设,则,()00,P x y 222200001,222yx y x +==-,==由于,所以当时,取得最大值为.011x -≤≤01x =PA 2故答案为:2三、解答题17.已知等比数列满足,,为数列的前项和.{}n a 11a =48a =n S {}n a n (1)求数列的通项公式;{}n a (2)若,求的值63n S =n 【答案】(1)12n n a -=(2)6n =【分析】(1)利用等比数列通项公式可构造方程求得公比,进而得到;qn a (2)利用等比数列求和公式可直接构造方程求得结果.【详解】(1)设等比数列的公比为,则,解得:,.{}n a q 33418a a q q ===2q =12n n a -\=(2),,解得:.126312nn S -==- 264n\=6n =18.已知关于的不等式的解集为.求:x 2220x mx m +++≥R (1)实数的取值范围;m(2)函数的最小值()92f m m m =++【答案】(1)[]1,2-(2)4【分析】(1)利用判别式的正负即可求解;(2)利用基本不等式即可求解.【详解】(1)∵不等式的解集为.2220x mx m +++≥R ∴,解得()2Δ4420m m =-+≤12m -≤≤∴实数的取值范围为.m []1,2-(2)由(1)知,∴12m -≤≤124m ≤+≤∴函数,()()99222422f m m m m m =+=++-≥=++当且仅当,即时取等号922m m +=+1m =∴的最小值为4.()f m 19.已知函数.()32f x x x x=+-(1)求曲线在点处的切线方程;()y f x =()()1,1f (2)求函数在区间上的最大值与最小值.()f x []1,1-【答案】(1)430x y --=(2)最大值是1,最小值是527-【分析】(1)利用切点和斜率求得切线方程.(2)先求得在区间上的单调区间,进而求得在区间上的最大值与最小值.()f x []1,1-()f x []1,1-【详解】(1),∴,又,()2321f x x x '=+-()13214f '=+-=()11111f =+-=∴曲线在点处的切线方程为,即.()y f x =()()1,1f ()141y x -=-430x y --=(2),令,解得或,()2321f x x x '=+-()0f x '==1x -13x =又,∴当变化时,,的变化情况如下表所示:[]1,1x ∈-x ()f x '()f xx1-11,3⎛⎫- ⎪⎝⎭131,13⎛⎫⎪⎝⎭1()f x'0-0++()f x1单调递减527-单调递增1∴在区间上的最大值是1,最小值是.()f x[]1,1-527-20.已知椭圆:的长轴顶点与双曲线的焦点重合,且椭圆经过C()222210x ya ba b+=>>221169x y-=C点.A(1)求椭圆的标准方程;C(2)设椭圆的左、右焦点分别为、,点在椭圆上,且,求点到轴的距离.C1F2F P C12PF PF⊥P x【答案】(1)221259x y+=(2)94【分析】(1)根据已知条件求得,从而求得椭圆的标准方程;,a b C(2)设,根据列方程,结合在椭圆上求得,进而求得到轴的距离.(),P m n12PF PF⊥P n P x【详解】(1)对于双曲线,221169x y-=5=且在椭圆上,AC所以,解得,,22550313aa b=⎧⎪⎨+=⎪⎩5a=3b=∴椭圆的方程为.C221259x y+=(2)设,,(),P m n()()124,0,4,0F F-由,得①,12PF PF⊥()()22124,4,160PF PF m n m n m n⋅=---⋅--=-+=又②,221259m n +=由①②解得,94n =±∴点到轴的距离为.P x 9421.如图,在中,是上的点,,再从条件①、条件②这两个条ABC D BC 4,3AB BD C π===件中选择一个作为已知,求:(1)角的大小;B (2)的面积.ACD条件①:②:.AD =3AC =【答案】(1),具体选择见解析;(26B π=【解析】选择条件①:(1)利用余弦定理即可求解;(2)由(1)可得为直角三角形,利用三角形的面积公式:即可求解.ABC in 12s S ab C =选择条件②:(1)利用正弦定理即可求解.(2)由(1)可得为直角三角形,利用三角形的面积公式:即可求解.ABC in 12s S ab C =【详解】选择条件①:解:(1)在中ABD △4,AB BD AD ==由余弦定理,得222cos 2AB BD AD B AB BD +-=⋅=因为,0B π<<所以.6B π=(2)由(1)知,,6B π=因为,所以.3C π=2BAC π∠=所以为直角三角形.ABC 所以,.3AC =6BC =又因为,所以.4BD =2CD =所以. 1sin 2ACD S AC CD C =⋅⋅ 1322=⨯⨯=选择条件②:解:(1)在中,.ABC 3,AC AB ==3C π=由正弦定理 ,得. sin sin AC AB B C =1sin 2B =由题可知,B C π<<=03所以.6B π=(2)由(1)知,,6B π=因为,所以.3C π=2BAC π∠=所以为直角三角形,ABC 得.6BC =又因为,所以.4BD =2CD =所以.1sin 2ACD S AC CD C =⋅⋅ 1322=⨯⨯=22.已知函数,.()ln f x x =()1g x ax =-(1)证明:;()2x f x <(2)若函数的图像与的图像有两个不同的交点,求实数的取值范围.()f x ()g x a 【答案】(1)证明见解析(2)()0,1【分析】(1)构造函数,利用导数求得,由此证得不等式成立.()()2x F x f x =-()0F x <(2)由分离常数,利用构造函数法,结合导数求得的取值范围.()()f x g x =a a 【详解】(1)令,则,()()ln 22x x F x f x x =-=-()11222x F x x x -'=-=当时,,单调递增,当时,,单调递减,02x <<()0F x '>()F x 2x >()0F x '<()F x ∴当时,取得最大值,∴,即.2x =()F x ()2ln 210F =-<()0F x <()2x f x <(2)由题意得,在时有两个解,即在时有两个解,ln 1x ax =-0x >ln 1x a x +=0x >令,则,()ln 1x G x x +=()221ln 1ln x x G x x x --'==-∴当时,,单调递增,当时,,单调递减,01x <<()0G x '>()G x 1x >()0G x '<()G x ,当时,,,,()11G =1x >()0G x >()111ln e 1e 0e G ---+==()2222ln e 11e 0e e G ----+-==<∴,∴实数的取值范围为.01a <<a ()0,1。

实验中学高二数学上学期第三次月考试题理含解析

实验中学高二数学上学期第三次月考试题理含解析
又 ,
所以 ,
所以 ,故选A.
8。若实数x、y满足 ,则 的取值范围是 ( )
A。 B。 C. D。
【答案】A
【解析】
由 满足的约束条件画出可行域,如图:
目标函数 表示区域内的动点 与定点 连线的斜率
由图可知 是 最小值,故 的取值范围是
故答案选
点睛:线性规划转化为几何意义, 转化为可行域内的点到点 连线的斜率,先画出可行域,然后计算出斜率范围.
∴∠A=60°.
在△ABC中,由正弦定理得sin B= ,
∵b2=ac,∠A=60°,
∴ = =sin 60°= .
19。解关于x的不等式ax2-(a+1)x+1〈0。
【答案】见解析
【解析】
【分析】
将不等式化为(ax-1)(x-1)<0,再对 的取值范围讨论,分类解不等式.
【详解】原不等式可化为(ax-1)(x-1)<0
16。设 为正数, ,则 的最大值是___________
【答案】
【解析】
【分析】
根据柯西不等式直接求最值.
【详解】
当且仅当 时取等号
,即 的最大值是
故答案为:
【点睛】本题考查利用柯西不等式求最值,考查基本分析求解能力,属基础题.
三、解答题(本大题共6小题,共70分.)
17.已知等差数列{an}中,a1=1,a3=﹣3.
(II)由(I)可知an=3﹣2n,
所以Sn= =2n﹣n2,
进而由Sk=﹣35,可得2k﹣k2=﹣35,
即k2﹣2k﹣35=0,解得k=7或k=﹣5,
又k∈N+,故k=7为所求.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.

陕西省咸阳市武功县普集高中2017-2018学年高二下学期

陕西省咸阳市武功县普集高中2017-2018学年高二下学期

普集高中2017-2018学年度第二学期高二年级第三次月考化学试题(考试时间:90分钟总分值:100分)AAAAA人:审题人:可能用到的相对原子质量: H 1 C 12 O 16 Br 80第一部分选择题(共54分)一.选择题(每小题只有一个答案符合题意,每小题3分,共54分)1. 以下实验装置一般不用于分离物质的是( )2.下列有机物不属于烃的衍生物的是( )3. 下列关系正确的是()A.熔沸点:戊烷>2,2 一二甲基戊烷>丙烷B.与钠反应的快慢:CH3CH2COOH>水>乙醇C.密度:H2O>CCl4>CHCl3D.水中溶解性:苯>乙醇4. 下列有机物可以形成顺反异构的是( )A.丙烯B. 2甲基2丁烯C.1氯1丙烯D. 2,3二甲基2丁烯5.含有一个三键的炔烃,氢化后的结构简式如下,此炔烃可能有的结构简式有( )A.4种B.3种C.2种D.1种6.已知卤代烃在一定条件下既可发生水解反应又可发生消去反应,现由2溴丙烷为主要原料制取1,2丙二醇时,需经过的反应是( )A.加成、消去、取代B.消去、加成、取代C.取代、消去、加成D.取代、加成、消去7. 某气态烷烃和气态单烯烃组成的混合气体,其密度是相同状况下H2密度的13倍,把标准状况下4.48L该混合气体通入足量的溴水中,溴水增重2.8g,则两种烃可能是()A. 甲烷和丙烯 B.乙烷和丙烯C. 乙烯和1-丁烯 D.甲烷和2-丁烯8. 有八种物质:①甲烷②苯③聚乙烯④聚异戊二烯⑤2丁炔⑥环己烷⑦邻二甲苯⑧环己烯,既能使KMnO4酸性溶液褪色,又能与溴水反应使之褪色的是( )A.①④⑤⑧B.②⑤⑥⑦⑧C.④⑤⑧D.③④⑦9. 能证明苯酚具有弱酸性的方法是( )①苯酚溶液加热变澄清②苯酚浊液中加NaOH后,溶液变澄清,生成苯酚钠和水③苯酚可与FeCl3反应④在苯酚溶液中加入浓溴水产生白色沉淀⑤苯酚能与Na2CO3溶液反应A.②⑤B.①②⑤C.③④D.③④⑤10.下列仪器的洗涤方法正确的是()①残留在试管内壁上的碘,用酒精洗涤。

