A gradient nano-structured surface layer on copper induced by severe plasticity roller burnishing

合集下载

英文化学词汇

英文化学词汇

电沉积Electrodeposition纳米材料Nano materials电化学沉积Electrochemical deposition药物化学Pharmaceutical Chemistry气相色谱Gas chromatography高效液相色谱High Performance Liquid Chromatography 基因组学Genomics蛋白组学Proteomics代谢组学Metabonomics持久性有机污染物POPs环境催化剂Environmental Catalysts高分子合成Polymer Synthesis高分子材料Polymer Materials化学推进剂Propellants原子光谱Atomic spectrometry核酸化学Nucleic Acids Chemistry绿色化学Green Chemistry多孔材料Porous material荧光分析Fluorescence analysis磷光光谱Phosphorescence spectrum生物发光Bioluminescence聚合物分子Polymer molecular生物化学与生物化学工程Biochemistry生物机体living organism碳水化合物carbohydrate脂类lipid核酸nucleic acid生物分子biomolecule化学性质chemical property聚合物(体)polymer酶催化反应enzyme-catalyzed reactions细胞代谢cell metabolism内分泌系统endocrine system遗传密码genetic code蛋白质合成protein synthesis细胞膜运输cell membrane transport共同祖先common ancestor单体与聚合物Monomers and Polymers单体Monomer聚合物Polymer巨大分子macromolecule脱水合成dehydration synthesis单糖Monosaccharide葡萄糖glucose去氧核醣deoxyribose甘油三酸酯triglyceride脂肪酸fatty acid磷脂phospholipid氨基amino group肽键peptide bond多肽polypeptide脱氧核糖核酸deoxyribonucleic acid核糖核酸ribonucleic acid核苷酸nucleotide腺嘌呤adenine胞嘧啶cytosine鸟嘌呤(核酸的基本成分)guanine胸腺嘧啶thymine尿嘧啶uracil冷凝condensation醛醣aldose酮糖ketose杂环heterocyclic ring羟基hydroxyl group双糖类Disaccharides以醚键ether bond水解hydrolysis乳糖酶缺乏lactase deficiency还原端reducing end五环糖furanose吡喃糖pyranose低聚糖oligosaccharide多聚糖polysaccharide细胞膜质cellulose糖原质glycogen细胞壁cell wall糖原磷酸化酶glycogen phosphorylase 醣酵解glycolysis丙酮酸盐(或酯)pyruvate三磷酸腺苷ATP需氧细胞aerobic cells乙酰辅酶Aacetyl CoA还原型辅酶NADH柠檬酸[三羟酸]循环citric acid cycle糖质新生Gluconeogenesis厌氧代谢anaerobic metabolism柯氏循环Cori cycle肌动蛋白actin肌凝蛋白myosin(生)抗体Antibody酶联免疫吸附测定enzyme-linked immunosorbent assay 酶作用物substrate催化catalyze氨基酸amino acid羧酸carboxylic acid神经传递素neurotransmitter二肽dipeptide一级结构primary structure二级结构Secondary structure三级结构Tertiary structureα-螺旋型α-helix谷氨酸glutamateβ折叠β-sheet缬氨酸valine有机化学与有机化学工程Organic chemistry化合物chemical compounds碳carbon氢hydrogen卤素halogen磷phosphorus硅silicon硫黄sulfur过渡金属transition metal碳元素elemental carbon氧化物oxide富勒烯fullerene手性合成chiral synthesis不对称合成Asymmetric synthesis有机合成organic synthesis手性助剂chiral auxiliaries等方性isotropic差向(立体)异构(作用)epimerization取代反应substitution reactionChiral pool synthesis不对称诱导asymmetric induction对映(结构)体enantiomer非对映异构体diastereomer醇醛缩合反应aldol reaction掌性配位基chiral ligands脱羧decarboxylation手性有机小分子催化剂Asymmetric Organocatalysts 生物催化剂biocatalyst三苯基膦triphenylphosphine氢化(作用)hydrogenation对映体过量百分比enantiomeric excess cyclopropanation苯乙烯styrene坚硬粘土岩(页岩的一种)BINA烯烃alkene氢氰化(作用)Hydrocyanation绿色化学green chemistry环境化学environmental chemistry污染预防法案Pollution Prevention Act点击化学Click chemistry超临界状态的二氧化碳supercritical carbon dioxide 过氧化氢水溶液aqueous hydrogen peroxide solution 超临界水氧化supercritical water oxidation莽草酸shikimate酵素ferment丙二醇propylene glycol乙二醇ethylene glycol防冻剂antifreeze聚丙醇酸polylactic acid聚合polymerization交酯lactide氟氯化碳CFC硝基苯nitrobenzene苯胺aniline微波化学microwave chemistry微波辐射microwave irradiation电荷electric charge电场electric field极性溶剂Polar solvent电流electric current电阻electrical resistance反应速率reaction rate过热superheating损耗正切loss tangent能量损耗energy dissipation温度梯度temperature gradient传热heat transfer热平衡thermal equilibrium定态steady state纳米粒nanoparticles二进制binary system相转移反应phase transfer reaction三氯甲烷chloroform高分子化学Macromolecular chemistry 化学合成Chemical synthesis化学反应chemical reactions试剂reagent反应类型reaction type化学反应器chemical reactor反应产率reaction yield副反应side reaction级联反应cascade reaction多元反应multicomponent reaction全合成total synthesis半合成的semisynthetic化合反应combination reaction高分子Macromolecule生物高聚物biopolymer核苷酸nucleotide(包含15个原子以上的)大环macrocycle 赫尔曼·施陶丁格Hermann Staudinger伯齐利厄斯Berzelius异性isomerism苯benzene分子间力intermolecular forces共键价covalent bonds化学计量学stoichiometry分子质量molecular mass碱基对base pair染色体chromosome变性denature高分子物理Polymer physics波动fluctuation力学性质mechanical property(使)聚合polymerise凝聚态物理condensed matter physics 统计物理学statistical physics高分子科学polymer science热力学极限thermodynamic limit统计力学statistical mechanics布朗运动brownian motion随机游动random walk理想链ideal chain玻耳兹曼因子Boltzmann factor余辉长度persistence length回转半径radius of gyration物理化学Physical chemistry热力学thermodynamics表面张力surface tension抗拉强度tensile strength可塑性plasticity化学动力学chemical kinetics反应机理reaction mechanism过渡态transition states质量作用定律law of mass action速度常数rate constant热能thermal energy麦克斯韦-玻耳兹曼分布学Maxwell-Boltzmann distribution 温度跃变temperature jump自身催化autocatalysis反应速率公式reaction rate laws零级反应zero order reactions一级反应first order reaction正反馈positive feedback邻位促进neighbouring group participation可逆反应reversible reaction化学钟Chemical clock二级反应second order reactionBelousov-Zhabotinsky reaction自由能变化free energy change线性自由能关系linear free energy relationships停留时间residence time动态同位素效应kinetic isotope effect速控步rate-determining step活化能activation energy阿雷尼厄斯方程Arrhenius equation艾林方程式Eyring equation碰撞理论collision theory物理状态physical state离子交换(作用)ion exchange水溶液aqueous solution水反应Water reaction有机反应organic reaction乳剂emulsion有机溶剂organic solvent干介质反应dry media reaction克莱森重排Claisen rearrangement化学产率chemical yield环加成cycloaddition四环庚烷quadricyclane环己烷cyclohexane反应底物reactants烯类反应Ene reaction氢键结合hydrogen bonding吲哚indole二氯甲dichloromethane乙腈acetonitrile三苯基膦triphenylphosphine区域选择性regioselective偶极环加成dipolar cycloaddition传热heat transfer量子化学quantum chemistry量子力学quantum mechanics量子场论quantum field theory原子物理学atomic physics密度泛函理论density functional theory 动能kinetic energy势能potential energy原子轨道atomic orbitals玻尔模型Bohr model概率分布probability distribution预测能力predictive power(元素)周期表periodic table波粒二象性wave-particle duality价键Valence bond分子轨道Molecular orbital波(动)函数wave function化学动力学Chemical dynamics天体化学astrochemistry(低温)量子流体动力学quantum hydrodynamics 电化学electrochemistry电解液electrolyte电子转移electron transfer氧化还原作用redox外电路external circuit氧化态oxidation state辛烷octane丁烷butane离子电子法Ion-Electron Method半反应half reactions铋酸钠sodium bismuthate高锰酸钾Potassium permanganate亚硫酸钠Sodium sulfite完全燃烧complete combustion伏打电池Voltaic cell导电聚体conductive polymers硫酸铜copper sulfate丹聂耳电池Daniell cell盐桥salt bridge电势electrical potential电动势electromotive force标准电极电势standard electrode potential化学(当量)计算系数stoichiometric coefficient 强度性质intensive property化学能chemical energy电功electrical work自发反应spontaneous reaction电化电池electrochemical cell燃料电池fuel cell平衡常数equilibrium constant常用对数Briggsian logarithm吉布斯自由能Gibbs free energy自然对数natural logarithm反应系数reaction quotient法拉第常数(恒量)Faraday constant干电池Dry cell氯化铵ammonium chloride二氧化铅lead dioxide轻金属light metal全钒氧化还原液流电池vanadium redox battery 锌溴电池zinc bromine battery苛性钾caustic potash耐蚀铸铁Iron corrosion碳酸铜copper carbonate钝化passivation锡杯tin can非自发过程non-spontaneous process化学当量chemical equivalent无机化学与无机化学工程Inorganic chemistry 无机化合物inorganic compounds有机金属化学organometallic chemistry电离电位ionization potential电子亲合势electron affinity碳酸盐类carbonates硫酸盐类sulfates无机反应inorganic reaction双取代反应double displacement路易斯酸Lewis acidHSAB theory矿物minerals多磷酸盐polyphosphate有机金属化学organometallic chemistry团簇化学cluster chemistry生物无机化学bioinorganic chemistry酸碱化学acid-base chemistry工业无机化学Industrial inorganic chemistry 氨ammonia硫酸铝aluminium sulfate硝酸铵ammonium nitrate硫酸铵ammonium sulfate碳黑carbon black氯chlorine盐酸hydrochloric acid氢hydrogen过氧化氢hydrogen peroxide硝酸nitric acid氮nitrogen氧oxygen(正)磷酸phosphoric acid碳酸钠sodium carbonate氯酸钠sodium chlorate氢氧化钠sodium hydroxide硅酸钠sodium silicate硫酸钠sodium sulfate硫磺酸sulfuric acid二氧化钛titanium dioxide描述无机化学Descriptive inorganic chemistry 配位化合物Coordination compounds超锕transactinide对映(结构)体enantiomer理论配比stoichiometric巴基管buckytubes四氮化四硫tetrasulfur tetranitride乙硼烷diborane硅有机树脂silicone巴克敏斯特富勒烯buckminsterfullerene金属羰基化合物metal carbonyls醇盐alkoxide原子簇化合物Cluster compounds纳米技术nanotechnology量子尺寸效应quantum size effects硒化镉cadmium selenide腐植酸humic acid血色素hemoglobin甲基水银methylmercury羧肽酶carboxypeptidase结晶学crystallography凝聚态物理condensed matter physics硅片silicon chips沸石zeolite石油与天然气化学工程Fossil fuels碳氢化合物hydrocarbons石油petroleum无烟煤anthracite coalfossilized remains油气生物成因学说biogenic theory无机成因气abiogenic gas水力发电hydroelectric地热geothermal不可更新的资源non-renewable resources 可再生能renewable energy辐射力radiative forcing地质时代geological time油页岩oil shale陆生植物Terrestrial plant浮游植物phytoplankton重质原油Heavy crude oil水成岩sedimentary rock合成原油synthetic crude oil蒸汽机steam engine煤气灯gas light柴油diesel oil石油化工业petrochemical industry能源开发Energy development沥青砂tar sand沥青bitumen内燃机internal combustion engine石化产品petrochemical化学工程Chemical Engineering 弹性体elastomer自然科学physical science木材加工wood processing阿司匹林aspirin水杨酸salicylic acid乙酸酐acetic anhydride贮料筒仓storage silo螺旋输送机screw conveyor蒸馏物distillation单元操作unit operation动量转移momentum transfer化学分离chemical separation反应蒸馏reactive distillation质量守恒conservation of mass动量守恒conservation of momentum气态平衡mass balances能量衡算energy balances迁移现象transport phenomena大气层内外aerospace有机染料Organic Dye生物相容性材料bio-compatible materials 弥补术prosthetics凝胶gel绝缘体dielectric化学分离技术Separation Technology混合物mixture传质mass transfer顺流downstream吸附(作用)Adsorption离心过滤Centrifugation移注Decantation除雾器Demister电泳Electrophoresis淘析Elutriation蒸发(作用)Evaporation提取Extraction滤取Leaching液液萃取Liquid-liquid extraction固体萃取Solid phase extraction絮凝FlocculationFractional freezing微孔过滤microfiltration超滤(作用)ultrafiltration反渗透reverse osmosis合成膜synthetic membranes油水分离Oil-water separation天然气加工natural gas processing 沉淀Precipitation再结晶Recrystallize重力选Gravity separation升华Sublimation汽-液分离Vapor-liquid separation 区域精炼Zone refining化学反应Chemical reaction化学物质chemical substances化学变化chemical change催化catalyze代谢途径metabolic pathway直接混合Direct combination氧化数oxidation number烧毁Combustion官能团functional group歧化disproportionation烯醇化物enolate次氯酸盐hypochlorite表面面积Surface area电磁辐射electromagnetic radiation速率式rate law化学其他分支Others分析化学Analytical chemistry可调谐激光器tunable laser元分析elemental analysis定性无机分析Qualitative inorganic analysis 定量分析Quantitative analysis滴定Titration重量分析Gravimetric analysis光谱学Spectroscopy质谱法Mass Spectrometry Electroanalytical method热量测定Calorimetry热重分析thermogravimetric analysislab-on-a-chip校准曲线calibration curve原子吸收光谱法Atomic absorption spectroscopy (AAS)原子发射光谱法Atomic emission spectroscopy (AES)原子荧光光谱法Atomic fluorescence spectroscopy (AFS)毛细管电泳分析Capillary electrophoresis (CE)色谱法Chromatography计算机断层扫描Computed tomography循环伏安法Cyclic Voltammetry (CV)差示扫描量热法Differential scanning calorimetry (DSC)电子顺磁共振Electron paramagnetic resonance (EPR)场流分离理论Field Flow Fractionation (FFF)流动注射分析Flow Injection Analysis (FIA)傅里叶变换光谱Fourier transform spectroscopy (FTIR)气相色谱Gas chromatography (GC)气相色谱-质谱联用分析仪Gas chromatography-mass spectrometry (GC-MS)高效液相色谱High Performance Liquid Chromatography (HPLC)电感耦合等离子体焰炬Inductively coupled plasma (ICP)离子选择性电极法Ion selective electrode (ISE)激光诱导击穿光谱仪Laser Induced Breakdown Spectroscopy (LIBS)理论化学Theoretical chemistry计算化学computational chemistry双极子dipole多极矩multipole moments振动频率vibrational frequencies跨部门cross sections碰撞collision玻恩-奥本海默近似Born-Oppenheimer approximation 薛定谔方程Schroedinger Equation狄拉克方程Dirac equation密度泛函理论density functional theory经典力学classical mechanics化学数据库chemical databases化学结构chemical structures位能面potential energy surface反应坐标reaction coordinate直接量子化学direct quantum chemistrymolecular Hamiltonian分子轨道理论molecular orbital theory自旋运动轨道spin orbitLCAO ansatz立体基阵configurations分子几何学molecular geometry过渡结构transition structures热化学thermochemistry生成焓enthalpy of formation过渡结构transition structure力场force field固体物理solid state physics能带结构band structure自由度degrees of freedom时间演变time evolution分子中的原子理论Atoms in Molecules valence bond model拓扑topology从头计算Ab initioDensity functional theory分子力学Molecular mechanics散射理论scattering theory波包wave packet数学化学Mathematical chemistry化学图论chemical graph theory立体化学stereochemistry化学信息学Cheminformatics核化学Nuclear chemistry辐射化学Radiation chemistry核反应nuclear reaction异构化Isomerisation重氢deuterium放射衰变radioactive decay弹性碰撞elastic collision阿尔法粒子alpha particle原子质量单位atomic mass unit结合能binding energy质能等价性mass-energy equivalence (原子)能级energy level伽马射线gamma rays电子壳层electron shell辐射谱线emission lines粒子加速器particle accelerator宇宙射线cosmic rays分裂,蜕变Spallation感应发射Induced emission核子分裂nuclear fission锕类actinide核燃料循环nuclear fuel cycle普雷克斯PUREXX射线结晶学X-ray crystallography 宇生核素Cosmogenic isotopes。

浙江大学化学系求是学者黄建国教授诚聘博士后研究人员

浙江大学化学系求是学者黄建国教授诚聘博士后研究人员

浙江大学化学系黄建国课题组诚招博士后研究人员研究方向:1. 自组织超薄膜2. 无机纳米材料3. 复合功能纳米材料4. 表面和界面纳米科技在近几年来的迅猛发展及其向其他学科的渗透开辟了一个前景诱人的材料科学的新生领域,而和众多的机遇同时涌现的则是更多的挑战。

不落俗套的材料结构和功能设计,简便高效的制备方法,直接面向实际应用的新材料开发等正在成为该学科近一步发展的目标和动力。

研究工作的重点是设计和合成基于自组织(复合)超薄膜的功能纳米材料,解析其结构,并探索其在器件(光电磁热等)和生物传感器方面的应用。

博士后招聘要求:化学或相关专业博士学位,具有薄膜,表界面,纳米材料制备或有机合成的研究背景。

英语读写能力良好。

工作踏实认真。

同时招收博士研究生和硕士研究生。

博士后生活待遇:除享受浙江大学博士后待遇外,研究室视工作业绩另发奖励和津贴;年收入约六万元左右。

联系地址:邮编:310027浙江大学玉泉校区化学系黄建国教授E-mail:***************.cn电话:0571-8795-1202附:黄建国教授简介黄建国,1972 年生,山东兖州人。

1990 年至1999 年在南京大学化学系学习工作,1998 年获理学博士学位。

1999 至2000 年在Iowa State University化学系任研究助理;2000 年至2007 年在日本理化学研究所和日本物质材料研究机构任研究员。

2007 年9 月起,任浙江大学化学系求是学者特聘教授。

主要研究方向为化学方法制备基于金属氧化物超薄膜的功能纳米材料,并探索其在传感器和生物功能化方面的应用。

作为独立课题负责人多次获得日本文部科学省基金资助。

相关研究工作获得学术界的关注和好评并引起了一定的社会反响。

有关研究论文分别为著名国际期刊Angewandte Chemie International Edition专门著文介绍(见该刊2004年43卷第21期之“Highlight”),和被著名国际期刊Chemical Communications作为封面重点推介(见该刊2005年第21 期),及入选国际期刊Journal of Materials Chemistry的top ten most-accessed paper (November, 2006)。

激光冲击强化TC4_钛合金强化层弹塑性本构参数反演分析

激光冲击强化TC4_钛合金强化层弹塑性本构参数反演分析

第52卷第10期表面技术2023年10月SURFACE TECHNOLOGY·411·激光冲击强化TC4钛合金强化层弹塑性本构参数反演分析王淑娜,伏培林,李嘉伟,张旭,阚前华*(西南交通大学 力学与航空航天学院 应用力学与结构安全四川省重点试验室,成都 611756)摘要:目的获取TC4钛合金激光冲击强化层的弹塑性本构模型参数,结合纳米压痕试验和有限元模拟技术,进行激光冲击强化TC4钛合金的材料参数反演计算。

方法首先,在TC4钛合金试样侧面沿强化层深度方向进行纳米压痕测试,获得距表面不同距离处的载荷-压入深度曲线。

进而,基于幂律应变硬化模型,通过无量纲方程和有限元模拟反演得到激光冲击强化TC4钛合金梯度强化层的弹塑性参数。

最后,将反演获得的弹塑性本构模型材料参数用于有限元模拟,将模拟结果与试验结果进行对比,验证参数反演结果的合理性。

结果强化层表面的弹性模量和纳米硬度较母材分别提高了11%和30%,强化层内的应变硬化指数和屈服强度沿深度方向分别递增和递减。

模拟的载荷-压入深度曲线与试验曲线吻合较好,最大压入载荷、弹性模量和纳米硬度的模拟误差分别小于1%、7%和3%,证实了参数反演结果的合理性。

结论通过无量纲方程反演算法得到的强化层本构参数有较强的可信度。

激光冲击强化可有效提升TC4钛合金的表面力学性能,强化层的本构参数呈梯度分布,表面的抗塑性变形能力大幅提升。

关键词:TC4钛合金;激光冲击强化;纳米压痕;无量纲分析;反演分析;有限元模拟中图分类号:TG146.2+3 文献标识码:A 文章编号:1001-3660(2023)10-0411-11DOI:10.16490/ki.issn.1001-3660.2023.10.037Reverse Analysis of Elasto-plastic Constitutive Parameters of Strengthening Layer for Laser Shock Processing TC4 Titanium AlloysWANG Shu-na, FU Pei-lin, LI Jia-wei, ZHANG Xu, KAN Qian-hua*(Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanicsand Aerospace Engineering, Southwest Jiaotong University, Chengdu 611756, China)ABSTRACT: Laser shock processing (LSP) can form a strengthening layer with a gradient structure on the surface of parts, and thus improves the fatigue life. It is of great significance to obtain the elasto-plastic parameters of TC4 titanium alloy after LSP for the fatigue life prediction. However, there are few reports on the determination of elasto-plastic parameters of LSP TC4 titanium alloy. The reverse algorithm combining the nano-indentation experiments with finite element simulation is an effective method to obtain the constitutive parameters of the thin strengthening layer. Therefore, employing the nano-indentation experiments and finite element simulation, the reverse analysis of the LSP TC4 titanium alloy was conducted to determine the收稿日期:2022-09-02;修订日期:2023-03-10Received:2022-09-02;Revised:2023-03-10基金项目:国家自然科学基金(12072295,12192214,11872321)Fund:National Natural Science Foundation of China (12072295, 12192214, 11872321)引文格式:王淑娜, 伏培林, 李嘉伟, 等. 激光冲击强化TC4钛合金强化层弹塑性本构参数反演分析[J]. 表面技术, 2023, 52(10): 411-421. WANG Shu-na, FU Pei-lin, LI Jia-wei, et al. Reverse Analysis of Elasto-plastic Constitutive Parameters of Strengthening Layer for Laser Shock Processing TC4 Titanium Alloys[J]. Surface Technology, 2023, 52(10): 411-421.*通信作者(Corresponding author)·412·表面技术 2023年10月elasto-plastic parameters. First, the nano-indentation experiments of the LSP TC4 titanium alloy specimen were carried out based on the Nano indenter G200 nano-indentation experimental apparatus with the Berkovich diamond indenter, and the indentation depth of 1 000 nm was set by the displacement-controlled method. Then the nano-indentation experiments were carried out on a single side of specimen along the depth direction of the strengthening layer, and the corresponding load-displacement curves at different distances from the surface were obtained. Subsequently, the distributions of elastic modulus and nano-hardness along the depth direction of the strengthening layer were obtained after using the Oliver-Pharr method to determine the unloading stiffness and the reduced modulus from the unloading curves. Then, following the power-law strain hardening assumption, the yield stress and strain hardening index of the surface strengthening layer were determined by numerically solvingthe dimensionless equations of the representative stress, the ratio of plastic work to total work, and the ratio of residual depth to pressing depth, respectively. Therefore, the elasto-plastic parameters of the surface strengthening layer of LSP TC4 titanium alloy were obtained. Finally, the elasto-plastic parameters obtained by the reverse analysis were introduced toa two-dimensional axisymmetric nano-indentation finite element model. The effectiveness of the reverse analysis was verifiedby comparing the simulated results with the corresponding experimental results, which took into account the load-displacement curves as well as the variations of elastic modulus and nano-hardness with the distance from the surface. The obtained results showed that the elastic modulus, nano-hardness, yield stress and hardening index possessed a varying distribution along the thickness direction of the strengthening layer (about 300 μm). The surface elastic modulus, nano-hardness and yield stress of the strengthening layer reached 121.2 GPa, 5.0 GPa and 1 396.4 MPa, which were 11%, 30% and 55% higher than that of the substrate, respectively. However, the strain hardening index increased gradually along the depth direction, and the index at the substrate and the surface of the strengthening layer were 0.252 and 0.167, respectively. Additionally, the simulated load- displacement curves agreed with the experimental curves well, and the relative errors of the maximum load, elastic modulus and nano-hardness were less than 1%, 7% and 3%, respectively, demonstrating the effectiveness of the reverse analysis. The calculated results could be great helpful to the fatigue life prediction and the further optimization of LSP process parameters.KEY WORDS: TC4 titanium alloy; laser shock processing; nano-indentation; dimensionless analysis; reverse analysis; finite element simulationTC4钛合金(Ti-6Al-4V)因具有比强度高、耐热性高、耐蚀性好、密度小等特点而广泛应用在船舶、航空航天、车辆工程、生物医学等[1-6]领域。

金属材料表面纳米化研究与进展

金属材料表面纳米化研究与进展

表面技术第53卷第4期金属材料表面纳米化研究与进展杨庆,徐文文,周伟,刘璐华,赖朝彬*(江西理工大学 材料冶金化学学部,江西 赣州 341000)摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。

研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。

金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。

根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。

最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。

关键词:金属材料;表面纳米化;梯度纳米结构;纳米化机理;表面性能中图分类号:TG178 文献标志码:A 文章编号:1001-3660(2024)04-0020-14DOI:10.16490/ki.issn.1001-3660.2024.04.002Research and Progress on Surface Nanocrystallizationof Metallic MaterialsYANG Qing, XU Wenwen, ZHOU Wei, LIU Luhua, LAI Chaobin*(Department of Materials Metallurgy and Chemistry, Jiangxi University ofTechnology, Jiangxi Ganzhou 341000, China)ABSTRACT: It is well known that the failure of most metallic materials starts from their surfaces, which in turn affects the overall performance of the whole material. Numerous studies have shown that the preparation of nanocrystals on the surface of metallic materials, i.e., surface nanosizing, can enhance the surface properties of materials and extend their service life. Surface nanosizing of metallic materials makes use of repeated violent plastic deformation to make the surface coarse grains gradually收稿日期:2023-02-23;修订日期:2023-06-29Received:2023-02-23;Revised:2023-06-29基金项目:国家自然科学基金项目(52174316,51974139);国家重点研发计划项目(2022YFC2905200,2022YFC2905205);江西省自然科学基金项目(20212ACB204008)Fund:National Natural Science Foundation of China(52174316, 51974139); National Key Research and Development Program of China (2022YFC2905200, 2022YFC2905205); Natural Science Foundation of Jiangxi Province (20212ACB204008)引文格式:杨庆, 徐文文, 周伟, 等. 金属材料表面纳米化研究与进展[J]. 表面技术, 2024, 53(4): 20-33.YANG Qing, XU Wenwen, ZHOU Wei, et al. Research and Progress on Surface Nanocrystallization of Metallic Materials[J]. Surface Technology, 2024, 53(4): 20-33.*通信作者(Corresponding author)第53卷第4期杨庆,等:金属材料表面纳米化研究与进展·21·refine to the nanometer level, forming nanostructured layers with gradient changes of grains along the thickness direction, including surface non-woven nanocrystalline layer, submicron fine crystal layer, coarse crystal deformation layer and matrix layer, and this unique gradient nanostructure is effective for the significant improvement of surface properties of metallic materials. The process technology and related applications of nanocrystalline layers on the surface of metallic materials in China and abroad are introduced, and the research progress of high-performance gradient nanostructured materials is discussed.Starting from the classification of the preparation process of gradient nanostructured materials and combining with the research results of surface nanosizing in China and abroad, a brief overview of three methods of metal surface nanosizing, namely, surface coating or deposition, surface self-nanosizing and hybrid nanosizing, was given, the advantages and disadvantages of each were discussed and the advantages of surface self-nanosizing technology were summarized. On the basis of this, the key role of dislocations and twins in the process of surface self-nanitrification of metallic materials was analyzed, and the mechanism of surface self-nanitrification of metallic materials was inextricably linked to the material structure and the size of layer dislocation energy, and the current research status of the mechanism of surface self-nanitrification of metallic materials was summarized. Finally, the key technologies required to be overcome in the existing surface strengthening process were summarized, and future research work was prospected. It was proposed to combine surface nanosizing technology with some existing surface treatment technologies such as electroplating, vapor deposition, tack coating, spraying, chemical heat treatment, etc., to replace the high-cost manufacturing technologies and prepare inexpensive complex-phase surface layers with more excellent performance.Techniques for the preparation of gradient nanostructured materials include surface coating or deposition, surface self-nanosizing, and hybrid surface nanosizing. Surface coating or deposition technology has the advantages of precise control of grain size and chemical composition, and relatively mature process optimization, etc. However, because the coating or deposition technology adds a cover layer on the material surface, the overall size of the material increases slightly, and there is a certain boundary between the coating and the material, and there will be defects in the specific input of production applications.In addition, the thickness of the gradient layer prepared by this technology is related to the deposition rate, which takes several hours to prepare a sample. The surface self-nanitrification technique, which generates intense plastic deformation on the surface of metal materials, has the advantages of simple operation, low cost and wide application, low investment in equipment and easy realization of unique advantages. The nanocrystalline layer prepared on the surface of metal materials with the surface self-nanitrification technique has a dense structure and no chemical composition difference from the substrate, and no surface defects such as pitting and pores, but the thickness of the gradient layers and nanolayers prepared by this technique as well as the surface quality of the material vary greatly depending on the process. Hybrid surface nanosizing is a combination of the first two techniques, in which a nanocrystalline layer is firstly prepared on the surface of a metallic material by surface nanosizing technology, and then a compound with a different composition from the base layer is formed on its surface by means of chemical treatment.To realize the modern industrial application of this new surface strengthening technology, it is still necessary to clarify the strengthening mechanism and formation kinetics of surface nanosizing technology as well as the effect of process parameters, microstructure, structure and properties on the nanosizing behavior of the material. For different nanosizing technologies, the precise numerical models for nanosizing technologies need to be established and improved, and the surface self-nanosizing equipment suitable for industrial scale production needs to be developed. In the future, surface nanosizing technology will be combined with some existing surface treatment technologies (e.g. electroplating, vapor deposition, adhesion coating, spraying, chemical heat treatment, etc.) to prepare a complex phase surface layer with more excellent performance, which is expected to achieve a greater comprehensive performance improvement of the surface layer of metal materials.KEY WORDS: metal material; surface nanocrystallization; gradient nanostructures; nanocrystallization mechanism; surface properties金属材料在基建工程、航空航天中扮演着重要角色,随着当今科学技术的高速发展,传统金属材料的局限性日趋明显,开发一种综合性能优异的金属材料迫在眉睫。

仿生表面结构设计对液滴冷凝及收集行为的影响

仿生表面结构设计对液滴冷凝及收集行为的影响

第52卷第8期表面技术2023年8月SURFACE TECHNOLOGY·355·仿生表面结构设计对液滴冷凝及收集行为的影响周鹏1,胡建华1,李蓓1,2(1.武汉理工大学 材料科学与工程学院,武汉 430070;2.华中科技大学 材料成形与模具技术国家重点实验室,武汉 430070)摘要:目的提高仿生表面液滴冷凝及收集效率。

方法借鉴典型生物微纳结构及表面特性,采用分子动力学方法,建立水汽冷凝演化模型,分析纳米阵列形貌、亲疏水比及楔形顶角对液滴冷凝及收集行为的影响。

结果液滴在方形阵列结构中易钉扎,不利于去除;在矩形阵列结构中具有较好的流动性,且相对方形阵列表面凝结量提升了30.8%。

随着亲疏水比θ的增加,沉积在阵列间隙的水分子数增多,钉扎效应加剧,更易形成膜状冷凝;相反地,θ越小,液滴倾向形成滴状冷凝并呈现Cassie态。

调整楔形阵列的顶角α可以有效实现液滴的定向运动。

当α为3°或6°时,楔形结构能够产生足够的Laplace压力差,驱使液滴定向运动;当α为9°或12°时,能够引导液滴在楔形结构尾端聚集,并融合成更大尺寸的液滴,凝结量相对α为0°分别提升了210.7%和193.0%,收集效率显著提高。

相比于单一的仿生表面,结合沙漠甲虫和仙人掌的耦合集水策略设计出的双重仿生结构在凝结量及最大液滴尺寸上均有明显提升,有效提高了液滴的冷凝及收集效率。

结论通过调节纳米阵列形貌和楔形顶角,并合理设置亲疏水比,可有效提高液滴冷凝及收集效率。

研究结果为强化冷凝功能的仿生表面设计提供了一定的理论指导。

关键词:仿生表面;纳米阵列;亲疏水比;楔形顶角;冷凝;定向运动;分子动力学模拟中图分类号:TG147 文献标识码:A 文章编号:1001-3660(2023)08-0355-08DOI:10.16490/ki.issn.1001-3660.2023.08.030Effect of Bio-inspired Surface Structure Design on DropletCondensation and Harvesting BehaviorZHOU Peng1, HU Jian-hua1, LI Bei1,2(1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;2. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong Universityof Science and Technology, Wuhan 430070, China)ABSTRACT: Bio-inspired water harvesting surfaces present superb self-cleaning and self-propelling properties, high efficiency,收稿日期:2022-07-22;修订日期:2022-11-22Received:2022-07-22;Revised:2022-11-22基金项目:华中科技大学材料成形与模具技术国家重点实验室开放课题研究基金(P2021-009)Fund:Open Fund Project of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (No. P2021-009)作者简介:周鹏,(1996—),男,硕士研究生,主攻仿生表面结构设计及其液滴收集计算模拟。