陕西省咸阳市2020_2021学年高二数学下学期期末教学质量检测试题文含解析

陕西省咸阳市2020_2021学年高二数学下学期期末教学质量检测试题文含解析

某某省某某市2020-2021学年高二数学下学期期末教学质量检测试题文(含解析)一、选择题(共12小题,每小题5分,共60分).1.已知复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,则实数a等于()A.﹣3B.﹣2C.2D.32.复数z=(3+4i)(1﹣i)(其中i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.命题“∀x∈R,e x﹣x+5≥0”的否定是()A.∀x∈R,lnx+x+5<0B.∃x∈R,e x﹣x+5≥0C.∀x∈R,e x﹣x+5>0D.∃x∈R,e x﹣x+5<04.已知f(x)=e x cos x,且f(x)的导函数为f'(x),则f'(0)=()A.﹣1B.0C.1D.e5.已知点A(﹣7,0),B(7,0),动点P满足|PA|+|PB|=16,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆6.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件7.如图,某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.若元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为()A.0.196B.8.执行如图所示的程序框图,输出的s值为()A.B.C.2D.9.已知函数f(x)的导函数为f'(x),且y=f'(x)的图像如图所示,则下列结论一定正确的是()A.f(a)=0B.f(x)没有极大值C.x=b时,f(x)有极大值D.x=c时,f(x)有极小值10.已知命题p:∃x∈R,x﹣3>lnx,命题q:∀x∈R,x2>0,则()A.p∨q是假命题B.p∧q是真命题C.p∧(¬q)是真命题D.p∨(¬q)是假命题11.已知双曲线的左、右焦点分别为F1、F2,过F2作渐近线的垂线,垂足为P,O为坐标原点,且,则双曲线的离心率为()A.B.3C.D.12.若对于任意的0<x1<x2<a,都有,则a的最大值为()A.2e B.e C.1D.二、填空题(本大题共4小题,每小题5分,共20分)13.10X奖券中有4X“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一X奖券,甲先抽,乙后抽,则在甲中奖的条件下,乙没有中奖的概率为.14.已知复数z=﹣4+2i,则|z|=.15.若复数,则共轭复数=.16.椭圆的焦点为F1,F2,上顶点为A,若,则m=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=x3﹣3x+1.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的单调区间.18.已知抛物线C:y2=2px(p>0)的焦点为F,准线方程为x=﹣2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线l:y=x﹣2与抛物线C交于A,B两点,求|AB|.19.青少年近视问题已经成为我国面临的重要社会问题.对于这一问题,总书记连续作出重要指示,要求“全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来”.某机构为了解使用电子产品对青少年视力的影响,随机抽取了200名青少年,调查他们每天使用电子产品的时间(单位:分钟),根据调查数据按(0,30],(30,60],(60,90],(90,120],(120,150],(150,180]分成6组,得到如下频数分布表:时间/分钟(0,30] (30,60] (60,90] (90,120] (120,150] (150,180] 频数12 38 72 46 22 10 记每天使用电子产品的时间超过60分钟为长时间使用电子产品.(Ⅰ)完成下面的列联表;非长时间使用电子产长时间使用电子产品合计品患近视人数100未患近视人数80 合计200 (Ⅱ)判断是否有99.9%的把握认为患近视与每天长时间使用电子产品有关.附:,其中n=a+b+c+d.P(K2≥k0)k020.已知椭圆(a>b>0)的中心是坐标原点O,左右焦点分别为F1、F2,设P是椭圆C上一点,满足PF2⊥x轴,,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆左焦点且倾斜角为45°的直线l与椭圆C相交于A,B两点,求△AOB的面积.21.中国是世界上沙漠化最严重的国家之一,沙漠化造成生态系统失衡,可耕地面积不断缩小,对中国工农业生产和人民生活带来严重影响.随着综合国力逐步增强,西北某地区大力兴建防风林带,引水拉沙,引洪淤地,开展了改造沙漠的巨大工程,该地区于2017年投入沙漠治理经费2亿元,从2018年到2020年连续3年每年增加沙漠治理经费1亿元,近4年投入的沙漠治理经费x(亿元)和沙漠治理面积y(万亩)的相关数据如表所示:年份2017 2018 2019 2020x 2 3 4 5y26 39 49 54 (Ⅰ)通过绘制散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(结果保留3位小数)(Ⅱ)建立y关于x的线性回归方程,并预测2025年该地区沙漠治理面积是否可突破100万亩.参考公式:相关系数,线性回归方程的斜率和截距的最小二乘法估计分别为,.参考数据:,,,,.22.已知函数f(x)=e x﹣(k+1)lnx+2sinα.(Ⅰ)若函数f(x)在(0,+∞)上单调递增,某某数k的取值X围;(Ⅱ)当k=0时,证明:函数f(x)无零点.参考答案一、选择题(共12小题,每小题5分,共60分).1.已知复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,则实数a等于()A.﹣3B.﹣2C.2D.3解:因为复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,所以2a+1=a﹣2,则a=﹣3.故选:A.2.复数z=(3+4i)(1﹣i)(其中i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z=(3+4i)(1﹣i)=3﹣3i+4i﹣4i2=7+i,∴z在复平面内对应点的坐标为(7,1),位于第一象限.故选:A.3.命题“∀x∈R,e x﹣x+5≥0”的否定是()A.∀x∈R,lnx+x+5<0B.∃x∈R,e x﹣x+5≥0C.∀x∈R,e x﹣x+5>0D.∃x∈R,e x﹣x+5<0解:命题为全称命题,则命题的否定为∃x∈R,e x﹣x+5<0,故选:D.4.已知f(x)=e x cos x,且f(x)的导函数为f'(x),则f'(0)=()A.﹣1B.0C.1D.e解:因为f(x)=e x cos x,所以f'(x)=e x cos x﹣e x sin x,则f'(0)=e0cos0﹣e0sin0=1.故选:C.5.已知点A(﹣7,0),B(7,0),动点P满足|PA|+|PB|=16,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆解:由题可知,动点P是以A(﹣7,0),B(7,0),为焦点的椭圆,∵动点P满足|PA|+|PB|=16,∴2a=16,即a=8,c=7,∴b==,∴动点P的轨迹C的方程为:=1.故选:A.6.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解:在△ABC中,由sin A=⇔A=,或.∴“sin A=”是“A=”的必要非充分条件,故选:B.7.如图,某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.若元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为()A.0.196B.解:某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为:P×[1﹣(1﹣0.9)(1﹣0.8)]=0.686.故选:C.8.执行如图所示的程序框图,输出的s值为()A.B.C.2D.解:模拟程序的运行,可得:k=0,S=1,满足条件i<4,执行循环体,k=1,S=2,满足条件i<4,执行循环体,k=2,S=,满足条件i<4,执行循环体,k=3,S=,满足条件i<4,执行循环体,k=4,S=,此时,不满足条件i<4,退出循环,输出S的值为.故选:D.9.已知函数f(x)的导函数为f'(x),且y=f'(x)的图像如图所示,则下列结论一定正确的是()A.f(a)=0B.f(x)没有极大值C.x=b时,f(x)有极大值D.x=c时,f(x)有极小值解:由图象可知,设y=f′(x)的图象在原点与(c,0)之间的交点为(d,0),由图象可知f′(a)=f′(d)=f′(c)=0,当x<a时,f′(x)<0,f(x)单调递减,当a<x<d时,f′(x)>0,f(x)单调递增,当d<x<c时,f′(x)<0,f(x)单调递减,当c<x时,f′(x)>0,f(x)单调递增,所以x=a是f(x)的极小值点,x=d是函数f(x)的极大值点,x=c是f(x)的极小值点,x=b不是f(x)的极值点,f(a)=0不一定成立,故选:D.10.已知命题p:∃x∈R,x﹣3>lnx,命题q:∀x∈R,x2>0,则()A.p∨q是假命题B.p∧q是真命题C.p∧(¬q)是真命题D.p∨(¬q)是假命题解:命题p:根据函数y=x﹣3和函数y=lnx的图象,如图所示:即存在实数t﹣3>lnt成立,故命题p为真命题,命题q:当x=0时,∀x∈R,x2>0故命题q不成立,故q为假命题,故p∨q为真命题,p∧q为假命题,p∧(¬q)为真命题,p∨(¬q)为真命题,故选:C.11.已知双曲线的左、右焦点分别为F1、F2,过F2作渐近线的垂线,垂足为P,O为坐标原点,且,则双曲线的离心率为()A.B.3C.D.解:如图,不妨取渐近线为y=,焦点F2到渐近线y=的距离为b,则tan∠PF2O==,∴,则e===.故选:A.12.若对于任意的0<x1<x2<a,都有,则a的最大值为()A.2e B.e C.1D.解:∵,∴<,据此可得函数f(x)=在定义域(0,a)上单调递增,其导函数:f′(x)==﹣≥0在(0,a)上恒成立,据此可得:0<x≤1,即实数a的最大值为1.故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.10X奖券中有4X“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一X奖券,甲先抽,乙后抽,则在甲中奖的条件下,乙没有中奖的概率为.解:∵10X奖券中有4X“中奖”奖券,甲先抽,并且中奖,∴此时还有9X奖券,其中3X为“中奖”奖券,∴在甲中奖的条件下,乙没有中奖的概率P=.故答案为:.14.已知复数z=﹣4+2i,则|z|=.解:∵复数z=﹣4+2i,∴.故答案为:.15.若复数,则共轭复数=3+i.解:∵=,∴.故答案为:3+i.16.椭圆的焦点为F1,F2,上顶点为A,若,则m=.解:由题意可得c=,b=m,又∵∠F1AF2=,可得∠F1AO=,可得tan∠F1AO==,解得m=.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=x3﹣3x+1.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的单调区间.解:(1)f(x)=x3﹣3x+1,所以f(0)=1,又f'(x)=3x2﹣3,所以k=f'(0)=﹣3,故切线方3x+y﹣1=0.(2)f'(x)=3x2﹣3>0,则x>1或x<﹣1;f'(x)=3x2﹣3<0,则﹣1<x<1.故函数在(﹣∞,﹣1)和(1,+∞)上单调递增.在(﹣1,1)上单调递减.18.已知抛物线C:y2=2px(p>0)的焦点为F,准线方程为x=﹣2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线l:y=x﹣2与抛物线C交于A,B两点,求|AB|.解:(Ⅰ)∵抛物线C的准线方程为x=﹣2,∴,得p=4,故抛物线C的方程为y2=8x.(Ⅱ)显然直线l:y=x﹣2过焦点F(2,0),联立,消去y可得x2﹣12x+4=0,设A(x1,y1),B(x2,y2),则x1+x2=12,故|AB|=x1+x2+p=12+4=16.19.青少年近视问题已经成为我国面临的重要社会问题.对于这一问题,总书记连续作出重要指示,要求“全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来”.某机构为了解使用电子产品对青少年视力的影响,随机抽取了200名青少年,调查他们每天使用电子产品的时间(单位:分钟),根据调查数据按(0,30],(30,60],(60,90],(90,120],(120,150],(150,180]分成6组,得到如下频数分布表:时间/分钟(0,30] (30,60] (60,90] (90,120] (120,150] (150,180] 频数12 38 72 46 22 10 记每天使用电子产品的时间超过60分钟为长时间使用电子产品.(Ⅰ)完成下面的列联表;长时间使用电子产品合计非长时间使用电子产品患近视人数100未患近视人数80 合计200 (Ⅱ)判断是否有99.9%的把握认为患近视与每天长时间使用电子产品有关.附:,其中n=a+b+c+d.P(K2≥k0)k0解:(Ⅰ)由表中数据完成的列联表如下:长时间使用电子产品合计非长时间使用电子产品患近视人数20 100 120未患近视人数30 50 80 合计50 150 200 (Ⅱ)由列联表中的数据可得,,所以有99.9%的把握认为患近视与每天长时间使用电子产品有关.20.已知椭圆(a >b>0)的中心是坐标原点O,左右焦点分别为F1、F2,设P是椭圆C上一点,满足PF2⊥x 轴,,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆左焦点且倾斜角为45°的直线l与椭圆C相交于A,B两点,求△AOB的面积.解:(Ⅰ)由题意P是椭圆C上一点,满足PF2⊥x 轴,,离心率为.知,,所以.(Ⅱ)过椭圆左焦点(﹣,0)且倾斜角为45°的直线l,可知,联立直线l和椭圆C,有,有,设A(x1,y1),B(x2,y2),x1+x2=,x1x2=,有,所以.21.中国是世界上沙漠化最严重的国家之一,沙漠化造成生态系统失衡,可耕地面积不断缩小,对中国工农业生产和人民生活带来严重影响.随着综合国力逐步增强,西北某地区大力兴建防风林带,引水拉沙,引洪淤地,开展了改造沙漠的巨大工程,该地区于2017年投入沙漠治理经费2亿元,从2018年到2020年连续3年每年增加沙漠治理经费1亿元,近4年投入的沙漠治理经费x(亿元)和沙漠治理面积y(万亩)的相关数据如表所示:年份2017 2018 2019 2020x 2 3 4 5y26 39 49 54 (Ⅰ)通过绘制散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(结果保留3位小数)(Ⅱ)建立y关于x的线性回归方程,并预测2025年该地区沙漠治理面积是否可突破100万亩.参考公式:相关系数,线性回归方程的斜率和截距的最小二乘法估计分别为,.参考数据:,,,,.解:(Ⅰ)由题意可得,,,,所以,由于y与x的相关系数近似为0.998,说明y与x的线性相关程度相当高,从而可以用线性回归模型拟合y与x的关系;(Ⅱ)因为,,所以,又,,则,故y关于x的线性回归方程为,当x=10时,,所以2025年该地区沙漠治理面积可突破100万亩.22.已知函数f(x)=e x﹣(k+1)lnx+2sinα.(Ⅰ)若函数f(x)在(0,+∞)上单调递增,某某数k的取值X围;(Ⅱ)当k=0时,证明:函数f(x)无零点.解:(Ⅰ),x>0,∵函数f(x)在(0,+∞)上单调递增,∴在(0,+∞)上恒成立,即k+1≤xe x在(0,+∞)上恒成立,∵函数y=xe x在(0,+∞)上单调递增,且y∈(0,+∞),∴k+1≤0,即k≤﹣1,故实数k的取值X围是(﹣∞,﹣1].(Ⅱ)证明:当k=0时,,x>0,易知f'(x)为增函数,且,f'(1)=e﹣1>0,∴存在,使得f'(m)=0,得,故m=﹣lnm,当x∈(0,m)时,f'(x)<0,f(x)单调递减,当x∈(m,+∞)时,f'(x)>0,f(x)单调递增,∴,∴函数f(x)无零点.。

陕西省咸阳市2011-2012学年高二数学上学期期末质量检测试题 文 新人教A版

陕西省咸阳市2011-2012学年高二数学上学期期末质量检测试题 文 新人教A版

陕西省咸阳市2011~2012学年度第一学期期末质量检测高二数学(文科)试题第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 不等式2210x x -+≤的解集是( )A .{}1 B.∅ C.(,)-∞+∞ D. (,1)(1,)-∞+∞2. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是( ) A .28y x =- B. 24y x =- C .28y x = D. 24y x =3. 双曲线221169x y -=的焦点坐标是( )A . (、 B.(0,、 C .(4,0)-、(4,0) D.(5,0)-、(5,0)4. 在数列1, 1,2,3,5, 8,x ,21, 34, 55中,x 等于( ) A .11 B. 12 C. 13 D. 146. 不等式10x x->成立的充分不必要的条件是( ) A .1x > B. 1x >- C. 1x <-或01x << D. 10x -<<或1x > 7. (21)(4)0x y x y ++-+≤表示的平面区域为( )8.设()f x 在定义域内可导,()y f x =图像如右图,则导函数()y f x '=的图像可能为( )9.在正项等比数列{}n a 中,若569a a ⋅=,则31323331log log log log a a a a ++++等于( )A . 8 B. 10 C.12 D.2log 5a +10.过椭圆22221x y a b+=(0)a b >>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) A.B. C. 12 D. 13第Ⅱ卷 (非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上) 11. 命题“存在20,10x R x ∈+<”的否命题是 . 12.函数sin cos y x x =+在2x π=处的切线的倾斜角是 。

2023—2024学年陕西省咸阳市高二下学期期中数学(文科)试题(含答案)

2023—2024学年陕西省咸阳市高二下学期期中数学(文科)试题(含答案)