昆明理工大学于晓华

昆明理工大学于晓华

昆明理⼯⼤学于晓华Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface Mechanical AttritionTIANLIN FU,1XIAO WANG,1JIANXIONG LIU,1LI LI,1XIAOHUA YU,2,3and ZHAOLIN ZHAN 1,41.—Faculty of Material Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China.2.—Solid Waste Utilization National Engineering Center,Kunming University of Science and Technology,Kunming 650093,China.3.—e-mail:xiaohua_y@/doc/1b4f5662effdc8d376eeaeaad1f34693daef1090.html .4.—e-mail:zl_zhan@/doc/1b4f5662effdc8d376eeaeaad1f34693daef1090.htmlA stable passive ?lm exhibiting good corrosion resistance in a 3.5wt.%NaCl solution was formed on the surface of pure titanium (Ti)subjected to a surface mechanical attrition treatment (SMAT).The corrosion potential (à0.21V)of the ?lm was signi?cantly higher than that (à0.92V)of the untreated sample.Moreover,the corrosion current density was an order of magnitude lower than that of the untreated sample.SMAT resulted in a decrease in the vacancy condensation in the TiO 2?lm,thereby inhibiting the invasion and diffusion of Cl àin the ?lm.INTRODUCTIONIn recent years,surface mechanical attrition treat-ment (SMAT)techniques have been extensively investigated as grain-size re?nement methods for fabricating nanostructured surface layers of alloys.1–3Previous studies have shown that grain-re?ned mate-rials exhibit excellent properties.For example,the temperature of pure iron nitriding was signi?cantly reduced (to 300°C)after SMAT,4indicating that the nanostructured surface promotes diffusion and in?u-ences the growth mechanism of coatings or oxide ?lms.The corrosion behavior of nanocrystallized mate-rials has also been investigated.Li et al.fabricated a nanostructured layer via fast multiple rotation rolling and found that the corrosion resistance of a Ti-6Al-4V alloy improved with formation of this layer.5Pan et al.revealed that the nucleation mechanism of the passive ?lm changed (i.e.,from progressive to instantaneous)with nanocrystalliza-tion.6Most previous reports have revealed improve-ments in the corrosion resistance,7–11but the opposite effect has also been reported in some cases.For example,the corrosion resistance of AISI 409stainless steel improved after ultrasonic shot peen-ing treatment with 2-mm balls,but decreased when 5-and 8-mm balls were used.12Therefore,under-standing the characteristics of the oxide ?lms formed on the surface of SMAT alloys is essential for optimization of the treatment parameters.Passive oxide ?lms are formed on the surface of reactive metals,such as titanium (Ti),aluminum (Al),and chromium (Cr).However,these ?lms consist of defects,undergo dissolution and breakdown and,hence,exhibit low corrosion resistance in corrosive environments.Despite being extremely thermody-namically reactive in air and aqueous environments,Ti is passivated by a very stable oxide (Ti +O 2=TiO 2,D G 0=à888.8kJ mol à1),13which grows spon-taneously on its surfaces.This oxide has resulted in the widespread use of Ti and its alloys in various ?elds.14–16The chemical stability of the TiO 2?lm is crucial for the use of Ti in applications.17Previous studies have shown that SMAT promotes oxygen diffusion in the surface layer of alloys and the formation of a relatively stable oxide ? lm.This is attributed to the high density of grains and defects,induced by severe plastic deformation,which act as rapid-diffusion paths and promote oxide-?lm forma-tion on the surface of reactive metals.Therefore,the aim of this work was to determine the effect of SMAT on the properties of the surface oxide ?lms of TA1and identify the mechanism governing the corresponding improvement in the corrosion resistance.ExperimentalThe pure Ti plate (100910093mm 3)investi-gated in this work had a nominal composition (wt.%)of C 0.02,Fe 0.10,O 0.15,N 0.02,H 0.0011,JOM,Vol.69,No.10,2017DOI:10.1007/s11837-017-2511-7ó2017The Minerals,Metals &Materials Society1844(Published online August 9,2017)and a balance of Ti.Samples of this plate were subjected to a15-min SMAT conducted at room temperature and a vibration amplitude of50kHz, using8-mm-diameter balls(composed primarily ofGCr15).The electrochemical behavior of samples in a3.5wt.%NaCl solution was evaluated via electro-chemical tests conducted on an electrochemical workstation(CHI760E;Shanghai Chenhua Instru-ment,Shanghai,China).After1h of immersion in the solution,samples were subjected to polarization (scan rate:3mV/s)at potentials ranging from à3000mV to4000mV(SCE).RESULTS AND DISCUSSIONFigure1shows the XPS spectrum of the samples. The Ti2p spectra recorded from the sample without SMAT were resolved into eight peaks(see Fig.1a), which are attributed to Ti,Ti2+,Ti3+,and Ti4+.18–20 The Ti2+and Ti3+species are associated with Ti sub-oxides and the Ti4+species correspond to TiO2. Furthermore,O occurs as O2à,OHà,and adsorbed water and,hence,the corresponding chemical states of Ti are Ti,TiO,Ti2O3,TiO2,Ti(OH)4,and TiO2?H2O.The peaks associated with the SMAT sample are both very well-?tted by the Gaussian–Lorenzian curve(Fig.1b).The Ti2p3/2region con-sists of one main overlapping peak,attributed to Ti4+,indicating that SMAT promotes the formation of titanium dioxide(TiO2)on the surface of the sample.The corrosion behavior of samples immersed ina3.5wt.%NaCl solution was investi-gated via open-circuit potential(OCP)measure-ments and potentiodynamic polarization curves,as shown in Fig.2.The OCP values of the pure Ti sample decreased initially,then increased sharply,reached a steady-state value,and decreased gradu-ally thereafter.In contrast,the OCP values of the SMAT sample decreased slowly in the initial stage, reached a steady-state value,and increased gradu-ally thereafter(Fig.2a).These results indicate that a passive?lm is formed on the surface of each sample.This?lm acts as a barrier to metal disso-lution,leading to a decrease in the corrosion rate, thereby resulting in improved stability of the immersed material.21Moreover,the increasingly negative OCP value of the pure Ti sample indicates that the passive?lm formed on this sample is less stable,and therefore considerably less effective, than that formed on the SMAT sample.The high stability of the?lm formed on the SMAT sample is attributed to the formation(as suggested by the XPS results)of a stable phase(Ti2O)on the surface of the sample.The potentiodynamic polarization curves of pure Ti and the SMAT sample are shown in Fig.2b.The similarity in the shape of the curves suggests that the same fundamental reactions occur on both samples during cathodic and anodic polarization (see Table I for a list of the corresponding corrosion parameters).Passivation occurs when a protective oxide?lm forms on the surface of a metal.18In the case of the SMAT sample,the passive region occursat potentials ranging fromà0.21V to4V,and is characterized by an almost constant current den-sity.In the case of TA1,passivation occurs atà0.92V and the current density in the passivation region increases with increasing potential.Thecorrosion current density(i corr)and the passivecurrent density(i pass)of the SMAT sample are almost one order of magnitude lower than those of the pure Ti sample.In addition,the increase in the passive current density with increasing applied potential may be attributed to the gradual dissolu-tion of the oxide layer;the jump is attributed to a sudden breakdown of this layer.22These results indicate that the corrosion resistance of the SMAT sample is signi?cantly higher than that of TA. Figure2c shows the Mott–Schottky plots of the samples.23In region1,Cà2is almost independent of E(as evidenced by the near-zero slope of the plot).This trend is consistent with the?at band region.24In region2(0.5–3.5V SCE),Cà2exhibits a linear dependence on E.The positive slopes associ-ated with region1are indicative of an n-type semiconductor,which is characterizedby:Fig.1.XPS spectra of the(a)pure Ti and(b)SMAT samples.Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface MechanicalAttrition18451C SC2ee 0eN D E àE fb àkT ewhere,e is the relative dielectric constant,e 0thepermittivity of free space,e the charge of the electron (1.6910à19C),N D the donor density (n -type semiconductor),E the applied potential,E fb the ?at band potential,k the Boltzmann constant(1.38910à23J/K),and T the absolute temperature.Based on the character of n -type semiconductors,the oxide layer consists primarily of donor-type defects (in this case,oxygen vacancies and/or Ti in-terstitials).25E fb values of 1–0.52V SCE have been estimated for the samples,and N D values of 2.6491021cm à3and 1.6891019cm à3were obtained for the TA1and SMAT samples,respec-tively.Therefore,the donor density of the pas-sive layer formed on the SMAT sample is lower than that of the layer formed on the pure Ti sample.This relatively low density may have contributed to the high corrosion resistance of the SMAT sample.The corrosion rate of Ti depends on the diffusion of Ti,O,and Cl ions and vacancies in the oxide ?lms (see Fig.3for the point defect model(PDM)26,27description of these diffusion processes).According to this model,vacancies are generated and annihi-lated at the metal/barrier layer and barrier layer/outer layer interfaces.Cation vacancies are gener-ated and annihilated via Ti x Ti !Ti 4ttTi 4tTi and Ti tv 40Ti !Ti x Ti tv Ti t4e 0,and oxygen vacancies aregenerated and annihilated via Ti !Ti x Ti t2v ::O t4eand v ::O tH 2O !O O t2H t.Oxygen diffusion and cation-vacancy diffusion through the oxide ?lms are driven by the electric ?eld and the concentrationgradient (Fig.3).Incomplete cation-vacancy anni-hilation leads to oxygen vacancy/cation vacancy interactions,which are driven by theelectrostaticFig.2.(a)Open-circuit potential versus time,(b)potentiodynamic polarization curves,and (c)Mott–Schottky plots of pure Ti and SMAT samples immersed in 3.5wt.%NaCl solution. Table I.Corrosion potential,corrosion current density,and passive current density of samples Sample E corr (V)i corr (A cm 22)i pass (A cm 22)TA1à0.92 2.51910à4 3.46910à3SMAT sampleà0.215.01910à51.58910à4Fig.3.Schematic illustration based on PDM description of Ti,O,and Cl ionic and vacancy diffusion in the passive ?lms.Fu,Wang,Liu,Li,Yu,and Zhan1846attraction between high concentrations of oppo-sitely charged defects.28These interactions lead to defect elimination,and eventually to void formation(v40Ti t2v::O!0).Moreover,Cl defects(Cl?tv::Ote0!Cl:OTmay form if Clàions diffusing and migrat-ing through the outer layer(Clàaq t?!Cl?te0)areabsorbed by oxygen vacancies.In addition,a cation vacancy/oxygen vacancy is generated(via a Schot-tky-pair type of reaction),because of this absorption.24,29The high density of vacancies in the thin oxide?lm formed on the pure Ti sample would easily reach the surface layer,leading to Clàinvasion.Vacancy condensation in this layer results in?lm breakage and rapid Clàinvasion.This process is manifested as an increase and a jump in the passive current density associated with the passive region of the potentiody-namic polarization curve(Fig.2b).The donor density of the SMAT sample(1.6891019cmà3)is lower than that of the pure Ti sample(2.6491021cmà3).There-fore,compared with the passive?lm formed on the Ti sample,the?lm formed on the SMAT sample is more effective in inhibiting Clàinvasion and diffusion.In addition,the probability of vacancy condensation decreases signi?cantly and the?lm exhibits good corrosion resistance.CONCLUSIONA stable passive?lm(Ti2O),exhibiting good corrosion resistance,is formed on the surface of pure Ti subjected to SMAT.The corrosion potential (à0.21V SCE)of the SMAT sample is signi?cantly higher than that(–0.92V SCE)of the untreated Ti. Moreover,the corrosion current density(5.019 10à5A cmà2)is one order of magnitude lower than that of the untreated sample(2.51910à4A cmà2). The passive? lm formed on the SMAT Ti is an n-type semiconductor and,hence,the oxide layer consists primarily of donor-type defects.The diffu-sion of ions and vacancies in the dense passive?lm formed on the SMAT sample hinders vacancy condensation and,in turn,the invasion and diffu-sion of Clàin the?lm.ACKNOWLEDGEMENTThis work was?nancially supported by the Nat-ural Science Foundation of China(Grant Nos. 51665022and51601081).REFERENCES1.H.W.Zhang,Z.K.Hei,G.Liu,J.Lu,and K.Lu,Acta Mater.51,1871(2003).2.K.Y.Zhu,A.Vassel,F.Brisset,K.Lu,and J.Lu,ActaMater.52,4101(2004).3.Y.Liu,B.Jin,and J.Lu,Mat.Sci.Eng.A.636,446(2015).4.W.P.Tong,N.R.Tao,Z.B.Wang,J.Lu,and K.Lu,Science299,686(2003).5.Y.Li,K.N.Sun,P.Liu,Y.Liu,and P.F.Chui,Vacuum101,102(2014).6. C.Pan,L.Liu,Y.Li,S.G.Wang,and F.H.Wang,Elec-trochim.Acta56,7740(2011).7.S.Kumar,K.Chattopadhyay,and V.Singh,Mater.Char-act.121,23(2016).8.S.Jindal,R.Bansal,B.P.Singh,R.Pandey,S.Narayanan,M.R.Wani,and V.Singh,J.Oral Implantol.40,347(2014).9.Y.Shadangi,K.Chattopadhyay,S.B.Rai,and V.Singh,Surf.Coat.Technol.280,216(2015).10.T.Chen,H.John,J.Xu,Q.H.Lu,J.Hawk,and X.B.Liu,Corros.Sci.77,230(2013).11.R.Huang and Y.Han,Mater.Sci.Eng.,C33,2353(2013).12.T.Balusamy,S.Kumar,and T.S.N.Sankara Narayanan,Corros.Sci.52,3826(2010).13.Z.L.Jiang,X.Dai,T.Norby,and H.Middleton,Corros.Sci.53,815(2011).14.V.M.C.A.Oliveira,C.Aguiar,A.M.Vazquez,A.Robin,andM.J.R.Barboza,Corros.Sci.88,317(2014).15.S.Jelliti,C.Richard,D.Retraint,T.Roland,M.Chemkhi,and C.Demangel,Surf.Coat.Technol.224,82(2013). 16.T.L.Fu,Z.L.Zhan,L.Zhang,Y.R.Yang,Z.Liu,J.X.Liu,L.Li,and X.H.Yu,Surf.Coat.Technol.280,129(2015). /doc/1b4f5662effdc8d376eeaeaad1f34693daef1090.html osˇev,M.Metikosˇ-Hukovic′,and H.-H.Strehblow, Biomaterials21,2103(2000).18.Z.L.Jiang,X.Dai,and H.Middleton,Mater.Sci.Eng.,B176,79(2011).19. B.V.Senkovskiy, /doc/1b4f5662effdc8d376eeaeaad1f34693daef1090.html achov, A.V.Fedorov,O.Yu.Vilkov, A.V.Shelyakov,and V.K.Adamchuk,J.Alloy.Compd.537,190(2012).20.J.F.Moulder,W.F.Stickle,P.E.Sobol,and K.D.Bomben,Handbook of X-Ray Photoelectron Spectroscopy(Eden Prairie:Perkin-Elmer Corporation,1992).21.I.Cvijovic′-Alagic′,Z.Cvijovic′,S.Mitrovic′,V.Panic′,and M.Rakin,Corros.Sci.53,796(2011).22.M.K.Han,M.J.Hwang,M.S.Yang,H.S.Yang,H.J.Song,and Y.J.Park,Mater.Sci.Eng.,A616,268(2014).23.Z.C.Feng,X.Q.Cheng,C.F.Dong,L.Xu,and X.G.Li,Corros.Sci.52,3646(2010).24.R.Leiva-Garc?′a,J.C.S.Fernandes,M.J.Mun?oz-Portero,and J.Garc?′a-Anto′n,Corros.Sci.94,327(2015).25.Z.L.Jiang,X.Dai,and H.Middleton,Mater.Chem.Phys.126,859(2011).26.R.M.Ferna′ndez-Domene,E.Blasco-Tamarit,D.M.Garc?′a-Garc?′a,and J.Garc?′a-Anto′n,Electrochim.Acta95,1 (2013).27.R.Cabrera-Sierra,J.Vazquez-Arenas,S.Cardoso,R.M.Luna-Sa′nchez,M.A.Trejo,J.Mar?′n-Cruz,and J.M.Hallen,Electrochim.Acta56,8040(2011).28.P.Kofstad,Oxid.Met.44,3(1995).29. D.D.Macdonald,J.Electrochem.Soc.12,3434(1992).Characteristics and Corrosion Behavior of Pure Titanium Subjected to Surface MechanicalAttrition 1847。

【重磅】Nature:突触的结构远比你想象的精确

【重磅】Nature:突触的结构远比你想象的精确

【重磅】Nature:突触的结构远比你想象的精确导读:近日,来自马里兰医学院的科学家们发表于nature上的文章,报道了它们利用单分子成像技术观察到了突触上的“纳米柱”结构。

该结构有助于神经科学家更加深刻地理解神经递质传递的过程。

虽然科学家很久以前就知道,神经细胞之间通过突触传导信息。

一个细胞将携带的信息通过谷氨酸盐、多巴胺、五羟色胺等神经递质传递给另一个细胞,神经递质激动接受信号的神经元上的受体,从而传递兴奋或抑制的信息。

但是,除了上述的基本概要之外,这个大脑中最重要的生理过程是怎样发生的?其中的具体细节并不清楚。

现在,来自马里兰医学院的科学家们首次阐明了这一过程的框架。

他们的研究发表于7月27日的nature上。

突触是一个非常复杂的分子机器。

结构又十分微小,只有几百万分之一英尺。

我们的大脑中约有100万亿个突触,每一个都精确地在细胞间传递强弱信号。

为了在亚显微镜尺度可视化这一过程,研究人员发明了一种单分子成像技术,这一技术可以定位并追踪活细胞内单个突触边界的蛋白质分子运动,通过这种方法,科学家意外地发现了一种十分精确的神经传递模型。

研究人员观察了体外培养的大鼠神经元,其整体结构与人类突触十分相似。

“见所未见,这是一项全新领域的研究。

”领导该项工作的生理学系副教授Thomas Blanpied说。

“多年以来,我们罗列出了在突触发现的多种类型的分子,但是我们并不是非常清楚这些分子是如何装配,或者在结构上如何发挥作用的。

现在,通过单分子成像技术去绘制关键蛋白质图谱,我们最终揭示突触的核心结构。

”在这篇文章中,Blanpied描述了突触结构意想不到的一个方面,它或许能解释为何突触如此高效的同时在疾病中又很容易被破坏。

在每个突触部位,关键蛋白质被安排得井井有条。

“传递信号的实际条件比我们想象的‘神经递质分子在受体附近释放’更加苛刻,”Blanpied说。

“两个神经元的蛋白质以令人难以置信的精确度对齐,几乎在两个细胞之间形成了一个可伸缩的圆柱体。

FDTD Solutions资料集锦专题资料(三)

FDTD Solutions资料集锦专题资料(三)

Microstructural effect on the radiative properties of YSZ thermal barrier.pdf 辐射性质YSZ热屏障对显微结构的影响 Thermal barrier coatings (TBCs) are not the pure bulk materials,
Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves..pdf The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely
FDTD Solutions资料集锦 专题资料(三)
更新时间:2015-2-4
以下是小编整理的一些FDTD Solutions资料集锦,其中包括了有关FDTD
Solutions 相关外文文献。有关文档的下载,可以到研发埠网站的专题 模块,输入相应的专题名,搜索到相应的专题便可以找erface temperature of liquid–solid is considered as a constant
freezing point, but majority of materials have a freezing temperature range and the freezing temperature descends with the
cell on light trapping was investigated. For various amount of

DLC_基纳米多层膜摩擦学性能的研究进展与展望

DLC_基纳米多层膜摩擦学性能的研究进展与展望

表面技术第53卷第8期DLC基纳米多层膜摩擦学性能的研究进展与展望汤鑫1,王静静1*,李伟1,胡月1,鲁志斌2,张广安2(1.上海理工大学 材料与化学学院,上海 200093;2.中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000)摘要:类金刚石(DLC)薄膜是一种良好的固体润滑剂,能够有效延长机械零件、工具的使用寿命。

DLC 基纳米多层薄膜的设计是耐磨薄膜领域的一项研究热点,薄膜中不同组分层具备不同的物理化学性能组合,能从多个角度(如高温、硬度、润滑)进行设计来提升薄膜力学性能、摩擦学性能以及耐腐蚀性能等。