2023-2024学年陕西省咸阳市高二下册期中数学(文)试题一、单选题1.复数23i z =-的虚部为()A .3B .3-C .3iD .i3-【正确答案】B【分析】直接求出虚部即可.【详解】虚部为3-.故选:B.2.为了调查中学生近视情况,某校160名男生中有90名近视,150名女生中有75名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A .平均数B .方差C .回归分析D .独立性检验【正确答案】D【分析】近视与性别时两类变量,根据分类变量的研究方法即可确定答案.【详解】解:近视与性别时两类变量,在检验两个随机事件是否相关时,最有说服力的方法时独立性检验.故选:D.3.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A .14320r r r r <<<<B .41320r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<<【正确答案】A【分析】根据题中给出的散点图,先判断是正相关还是负相关,然后根据散点图的集中程度分析相关系数的大小【详解】解:由图可知,图2和图3是正相关,图1和图4是负相关,囷1和图2的点相对更加集中,所以相关性更强,所以1r 接近于1-,2r 接近1,所以14320r r r r <<<<,故选:A4.下列的三句话,若按照演绎推理的“三段论”模式,排列顺序正确的应是()①()cos y x x R =∈是周期函数;②()cos y x x R =∈是三角函数;③三角函数是周期函数;A .①②③B .②①③C .②③①D .③②①【正确答案】D【分析】本题可根据“三段论”的相关性质得出结果.【详解】由“三段论”易知:三角函数是周期函数,()cos y x x R =∈是三角函数,()cos y x x R =∈是周期函数,故选:D.5.用反证法证明命题“a ,b ,R c ∈,若0a b c ++>,则a ,b ,c 中至少有一个正数”时,假设应为()A .a ,b ,c 均为负数B .a ,b ,c 中至多一个是正数C .a ,b ,c 均为正数D .a ,b ,c 中没有正数【正确答案】D【分析】由反证法的概念判断即可.【详解】由题,“至少有一个”相对的情况就是“一个都没有”,故应假设a ,b ,c 中没有正数,故选:D6.已知x ,y 的取值如下表所示:x234y546如果y 与x 呈线性相关,且线性回归方程为72y bx =+,则b 等于()A .12-B .12C .110-D .110【正确答案】B【分析】求出x 、y 的值,将点(),x y 的坐标代入回归直线方程,即可求得实数b 的值.【详解】由表格中的数据可得23433x ++==,54653y ++==,将点(),x y 的坐标代入回归直线方程得7352b +=,解得12b =.故选:B.7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是()A .35B .59C .15D .110【正确答案】B【分析】根据给定条件,以第一次摸到正品的事件为样本空间,利用古典概率公式计算作答.【详解】用A 表示事件“第一次摸到正品”,B 表示“第二次摸到正品”,在事件A 发生的条件下,事件B 发生的概率,相当于以A 为样本空间,事件B 就是积事件AB ,显然()9n A =,()5n AB =,所以在第一次摸到正品的条件下,第二次也摸到正品的概率是()5(|)()9n AB P B A n A ==.故选:B8.设,R a b ∈,“复数i a b +是纯虚数”是“0a =”的()A .充分而不必要条件;B .必要不充分条件;C .充分必要条件;D .既不充分也不必要条件.【正确答案】A【分析】根据纯虚数的定义,结合充分性、必要性的定义进行求解即可.【详解】当i a b +是纯虚数时,一定有0a =,但是当0a =时,只有当0b ≠时,i a b +才能是纯虚数,所以“复数i a b +是纯虚数”是“0a =”的充分而不必要条件,故选:A9.已知复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,则复数12z z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】由123,12i 1i =+=-+z z ,代入复数12z z ,利用复数的除法运算和几何意义可得答案.【详解】因为复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,所以123,12i 1i =+=-+z z ,则复数()()()()1212i 13i 12ii 3111213i 1i 23i +--+-+-+-=-==-z z ,在复平面内对应的点1122,⎛⎫- ⎪⎝⎭位于第四象限.故选:D.10.若实数,a b满足12a b+=ab 的最小值为AB .2C.D .4【正确答案】C【详解】121200a b ab a b a b +=∴=+≥=∴≥ >,>,(当且仅当2b a =时取等号),所以ab的最小值为 C.基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.11.如图所示的是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴, ,按此规律,则第2022个图形用的火柴根数为()A .20192022⨯B .20192023⨯C .30332021⨯D .30332023⨯【正确答案】D【分析】根据已知条件,进行归纳推理即可求解.【详解】由图可知第1个图形用了31(11)32⨯⨯+=根火柴第2个图形用了32(21)92⨯⨯+=根火柴,第3个图形用了33(31)182⨯⨯+=根火柴,……归纳得,第n 个图形用了3(1)3(123)2n n n +++++= 根火柴,当2022n =时,3(1)303320232n n +=⨯.故选:D.12.学校开设了多种体有类的校本选修课程,以更好的满足学生加强体有锻炼的需要.该校学生小明选择确定后,有三位同学根据小明的兴趣爱好,对他选择的体育类的校本课程进行猜测.甲说“小明选的不是游泳,选的是武术”,乙说“小明选的不是武术,选的是体操”,丙说“小明选的不是武术,也不是排球”,已知这三人中有两个人说的全对,有一个人只说对了一半,则由此推断小明选择的体育类的校本课程是()A .游泳B .武术C .体操D .排球【正确答案】C【分析】根据题意,分别分析甲乙说的全对,甲丙全对,乙丙全对三种情况,分析即可得答案.【详解】若甲说的全对,则小明选的是武术,若乙说的全对,则小明选的是体操,矛盾,若甲说的全对,则小明选的是武术,若丙说的全对,则小明选的不是武术,矛盾,若乙说的全对,则小明选的是体操,若丙说的全对,不是武术也不是排球,满足题意,此时甲说的不是游泳正确,是武术错误,所以甲说的半对,满足题意,所以小明选择的是体操,故选:C 二、填空题13.若复数21iz =+,z 是其共轭复数,则z =_______.【正确答案】1i +/1i +【分析】根据复数的四则运算法则化简计算z ,再由共轭复数的概念写出z .【详解】化简()()()21i 222i 1i 1i 1i 1i 2z --====-++-,所以1i z =+.故1i+14.在等差数列{}n a 中,若50a =,则有1290a a a +++= 成立.类比上述性质,在等比数列{}n b 中,若91b =,则存在的等式为______.【正确答案】12171b b b = 【分析】由29117n n b b b +-=⋅,利用类比推理即可得出.【详解】利用类比推理,借助等比数列的性质可知29117n n b b b +-=⋅,即291172168101b b b b b b b ===== ,可知存在的等式为12171b b b = .故12171b b b = 15.执行下面的程序框图,若输入的0k =,0a =,则输出的k 为_______.【正确答案】4【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】输入0k =,0a =,则第一次循环:1a =,1k =,不符合判断框条件,继续循环;第二次循环:3a =,2k =,不符合判断框条件,继续循环;第三次循环:7a =,3k =,不符合判断框条件,继续循环;第四次循环:15a =,4k =,此时满足判断框条件10a >,退出循环,输出4k =.故416.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是1+3i,-i,2+i,则点D 对应的复数为_________【正确答案】3+5i【详解】试题分析:,,A B C 三点对应的复数分别是13,,2i i i +-+,(1,3),(0,1),(2,1)A B C ∴-,设(,)D x y ,则:(1,4),(2,1)AB DC x y =--=--,在平行四边形ABCD 中,有AB DC =,即(1,4)(2,1)x y --=--,213{{145x x y y -=-=∴⇒-=-=,即(3,5)D 对应的复数为.35i +故答案应填:35i +.复的几何意义.三、解答题17.计算:(1)(1)(1)(1)i i i +-+-+;(2)2020121()341i i i i+++--【正确答案】(1)1i +(2)4255i +【分析】(1)根据复数的运算法则可得结果;(2)根据复数的除法运算和乘法运算可得结果.【详解】(1)原式2111111i i i i =--+=+-+=+.(2)原式()()()()()()()2020212341343411i i i i i i i ⎛⎫+++ ⎪=+ ⎪-+-+⎝⎭()505451025ii -+=+12155i =-++4255i =+.18.当实数m 取何值时,在复平面内复数()()222334i z m m m m =--+--对应的点满足下列条件:(1)在实轴上;(2)z 是纯虚数.【正确答案】(1)1m =-或4m =(2)3m =【分析】(1)由虚部为0得出m 的值;(2)由纯虚数的定义得出m 的值.【详解】(1)复数z 在复平面内的坐标为22(23,34)m m m m ----因为复数z 对应的点在实轴上,所以2340m m --=,解得1m =-或4m =即1m =-或4m =(2)因为z 是纯虚数,所以2230m m --=且2340m m --≠,解得1m =-(舍)或3m =故3m =19.某机械厂制造一种汽车零件,已知甲机床的正品率是0.9,乙机床的次品率是0.2,现从它们制造的产品中各任意抽取一件.(1)求两件产品都是正品的概率;(2)求恰好有一件是正品的概率;(3)求至少有一件是正品的概率.【正确答案】(1)0.72(2)0.26(3)0.98【分析】(1)根据相互独立事件概率计算公式,计算出所求概率.(2)根据相互独立事件、互斥事件概率计算公式,计算出所求概率.(3)由(1)(2)求得至少有一件是正品的概率.【详解】(1)两件产品都是正品的概率为()0.910.20.72⨯-=.(2)恰好有一件是正品的概率为()()0.90.210.910.20.26⨯+-⨯-=.(3)由(1)(2)得至少有一件是正品的概率为0.720.260.98+=20.证明:(1)>(2)如果0,0,a b >>则ln ln ln22a b a b++≥.【正确答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的性质结合分析法证明即可;(2)由基本不等式结合ln y x =的单调性证明即可.【详解】(1>只需证22>即证1414+>+即证即证126>因为126>(2)当0,0a b >>时,a b +≥2a b+≥a b =时,等号成立ln y x = 在(0,)+∞上单调递增ln2a b+∴≥即11ln ln (ln ln )222a b ab a b +≥=+ln ln ln22a b a b ++∴≥21.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别抽查了两台机床生产的产品,产品的质量情况统计如下表:一级品二级品合计甲机床30乙机床40合计90200(1)请将上述22⨯列联表补充完整;(2)能否有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.100.050.0100.0050.001k 2.706 3.841 6.6357.87910.828【正确答案】(1)列联表见解析(2)有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异【分析】(1)直接计算补充列联表即可;(2)先计算2K ,再和10.828比较作出判断即可.【详解】(1)补充完整的22⨯列联表如下:一级品二级品合计甲机床3070100乙机床6040100合计90110200(2)∵()222003040706018.1810.82890110100100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异.22.“俯卧撑”是日常体能训练的一项基本训练,坚持做可以锻炼上肢、腰部及腹部的肌肉.某同学对其“俯卧撑”情况作了记录,得到如表数据.分析发现他能完成“俯卧撑”的个数y (个)与坚持的时间x (周)线性相关.x1245y5152535(1)求y 关于x 的线性回归方程y b x a ∧∧∧=+;(2)预测该同学坚持10周后能完成的“俯卧撑”个数.参考公式:121()()()niii nii x x y y b x x ∧==--=-∑∑,a y b x ∧∧=-,其中x ,y 表示样本平均值.【正确答案】(1)71y x ∧=-;(2)69个.【分析】(1)根据数据求得均值,代入公式求得回归方程;(2)令10x =代入预测出函数值.【详解】(1)由所给数据计算得1(1245)34x =⨯+++=,1(5152535)204y =⨯+++=,44211()()70,()10,i i i i i x x yy x x ==--=-=∑∑所以,41421()()70710()i i i i i x x y y b x x ∧==--===-∑∑1a yb x ∧∧=-=-故y 关于x 的线性回归方程是71y x ∧=-(2)令10x =,得710169,y ∧=⨯-=故预测该同学坚持10周后能完成69个“俯卧撑”.23.已知函数()ln 3f x a x x =+-.(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 的最小值为2-,求a 的值.【正确答案】(1)240x y --=(2)1a =-【分析】(1)求出函数的导数,根据导数的几何意义即可求得答案.(2)利用函数的导数判断函数的单调性,求得函数的最小值并令其等于-2,得到()1ln 10a a---=,构造函数()1ln 1x g x x =+-,利用导数确定a 的值.【详解】(1)∵()ln 3f x a x x =+-,∴()1a x a f x x x +'=+=,∴当1a =时,()12f =-,()12f '=,∴()221y x +=-,∴所求切线方程为240x y --=.(2)由(1)知,()x a f x x+'=,0x >.当0a ≥时,()0f x ¢>,()f x 在()0,∞+上单调递增,此时无最小值;当a<0时,令()0f x '=,得x a =-,当()0,x a ∈-时,()0f x '<;当(),x a ∈-+∞时,()0f x ¢>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增,∴()f x 的最小值为()()ln 32f a a a a -=---=-,则()1ln 10a a---=.令()1ln 1x g x x =+-,则()21x g x x -'=,∴当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>.∴()g x 在()0,1上单调递减,在()1,+∞上单调递增,∵()10g =,∴()0g x =有一个根1x =,∴1a -=,即1a =-.。