综述了DLC多层薄膜的设计目的与研究进展,以金属/DLC基纳米多层膜、金属氮化物/DLC基纳米多层膜、金属硫化物/DLC基纳米多层膜以及其他DLC基纳米多层膜为主,对早期研究成果及现在的研究方向进行了概述。

介绍了以上几种DLC基纳米多层膜的现有设计思路(形成纳米晶/非晶复合结构、软/硬交替沉积,诱导转移膜形成,实现非公度接触)。

随后对摩擦机理进行了分析总结:1)层与层间形成特殊过渡层,提高了结合力;2)软/硬的多层交替设计,可以抵抗应力松弛和裂纹偏转;3)高接触应力和催化作用下诱导DLC中的sp3向sp2转化,形成高度有序的转移膜,从而实现非公度接触。

最后对DLC基纳米多层膜的未来发展进行了展望。

关键词:DLC基纳米多层膜;力学性能;摩擦学性能;摩擦机理;结构中图分类号:TH117.1;TH142.2文献标志码:A 文章编号:1001-3660(2024)08-0052-11DOI:10.16490/ki.issn.1001-3660.2024.08.005Research Progress and Prospects on Tribological Propertiesof DLC Based Nano-multilayer FilmsTANG Xin1, WANG Jingjing1*, LI Wei1, HU Yue1, LU Zhibin2, ZHANG Guang'an2(1. School of Materials and Chemistry, Shanghai University of Technology, Shanghai 200093, China; 2. State Key Laboratory ofSolid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China)ABSTRACT: Friction and wear can cause surface damage of materials, especially metal materials, and shorten the service life of work pieces. DLC (diamond-like carbon) is an amorphous carbon film composed of mixed structures, usually formed by the mixture of sp2 carbon and sp3 carbon. With high hardness, low friction coefficient, good chemical inertness and biocompatibility, DLC is a kind of film with great potential, which has a wide range of applications in mechanical, electrical, biomedical engineering and other fields. Its super-hard, wear-resistant and self-lubricating properties meet the technical requirements of the modern manufacturing industry. It is widely used as solid lubricant for the surfaces of contact parts that rub against each other.收稿日期:2023-05-08;修订日期:2023-10-12Received:2023-05-08;Revised:2023-10-12基金项目:中国科学院兰州化学物理研究所固体润滑国家重点实验室开放课题(LSL-2205);上海高校青年教师培养资助计划Fund:Open Project of State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (LSL-2205); Shanghai University Youth Teacher Training Assistance Program引文格式:汤鑫, 王静静, 李伟, 等. DLC基纳米多层膜摩擦学性能的研究进展与展望[J]. 表面技术, 2024, 53(8): 52-62.TANG Xin, WANG Jingjing, LI Wei, et al. Research Progress and Prospects on Tribological Properties of DLC Based Nano-multilayer Films[J]. Surface Technology, 2024, 53(8): 52-62.*通信作者(Corresponding author)第53卷第8期汤鑫,等:DLC基纳米多层膜摩擦学性能的研究进展与展望·53·Compared with single-layer DLC films with single component, DLC based nano-multilayer films with alternating layers of two or more components can improve the mechanical and tribological properties better, which is due to that different layers in the nano-multilayer films have different combinations of physical and chemical properties. Therefore, it can be designed from many aspects (such as high temperature, hardness, lubrication, and corrosion) to improve the mechanical properties, tribological properties and corrosion resistance of the films. Usually, the nano-multilayer films have good impact resistance and plastic deformation resistance ability, which can effectively inhibit the formation and propagation of cracks, and have a good cycle service life under high load conditions.In this paper, DLC based nano-multilayer films were systematically reviewed, including metal/DLC based nano-multilayer films, metal nitride/DLC based nano-multilayer films, metal sulfide/DLC based nano-multilayer films and other DLC based nanolayer films. Firstly, the design background and concept of DLC multilayer thin films were elaborated. The design idea of multilayer films was to form a gradient mixing interface between multilayers to achieve gradient changes in composition and properties. This multilayer structure could produce unique structural effects, which could effectively reduce various stresses generated during the friction process, and significantly improved the adhesion strength between film and substrate and the overall elastic modulus of the film, which had important significance for the structure evolution of DLC based nano-multilayer films and the interface action mechanism. Then, the friction mechanisms were summarized. The main friction mechanisms of DLC multilayer films were concluded as follows: 1) The nanocrystalline/amorphous structure was formed, which improved the binding force between the layers and reduced the shear force and friction force; 2) The soft/hard multilayer alternating design resisted stress relaxation and crack deflection; 3) Under the action of pressure, the amorphous carbon layer was induced to forma two-dimensional layered structure to achieve incommensurate contact and effectively reduce friction and wear. Finally, thefuture development of DLC-based nano-multilayer films was forecasted. To improve the tribological properties of DLC composite films under extreme, varied and complex conditions, it is necessary to carry out researches from multiple perspectives: 1) Establishing a multi-material system, which combines doping and multilayer gradient design; 2) Regulating the crystal growth rate and increasing the deposition rate and density of the films by multi-technology co-preparation;3) Establishing a more scientific model to study the friction mechanism of DLC.KEY WORDS: DLC based nano-multilayer films; mechanical properties; tribological properties; friction mechanism; structure摩擦磨损现象广泛存在于机械零件的直接接触中,如机械传动、齿轮咬合。

高分子 专业英语 词汇

高分子 专业英语 词汇

properti 40性能研究particle 44粒子oxidatio 46氧化microstr 48组织mechanic 50机械inorgani 58无机crystall 64晶化amorphou 68非晶态montmori 70蒙脱土toughnes 74韧性reinforc 76颗粒增强depositi 86沉积piezoele 102压电composit 104纤维增强conducti 108导电amorphou 112非晶合金dispersi 116分散microstr 118显微组织absorbin 122吸波134控溅射sputteri136磁控溅射sputteri138磁控magnetro144及性能properti150断裂韧性toughnes152摩擦磨损friction154摩擦学tribolog156聚丙烯polyprop160前驱precurso162显微结构microstr164扫描电子sem174透射电子tem182催化catalyti186前驱体precurso190热力学thermody孔径porecompress 198压缩martensi 200马氏体复合材料composit 202preparat 204制备工艺substrat 206衬底material 210材料中增强复合composit 212spherica 214球形polyuret 216聚氨酯dislocat 218位错properti 222电学立方cubic230抗氧化性oxidatio236优异excellen238铁电ferroele244挤压extrusio250摩擦学性tribolog254复合材料composit256流变rheologi258化学气相沉积depositionshieldin 260屏蔽function 262功能梯度stiffnes 266刚度properti 272材料性能unidirec 274单向annealin 278退火温度非晶态合amorphou 286羟基磷灰hydroxya 288镀层coating296制备技术preparat302抗菌antibact306层板laminate312磁化强度magnetiz314本构关系constitu316综合性能properti318形核nucleati320材料制备preparat ion322层间interlam324多晶polycrys326纳米复合composit330x射线衍xrd332矫顽力coercivi334界面结合interfac336衍射分析diffract340进行表征characte344聚苯乙烯polystyr350多层multilay erdispersa 354分散剂复合材料interfac 356抗氧化性oxidatio 358delamina 360分层elongati 368伸长率sinterin 370烧结工艺nanomete 372纳米级permeabi 374磁导率thermoel 376热电材料382水解hydrolys388分散性dispersi390弛豫relaxati394凝固过程solidifi396光致发光photolum inescenc398导热系数conducti404原子力显afm408显微硬度microhar410纳米技术nanotech414热性能properti416成核nucleati420纳米晶amorphou422复合镀层composit424抗氧化oxidatio426环氧复合epoxy428聚乙烯polyethy432结构材料material436粘弹性viscoela440六方hexagona lhoneycom 442蜂窝particle 454团聚wettabil 466润湿性precipit 470沉淀法impregna 474浸渍复合粉体powders478磁电阻magnetor esistanc480光电子能xps484衬底上substrat486智能材料material488复相composit492退火处理annealin494氧化行为oxidatio498润滑lubricat薄膜表面films510聚四氟乙ptfe522合成法synthesi524金属材料material526有机蒙脱montmori528再结晶recrysta llizatio530非晶相amorphou532淬火quenchin534穆斯mossbaue536偏析segregat538先驱precurso540石墨化度graphiti542弥散particle544水热法制hydrothe550界面结构interfac554混杂复合hybrid560界面上interfac564复合材料层板laminates566沉积法depositi568余辉afterglo572非晶形成amorphou574前驱物precurso578溶胶凝胶sol-gel584压电性piezoele588热电性thermoel590合成方法synthesi594流变性能rheologi596热压烧结sinterin gsolidifi 604快速凝固镍基高温superall 610sputteri 612溅射法制composit 620复合物crystall 624晶态centrifu 626离心628有机-无机organic-inorgani630相沉淀precipit632因数coeffici636弹性体elastome 638均匀化homogeni642功能梯度fgm652湮没annihila656等温结晶crystall 阳极anodic660发光性properti662交联crosslin664无定形amorphou666溅射法sputteri670界面处interfac672共沉淀法coprecip678改性研究modifica684高温超导supercon686晶化行为crystall688热挤压extrusio n692生物材料biomater694纳米氧化nanomete696硅灰石wollasto698衍射峰diffract704磨损试验tester706raman光raman708聚酯polyeste710航空aerospac712韧化tougheni714超塑superpla716半导体材料semiconductor718发光材料luminesc720甲基丙烯pmma728光学材料material734奥氏体austenit736超导电性supercon ductivit742脱层delamina744单晶高温superall746快淬quenchin gdetonati 754爆轰。

专业英语常用单词

专业英语常用单词

AAbrasion resistance 手感Abrasion resistance耐磨性Abrasion磨损Acetic 醋酸Acid dyes酸性染料Acidic group酸性基团Acidic medium酸性介质Acidic treatment 酸处理Acid酸Acrylics聚丙烯腈纤维Acrylic腈纶Active solid 含固量Adhesion 粘附Adhesive粘着剂Adjacent unit 相临单元Aerobic 有氧的Affinity亲和力Affinity亲和力Aftertreatments后处理Agent试剂Aggregate 聚集Agitation 搅拌Agitation 搅拌Aldehyde 醛Alginates 海藻酸盐align调整Alkaline hydrolysis 碱性水解Alkaline treatment 碱处理Alkene烯烃Ammonium 铵Amorphous region 无定型形的Amorphous 无定形Amphipathic 两亲性的Amphoteric 两性的amphoteric两性的Amylase 直链淀粉分子Amylases 淀粉酶Amylopectin支链淀粉分子Anaerobic 无氧Anionic 阴离子性的anthraquinore dyes蒽醌染料Antichlor脱氯Antimigrant 防泳移剂Appearance外观Aqueous medium 液体介质Aromatic芳香族Aryl carbonium dyes芳基甲烷染料Ash灰分Atmospheric contaminants烟气沾污Autoclave高压釜Auxiliary chemicals 化学助剂Auxiliary chemical化学助剂Axially aligned 轴向排列Azoic dyes不溶性偶氮染料BBackbone主链Baffles挡板Barre条痕Base color底色Base 碱Bases色基Basic dyes碱性染料Basic group碱性基团Batch process冷堆工艺Batch 间歇式Batch间歇式Beads 球珠Benzene ring 苯环Benzene 苯Benzodifuranone dyes苯并呋喃染料Bexturized yarn变形纱Binder粘结剂Bleaching 漂白Bleaching漂白Bonded键Boric 硼酸Bronzing铜翳Buffered 缓冲Buider 助洗剂By-product副产物CC.I. 染料索引Calcium钙Capacity 容量Capillaries毛细管效应Carbonic 碳酸Carbonyl羰基Carboxylic acid salt 羧酸盐Carboxyl羧基Carried to达到Carrier-dyed 载体染色Cascades水洗槽Catalysis 催化Catalyze催化cationic dyeable nylon阳离子可染锦纶cationic dyes阳离子染料cationic fixation agents阳离子固色剂Cationic阳离子性的Caustic soda烧碱Cellulose 纤维素cellulose纤维素centrifugal 离心的chamber室Chelating agent 螯合剂Chemical adsorption 化学吸附Chemical finishing化学整理Chemical specialties 化学品Chemically modified化学改性Chlorine gas 氯气Chlorine retention吸氯损伤Chlorosulfonic acid 氯磺酸Chroma彩度chromogen色原体chromophore发色体chromophore发色团chromophore阳离子染料Citric 柠檬酸Cleaning agents 净洗剂Cleavage解离Cloud point 浊点Cloudy混浊的Clumps团Coagulating suspended solids 悬浮固体的凝固Coating 涂层剂Coconut oil 椰子油Colloidal胶态的color yield 上染率Colorant着色剂Colorimetry色度学Common ion effect同离子效应Comonomer 共聚单体compatibility factor配伍性指数Compatibility 相容性compatibility相容性Compatible 相容的Compensate补偿compensate补偿components组分Comprise 包含Compromise妥协Concentrate 浓度,浓缩(物)Concentration gradient浓度梯度Concentration浓度Configuration 构象configuration构形Conjugated double bond共轭双键Contamination沾污coplanarity共平面性coplanar共平面的Copolymer 共聚物Copper 铜Corrosive 腐蚀性Counteract 与…相反Counter-flow 反向流动counterpart等同体coupling component偶合组分coupling偶合Covalent bond共价键Covalent 共价Creamy米色Crease折皱Crimping 织缩Critical micelle concentration 临界胶束浓度Critical苛刻的Crosslinking 交联crosslinking交联Crystalline结晶度crystallization结晶Cyan 青色Cylinder 圆筒Ddark shades深色Decolorize脱色decomposition分解Defect疵点Defoaming 消泡Degradation 降解delocalization 共振demarcation区分Depolymerization 解聚Deposit沉积Derivatization 衍生物Dermatology 刺激Desizing bath 退浆池Desizing退浆Desorb解吸Detach分开Detergency洗净力developer显色基Dextrins 糊精Diameter直径diazonium salt重氮盐diazonium重氮盐diazotization reaction重氮化反应diazotized重氮化dibasic二元的Dichromates 重铬酸Diffuse reflection 漫反射Diffuse扩散Digestion消化作用Dilute稀薄的Dilute稀释Dimensional stability尺寸稳定性Diminishing递减的direct dyes直接染料direct-developed dyes偶氮显色直接染料Discoloration褪色disperse dyes分散染料Dispersing agent 分散剂Dispersion 分散Disposed废弃Dissociated游离的Dissociate电离Dissolution 溶解Distortion扭变Distributes分配Distribution分布Distributor分销商disulfide linkages二硫键Divalent cations 二价的阳离子Diverse 多种多样的Donor substance给予体Drape悬垂性Droplet 液滴Dry cleaning干洗Dull shades深色Duller 萎暗Durability耐久性Durable press behavior 耐久压烫性dye cycle染色周期dye house染厂Dyeability 可染性Dyebath染浴Dyeing assistant 染色助剂Dyeing assistants染色助剂dyeing rate retarder缓染剂Dyeing染色dye-resist防染Dyesites 染座Dynes旦EEffluent 排出Elastomeric 弹性体Electrolytes 电解质electrolytes电解质electron donating group供电子基团electron withdrawing吸电子electron-deficient缺电子Electronegativity电负性electron-rich富电子electrophile亲电性Ellipsoidal 椭圆形的Emboss拷花Emitted 发散Emulsification 乳化Emulsion 乳液Energy history能变史Ensues接下来Enzymes 酶Equation 方程Equilibrium平衡Equipment设备Ethanol 乙醇Exact composition具体组分Exhaust methods 浸染法exhausting agent促染剂exhaustion上染速率Exhaustion吸尽率Exothermic放热的Extraneous matter外来杂质Fanned扇形Ffast bases色盐基fast color salts快色素fastness to crocking摩擦牢度fastness牢度Fatty acids 脂肪酸felting毡缩Felts 毛毯Fiber glass玻璃纤维fiber reactive dyes纤维反应染料Finishes 整理剂Finite有限的Fixation固色fixed固色Fixing dyes 固色Flame retardant 阻燃剂Flexibility弹性Fluffy 绒毛状的Fluidity number流变指数Fluidity 流动性Fluorescent荧光的Fluorocarbon 碳氟Flux rate流量Foaming 发泡Formaldehyde release 甲醛释放Formaldehyde 甲醛Formic 甲酸Formulated配制Formulation 配方Formulation溶液Fragment 片断Free acid 自由酸Free radical mechanisms自由基机理Frequency频率GGalactouronic acid 半乳糖醛酸Garment服装Gassing 烧毛Gel 凝胶Gelling 凝胶Glauber’s salt 元明粉Glauber’s salt元明粉Glycerol甘油Glycogen糖原gradually 离域作用Granules 颗粒Greige goods 坏布Hhalogen卤素Heat history受热史Heat setting热定形Heat transfer 热转移Hindered受阻Homopolymer 均聚物Hue 色泽hybridized杂化Hydraulic action液压作用Hydrochloric 盐酸Hydrogen bond氢键Hydrogen ion 氢离子Hydrolysis 醇解hydrolyzed dye水解染料hydrolyzed水解Hydrophile-lipophile banlance(HLB)亲水亲油平衡值Hydrophilic 亲水Hydrophilic亲水性纤维Hydrophobic fiber疏水性纤维Hydrophobic 憎水Hydrostatic pressure 静水压Hydroxyl ions 氢氧根离子hydroxyl羟基hydro保险粉Hyperfiltration超滤Hypothetical模拟Iice colors冰染料Illuminants照明体Illuminant光源Immiscible 不能混合的Immune 可避免的Impede阻碍Impinging hot air吹热风Impurity 杂质Incandescent 白炽的Incident light 入射光indigoid dyes靛蓝染料indigo靛蓝Infrared 近红外Infrared红外ingrain dyes原纱染色染料Ingredient组分Inherent 内在的inorganic compounds 无机化合物inorganic substances无机物Instantaneously 同时的Integrals积分Intensity 强度Interact相互作用Intercept 截距Interface 界面Internal pressure内在压力Intersect交叉Inversely related 反比关系Inward 内在的Ionic dyes离子型染料Ionize 电离irregularities无序性isoelectric point等电点Isothermal等温的Isotherms 等温线J Judicious 有预见性的Kketo酮Knit fabrics 针织物LLamellar 片状的Latex paint 乳胶漆Leather 皮革leaving groups离去基leuco隐色体leveling匀染性lightfastness耐光牢度lightfastness日晒牢度Lignin 木质素linearity线性Lipid 类脂Liquid ammonia液氨Liquor ratio浴比Liquor-to-fiber ratio浴比live steam热蒸汽Locus轨迹loosely bound colorant结合疏松的染料Lubricant 润滑剂Lyophilic 亲液Lyophobic 憎液MMagenta 品红Magnesium 镁Magnitude 程度Making emulsions乳化Making foam 发泡Manufacture生产,制造Mask掩盖Mass transfer processmatching仿色Maturity成熟度Maturity成熟度Measure测量Mechanism机理Medium介质Melting 熔融Membrane膜Meniscus弯月面Mercerizing 丝光Mercury 水银metal complex dye金属络合染料Metameric pair等色对methoxyl甲氧基Micelles 胶束microorganisms微生物Migration移染Migration泳移milling耐缩绒Mineral acid 有机酸Module循环Modulus 模量Molecular weight分子量monazo单偶氮Monosodium phosphate 磷酸二氢钠multiple多次Mutual共有的NNanometers 纳米naphthol dyes纳夫妥染料naphtholation色酚打底naphthol萘酚Negative负值Net charge净电荷Neutral salt 中性盐Neutralization 中和neutralized中和nitro dyes硝基染料nitroso dyes亚硝基染料nitrous acid亚硝酸Nonionic dyes非离子染料Nonionic 非离子性的Nonpolar非极性的Nonuniform dyeing染色不匀nonvolatile非挥发性nucleophilic displacement亲核取代Nuisance 缺点Nylon锦纶O Odor 气味Oil-in-water水包油Opaque 不透明的Opponent互补Optical brighteners 荧光增白剂Optical whiteners 光学白光Optimum rate of dyeing最佳上染率Ordinate 纵坐标Organic acid 有机酸organic chemical有机物Organic compounds 有机化合物oriented取向ortho 邻位的Osmosis渗透作用overfeeding超喂Overlap重叠over-oxidation过度氧化Oxidation 氧化Oxidation-reduction reaction 氧化还原反应oxidized氧化ozone臭氧PPad process轧工艺pad-batch浸轧堆置Padding techniques 浸轧工艺pad-jig浸轧卷染pad-steam浸轧汽蒸Pad-thermosol methods浸轧热溶染色法Paints 涂料pale shade浅色Panels类型Parallel to 平行Parameter参数Pastel shades浅色Pectic matter果胶物质Penetrated渗透Penetration渗透Peracetic acid 过氧乙酸perforated穿孔Perhydroxyl ion过氢氧要离子periphery周围Permanency 永久性Permanently永久地Permeate渗透液Perspiration汗渍Phase 相phenolic compounds酚类化合物phenolic hydrogen酚羟基phenol苯酚phenol酚phthalocyanine dyes酞菁染料pi orbitals π轨道Pickup带液率pigment method悬浮体染色法Pigment颜料Pilling起球Pleat打褶Polar极性的polyamide聚酰胺Polychromatic 多色的polycyclic aromatic carbonyl dyes稠环蒽醌染料Polyester聚酯纤维Polymer membrane高分子膜polymethine dyes聚甲炔染料Polypropylene聚丙烯Polysaccharides多聚糖Pore孔Porous carbon活性炭Porous 多孔的Positive正值Potassium 钾Preblended 预先混合Precipitous 明显的Precondensates 预聚体Predetermined temperature预定温度premature oxidation过早氧化Presumably大概地Pretreatments 预处理Primary hydroxyl group伯羟基primuline樱草灵Print paste 印花浆Prism棱镜Propagate增长proportion分配Proprietary专有的Protein蛋白质protein蛋白质protonated质子化protonated质子化作用Protrude伸出QQuenching灭火quinophthalone dyes苯并喹啉染料RRadius 半径reactive dyes活性染料Rearrangements重排Reciprocal倒数reddish带红色的Redeposition再沉积reduced method隐色体染色法reducing agent还原剂Reduction 还原Reenter再进入Relaxation of stresses 应力松弛replenished补充Replenished再补充repulsion斥力Repulsion排斥Residual chlorine残留氯Residual残留resin finish树酯整理resin后处理resonance 共振Retarders 缓染剂Retarding dyeing rate缓染Retina 视网膜Retract 收缩Rewetting 再润湿Rinse 洗涤Rinses漂洗Rod-like棒状的Rollback卷缩roll辊筒Rubber 橡胶Rubbing摩擦Rupture破裂SSalt linkage盐式键Salt 盐Salting out effect 盐效应salvaged弥补Saponification皂化反应Saturation 饱和度Scavenge 清除Scission切断Scouring煮练second order transition temperature二级转变温度Secondary bond 次级键secondary forces次级力Secondary hydroxyl group仲羟基Secondary wall次生胞壁semicontinuous半连续Sensory perception 感觉Severely严重地Sewn织补shades 颜色shielded 屏蔽Shrinkage 缩水side chains侧链Silicones 有机硅Siloxane 硅氧烷Singeing烧行Size reclamation 浆料回收Size浆料slightly acidic弱酸Slippage 滑移Smoldering阴燃soaping皂洗Sodium dydrosulfite 保险粉Sodium hydroxide氢氧化钠Sodium hypochlorite 次氯酸钠Sodium metasilicate 硅酸钠Sodium persulfate 亚硫代硫酸钠Sodium sulfate 硫酸钠Softener 柔软剂Softening 柔软Solely仅仅Solubility in water 水溶性Sparingly少量地Spectroscopy 光谱学Spectrumfilter光谱过滤器Specular reflection 镜面反射Spherical 球形的Spontaneously自发地Spot斑点Stabilizing dispersions 分散稳定Stain 着色Stains 污物Stansparent 透明的Starch paste 淀粉浆Starch 淀粉Steam process蒸工艺Stem茎Steric barriers空间位阻层Stiffness硬挺性strand绳状Streak条花Strength强力耐磨性Strike 刺激Structure 结构styryl dyes苯乙烯染料Subdivision等分Subjective主观的Sublimation 升华sublime升华Submerged 浸没substantivity直接性Substituted取代Substrate variation被染物变化Substrate 基材Substrate 溶液substrate被染物Sugar 糖Sulfonation reaction磺化反应sulfones砜sulfoxides亚砜sulfur bridges硫桥键sulfur dyes硫化染料Sulfuric 硫酸Surface active agents 表面活性剂Surface tension 表面张力Surfactant 表面活性剂Surfactants表面活性剂Surfactant表面活性剂Swell 溶胀synthesis合成Synthetic fibers合成纤维Synthetic 合成的TTacky 粘着性tailing头尾色差Tailored 特制的Tallow 脂(动物)Tear strength 撕裂强力tendering脆损Tensile strength 断裂强力Tenter frame张力架Textile纺织品Texturized yarn 变形纱The size of openings自由体积Thermally unstable 热不稳定的Thermo-plastic热塑性Thermosetting 热固性Thickener 增稠剂Thin slurry 薄浆thiol硫醇tile倾斜Timing cans 巴拉拉Timing定时tinctorial strength着色强度tinctorial strength着色强度Toxicity有毒的Transformed 转化Translucent 半透明的Translucent半透明的Transverse direction 截面方向Trihydric alcohol 三羟基醇trimming修剪Tubular membranes管状膜UUltimate exhaustion最终吸尽率Ultraviolet light紫外光Ultraviolet 紫外的Unambiguous 确定的Uniformly均匀的unshared electron pairs孤对电子Vvacates腾出Value明度Van der Waals forces范德华力Vaporization 蒸发Variables变量vat dyes还原染料vatting 还原Vector 矢量Velocity 速度vessel容器vigorous剧烈Vinyl acetate 醋酸乙烯酯Viscosity粘度WWarp size经纱上浆washfastness水洗牢度Wastewater污水Water absorbency 吸水性Water-in-oil油包水Waterproof 防水整理Wavelength 波长Wax蜡质Weathering气候Wettability润湿性Wetting 润湿Whiteness 白度Wrinkling 折皱ZZwitterionics 两性表面活性剂zwitterionic两性离子。