陕西省咸阳市实验中学2016-2017学年高二下学期期末检测数学(理)试题 (word版含答案)

陕西省咸阳市实验中学2016-2017学年高二下学期期末检测数学(理)试题 (word版含答案)

2016-2017学年度第二学期高二期末检测数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若复数满足,则A. B. C. D.2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是A. 0.2B. 0.8C. 0.2或0.8D. 0.163. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点(,);④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A. 0B. 1C. 2D. 34. 用反证法证明:若整系数一元二次方程有有理数根,那么中至少有一个是偶数.下列假设正确的是A. 假设都是偶数;B. 假设都不是偶数C. 假设至多有一个偶数D. 假设至多有两个偶数5. 过点O(1,0)作函数f(x)=e x的切线,则切线方程为()A. y=e2(x-1)B. y=e(x-1)C. y=e2(x-1)或y=e(x-1)D. y=x -16. 随机变量ξ服从二项分布ξ~B(n,P),且E(ξ)=300,D(ξ)=200,则等于()A. 3200B. 2700C. 1350D. 12007. 从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )A. B. C. D.8. 如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是()A. 双曲线的一支B. 抛物线的一部分C. 圆D. 椭圆9. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x +0.35,则下列结论错误的是( )A. 产品的生产能耗与产量呈正相关B. t的值是3.15C. 回归直线一定过(4.5,3.5)D. A产品每多生产1吨,则相应的生产能耗约增加0.7吨10. 将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A. 150B. 210C. 240D. 30011. 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A. B. 2 C. 1 D. 条件不够,不能确定12. 已知函数f(x)=x3+bx2+cx+d的图象如图,则函数的单调递减区间是()A. (-∞,-2)B. (-∞,1)C. (-2,4)D. (1,+∞)第Ⅱ卷(非选择题)二、填空题(本大题共4小题.把答案直接填在题中的相应横线上.)13. 直线是曲线的一条切线,则实数的值为____________14. 连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=________.15. 已知,则的值等于________.16. 已知函数,如果存在,使得对任意的,都有成立,则实数a的取值范围是__________.三、解答题(本大题共6小题.解答应写出文字说明、证明过程或演算步骤.)17. 在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.18. 设正项数列的前项和为,且,(1)求,并猜想数列的通项公式(2)用数学归纳法证明你的猜想.19. 某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写出结果,不写过程);(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.20. 如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F 是PC的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小..21. 已知函数(a<0).(Ⅰ)当a=-3时,求f(x)的单调递减区间;(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围;参考答案:1【答案】C2【答案】C3【答案】D4【答案】B5【答案】A6【答案】B7【答案】B8【答案】D9【答案】B10【答案】A11【答案】C12【答案】A13【答案】14【答案】15【答案】16【答案】17.解:(1)第3项的二项式系数为C=15,又T3=C (2)42=24·Cx,所以第3项的系数为24C=240.(2)T k+1=C (2)6-k k=(-1)k26-k Cx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.18.解:(1)当时,,∴或(舍,).当时,,∴.当时,,∴.猜想:.(2)证明:①当时,显然成立.②假设时,成立,则当时,,即∴.由①、②可知,,.19.解:(Ⅰ)由茎叶图可得.(Ⅱ)由题可知X取值为0,1,2.,,,所以X的分布列为:所以.(Ⅲ)由茎叶图可得,甲班有4人及格,乙班有5人及格.设事件A=“从两班这20名同学中各抽取一人,已知有人及格”,事件B=“从两班这20名同学中各抽取一人,乙班同学不及格”.则.20解:(Ⅰ)连接BD,设AC∩BD=O,连结OE,∵四边形ABCD为矩形,∴O是BD的中点,∵点E是棱PD的中点,∴PB∥EO,又PB平面AEC,EO平面AEC,∴PB∥平面AEC.(Ⅱ)由题可知AB,AD,AP两两垂直,则分别以、、的方向为坐标轴方向建立空间直角坐标系.明确平面DAF的一个法向量为,利用二面角公式求角.设由可得AP=AB,于是可令AP=AB=AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(1,1,1)设平面CAF的一个法向量为.由于,所以,解得x=-1,所以.因为y轴平面DAF,所以可设平面DAF的一个法向量为.由于,所以,解得z=-1,所以.故.所以二面角C—AF—D的大小为60°.点睛:立体几何是高中数学的重要内容之一,也历届高考必考的题型之一.本题考查是空间的直线与平面的平行问题和空间两个平面所成角的范围的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线PB与EO平行,再推证PB∥平面AEC即可.关于第二问中的二面角的余弦值的问题,解答时巧妙运用建构空间直角坐标系,探求两个平面的法向量,然后运用空间向量的数量积公式求出二面角的余弦值21.解(Ⅰ)∵a=-3,∴,故令f′(x)<0,解得-3<x<-2或x>0,即所求的单调递减区间为(-3,-2)和(0,+∞)(Ⅱ)∵(x>a)令f′(x)=0,得x=0或x=a+1(1)当a+1>0,即-1<a<0时,f(x)在(a,0)和(a+1,+∞)上为减函数,在(0,a+1)上为增函数.由于f(0)=aln(-a)>0,当x→a时,f(x)→+∞.当x→+∞时,f(x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点.即当-1<a<0对,f(x)有且仅有一个零点;(2)当a=-1时,,∵,∴f(x)在(a,+∞)单调递减,又当x→-1时,f(x)→+∞.当x→+∞时,f(x)→-∞,故函数f(x)有且仅有一个零点;(3)当a+1<0即a<-1时,f(x)在(a,a+1)和(0,+∞)上为减函数,在(a+1,0)上为增函数.又f(0)=aln(-a)<0,当x→a时,f(x)→+∞,当x→+∞时,f (x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点;综上所述,所求的范围是a<0.。