TiAlSiN_涂层力学性能改善措施的研究现状及进展

TiAlSiN_涂层力学性能改善措施的研究现状及进展

表面技术第53卷第8期TiAlSiN涂层力学性能改善措施的研究现状及进展周琼,王涛,黄彪*,张而耕,陈强,梁丹丹 (上海应用技术大学 上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418)摘要:TiAlSiN涂层具有耐温性好、化学惰性高等优异性能,其作为防护层被广泛应用于摩擦零部件、机械加工工具上。

但TiAlSiN涂层内应力过大导致的力学性能不足,限制了其在严苛工况下的进一步应用。

总结了目前改善TiAlSiN涂层力学性能的主要措施:涂层微观结构优化、膜层结构设计以及热处理工艺。

对改善涂层力学性能所涉及的细晶强化、共格效应、固溶强化以及模量差理论等机理进行了全面的描述,并详细地对比分析了上述理论之间的内在联系与差异。

系统地讨论了纳米多层和梯度复合膜层结构对涂层力学性能的影响规律,主要从调制结构以及成分调整2个角度对膜层结构变化进行了分析,有利于指导具有良好力学性能的膜层结构的设计。

此外,分别阐述了退火温度、时间以及气氛环境对TiAlSiN涂层力学性能的影响规律,分析了退火条件对涂层微观结构的影响以及微观结构与力学性能之间的关系。

在此基础上,提出了未来可以从基础理论和改善措施之间的协同作用角度,对TiAlSiN涂层力学性能的改善展开进一步研究。

关键词:TiAlSiN;性能改善;力学性能;微观结构;膜层结构;热处理中图分类号:TG174.4 文献标志码:A 文章编号:1001-3660(2024)08-0040-12DOI:10.16490/ki.issn.1001-3660.2024.08.004Research Status and Progress of Improving MechanicalProperties of TiAlSiN CoatingsZHOU Qiong, WANG Tao, HUANG Biao*, ZHANG Ergeng, CHEN Qiang, LIANG Dandan(Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment,Shanghai Institute of Technology, Shanghai 201418, China)ABSTRACT: TiAlSiN coatings have excellent high temperature resistance and chemical inertness, and they have been widely used on friction work pieces and cutting tools. However, their high internal stress limits their further application in industries under harshworking conditions. This paper focuses on the main techniques employed to improve the mechanical properties of TiAlSiN coatings, including microstructure optimization, micro-structure design and treatment. The coating hardness is predominantly influenced by microstructure, which can be tailored through various processing methods such as deposition method optimization, and modulation of the deposition process parameters including nitrogen flow rate, substrate bias, target quantity, and power duration. In addition, doping new elements and changing the original element content of TiAlSiN coatings also affect the hardness of the coatings. In this work, the mechanisms involved in improving the mechanical properties of the收稿日期:2023-05-08;修订日期:2023-07-29Received:2023-05-08;Revised:2023-07-29基金项目:国家自然科学基金资助项目(51971148);上海市自然科学基金资助项目(20ZR1455700)Fund:The National Natural Science Foundation of China (51971148); Shanghai Natural Science Foundation (20ZR1455700)引文格式:周琼, 王涛, 黄彪, 等. TiAlSiN涂层力学性能改善措施的研究现状及进展[J]. 表面技术, 2024, 53(8): 40-51.ZHOU Qiong, WANG Tao, HUANG Biao, et al. Research Status and Progress of Improving Mechanical Properties of TiAlSiN Coatings[J]. Surface Technology, 2024, 53(8): 40-51.*通信作者(Corresponding author)第53卷第8期周琼,等:TiAlSiN涂层力学性能改善措施的研究现状及进展·41·coatings, such as fine grain strengthening, solid solution strengthening and modulus difference theory, were compared and analyzed. The refinement of grain size resulting from fine-crystal strengthening reduced the crack propagation, while solid-solution strengthening was achieved by introducing foreign atoms into a compound to form a solid solution, thereby increasing the hardness of the TiAlSiN coatings. The coherent effect and modulus difference theory promoted the enhancement of TiAlSiN coating hardness through interface structure optimization. Both mechanisms induced interfacial stresses that prevented dislocation generation. The internal relations and differences between the above theories were compared and analyzed in detail. The effect of nano-multilayer and gradient composite layers on the mechanical properties of the coatings was systematically discussed. Modulation structure and composition adjustment were the two main factors that affected the variation of micro-structure. Currently, research on the strengthening mechanisms of nano-layered coatings and gradient-structured coatings is not comprehensive. Even small structural alterations to these coatings can cause various influence mechanisms that alter their mechanical properties. For instance, changing the modulation period significantly impacts the mechanical behavior of TiAlSiN coatings by means of coherent strain and the modulus difference theory. It is helpful to guide the design of membrane structure with good mechanical properties. In addition, heat treatment has the most significant effect on the properties of TiAlSiN coatings. So the influence of annealing temperature, annealing time, and atmosphere on the mechanical properties of TiAlSiN coatings was summarized. The effect of annealing conditions on the microstructure of the coatings and the relationship between the microstructure and mechanical properties were analyzed. In addition to experimental research, basic theoretical research was also be conducted by starting from first principles to identify the specific relationships and influence mechanisms between microstructure and mechanical properties of coatings. Annealing had three main effects on the mechanical properties of TiAlSiN coatings: grain coarsening, phase transformation, and surface oxide formation. Annealing resulted in grain coarsening, which improved the toughness of the coatings. The mechanical properties of TiAlSiN coatings were affected by the phase structure when phase transitions occurred during annealing. Additionally, the significance of the synergistic effect of improving measures on the mechanical properties of TiAlSiN coatings was emphasized. Finally, it was suggested to conduct deep research in future on improving mechanical properties of TiAlSiN coatings from basic theory and cooperation effect of various improvement actions.KEY WORDS: TiAlSiN; property improvement; mechanical property; microstructure; film structure; heat treatment现代刀具材料主要有高速钢、硬质合金、金属陶瓷等,随着切削加工技术的不断提高,其力学性能已经逐渐不能满足工业上的要求,而提升涂层的力学性能可以弥补刀具材质上的不足[1-5]。

特征更新的动态图卷积表面损伤点云分割方法

特征更新的动态图卷积表面损伤点云分割方法

第41卷 第4期吉林大学学报(信息科学版)Vol.41 No.42023年7月Journal of Jilin University (Information Science Edition)July 2023文章编号:1671⁃5896(2023)04⁃0621⁃10特征更新的动态图卷积表面损伤点云分割方法收稿日期:2022⁃09⁃21基金项目:国家自然科学基金资助项目(61573185)作者简介:张闻锐(1998 ),男,江苏扬州人,南京航空航天大学硕士研究生,主要从事点云分割研究,(Tel)86⁃188****8397(E⁃mail)839357306@;王从庆(1960 ),男,南京人,南京航空航天大学教授,博士生导师,主要从事模式识别与智能系统研究,(Tel)86⁃130****6390(E⁃mail)cqwang@㊂张闻锐,王从庆(南京航空航天大学自动化学院,南京210016)摘要:针对金属部件表面损伤点云数据对分割网络局部特征分析能力要求高,局部特征分析能力较弱的传统算法对某些数据集无法达到理想的分割效果问题,选择采用相对损伤体积等特征进行损伤分类,将金属表面损伤分为6类,提出一种包含空间尺度区域信息的三维图注意力特征提取方法㊂将得到的空间尺度区域特征用于特征更新网络模块的设计,基于特征更新模块构建出了一种特征更新的动态图卷积网络(Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)用于点云语义分割㊂实验结果表明,该方法有助于更有效地进行点云分割,并提取点云局部特征㊂在金属表面损伤分割上,该方法的精度优于PointNet ++㊁DGCNN(Dynamic Graph Convolutional Neural Networks)等方法,提高了分割结果的精度与有效性㊂关键词:点云分割;动态图卷积;特征更新;损伤分类中图分类号:TP391.41文献标志码:A Cloud Segmentation Method of Surface Damage Point Based on Feature Adaptive Shifting⁃DGCNNZHANG Wenrui,WANG Congqing(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)Abstract :The cloud data of metal part surface damage point requires high local feature analysis ability of the segmentation network,and the traditional algorithm with weak local feature analysis ability can not achieve the ideal segmentation effect for the data set.The relative damage volume and other features are selected to classify the metal surface damage,and the damage is divided into six categories.This paper proposes a method to extract the attention feature of 3D map containing spatial scale area information.The obtained spatial scale area feature is used in the design of feature update network module.Based on the feature update module,a feature updated dynamic graph convolution network is constructed for point cloud semantic segmentation.The experimental results show that the proposed method is helpful for more effective point cloud segmentation to extract the local features of point cloud.In metal surface damage segmentation,the accuracy of this method is better than pointnet++,DGCNN(Dynamic Graph Convolutional Neural Networks)and other methods,which improves the accuracy and effectiveness of segmentation results.Key words :point cloud segmentation;dynamic graph convolution;feature adaptive shifting;damage classification 0 引 言基于深度学习的图像分割技术在人脸㊁车牌识别和卫星图像分析领域已经趋近成熟,为获取物体更226吉林大学学报(信息科学版)第41卷完整的三维信息,就需要利用三维点云数据进一步完善语义分割㊂三维点云数据具有稀疏性和无序性,其独特的几何特征分布和三维属性使点云语义分割在许多领域的应用都遇到困难㊂如在机器人与计算机视觉领域使用三维点云进行目标检测与跟踪以及重建;在建筑学上使用点云提取与识别建筑物和土地三维几何信息;在自动驾驶方面提供路面交通对象㊁道路㊁地图的采集㊁检测和分割功能㊂2017年,Lawin等[1]将点云投影到多个视图上分割再返回点云,在原始点云上对投影分割结果进行分析,实现对点云的分割㊂最早的体素深度学习网络产生于2015年,由Maturana等[2]创建的VOXNET (Voxel Partition Network)网络结构,建立在三维点云的体素表示(Volumetric Representation)上,从三维体素形状中学习点的分布㊂结合Le等[3]提出的点云网格化表示,出现了类似PointGrid的新型深度网络,集成了点与网格的混合高效化网络,但体素化的点云面对大量点数的点云文件时表现不佳㊂在不规则的点云向规则的投影和体素等过渡态转换过程中,会出现很多空间信息损失㊂为将点云自身的数据特征发挥完善,直接输入点云的基础网络模型被逐渐提出㊂2017年,Qi等[4]利用点云文件的特性,开发了直接针对原始点云进行特征学习的PointNet网络㊂随后Qi等[5]又提出了PointNet++,针对PointNet在表示点与点直接的关联性上做出改进㊂Hu等[6]提出SENET(Squeeze⁃and⁃Excitation Networks)通过校准通道响应,为三维点云深度学习引入通道注意力网络㊂2018年,Li等[7]提出了PointCNN,设计了一种X⁃Conv模块,在不显著增加参数数量的情况下耦合较远距离信息㊂图卷积网络[8](Graph Convolutional Network)是依靠图之间的节点进行信息传递,获得图之间的信息关联的深度神经网络㊂图可以视为顶点和边的集合,使每个点都成为顶点,消耗的运算量是无法估量的,需要采用K临近点计算方式[9]产生的边缘卷积层(EdgeConv)㊂利用中心点与其邻域点作为边特征,提取边特征㊂图卷积网络作为一种点云深度学习的新框架弥补了Pointnet等网络的部分缺陷[10]㊂针对非规律的表面损伤这种特征缺失类点云分割,人们已经利用各种二维图像采集数据与卷积神经网络对风扇叶片㊁建筑和交通工具等进行损伤检测[11],损伤主要类别是裂痕㊁表面漆脱落等㊂但二维图像分割涉及的损伤种类不够充分,可能受物体表面污染㊁光线等因素影响,将凹陷㊁凸起等损伤忽视,或因光照不均匀判断为脱漆㊂笔者提出一种基于特征更新的动态图卷积网络,主要针对三维点云分割,设计了一种新型的特征更新模块㊂利用三维点云独特的空间结构特征,对传统K邻域内权重相近的邻域点采用空间尺度进行区分,并应用于对金属部件表面损伤分割的有用与无用信息混杂的问题研究㊂对邻域点进行空间尺度划分,将注意力权重分组,组内进行特征更新㊂在有效鉴别外邻域干扰特征造成的误差前提下,增大特征提取面以提高局部区域特征有用性㊂1 深度卷积网络计算方法1.1 包含空间尺度区域信息的三维图注意力特征提取方法由迭代最远点采集算法将整片点云分割为n个点集:{M1,M2,M3, ,M n},每个点集包含k个点:{P1, P2,P3, ,P k},根据点集内的空间尺度关系,将局部区域划分为不同的空间区域㊂在每个区域内,结合局部特征与空间尺度特征,进一步获得更有区分度的特征信息㊂根据注意力机制,为K邻域内的点分配不同的权重信息,特征信息包括空间区域内点的分布和区域特性㊂将这些特征信息加权计算,得到点集的卷积结果㊂使用空间尺度区域信息的三维图注意力特征提取方式,需要设定合适的K邻域参数K和空间划分层数R㊂如果K太小,则会导致弱分割,因不能完全利用局部特征而影响结果准确性;如果K太大,会增加计算时间与数据量㊂图1为缺损损伤在不同参数K下的分割结果图㊂由图1可知,在K=30或50时,分割结果效果较好,K=30时计算量较小㊂笔者选择K=30作为实验参数㊂在分析确定空间划分层数R之前,简要分析空间层数划分所应对的问题㊂三维点云所具有的稀疏性㊁无序性以及损伤点云自身噪声和边角点多的特性,导致了点云处理中可能出现的共同缺点,即将离群值点云选为邻域内采样点㊂由于损伤表面多为一个面,被分割出的损伤点云应在该面上分布,而噪声点则被分布在整个面的两侧,甚至有部分位于损伤内部㊂由于点云噪声这种立体分布的特征,导致了离群值被选入邻域内作为采样点存在㊂根据采用DGCNN(Dynamic Graph Convolutional Neural Networks)分割网络抽样实验结果,位于切面附近以及损伤内部的离群值点对点云分割结果造成的影响最大,被错误分割为特征点的几率最大,在后续预处理过程中需要对这种噪声点进行优先处理㊂图1 缺损损伤在不同参数K 下的分割结果图Fig.1 Segmentation results of defect damage under different parameters K 基于上述实验结果,在参数K =30情况下,选择空间划分层数R ㊂缺损损伤在不同参数R 下的分割结果如图2所示㊂图2b 的结果与测试集标签分割结果更为相似,更能体现损伤的特征,同时屏蔽了大部分噪声㊂因此,选择R =4作为实验参数㊂图2 缺损损伤在不同参数R 下的分割结果图Fig.2 Segmentation results of defect damage under different parameters R 在一个K 邻域内,邻域点与中心点的空间关系和特征差异最能表现邻域点的权重㊂空间特征系数表示邻域点对中心点所在点集的重要性㊂同时,为更好区分图内邻域点的权重,需要将整个邻域细分㊂以空间尺度进行细分是较为合适的分类方式㊂中心点的K 邻域可视为一个局部空间,将其划分为r 个不同的尺度区域㊂再运算空间注意力机制,为这r 个不同区域的权重系数赋值㊂按照空间尺度多层次划分,不仅没有损失核心的邻域点特征,还能有效抑制无意义的㊁有干扰性的特征㊂从而提高了深度学习网络对点云的局部空间特征的学习能力,降低相邻邻域之间的互相影响㊂空间注意力机制如图3所示,计算步骤如下㊂第1步,计算特征系数e mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重㊂分别用Δp mk 和Δf mk 表示三维空间关系和局部特征差异,M 表示MLP(Multi⁃Layer Perceptrons)操作,C 表示concat 函数,其中Δp mk =p mk -p m ,Δf mk =M (f mk )-M (f m )㊂将两者合并后输入多层感知机进行计算,得到计算特征系数326第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图3 空间尺度区域信息注意力特征提取方法示意图Fig.3 Schematic diagram of attention feature extraction method for spatial scale regional information e mk =M [C (Δp mk ‖Δf mk )]㊂(1) 第2步,计算图权重系数a mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重包含比㊂其中k ∈{1,2,3, ,K },K 表示每个邻域所包含点数㊂需要对特征系数e mk 进行归一化,使用归一化指数函数S (Softmax)得到权重多分类的结果,即计算图权重系数a mk =S (e mk )=exp(e mk )/∑K g =1exp(e mg )㊂(2) 第3步,用空间尺度区域特征s mr 表示中心点m 的第r 个空间尺度区域的特征㊂其中k r ∈{1,2,3, ,K r },K r 表示第r 个空间尺度区域所包含的邻域点数,并在其中加入特征偏置项b r ,避免权重化计算的特征在动态图中累计单面误差指向,空间尺度区域特征s mr =∑K r k r =1[a mk r M (f mk r )]+b r ㊂(3) 在r 个空间尺度区域上进行计算,就可得到点m 在整个局部区域的全部空间尺度区域特征s m ={s m 1,s m 2,s m 3, ,s mr },其中r ∈{1,2,3, ,R }㊂1.2 基于特征更新的动态图卷积网络动态图卷积网络是一种能直接处理原始三维点云数据输入的深度学习网络㊂其特点是将PointNet 网络中的复合特征转换模块(Feature Transform),改进为由K 邻近点计算(K ⁃Near Neighbor)和多层感知机构成的边缘卷积层[12]㊂边缘卷积层功能强大,其提取的特征不仅包含全局特征,还拥有由中心点与邻域点的空间位置关系构成的局部特征㊂在动态图卷积网络中,每个邻域都视为一个点集㊂增强对其中心点的特征学习能力,就会增强网络整体的效果[13]㊂对一个邻域点集,对中心点贡献最小的有效局部特征的边缘点,可以视为异常噪声点或低权重点,可能会给整体分割带来边缘溢出㊂点云相比二维图像是一种信息稀疏并且噪声含量更大的载体㊂处理一个局域内的噪声点,将其直接剔除或简单采纳会降低特征提取效果,笔者对其进行低权重划分,并进行区域内特征更新,增强抗噪性能,也避免点云信息丢失㊂在空间尺度区域中,在区域T 内有s 个点x 被归为低权重系数组,该点集的空间信息集为P ∈R N s ×3㊂点集的局部特征集为F ∈R N s ×D f [14],其中D f 表示特征的维度空间,N s 表示s 个域内点的集合㊂设p i 以及f i 为点x i 的空间信息和特征信息㊂在点集内,对点x i 进行小范围内的N 邻域搜索,搜索其邻域点㊂则点x i 的邻域点{x i ,1,x i ,2, ,x i ,N }∈N (x i ),其特征集合为{f i ,1,f i ,2, ,f i ,N }∈F ㊂在利用空间尺度进行区域划分后,对空间尺度区域特征s mt 较低的区域进行区域内特征更新,通过聚合函数对权重最低的邻域点在图中的局部特征进行改写㊂已知中心点m ,点x i 的特征f mx i 和空间尺度区域特征s mt ,目的是求出f ′mx i ,即中心点m 的低权重邻域点x i 在进行邻域特征更新后得到的新特征㊂对区域T 内的点x i ,∀x i ,j ∈H (x i ),x i 与其邻域H 内的邻域点的特征相似性域为R (x i ,x i ,j )=S [C (f i ,j )T C (f i ,j )/D o ],(4)其中C 表示由输入至输出维度的一维卷积,D o 表示输出维度值,T 表示转置㊂从而获得更新后的x i 的426吉林大学学报(信息科学版)第41卷特征㊂对R (x i ,x i ,j )进行聚合,并将特征f mx i 维度变换为输出维度f ′mx i =∑[R (x i ,x i ,j )S (s mt f mx i )]㊂(5) 图4为特征更新网络模块示意图,展示了上述特征更新的计算过程㊂图5为特征更新的动态图卷积网络示意图㊂图4 特征更新网络模块示意图Fig.4 Schematic diagram of feature update network module 图5 特征更新的动态图卷积网络示意图Fig.5 Flow chart of dynamic graph convolution network with feature update 动态图卷积网络(DGCNN)利用自创的边缘卷积层模块,逐层进行边卷积[15]㊂其前一层的输出都会动态地产生新的特征空间和局部区域,新一层从前一层学习特征(见图5)㊂在每层的边卷积模块中,笔者在边卷积和池化后加入了空间尺度区域注意力特征,捕捉特定空间区域T 内的邻域点,用于特征更新㊂特征更新会降低局域异常值点对局部特征的污染㊂网络相比传统图卷积神经网络能获得更多的特征信息,并且在面对拥有较多噪声值的点云数据时,具有更好的抗干扰性[16],在对性质不稳定㊁不平滑并含有需采集分割的突出中心的点云数据时,会有更好的抗干扰效果㊂相比于传统预处理方式,其稳定性更强,不会发生将突出部分误分割或漏分割的现象[17]㊂2 实验结果与分析点云分割的精度评估指标主要由两组数据构成[18],即平均交并比和总体准确率㊂平均交并比U (MIoU:Mean Intersection over Union)代表真实值和预测值合集的交并化率的平均值,其计算式为526第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法U =1T +1∑Ta =0p aa ∑Tb =0p ab +∑T b =0p ba -p aa ,(6)其中T 表示类别,a 表示真实值,b 表示预测值,p ab 表示将a 预测为b ㊂总体准确率A (OA:Overall Accuracy)表示所有正确预测点p c 占点云模型总体数量p all 的比,其计算式为A =P c /P all ,(7)其中U 与A 数值越大,表明点云分割网络越精准,且有U ≤A ㊂2.1 实验准备与数据预处理实验使用Kinect V2,采用Depth Basics⁃WPF 模块拍摄金属部件损伤表面获得深度图,将获得的深度图进行SDK(Software Development Kit)转化,得到pcd 格式的点云数据㊂Kinect V2采集的深度图像分辨率固定为512×424像素,为获得更清晰的数据图像,需尽可能近地采集数据㊂选择0.6~1.2m 作为采集距离范围,从0.6m 开始每次增加0.2m,获得多组采量数据㊂点云中分布着噪声,如果不对点云数据进行过滤会对后续处理产生不利影响㊂根据统计原理对点云中每个点的邻域进行分析,再建立一个特别设立的标准差㊂然后将实际点云的分布与假设的高斯分布进行对比,实际点云中误差超出了标准差的点即被认为是噪声点[19]㊂由于点云数据量庞大,为提高效率,选择采用如下改进方法㊂计算点云中每个点与其首个邻域点的空间距离L 1和与其第k 个邻域点的空间距离L k ㊂比较每个点之间L 1与L k 的差,将其中差值最大的1/K 视为可能噪声点[20]㊂计算可能噪声点到其K 个邻域点的平均值,平均值高出标准差的被视为噪声点,将离群噪声点剔除后完成对点云的滤波㊂2.2 金属表面损伤点云关键信息提取分割方法对点云损伤分割,在制作点云数据训练集时,如果只是单一地将所有损伤进行统一标记,不仅不方便进行结果分析和应用,而且也会降低特征分割的效果㊂为方便分析和控制分割效果,需要使用ArcGIS 将点云模型转化为不规则三角网TIN(Triangulated Irregular Network)㊂为精确地分类损伤,利用图6 不规则三角网模型示意图Fig.6 Schematic diagram of triangulated irregular networkTIN 的表面轮廓性质,获得训练数据损伤点云的损伤内(外)体积,损伤表面轮廓面积等㊂如图6所示㊂选择损伤体积指标分为相对损伤体积V (RDV:Relative Damege Volume)和邻域内相对损伤体积比N (NRDVR:Neighborhood Relative Damege Volume Ratio)㊂计算相对平均深度平面与点云深度网格化平面之间的部分,得出相对损伤体积㊂利用TIN 邻域网格可获取某损伤在邻域内的相对深度占比,有效解决制作测试集时,将因弧度或是形状造成的相对深度判断为损伤的问题㊂两种指标如下:V =∑P d k =1h k /P d -∑P k =1h k /()P S d ,(8)N =P n ∑P d k =1h k S d /P d ∑P n k =1h k S ()n -()1×100%,(9)其中P 表示所有点云数,P d 表示所有被标记为损伤的点云数,P n 表示所有被认定为损伤邻域内的点云数;h k 表示点k 的深度值;S d 表示损伤平面面积,S n 表示损伤邻域平面面积㊂在获取TIN 标准包络网视图后,可以更加清晰地描绘损伤情况,同时有助于量化损伤严重程度㊂笔者将损伤分为6种类型,并利用计算得出的TIN 指标进行损伤分类㊂同时,根据损伤部分体积与非损伤部分体积的关系,制定指标损伤体积(SDV:Standard Damege Volume)区分损伤类别㊂随机抽选5个测试组共50张图作为样本㊂统计非穿透损伤的RDV 绝对值,其中最大的30%标记为凹陷或凸起,其余626吉林大学学报(信息科学版)第41卷标记为表面损伤,并将样本分类的标准分界值设为SDV㊂在设立以上标准后,对凹陷㊁凸起㊁穿孔㊁表面损伤㊁破损和缺损6种金属表面损伤进行分类,金属表面损伤示意图如图7所示㊂首先,根据损伤是否产生洞穿,将损伤分为两大类㊂非贯通伤包括凹陷㊁凸起和表面损伤,贯通伤包括穿孔㊁破损和缺损㊂在非贯通伤中,凹陷和凸起分别采用相反数的SDV 作为标准,在这之间的被分类为表面损伤㊂贯通伤中,以损伤部分平面面积作为参照,较小的分类为穿孔,较大的分类为破损,而在边缘处因腐蚀㊁碰撞等原因缺角㊁内损的分类为缺损㊂分类参照如表1所示㊂图7 金属表面损伤示意图Fig.7 Schematic diagram of metal surface damage表1 损伤类别分类Tab.1 Damage classification 损伤类别凹陷凸起穿孔表面损伤破损缺损是否形成洞穿××√×√√RDV 绝对值是否达到SDV √√\×\\S d 是否达到标准\\×\√\2.3 实验结果分析为验证改进的图卷积深度神经网络在点云语义分割上的有效性,笔者采用TensorFlow 神经网络框架进行模型测试㊂为验证深度网络对损伤分割的识别准确率,采集了带有损伤特征的金属部件损伤表面点云,对点云进行预处理㊂对若干金属部件上的多个样本金属面的点云数据进行筛选,删除损伤占比低于5%或高于60%的数据后,划分并装包制作为点云数据集㊂采用CloudCompare 软件对样本金属上的损伤部分进行分类标记,共分为6种如上所述损伤㊂部件损伤的数据集制作参考点云深度学习领域广泛应用的公开数据集ModelNet40part㊂分割数据集包含了多种类型的金属部件损伤数据,这些损伤数据显示在510张总点云图像数据中㊂点云图像种类丰富,由各种包含损伤的金属表面构成,例如金属门,金属蒙皮,机械构件外表面等㊂用ArcGIS 内相关工具将总图进行随机点拆分,根据数据集ModelNet40part 的规格,每个独立的点云数据组含有1024个点,将所有总图拆分为510×128个单元点云㊂将样本分为400个训练集与110个测试集,采用交叉验证方法以保证测试的充分性[20],对多种方法进行评估测试,实验结果由单元点云按原点位置重新组合而成,并带有拆分后对单元点云进行的分割标记㊂分割结果比较如图8所示㊂726第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图8 分割结果比较图Fig.8 Comparison of segmentation results在部件损伤分割的实验中,将不同网络与笔者网络(FAS⁃DGCNN:Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)进行对比㊂除了采用不同的分割网络外,其余实验均采用与改进的图卷积深度神经网络方法相同的实验设置㊂实验结果由单一损伤交并比(IoU:Intersection over Union),平均损伤交并比(MIoU),单一损伤准确率(Accuracy)和总体损伤准确率(OA)进行评价,结果如表2~表4所示㊂将6种不同损伤类别的Accuracy 与IoU 进行对比分析,可得出结论:相比于基准实验网络Pointet++,笔者在OA 和MioU 方面分别在贯通伤和非贯通伤上有10%和20%左右的提升,在整体分割指标上,OA 能达到90.8%㊂对拥有更多点数支撑,含有较多点云特征的非贯通伤,几种点云分割网络整体性能均能达到90%左右的效果㊂而不具有局部特征识别能力的PointNet 在贯通伤上的表现较差,不具备有效的分辨能力,导致分割效果相对于其他损伤较差㊂表2 损伤部件分割准确率性能对比 Tab.2 Performance comparison of segmentation accuracy of damaged parts %实验方法准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6Ponitnet 82.785.073.880.971.670.1Pointnet++88.786.982.783.486.382.9DGCNN 90.488.891.788.788.687.1FAS⁃DGCNN 92.588.892.191.490.188.6826吉林大学学报(信息科学版)第41卷表3 损伤部件分割交并比性能对比 Tab.3 Performance comparison of segmentation intersection ratio of damaged parts %IoU 准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6PonitNet80.582.770.876.667.366.9PointNet++86.384.580.481.184.280.9DGCNN 88.786.589.986.486.284.7FAS⁃DGCNN89.986.590.388.187.385.7表4 损伤分割的整体性能对比分析  出,动态卷积图特征以及有效的邻域特征更新与多尺度注意力给分割网络带来了更优秀的局部邻域分割能力,更加适应表面损伤分割的任务要求㊂3 结 语笔者利用三维点云独特的空间结构特征,将传统K 邻域内权重相近的邻域点采用空间尺度进行区分,并将空间尺度划分运用于邻域内权重分配上,提出了一种能将邻域内噪声点降权筛除的特征更新模块㊂采用此模块的动态图卷积网络在分割上表现出色㊂利用特征更新的动态图卷积网络(FAS⁃DGCNN)能有效实现金属表面损伤的分割㊂与其他网络相比,笔者方法在点云语义分割方面表现出更高的可靠性,可见在包含空间尺度区域信息的注意力和局域点云特征更新下,笔者提出的基于特征更新的动态图卷积网络能发挥更优秀的作用,而且相比缺乏局部特征提取能力的分割网络,其对于点云稀疏㊁特征不明显的非贯通伤有更优的效果㊂参考文献:[1]LAWIN F J,DANELLJAN M,TOSTEBERG P,et al.Deep Projective 3D Semantic Segmentation [C]∥InternationalConference on Computer Analysis of Images and Patterns.Ystad,Sweden:Springer,2017:95⁃107.[2]MATURANA D,SCHERER S.VoxNet:A 3D Convolutional Neural Network for Real⁃Time Object Recognition [C]∥Proceedings of IEEE /RSJ International Conference on Intelligent Robots and Systems.Hamburg,Germany:IEEE,2015:922⁃928.[3]LE T,DUAN Y.PointGrid:A Deep Network for 3D Shape Understanding [C]∥2018IEEE /CVF Conference on ComputerVision and Pattern Recognition (CVPR).Salt Lake City,USA:IEEE,2018:9204⁃9214.[4]QI C R,SU H,MO K,et al.PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation [C]∥IEEEConference on Computer Vision and Pattern Recognition (CVPR).Hawaii,USA:IEEE,2017:652⁃660.[5]QI C R,SU H,MO K,et al,PointNet ++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space [C]∥Advances in Neural Information Processing Systems.California,USA:SpringerLink,2017:5099⁃5108.[6]HU J,SHEN L,SUN G,Squeeze⁃and⁃Excitation Networks [C ]∥IEEE Conference on Computer Vision and PatternRecognition.Vancouver,Canada:IEEE,2018:7132⁃7141.[7]LI Y,BU R,SUN M,et al.PointCNN:Convolution on X⁃Transformed Points [C]∥Advances in Neural InformationProcessing Systems.Montreal,Canada:NeurIPS,2018:820⁃830.[8]ANH VIET PHAN,MINH LE NGUYEN,YEN LAM HOANG NGUYEN,et al.DGCNN:A Convolutional Neural Networkover Large⁃Scale Labeled Graphs [J].Neural Networks,2018,108(10):533⁃543.[9]任伟建,高梦宇,高铭泽,等.基于混合算法的点云配准方法研究[J].吉林大学学报(信息科学版),2019,37(4):408⁃416.926第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法036吉林大学学报(信息科学版)第41卷REN W J,GAO M Y,GAO M Z,et al.Research on Point Cloud Registration Method Based on Hybrid Algorithm[J]. Journal of Jilin University(Information Science Edition),2019,37(4):408⁃416.[10]ZHANG K,HAO M,WANG J,et al.Linked Dynamic Graph CNN:Learning on Point Cloud via Linking Hierarchical Features[EB/OL].[2022⁃03⁃15].https:∥/stamp/stamp.jsp?tp=&arnumber=9665104. [11]林少丹,冯晨,陈志德,等.一种高效的车体表面损伤检测分割算法[J].数据采集与处理,2021,36(2):260⁃269. LIN S D,FENG C,CHEN Z D,et al.An Efficient Segmentation Algorithm for Vehicle Body Surface Damage Detection[J]. Journal of Data Acquisition and Processing,2021,36(2):260⁃269.[12]ZHANG L P,ZHANG Y,CHEN Z Z,et al.Splitting and Merging Based Multi⁃Model Fitting for Point Cloud Segmentation [J].Journal of Geodesy and Geoinformation Science,2019,2(2):78⁃79.[13]XING Z Z,ZHAO S F,GUO W,et al.Processing Laser Point Cloud in Fully Mechanized Mining Face Based on DGCNN[J]. ISPRS International Journal of Geo⁃Information,2021,10(7):482⁃482.[14]杨军,党吉圣.基于上下文注意力CNN的三维点云语义分割[J].通信学报,2020,41(7):195⁃203. YANG J,DANG J S.Semantic Segmentation of3D Point Cloud Based on Contextual Attention CNN[J].Journal on Communications,2020,41(7):195⁃203.[15]陈玲,王浩云,肖海鸿,等.利用FL⁃DGCNN模型估测绿萝叶片外部表型参数[J].农业工程学报,2021,37(13): 172⁃179.CHEN L,WANG H Y,XIAO H H,et al.Estimation of External Phenotypic Parameters of Bunting Leaves Using FL⁃DGCNN Model[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(13):172⁃179.[16]柴玉晶,马杰,刘红.用于点云语义分割的深度图注意力卷积网络[J].激光与光电子学进展,2021,58(12):35⁃60. CHAI Y J,MA J,LIU H.Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation[J].Laser and Optoelectronics Progress,2021,58(12):35⁃60.[17]张学典,方慧.BTDGCNN:面向三维点云拓扑结构的BallTree动态图卷积神经网络[J].小型微型计算机系统,2021, 42(11):32⁃40.ZHANG X D,FANG H.BTDGCNN:BallTree Dynamic Graph Convolution Neural Network for3D Point Cloud Topology[J]. Journal of Chinese Computer Systems,2021,42(11):32⁃40.[18]张佳颖,赵晓丽,陈正.基于深度学习的点云语义分割综述[J].激光与光电子学,2020,57(4):28⁃46. ZHANG J Y,ZHAO X L,CHEN Z.A Survey of Point Cloud Semantic Segmentation Based on Deep Learning[J].Lasers and Photonics,2020,57(4):28⁃46.[19]SUN Y,ZHANG S H,WANG T Q,et al.An Improved Spatial Point Cloud Simplification Algorithm[J].Neural Computing and Applications,2021,34(15):12345⁃12359.[20]高福顺,张鼎林,梁学章.由点云数据生成三角网络曲面的区域增长算法[J].吉林大学学报(理学版),2008,46 (3):413⁃417.GAO F S,ZHANG D L,LIANG X Z.A Region Growing Algorithm for Triangular Network Surface Generation from Point Cloud Data[J].Journal of Jilin University(Science Edition),2008,46(3):413⁃417.(责任编辑:刘俏亮)。