【2014咸阳三模】陕西省咸阳市2014届高三下学期第三次模拟考试数学文试题 扫描版含答案

【2014咸阳三模】陕西省咸阳市2014届高三下学期第三次模拟考试数学文试题 扫描版含答案

2014年咸阳市高考模拟检测(三)数学(文科)试题2014年咸阳市高考模拟考试试题(三)文科数学答案一、 选择题:(每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 选项 BDBCCDAACD二、填空题:(本大题共5小题,每小题5分,共25分)11、28y x =; 12、()24621n n n ++++=+;13、8π;14、14或6π-;15、A 、{}2a a <;B 、72;C 、2π. 三、解答题:(共75分)16.解:(Ⅰ)11=a ,2a 是1a 和13-a 的等差中项,得22a =1a +13-a =3a ;又}{n a 为等比数列,2112q a q a =,2=q 所以; ---------------------3分 所以 12-=n n a ; -----------------------6分(Ⅱ)由)(*N n a n b n n ∈+=12-+=n n n b所以 )2222()321(12321-++++++++=++++=n n n n b b b b S=122)1(-++n n n ; ---------------------12分 17.解:(Ⅰ)如图,在直角坐标系xoy 中作单位圆o ,当,αβ为锐角时作出角,αβ,其终边分别交单位圆于,A B 两点, 则()cos ,sin A αα()cos ,sin B ββ,()()-------------5OA OB OA OB αβαβαβαβ⋅=-=-=+cos cos cos cos sin sin 分由诱导公式可以得到,αβ为任意角时上式也成立 --------6分 (Ⅱ)∵()0απ∈,,35α=-cos ∴4sin 5α= ------9分 又32422444525210πππααα⎛⎫⎛⎫-=+=-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭cos cos cos sin sin .------12分 18.证明:(Ⅰ)∵ABCD 为正方形,∴AC BD ⊥∵'CC ABCD ⊥平面,∴'BD CC ⊥ --------3分又'CC AC C ⋂=,∴'A'BD ⊥平面ACC , ∵BD ⊆平面BDE∴平面BDE ⊥平面ACC'A' -------6分 (Ⅱ)∵P BDE B PDE V V --=由D C B A ABCD ''''-是长方体,∴BC ⊥平面''CC D D ,即三棱锥B PDE -的高2BC = 底面三角形PBE 面积''CC'D'D 111113-S121121222224PBEDCEEC P PD DSS SS=--=⨯-⨯⨯-⨯⨯-⨯⨯=矩形1312342P BDE B PDE V V --==⨯⨯= --------------------12分19.解:(Ⅰ)根据分层抽样的定义,知抽取男生130人,女生70人,不喜欢运动喜欢运动 合计 女生 50 20 70 男生 50 80 130 合计100100200-------------4分(Ⅱ)由直方图知在[)70,60内的人数为4人,设为,,,a b c d . 在[)50,40的人数为2人,设为,A B .从这6人中任选2人有AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd 共15种情况-------------8分 若[)70,60,∈y x 时,有,,,,,ab ac ad bc bd cd 共六种情况. 若[)50,40,∈y x 时,有AB 一种情况. 事件A “她们在同一区间段”所包含的基本事件个数有617+=种, 故 157)P(A =答:两名女生的运动时间在同一区间段的概率为157. --------12分20、解:(Ⅰ)∵12PF F ∆周长为6,离心率12e =,∴22612a c c a +=⎧⎪⎨=⎪⎩解得2,1,3a cb ==∴=所求椭圆C 的方程为22143x y += -------------5分(Ⅱ)由已知设直线AB 方程为()y k x c =-,则()()20,,,0M kc F c -,∵2MB BF =,∴,22c kc B ⎛⎫- ⎪⎝⎭.-------------7分又因为点B 在椭圆C 上,∴22222144c k c a b +=,则()2222222222244471442a c cb ac k a c a c -⎛⎫-=-=⋅≤ ⎪⎝⎭-------------9分∴422481720a a c c -+≤,即4221780e e -+≤()()222180ee --≤,2182e ≤≤,因为椭圆的离心率小于1 ∴212e ≤< -------------13分 21、解:(Ⅰ)求导'11()1xf x x x-=-=,由'()0f x =,得1x =. 当()0,1x Î时,'()0f x >; 当()1,x ? 时,'()0f x <.所以,函数()y f x =在()0,1上是增函数,在()1,+ 上是减函数. -------------5分 (Ⅱ) 令()()()()ln 12h x f x g x x m x =-=-++ 则()()'11h x m x=-+ 因为0m >,所以10m +>,由()'0h x =得11x m=+ 当10,1x m 骣÷çÎ÷ç÷桫+时,'()0h x >,()h x 在10,1m 骣÷ç÷ç÷桫+上是增函数; 当1,1x m 骣÷ç? ÷ç÷桫+时,'()0h x <,()h x 在1,1m骣÷ç+ ÷ç÷桫+上是减函数. 所以,()h x 在()0,+ 上的最大值为()1()1ln 101h m m=-+ +,解得1m e ≥-所以当1m e ≥-时()()f x g x ≤恒成立. -------------10分 (Ⅲ)由题意知, ln 2,b a a =++ .由(Ⅰ)知()ln 1(1)f x x x f =-+ ,即有不等式()ln 10x x x ?>.于是 l n 21221b a a a a a =++?++=+ 即 21b a - -------------14分。

【解析】陕西省咸阳市2014届高三下学期第二次模拟考试数学(文)试题

【解析】陕西省咸阳市2014届高三下学期第二次模拟考试数学(文)试题

【解析】陕西省咸阳市2014届高三下学期第二次模拟考试数学(文)试题第I 卷(选择题共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小 题,每小题5分,共50分). 1.已知全集U=R ,集合A={x |2x>1},B={x |-4<x <1},则A∩B 等于( ) A.(0,1) B.(1,+∞) C.(一4,1) D.(一∞,一4) 【答案】A【 解析】因为集合A={x |2x>1}{}=|0x x >,B={x |-4<x <1},所以A∩B =(0,1)。

2.已知i 为虚数单位,复数z =i (2一i )的模|z |=( )A. 1B. C D.3【答案】C【 解析】因为z =i (2一i )12,i =+ 3、在等差数列{n a }中,已知a 1+a 7=10,则a 3+a 5=A 、7B 、8C 、9D 、10 【答案】D【 解析】易知:在等差数列{n a }中,a 3+a 5=a 1+a 7=10。

4.设,a b 是两个非零向量,则“a b >0"是“,a b 夹角为锐角”的( ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】B【 解析】若“a b >0",则,a b 夹角为锐角或0;若,a b 夹角为锐角,则“a b >0"。

所以“a b >0"是“,a b 夹角为锐角”的必要不充分条件。

5.在“魅力咸阳中学生歌手大赛”比赛现场上七位评委为某选手打 出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后, 所剩数据的平均数和方差分别为( ) A.5和1.6 B 、85和1.6 C. 85和0.4 D. 5和0.4 【答案】B【 解析】()24446718085,11114 1.655x s ++++=+==++++=。

6.设l ,m 是两条不同直线,α,β是两个不同平面,则下列命题中正确的是( ) A.若l //α,α∩β=m ,则l // m B.若l ⊥α,l //β,则α⊥β C.若l //α,m //α,则l // m D.若l //α,m ⊥l ,则m ⊥α 【答案】B【 解析】A.若l //α,α∩β=m ,则l // m ,错误; B.若l ⊥α,l //β,则α⊥β,正确;C.若l //α,m //α,则l // m ,错误,l 与m 可能平行、相交或异面;D.若l //α,m ⊥l ,则m ⊥α,错误,m 与α可能平行、相交或在平面内。

陕西省咸阳市秦都区高新第一中学高二化学下学期期末试题含解析

陕西省咸阳市秦都区高新第一中学高二化学下学期期末试题含解析

陕西省咸阳市秦都区高新第一中学高二化学下学期期末试题含解析一、单选题(本大题共15个小题,每小题4分。

在每小题给出的四个选项中,只有一项符合题目要求,共60分。

)1. 有人认为CH2 = CH2与Br2的加成反应,实质是Br2先断裂为Br+ 和Br-,然后Br+首先与CH2 = CH2一端碳原子结合,第二步才是Br-与另一端碳原子结合。

根据该观点如果让CH2 = CH2与Br2在盛有NaCl和NaI的水溶液中反应,则得到的有机物不可能的是()A.BrCH2CH2Br B.ClCH2CH2Cl C.BrCH2CH2I D.BrCH2CH2Cl参考答案:B略2. 下列关于电解质溶液的叙述正确的是A.常温下物质的量浓度相等①NH4HSO4、②(NH4)2SO4、③(NH4)2CO3三种溶液中c(NH4+)①<②<③B.在纯水中加入少量硫酸或硫酸铵,均可抑制水的电离C.中和pH与体积均相同的盐酸和醋酸溶液,消耗NaOH的物质的量相同D.常温下,同浓度的Na2S与NaHS溶液相比,Na2S溶液的pH大参考答案:D略3. 室内空气污染的主要来源之一是现代人的生活中使用的化工产品。

如泡沫绝缘材料的办公用品、化纤地毯及书报、油漆等不同程度释放出的气体。

该气体可能是 ( )A.甲醛 B.甲烷 C.一氧化碳D.二氧化碳参考答案:A略4. 已知甲、乙、丙、X是4种中学化学中常见的物质,其转化关系符合下图。

则甲和X(要求甲和X互换后也能符合要求)不可能是①Na2CO3溶液和稀盐酸②Cl2和Fe ③C和O2④SO2和NaOH溶液⑤AlCl3溶液和NaOH溶液A.②③④均可以 B.③④⑤均可以 C.①③⑤均可以 D.①③④均可以参考答案:A略5. 下列现象中与水体污染无直接关系的是()A.自然降水的pH<7B.自然水资源短缺C.水中生态系统遭到破坏D.水体产生异味参考答案:A由于空气中含有CO2,CO2+H2O H2CO3H++H pH<7。

实验中学高二数学下学期第二次月考试题理含解析

实验中学高二数学下学期第二次月考试题理含解析
10. 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A. 144B。120C. 72D. 24
【答案】D
【解析】
试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有 种
考点:排列、组合及简单计数问题
11。若随机变量 ,则 最大时, 的值为( )
A. 1或2B. 2或3C. 3或4D。 5
【答案】D
【解析】
【分析】
由 ,两边取对数得,化简得 ,构造函数 ,然后作图可求得答案。
【详解】由 ,两边取对数得, ,然后化简得 ,
设 ,然后可以画出 的图像,如图,
明显地,当 ,且 时,只有阴影部分内的取值能成立,此时, 和 的取值在阴影部分,即 ,从图像观察可得, 的最大值是 ,没有最小值,但是 ,综上, 的范围为
【点睛】本题考查了根据函数过点和公切线求参数,求公切线,意在考查学生的计算能力和转化能力。
20。“石头、剪刀、布"是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势 次记为 次游戏,“石头”胜“剪刀”,“剪刀"胜“布”,“布”胜“石头";双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的。
4。从集合{0,1,2,3,4,5,6}中任取两个互不相等的数 , 组成复数 ,其中虚数有( )
A。 30个B. 42个C. 36个D。 35个
【答案】C
【解析】
【详解】解:∵a,b互不相等且为虚数,
∴所有b只能从{1,2,3,4,5,6}中选一个有6种,
a从剩余的6个选一个有6种,
∴根据分步计数原理知虚数有6×6=36(个).