结晶器铜合金表面激光原位制备纳米颗粒增强钴基梯度涂层_陈岁元

结晶器铜合金表面激光原位制备纳米颗粒增强钴基梯度涂层_陈岁元

第38卷 第7期中 国 激 光Vo l.38,N o.72011年7月CHINESE JOURNAL O F LASERSJuly,2011结晶器铜合金表面激光原位制备纳米颗粒增强钴基梯度涂层陈岁元 董 江 陈 军 梁 京 刘常升(东北大学材料各向异性与织构工程教育部重点实验室,辽宁沈阳110004)摘要 在Co 基熔覆涂层材料成分与结构设计的基础上,利用脉冲激光诱导原位反应技术,在结晶器Cu 合金基体材料上制备陶瓷相增强Co 基梯度涂层。

利用分析技术对制备涂层的组织结构、成分、性能和涂层形成机理进行了系统研究。

结果表明,设计成分的梯度变化成功制备出具有3层梯度的Co 基合金涂层,实现了涂层组织与性能的梯度变化。

梯度涂层里没有裂纹和气孔缺陷,涂层与Cu 合金基体形成冶金界面结合。

激光诱导原位生成了纳米级Cr -N-i Fe -C,M o N i 4,Cr 7C 2,WC 1-x 等颗粒,起到了增强Co 基合金梯度涂层的作用。

梯度涂层各层的陶瓷颗粒数量呈现由第1层到第3层逐渐增多的趋势,硬度由铜合金基体的94H V 逐渐增加到最外层涂层的523H V 。

涂层中石墨具有改善梯度涂层摩擦性能的作用。

关键词 激光技术;结晶器铜合金;激光诱导原位制备;Co 基合金梯度涂层;纳米陶瓷颗粒增强中图分类号 T G 113.1;T N 249 文献标识码 A doi:10.3788/CJL 201138.0703006Nano -Particle s Reinforced Co -Base d Gradient Coating with HighWe ar -Re sistance Prepare d in -situ by Lase r on Surface ofCrystallize r Coppe r AlloyChen Suiyuan Dong Jiang Chen Jun Liang Jing Liu Changsheng(Key La bor a tor y f or Anisotr opy an d T ex tu r e of M at er ia ls ,Min ist r y of Edu ca tion ,Nor t hea st er n Un iver sity ,S hen ya ng ,L iaon ing 110004,Chin a )Ab stract Based on the compositiona l and struc t ura l designing of Co -based cladding materials,a nano -particle reinforc ed Co -based a lloy gradient coating is produced by laser -inducing in -sit u technique on the crysrallizer Cu alloy.The microstruc t ure,hardness,ant-i wear propert y and m ec hanism of the gradient c oating a re studied using analysistechniques.The results show that the gradient c oating is c om posed of three layers,which are the surface,inside structure and a metallurgical bond between the gradient coating and Cu alloy substrate.Nano -particles of Cr -N-i Fe -C,MoNi 4,Cr 7C 2,and WC 1-x synthesized in -situ play role as a reinforced Co -base gradient c oating.The number of the ceram ic particles increases from the first layer to the third layer.The micro -hardness of the gradient c oating increases gradually from 94HV of the substrate to 523HV of the outmost layer.The graphite has function of improving fric tional property of the gradient coating.Key words laser technique;c rystallizer Cu alloy;laser induced in -situ reaction;Co -ba sed alloy gradient coating;nano -c eramic pa rtic le reinforc edOCIS codes 160.3900;140.3450;310.1515;160.4330收稿日期:2011-02-14;收到修改稿日期:2011-03-23基金项目:国家自然科学基金(50574020)、教育部创新团队发展计划项目(IRT 0713)和辽宁省科技计划攻关重点项目(2009221003)资助课题。

利用银镜反应制备梯度润湿性表面

利用银镜反应制备梯度润湿性表面

利用银镜反应制备梯度润湿性表面*周亚丽,李 梅(上海交通大学化学化工学院,上海200240)摘要 利用工艺简单的银镜反应制备了润湿性均一的纳米银表面。

该表面具有一定的粗糙度,随着与低表面能的正十二烷基硫醇自组装时间的延长,银表面的接触角逐步增大,并达到超疏水性。

通过调节正十二烷基硫醇溶液的浓度或滴加速度,能在同一银表面的不同位置实现从疏水性到超疏水性的梯度润湿性调控。

关键词 银镜反应 梯度润湿 超疏水 正十二烷基硫醇 自组装Fabrication of Wettability Gradient Surface by Silver Mirror ReactionZHOU Y ali,LI M ei(Scho ol of Chem istry and Chemical T echno log y,Shang hai Jiaoto ng U niver sity,Shang hai 200240)Abstract Silv er mirr or reaction is used as a facile method to sy nthesize nano -silv er sur face w ith unifo rm wetta -bilit y.T he r ough surfaces ex hibit hy dr opho bic pr operties.A further self -assembly w ith dodecanethio l mo no lay er can increase co ntact angles on silv er sur faces and lead to a superhydro pho bic behav ior.A g radient w ettability r ang ing fro m hydro phobicit y to superhydro phobicity in differ ent positions can be achieved o n one silver surface by adjusting the co n -centrat ion or adding t he r ate of dodecanethiol solution.Key words silver mir ro r reactio n,g radient wettability ,super hy dr ophobic,n -do decanthiol,self -assembly*国家自然科学基金资助项目(60577049);上海市基础研究重点项目(08JC1412300)周亚丽:女,1981年生,硕士研究生,主要从事特殊润湿性表面的研究 李梅:通讯作者,副教授,研究方向为材料表面纳米结构的制备与性能、纳米复合材料 E -mail:meili@0 引言表面梯度材料是通过表面形貌结构或表面化学成分的连续变化从而达到材料的表面物理或化学性质连续变化的一类功能界面材料。

硬脂酸改性三氧化二铝表面润湿性的特性分析

硬脂酸改性三氧化二铝表面润湿性的特性分析

表面技术第52卷第6期硬脂酸改性三氧化二铝表面润湿性的特性分析郝晓茹1,张羽1,谢军1,盛伟1,2(1.河南理工大学 机械与动力工程学院,河南 焦作 454003;2.哈密豫新能源产业研究院,新疆 哈密 839000)摘要:目的研究氧化铝经硬脂酸分子改性后的润湿行为,从表面改性角度探索聚合物自组装润湿性原理,进而制备出一种疏水性能良好的超疏水表面。

方法使用COMPASS力场进行分子动力学模拟,构建基于非键合粒子的Al2O3超晶胞模型体系,采用最速下降法和共轭梯度法进行优化,使所构建的模型在体系平衡下保持能量最小原则,并对其求解分析。

进而基于模拟材料,通过两步喷涂法制备以改性纳米氧化铝为涂层的超疏水表面,观察表征特征,验证模型的正确性。

最后从模拟构象、径向分布函数以及均方根位移方面分析氧化铝经硬脂酸分子改性前后水分子团簇在玻璃、氧化铝表面的微观润湿行为。

结果经硬脂酸改性后,氧化铝表面由亲水表面成为疏水表面。

经分子动力学模拟表明,当硬脂酸浓度增加,每个硬脂酸的表面能由–110.5 kJ/mol变为–80.4 kJ/mol,硬脂酸分子降低了水分子团簇在玻璃和氧化铝表面的扩散系数,对疏水性的强弱有着重要的影响。

结论氧化铝颗粒与玻璃表面都具有强亲水性,且氧化铝对水分子的吸附能力要强于玻璃。

硬脂酸能够降低氧化铝的表面能,且与纳米氧化铝发生化学反应后,将氧化铝由超亲水改性为超疏水。

关键词:超疏水;分子动力学;两步喷涂法;纳米氧化铝;硬脂酸;润湿特性中图分类号:TQ15 文献标识码:A 文章编号:1001-3660(2023)06-0400-10DOI:10.16490/ki.issn.1001-3660.2023.06.037Surface Wetting Characteristics of AluminumOxide Modified by Stearic AcidHAO Xiao-ru1, ZHANG Yu1, XIE Jun1, SHENG Wei1,2(1. School of Mechanical and Power Engineering, Henan Polytechnic University, Henan Jiaozuo 454003, China;2. Hami Yuxin New Energy Industry Research Institute, Xinjiang Hami 839000, China)ABSTRACT: The work aims to study the wetting behavior of alumina particles modified by stearic acid from the microscopic point of view, in order to explore the wetting principle of polymer self-assembly from the surface modification, and then preparea superhydrophobic surface with good durability. The method of molecular dynamics simulation and compass force field wasused for molecular dynamics simulation and an Al2O3 supercell model system based on non-bonded particles was constructed收稿日期:2022–04–22;修订日期:2022–08–24Received:2022-04-22;Revised:2022-08-24基金项目:河南省重点研发推广项目(202102210266);河南理工大学博士基金(B2018-31)Fund:Supported by the Key R & D and Promotion Projects of Henan Province (202102210266); The Doctoral foundation of Henan Polytechnic University (B2018-31)作者简介:郝晓茹(1982—),女,博士,讲师,主要研究方向为金属表面改性技术、纳米疏水涂层制备及应用。

纳米压痕技术及其在薄膜涂层体系中的应用

纳米压痕技术及其在薄膜涂层体系中的应用

表面技术第51卷第6期纳米压痕技术及其在薄膜/涂层体系中的应用王宇迪1,王鹤峰1,2,杨尚余1,赵帅1,金涛1,肖革胜1,树学峰1(1.太原理工大学 机械与运载工程学院,太原 030024;2.太原清泽智成科技合伙企业,太原 030024)摘要:综述了纳米压痕技术的发展历程及其在薄膜领域的应用。

介绍了当前实验室条件下主要采用的电磁驱动式纳米压痕仪的构造和工作过程。

为了保证测试结果的准确性,要在合适的温度、湿度下进行压入实验,借助保载来消除一些可以避免的误差。

阐述了压头的分类和选择原则,玻氏压头相比于维氏压头具有更小的中心线与棱面夹角,避免了尖端横刃对于压入结果准确性的影响,因此最常用的压头为玻氏压头;表征断裂韧性最合适的压头为立方角压头;表征微机电系统的弯曲采用楔形压头。

总结了通过最大载荷和压入面积得到涂层力学参量的分析流程。

归纳了将纳米压痕法应用于表征薄膜涂层的硬度和弹性模量、室温下蠕变性能、断裂韧性、残余应力、塑性性能等力学量的研究,如表征硬度和弹性模量的Oliver-Pharr法的应用,识别蠕变柔量的Lee-Radok模型的应用,分析断裂韧性的Lawn-Evans-Marshall模型的应用。