2017-2018学年高中数学专题03破译三角函数图像变换问题特色专题训练新人教A版必修4

2017-2018学年高中数学专题03破译三角函数图像变换问题特色专题训练新人教A版必修4

12专题03破译三角函数图像变换问题、单选题1.【湖北省咸宁市2018届高三重点高中11月联考】若函数f x =cos2x , g x ]=sin j 2x -石【答案】【解析】/(+COS 2JC :+sin I 2x —— =cos2x4JT曲线 严 列乂)向左平移壬个单位长度后的解折式为:6本题选择E 选项.2•【山西省芮城中学 2018届高三期中】函数 f (x ) = Asin (G0x + W )(其中A A O ,申 <:丄)的图象过点2,0 ,—, -1,如图所示,为了得到 g x ;=cos2x 的图象,则只要将 f x 的图象()312曲线B .曲线y 二g x 向左平移 C .曲线 y = f x 向右平移 D .曲线 丄个单位长度后得到曲线6■JT个单位长度后得到曲线6—个单位长度后得到曲线12—个单位长度后得到曲线126丿即/(x )+^(x) =A. 向右平移二个单位长度6B. 向右平移个单位长度1233【答案】D+ 卩= --- 2A H (A:E Z) — +2lac(k e Z) 23It和八、 .K-(P — — > J (x) = SID I 2x4-—C.向左平移'个单位长度 6D.向左平移个单位长度12【解析】12 3TSJD3it71 1C — cos2x — sin 2无+—2 3二肚2 "12点睛:已知函数 y=Asi nicx 」‘LB (A -0,八>0)的图象求解析式 (1)y max — y min y max yminA, B =一 2由函数的周期T 求co ,T = 利用“五点法”中相对应的特殊点求:.【广东省执信中学 2017-2018学年高二上学期期中】将函数 y=Sin j 2x ' 的图象向右平移 一个单位2长度,所得图象对应的函数■: 7 二■: 7 二A 在区间[,]上单调递减B 在区间[,]上单调递增12 12 12 12J [ JEJ [ J [C.在区间^-,-]上单调递减D在区间[wy 上单调递增【答案】B兀【解析】将函数向右平移个单位长度得:((y =sin 2 x 一一J T(二 sin I 2x- 3 ,所以当7 2 二二二时,2x ,—12 3IL 2 24 •【陕西省西安市长安区2018届高三上学期质量检测】把函数.的图象上个点的横坐标缩短到原61 TI来的(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为23A B.c D (%)4【答案】D【解析】根据题意函数尸血时勺)的图象上个点的横坐标缩短到原来的k纵坐标不知,可得厂血伍昇6 2I创再将團象向右平移*单位,可得:V J sin|2 (x)+ -] = sin —)- ~cos2x^3 3 6 22K ■- + kn*2可得:x«- + -kn, kE疋"4 2当k・0时,可得对称中点为(:0).4故选ZZf x二cosi2x • 的图象,只需将函数I 6丿g x 二sin2x 的图象()A向左平移一个单位6C. 向左平移二个单位3【答案】A B向右平移一个单位6D向右平移少个单位3,所以函数单调递增,故选 B.125.【山东省莱芜市2018届高三上学期期中】要得到函数f x i = sin 「x ■ ' (其中)的图象如图2所示,为了得到 y 二cos 「x 的图象,只需把 y 二f x 的图象上所有点()【解析】g x 二 sin2x =cos所以向左平移n 二26 个单位,选A2 66 •【辽宁省沈阳市交联体2018届高三上学期期中】函数C.向左平移二个单位长度6【答案】AT 7 7T更jr 【解析】根据函数的^m-=—4 122九"所以:T^JL9<D=——=2>当沪彳时,函数fyr jr即:/ ( —) =sin (2x — +<p) =0.解得所以:f (x) =sin( 2x+ —).要得到y=cos2x的图象只需将函数 f (x) =sin(2x< )向左平移.个单位长度,3 12n 兀即y=sin (2x+ + ) =cos2x.6 3故选:A.点睛:已知函数y=Asi n[cx」‘LB(A 0^ 0)的图象求解析式(1 )2■:人=涯沁,ymin.(2)由函数的周期T求,T =2 2 ⑷利用“五点法”中相对应的特殊点求:.【豫西南部分示范性高中2017-2018年高三年级第一学期联考】已知函数f X =sin 2x,为得到B.向右平移.个单位长度12D.向右平移二个单位长度6A向左平移.个单位长度123A 向左平移二个单位长度 B.向左平移.个单位长度612C.向右平移二个单位长度D.向右平移二个单位长度612【答案】A【解析】函数 g x 二 cosi2x sin ;2xsin 12x —• I 6丿 126丿 J 3丿函数f (x )=s in ”2x +工1= sin |2 " x +丄1+》=sin " 2x +2兀】=g ( x ),是向左平移了工个单位长 2 V 3丿 [16丿3 一 V 3丿“丿 6度。

高三理综3月月考试题(扫描版)(2021年整理)

高三理综3月月考试题(扫描版)(2021年整理)

陕西省咸阳市2017届高三理综3月月考试题(扫描版)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省咸阳市2017届高三理综3月月考试题(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省咸阳市2017届高三理综3月月考试题(扫描版)的全部内容。

陕西省咸阳市2017届高三理综3月月考试题(扫描版)
21。

陕西省咸阳市2023届高三三模文科数学试题

陕西省咸阳市2023届高三三模文科数学试题

陕西省咸阳市2023届高三三模文科数学试题
学校:___________姓名:___________班级:___________考号:___________
二、填空题
13.若一数列为2,7,14,23,×××,则该数列的第8个数是________.
三、解答题
17.从某市统考的学生数学考试卷中随机抽查100份,分别统计出这些试卷总分,由总分得到如图所示的频率分布直方图.
(1)求这100份数学试卷的样本平均分(同一组中的数据用该组区间的中点值作代表);(2)在样本中,按照分层抽样从数学成绩不低于125分的试卷中抽取6份,再从抽取的试卷中随机抽取出2份试卷进行答卷分析,求至少有一份试卷成绩不低于135分的概率.
18.如图,三棱柱111ABC A B C -的侧面11BB C C 是边长为1的正方形,侧面11BB C C ^侧
17.(1)100。

陕西省咸阳市兴平市南郊高级中学2022届高三下学期三模理科数学试题(3)

陕西省咸阳市兴平市南郊高级中学2022届高三下学期三模理科数学试题(3)

一、单选题二、多选题1.已知直线与双曲线的右支有两个交点,则的取值范围为( )A.B.C.D.2. i是虚数单位,( )A.B.C.D.3. 已知的展开式中所有项的系数之和为-64,则其常数项为( )A .-25B .-5C .20D .554. 已知椭圆的左焦点为,离心率为.倾斜角为的直线与交于两点,并且满足,则的离心率为( )A.B.C.D.5. 已知函数,若把的图象上每个点的横坐标缩短为原来的倍后,再将图象向右平移个单位,可以得到,则下列说法不正确的是( )A.B.的周期为C .的一个单调递增区间为D .在区间上有5个不同的解,则的取值范围为6. 已知函数定义域是,则的定义域是( )A.B.C.D.7. 在棱长为1的正方体中,是正方形的中心,则直线与直线所成角的余弦值为()A.B.C.D.8.记为数列的前项和,若,则( )A .﹣1024B .﹣1023C .1023D .10249. 对任意实数,,,给出下列命题,其中假命题是( )A .“”是“”的充要条件B .“”是“”的充分条件C .“”是“”的必要条件D .“是无理数”是“是无理数”的充分不必要条件10.定义在上的函数,是的导函数,且恒成立,则( )A.B.陕西省咸阳市兴平市南郊高级中学2022届高三下学期三模理科数学试题(3)陕西省咸阳市兴平市南郊高级中学2022届高三下学期三模理科数学试题(3)三、填空题四、解答题C.D.11. 在直三棱柱中,,,,三棱锥的体积为,点M ,N ,P 分别为AB ,BC ,的中点,则下列说法正确的是( )A.B .直线与直线PN 为异面直线C .平面ABP⊥平面D.三棱柱外接球的体积为12.将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则的值可能为( )A.B .2C .3D .413. 农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,古称“角黍”.如图,是由六个边长为3的正三角形构成的平行四边形形状的纸片,某同学将其沿虚线折起来,制作了一个粽子形状的六面体模型,则该六面体的体积为________;若该六面体内有一球,则该球体积的最大值为_________.14.四棱锥中,底面为矩形,,四条侧棱长度均相等.若平面平面,则该四棱锥的高为__________;二面角的余弦值为__________.15. 函数的定义域是_____________.16. 在中,角A ,B ,C的对边分别为,且.(1)求角A 的大小;(2)若是线段的中点,且,求的面积.17.已知点点在圆上运动,点为线段的中点.(1)求点的轨迹方程;(2)求点到直线的距离的最大值和最小值.18. 在圆心为、半径为常数的半圆板内画内接矩形(如图),当矩形的长和宽各取多少时,矩形的面积最大?求出这个最大面积.19. 已知.(1)求的单调递增区间及其图象的对称轴;(2)当时,求的值域.20. 某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.(单位:人次)满意度老年人中年人青年人自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)2263412分(不满意)116232(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐?(2)为了和顾客进行深入沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式?21.已知等差数列的前n项和为.(1)求q 的值;(2)若与的等差中项为18,满足,求数列的前n 项和.。

陕西省咸阳市武功县普集高级中学2023届高三下学期五模文科数学试题

陕西省咸阳市武功县普集高级中学2023届高三下学期五模文科数学试题

一、单选题二、多选题1.已知双曲线的左右焦点,,是双曲线上一点,,则( )A .1或13B .1C .13D .92. 已知a ,b满足,,其中e 是自然对数的底数,则ab 的值为( )A .B.C.D.3.记为等差数列的前项和.若,,则的公差为( )A .1B .2C .4D .84.已知球的半径为,三点在球的球面上,球心到平面的距离为,,则球的表面积为( )A.B.C.D.5. 已知,,,则,,之间的大小关系为( )A.B.C.D.6. 已知集合,,是实数集,则( )A.B.C.D .以上都不对7. 复数z满足,则( )A.B.C.D.8. 复数的共轭复数是( )A.B.C.D.9.已知等差数列中,,公差为,,记为数列的前n 项和,则下列说法正确的是( )A.B.C .若,则D .若,则10.若函数的图象上存在两点,使得的图象在这两点处的切线互相垂直,则称具有T 性质.下列函数中具有T 性质的是( )A.B.C .,D.11. “世界杂交水稻之父”袁隆平发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系.某水稻种植研究所调查某地杂交水稻的株高,得出株高(单位:cm )服从正态分布,其分布密度函数,,则( )A .该地杂交水稻的平均株高为100cmB .该地杂交水稻株高的方差为10C .该地杂交水稻株高在120cm 以上的数量和株高在80cm 以下的数量一样多陕西省咸阳市武功县普集高级中学2023届高三下学期五模文科数学试题陕西省咸阳市武功县普集高级中学2023届高三下学期五模文科数学试题三、填空题四、解答题D .随机测量该地的一株杂交水稻,其株高在和在的概率一样大12. 已知α,β是两个不重合的平面,m ,n 是两条不重合的直线,则下列命题正确的是( )A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,m ∥n ,n ∥β,则α∥β13.设为坐标原点,双曲线的左、右焦点分别是,若双曲线的离心率为,过作的一条渐近线的垂线,垂足为,则______.14. 如图,在水平放置的直径与高相等的圆柱内,放入两个半径相等的小球球A 和球,圆柱的底面直径为,向圆柱内注满水,水面刚好淹没小球则球A 的体积为________,圆柱的侧面积与球B 的表面积之比为___________.15.等比数列的前项和为,且,,成等差数列,则______.16.已知数列的前n项和为,且,数列为等差数列,,且.(1)求数列,的通项公式;(2)对任意的正整数n ,有,求证:.17. 已知,函数.(1)求的单调区间.(2)讨论方程的根的个数.18. 2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布.(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,,其中.根据所给的统计量,求y 关于x 的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.附:若随机变量,则;对于一组数据,其回归线的斜率和截距的最小二乘估计分别为.19. 已知正项数列满足:,数列的前项和为,且满足,.(1)求数列和的通项公式;(2)设,数列的前项和为,求证:.20. 已知满足___________,且,,求的值及面积.从①②③这三个条件中选一个,补充上面的问题中,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.21. 如图,在四棱锥A-BCDE中,底面BCDE为矩形,M为CD中点,连接BM,CE交于点F,G为△ABE的重心.(1)证明:平面ABC(2)已知平面ABC⊥BCDE,平面ACD⊥平面BCDE,BC=3,CD=6,当平面GCE与平面ADE所成锐二面角为60°时,求G到平面ADE的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省咸阳市2017-2018学年高二下学期第三次月考
数学(文)试题
(总分150分 时间:120分钟)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设复数z 满足(1+i)z=2,其中i 为虚数单位,则Z= ( )
A .1+i
B .1-i
C .2+2i
D .2-2i
2. “2x >”是“24x >”的 ( )
A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
3..设x ,y ∈R,x 2+2y 2=6,则x+y 的最小值是( ) A.2 B.- C.-3 D.-
4.直线⎩⎨⎧ x =4-3t ,
y =5+3t (t 为参数)上与点P (4,5)的距离等于2的点的坐标是( )
A .(-4,5)
B .(3,6)
C .(3,6)或(5,4)
D .(-4,5)或(0,1)
5.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )
A .x 与y 正相关,x 与z 负相关
B .x 与y 正相关,x 与z 正相关
C .x 与y 负相关,x 与z 负相关
D .x 与y 负相关,x 与z 正相关
6. 通过随机询问200名性别不同的大学生是否爱好“踢毽子运动”,计算得到统计量值2κ的观测值892.4≈k ,参照下表,得到的正确结论是( )
A .在犯错误的概率不超过5%的前提下,认为“爱好该运动与性别有关”
B. 在犯错误的概率不超过5%的前提下,认为“爱好该运动与性别无关”
C. 有99%以上的把握认为“爱好该运动与性别有关”
D .有99%以上的把握认为“爱好该运动与性别无关”
7.极坐标方程ρ=cos θ和参数方程(t 为参数)所表示的图形分别是( )
A .圆、直线
B .直线、圆
C .圆、圆
D .直线、直线
8. 圆θθρsin 35cos 5+=的圆心坐标是 ( )
A .4(5,)3
π-- B .(5,)3π- C .(5,)3π D .5(5,)3π- 9.焦点为
1016(,)的抛物线的标准方程为 ( ) A .214y x = B. 214y x = C. 218y x = D. 218
y x = 10.直线⎩⎪⎨⎪⎧ x =4t ,
y =2-2t (t 为参数)与椭圆⎩⎪⎨⎪⎧
x =4cos θ,y =2sin θ(θ为参数)的交点坐标是( ) A .(0,2)或(2,0) B .(4,0)或(0,4) C .(0,2)或(4,0) D .(4,2) 11.“因为指数函数x a y =是增函数(大前提),而x y )31
(=是指数函数(小前提), 所以x
y )31(=是增函数(结论)”,上面推理错误的是( )
A .大前提错误导致结论错
B .小前提错误导致结论错
C .推理形式错导致结论错
D .大前提和小前提错都导致结论错
12. 若x ,y >0,且x +2y =3,则 1x +1y 的最小值是( )
A .2 B. 32 C .1+22
3 D .3+2 2
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.直线34()45x t t y t
=+⎧⎨=-⎩为参数的斜率为 14.已知圆的极坐标方程为ρ=2cos θ,则该圆的圆心到直线ρsin θ+2ρcos θ=1的距离是 . 15.甲射手击中靶心的概率为13,乙射手击中靶心的概率为12
,甲、乙两人各射击一次,那么甲、乙不全击中靶心的概率为 .
16.对具有线性相关关系的变量x 和y ,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)当m 为何实数时,复数()2221z m m m i =+-+-是:
(Ⅰ)纯虚数;
(Ⅱ)实数.
18..(本小题满分12分)已知曲线C 为3x 2+4y 2-6=0
(1)写出曲线C 的参数方程;
(2)若动点P (x ,y )在曲线C 上,求z=x+2y 的最大值与最小值.
19.(12分)已知直线l 的参数方程:⎩⎪⎨⎪⎧ x =t ,
y =1+2t (t 为参数)和圆C 的极坐标方程:
ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4(θ为参数).
(1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程;
(2)判断直线l 和圆C 的位置关系.
20.(12分) 12分在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧ x =3-22t ,y =5+22t (t 为参数).在极坐
标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程ρ=25sin θ.
(1)求圆C 的直角坐标方程;
(2)设圆C 与直线l 交于A ,B .若点P 的坐标为(3,5),求|PA |+|PB |.
21.(12分)经统计,某医院一个结算窗口每天排队结算的人数及相应的概率如下:
(1)求每天超过20人排队结算的概率;
(2)求2天中,恰有1天出现超过20人排队结算的概率.
22. (12分)为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到下图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).
(1)请根据题意,将2×2列联表补充完整;
(2)据此列联表判断,是否有
90%的把握认为该学科成绩与性别有关?
附:,其中.
陕西省咸阳市2017-2018学年高二下学期第三次月考
数学(文)试题答案
一、 选择题
1-5 B B C CC 6-10 A A C B C 11-12 A C
二、填空题 13. -
45 14 . 55 15 . 65 错误!未找到引用源。

16. y =6.5x -10 三、解答题
17.(1)2m =-(2)1m =±
解: 2220
{ 210m m m m +-=⇒=--≠.∴当2m =-时, z 为纯虚数。

(2) 2101m m -=⇒=±,∴当1m =±时, z 为实数。

18.解:(1)(θ为参数).
(2)设点P 的坐标为
则z=x+2y=cos θ+sin θ=2=2sin . ∴当sin =—1时, z=x+2y 取得最小值是-2;
当sin =1时, ,z=x+2y 取得最大值是2.
19.解:(1)消去参数t ,得直线l 的直角坐标方程为y =2x +1;
ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4即ρ=2(sin θ+cos θ).
两边同乘以ρ得ρ2
=2(ρsin θ+ρcos θ),
消去参数θ,得圆C 的直角坐标方程为:
(x -1)2+(y -1)2=2.
(2)圆心C 到直线l 的距离
d =|2-1+1|22+12=25
5<2,
所以直线l 和圆C 相交.
20. [解] (1)由ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5.
(2)将l 的参数方程代入圆C 的直角坐标方程,得

⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0. 由于Δ=(32)2
-4×4=2>0,故可设t 1,t 2是上述方程的两实根, 所以⎩⎨⎧ t 1+t 2=32,
t 1·t 2=4.又直线l 过点P (3,5),
故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.
21.解:(1)记“每天超过20人排队结算”为事件A ,
由于事件“排队人数为21-25人”、“排队人数为25人以下”为互斥事件. 所以()0.20.050.25P A =+=;
(2)记“第一天超过20人排队结算”为事件1B 、“第二天超过20人排队结算”为事件2B ,则“恰有1天出现超过20人排队结算”为事件1212B B B B +.
由于事件1B 与2B 相互独立、1B 与2B 相互独立, 所以()()()121211314416
P B B P B P B ⎛⎫==⨯-= ⎪⎝⎭, ()()
()121211314416P B B P B P B ⎛⎫==-⨯= ⎪⎝⎭, 又由于12B B 与12B B 为互斥事件,所以()()()1212121238
P B B B B P B B P B B +=+=
22.解:(1)根据图示,将2×2列联表补充完整如下:
(2)根据列联表可以求得
因此有90%的把握认为该学科成绩与性别有关.。

相关文档
最新文档