在涂层制备过程中,制备参数的改变可以使得涂层具有不同的力学性能,涂层厚度远小于表面尺寸,硬度和弹性模量仍然存在各向异性,非晶态结构涂层具有更高的硬度和弹性模量。

采用碳纳米管强化可以提高涂层的断裂韧性,涂层内存在适量的残余应力数值和合适的残余应力类型,可以改善涂层的力学性能。

具有多层结构、梯度结构等新型结构的涂层相比于传统涂层具有更优良的力学性能。

纳米压痕法结合AFM原子力显微镜可以实现原位测量,结合有限元法可以对于理论模型进行完善,并拓宽模型的适用范围。

最后,对于纳米压痕技术在薄膜涂层中的应用前景进行了展望。

关键词:纳米压痕;薄膜;涂层;力学性能;研究现状中图分类号:TG174 文献标识码:A 文章编号:1001-3660(2022)06-0138-22DOI:10.16490/ki.issn.1001-3660.2022.06.012Nanoindentation Technique and Its Application in Film/Coating SystemWANG Yu-di1, WANG He-feng1,2, YANG Shang-yu1, ZHAO Shuai1,JIN Tao1, XIAO Ge-sheng1, SHU Xue-feng1(1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2. Taiyuan Qingze Zhicheng Technology Partnership, Taiyuan 030024, China)收稿日期:2021–05–06;修订日期:2021–09–02Received:2021-05-06;Revised:2021-09-02基金项目:山西省回国留学人员科研资助项目(2020-030);山西省科协项目(RZ2000004218);山西省留学人员科技活动择优资助项目(20200028)Fund:Research Project Supported by Shanxi Scholarship Council of China (2020-030); Shanxi Science and Technology Association Project (RZ2000004218); Shanxi Province Overseas Students Science and Technology Activity Funding Project (20200028).作者简介:王宇迪(1997—),男,硕士研究生,主要研究方向为金属力学性能实验表征。

冷喷涂技术在材料制备领域的研究进展

冷喷涂技术在材料制备领域的研究进展

㊀第43卷㊀第4期2024年4月中国材料进展MATERIALS CHINAVol.43㊀No.4Apr.2024收稿日期:2023-07-11㊀㊀修回日期:2024-03-11基金项目:国家自然科学基金资助项目(52271078)第一作者:彭云辉,男,1999年生,硕士研究生通讯作者:王吉强,男,1988年生,研究员,博士生导师,Email:jqwang11s@DOI :10.7502/j.issn.1674-3962.202307005冷喷涂技术在材料制备领域的研究进展彭云辉,崔新宇,熊天英,王吉强(中国科学院金属研究所师昌绪先进材料创新中心,辽宁沈阳110000)摘㊀要:随着各行业对零部件的精细化程度要求越来越高,传统的锻造和铸造等成型技术已不能满足生活生产的需求,冷喷涂作为一种新兴的增材制造技术,因其沉积过程中无相变㊁无氧化且沉积效率高等特点而受到广泛关注㊂首先阐述了冷喷涂技术的基本原理及在材料制造方面的优势;随后,综述了冷喷涂在金属㊁金属基复合材料及层状复合板材制备领域的国内外进展;最后总结了目前冷喷涂技术所面临的问题及亟需突破的壁垒,并针对现存问题提出了新的研究目标和发展方向㊂关键词:增材制造;冷喷涂;金属材料;复合材料中图分类号:TH16㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2024)04-0290-10引用格式:彭云辉,崔新宇,熊天英,等.冷喷涂技术在材料制备领域的研究进展[J].中国材料进展,2024,43(4):290-299.PENG Y H,CUI X Y,XIONG T Y,et al .Research Status of Cold Spray Technology in the Field of Materials Preparation[J].MaterialsChina,2024,43(4):290-299.Research Status of Cold Spray Technology in the Field of Materials PreparationPENG Yunhui,CUI Xinyu,XIONG Tianying,WANG Jiqiang(Shi-Changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academyof Sciences,Shenyang 110000,China)Abstract :Facing the increasingly high requirements for the refinement degree of parts in all walks of life,the traditionalforging,casting and other forming technologies can no longer meet the needs of life and production.As an emerging additive manufacturing technology,cold spray has attracted widespread attentions because of its unique characteristics of no phase change,no oxidation and high deposition efficiency in the material preparation process.In this paper,the basic principle of cold spray technology and its advantages in materials manufacturing are described.Then the research progress of cold spray on the preparation of metals,metal matrix composites and laminated composites at home and abroad is reviewed.In the end,the current problems and barriers that need to be broken through faced by cold spray technology are summarized,and in view of the existing problems,new research objectives and development directions are proposed.Key words :additive manufacturing;cold spray;metallic material;composite1㊀前㊀言随着科技的迅速发展,各行各业对零部件的精细化程度要求越来越高,传统的锻造成型技术已不能够满足生活生产的需求,高性能复杂结构零件的制备和修复成为了亟待解决的难题㊂增材制造(additive manufacturing,AM),也被称为3D 打印技术,是一种融合了数控和材料工程的制备技术,为上述问题提供了一种解决思路㊂目前,应用较为广泛的增材制造技术主要包括激光熔覆[1-3]㊁电弧焊[4-6]㊁热喷涂成型[7]等,这些技术在构件的修复和制造领域取得了较大的进展㊂然而,上述手段是通过高的热输入将原料熔化后凝固成型,在修复和制备材料的过程中容易在界面处或沉积层中产生热缺陷,影响构件质量,在温度敏感材料(Fe㊁Ni 等)㊁相变敏感材料(多元合金)以及氧化敏感材料(Cu㊁Al㊁Mg 及其合金等)的修复和制备领域存在诸多限制㊂冷喷涂技术㊀第4期彭云辉等:冷喷涂技术在材料制备领域的研究进展(cold spray,CS)又称冷气动力喷涂技术,是一种新兴的增材制造和涂层制备技术,最初是由前苏联新西伯利亚理论与应用力学研究所的科研人员在20世纪80年代中期的一次风洞实验中发现[8]㊂冷喷涂通过高速加热气体带动金属粉末颗粒加速至300~1200m/s,撞击基板或沉积层,在碰撞过程中粉末颗粒发生严重的塑性变形,与基体或沉积层产生结合而实现材料的沉积[9,10]㊂与激光熔覆㊁电弧焊和热喷涂工艺相比,冷喷涂在修复和材料制备过程中粉末原料不会发生熔化㊁相变和氧化等过程,被广泛应用于包括航空航天㊁汽车㊁运输㊁石化㊁矿物和金属加工㊁医用材料㊁电子㊁船舶㊁陶瓷和玻璃制造等在内的诸多领域㊂2㊀冷喷涂在材料制备领域的优势冷喷涂作为一种固态沉积技术,与其它增材制造技术相比最大的区别是,冷喷涂过程中材料沉积主要依赖于粉末颗粒足够大的冲击能,使粉末颗粒发生塑性变形,在远低于材料熔点的条件下实现固体颗粒的相互结合[11-14]㊂这一特点为冷喷涂带来了许多独一无二的优势㊂2.1㊀相可控沉积一般来讲,材料的性能由其化学组成和内部组织结构所决定㊂对于金属材料而言,不同的热历史虽然不会改变其化学成分,但其内部的微观结构和相组成将发生转变[15],造成其性能上的差异㊂以NiAl合金为例,在采用激光熔覆㊁焊接和传统热喷涂技术进行加工时,由于热输入量大,制备过程中NiAl合金粉末会发生各种形式的相变,在材料中形成Ni㊁γ-Ni㊁β-NiAl㊁NiAl3㊁Ni2Al3㊁Ni3Al以及Al等[16-19],导致材料性能无法均匀一致㊂由于具有相对较低的喷涂温度,冷喷涂在制备NiAl合金时基本不会产生新相[20]㊂大量的研究结果表明,冷喷涂基本能够保持沉积层成分和组织与原料粉末一致[21-23],通过控制粉末的相结构能有效调控沉积层的组织结构㊂Sabard等[24]通过对7075Al粉末进行喷涂前热处理,以获得不同相组成的7075Al沉积层,避免了高温热处理对修复部件的影响㊂2.2㊀沉积层致密度高材料性能和寿命的一个重要影响因素是其内部缺陷的数量和大小㊂材料中存在的孔洞和微裂纹将会导致其抗腐蚀性能降低,同时,在外力的作用下,孔洞和微裂纹等缺陷往往会造成其周围区域的应力集中,引起裂纹或缺陷的扩展,造成材料的屈服或断裂㊂对于传统的热喷涂技术,当喷涂温度较低时,粒子变形不充分,变形颗粒之间易产生不完全重叠,导致孔隙和微裂纹的形成;而当温度较高时,冷却过程会伴随大量气体的析出,当气体来不及逸出时,容易在沉积层中形成气孔㊂据统计,电弧喷涂(arc spraying,AS)涂层的孔隙率在10%左右,等离子喷涂涂层的孔隙率约为2%~6%,超音速火焰(high-velocity oxygen-fuel,HVOF)喷涂涂层的孔隙率较低,在保护气氛下喷涂得到的沉积层孔隙率约为1%左右[25,26]㊂相比之下,冷喷涂作为一种固态工艺过程,高速粒子在碰撞过程中充分变形,有利于减少粒子间的不完全重叠,大大降低沉积层的孔隙率㊂同时,后续颗粒对已沉积的粒子具有夯实作用,使颗粒之间互相压密挤紧,增加涂层的致密度㊂图1展示对比了冷喷涂和其它工艺制备的沉积层的孔隙率㊂此外,通过一些后处理工艺,例如热处理[27]㊁轧制[28,29]等,可以进一步图1㊀不同工艺制备的Fe-9.6Si-5.4Al(a,b)和镍铝青铜(nickel-aluminum bronze,NAB)(c~f)沉积层形貌和孔隙率[26,30,31] Fig.1㊀Morphology and porosity of Fe-9.6Si-5.4Al(a,b)and NAB(c~e)sedimentary layer prepared by different processes[26,30,31]192中国材料进展第43卷消除冷喷涂沉积层中的微孔和裂纹,进一步提升沉积层的致密度㊂2.3㊀材料选择灵活冷喷涂由于其独特的沉积机理,在粉末原料和基体材料的选择上具有更高的灵活性,能够实现多种金属及金属基复合材料在金属㊁陶瓷和聚合物[32]等各类基体材料上的沉积,表1汇总了冷喷涂制备多种金属及金属基复合材料的例子㊂表1㊀采用冷喷涂技术在金属/非金属基体表面沉积的多种金属及金属基复合材料Table1㊀A variety of metals and metal matrix composite materialsdeposited on the surface of metal/non-metal matrix bycold sprayPowders Substrate ReferencesAl and its alloys AlA5052Q355B Yang et al.,2019[33] Al Cu Fu et al.,2018[34] Al Ni Lee et al.,2009[35] Al PEEK Liu et al.,2021[36] 7075Al7075Al Ren et al.,2021[37] 6061Al6061Al Aldwell et al.,2017[38] Al-Sn alloy6061AlCuSUS304Ning et al.,2008[39] A3806061Al Qiu et al.,2020[40] 7075Al/Al2O37B04Wang et al.,2019[41] AlSi10Mg PLA Viscusi et al.,2020[42] Cu Al Li et al.,2021[43]Cu and its alloys Cu Cu Wang et al.,2023[44] Cu Gärtner et al.,2006[45] AuminumbronzeMg-Lialloy Wan et al.,2022[46] NABMABNABMAB Hauer et al.,2021[30] Brass Steel Theimer et al.,2019[47] Cu PEEK Chen et al.,2018[48] Muntz E355steel Huang et al.,2019[49] NiMonel400Steel Koivuluoto et al.,2007[50]Ni and its alloys Ni-20Cr Steel Singh et al.,2015[51]Nb-Ni-Si In718Xu et al.,2021[52]Ni In718Cavaliere et al.,2016[53]In628,In7182024Al Devi et al.,2022[54]50Ni-50Ti Tria et al.,2009[55]续表Powders Substrate ReferencesMetalmatrixcompositesAl/B4C6061Al Zhao et al.,2023[56]Ta/Al Ceramic Al2O3Liu et al.,2023[57]Al-Ni/Al2O3Steel Winnicki et al.,2020[58]7075Al/SiC7075Al/B4C6061Al Meydanoglu et al.,2013[59]Ni/cBN42CrMn Zhang et al.,2023[60]Ni/In718Steel Kazasidis et al.,2020[61]Al5056/In718Al99.5Yu et al.,2019[62]Cu/Al2O3Al2017Triantou et al.,2015[63]Cu/PEEK CFRP Melentiev et al.,2021[64]Cu/diamond316L Wang et al.,2018[65]Bronze/dia-mond6061Al Shin et al.,2008[66]316L/Nickel-coated SiC AZ80Chen et al.,2017[67]316L/Fe Stell Chu et al.,2018[68]Ti/Ta Ti Tang et al.,2022[69]Ti/BAG316L SS Kumar et al.,2017[70]Ti64/CoCr Ti64Tan et al.,2020[71]Ti/Ti641020CR steel Aydin et al.,2017[72]Ti/WC Ti6Al4V Ge et al.,2019[73]3㊀冷喷涂在材料制备领域的研究现状3.1㊀金属材料的制备冷喷涂技术能够在远低于金属材料熔点的温度下实现粉末颗粒的沉积,特别适合于Cu㊁Al和Mg等易变形金属及其合金材料的制备㊂日本等离子技研有限公司Huang等[74]以N2作为喷涂气体,在气体温度800ħ㊁气体压力3MPa条件下,采用冷喷涂在Al合金表面制备出超过5mm厚的Cu沉积层,并测定了不同热处理条件下Cu沉积层的力学性能,如图2所示㊂喷涂态Cu涂层的抗拉强度在300MPa左右,具有比块体材料更高的极限抗拉强度,但延伸率低于0.5%㊂热处理后Cu沉积层的延展性得到改善,但抗拉强度有所降低㊂其中,经400~500ħ热处理后Cu沉积层的延展性甚至超过了块体Cu,同时极限抗拉强度仍保持在250MPa左右,与块体Cu相比仍处于领先水平㊂上海大学Chen等[75]在气体温度800ħ㊁气体压力2MPa条件下,改用He作为喷涂气体,在不锈钢基材上制备出了150mmˑ100mmˑ50mm的块状Cu沉积物㊂该喷涂态Cu块体材料的抗拉强度达到271MPa,断裂伸长率为43.5%,均匀伸长率为30%,292㊀第4期彭云辉等:冷喷涂技术在材料制备领域的研究进展图2㊀热处理前后冷喷涂Cu 沉积层的拉伸应力-应变曲线[74]Fig.2㊀Tensile stress-strain curves of cold sprayed Cu layer before andafter heat treatment [74]兼具优异的强度和塑性㊂研究表明,在更高的粒子冲击速度下,Cu 颗粒在变形沉积过程中形成了图3a ~3c 所示的由内而外晶粒尺寸逐渐减小的梯度纳米晶结构(gradi-ent nano-grains,GNG)㊂在连续的冷喷涂沉积过程中,多个Cu 颗粒堆积形成具有双峰式粒度分布和无限循环环状孪晶分布2个特点的非均质微结构(图3d 和3e)㊂超细晶粒的存在保证了冷喷涂Cu 的高强度,而粗晶粒和孪晶的形成保留了Cu 的延展性㊂上述研究表明,冷喷涂技术可以在不进行任何后处理的情况下实现材料强度和延展性的平衡,在金属材料制造领域展示出巨大潜力㊂Ti 及Ti 合金㊁Ni 基合金和Fe 基合金等金属材料由于具有优异的综合性能,在各行各业都有着广泛的应用㊂但由于其高熔点和易氧化的特性,传统的冶炼制备难度大,生产成本高㊂冷喷涂在Ti 及Ti 合金和Ni 基合金等金属材料的制备领域同样具有显著优势[76,77]㊂然而,由于高强度合金材料塑性变形能力较差,即使在高温高压条件下制备的块体材料性能仍不理想[78,79],研究人员结合其他手段来改善沉积层质量[80]㊂西安交通大学Luo 等[81]通过在原料粉末中混入不同比例的球形1Cr13不锈钢喷丸(shot-peening,SP)颗粒成功制备出了致密的Ti 和TC4沉积层㊂随着不锈钢粉末在原料粉末中含量的增加,喷涂过程中产生的 原位夯实作用 越显著(图4[82]),当SP 颗粒含量增加到70%时,Ti 和TC4涂层的孔隙率分别由13.7%和15.3%下降至0.3%和0.7%㊂此外,Luo 等[83]图3㊀冷喷涂Cu 块体截面电子背散射衍射(electron backscatter diffraction,EBSD)组织分析结果(IPF)(a~d)㊁晶粒尺寸分布(e)及拉伸曲线(f);不同工艺制备的块体Cu 力学性能对比(g)[75]Fig.3㊀Cross-sectional EBSD microstructure analysis results (IPF)(a~d),grain size distribution (e),and tensile curve (f)of cold sprayed Cubulk;comparison of mechanical properties of Cu bulks prepared by different processes (g)[75]392中国材料进展第43卷还探究了 原位夯实 强化辅助冷喷涂对沉积层力学性能的影响,通过在In718合金粉末中混入一定比例的马氏体410不锈钢粉末,沉积层的抗拉强度由原本的96MPa提升至464MPa㊂Lett 等[84]在气雾化Ti-6Al-4V 粉末颗粒中掺杂大颗粒等离子雾化Ti-6Al-4V 作为SP 颗粒,在不锈钢表面成功制备了没有分层且结构完整的超厚(>5cm)Ti-6Al-4V 沉积层(图5)㊂研究表明,通过SP 颗粒引入的 原位夯实 作用在沉积层中产生更大的残余压应力,这有助于涂层厚度的增加,为冷喷涂制备超厚块体材料提供了一种新思路㊂图4㊀ 原位夯实 强化辅助冷喷涂的原理示意图[82]Fig.4㊀Schematic diagram of in-situ shot peening enhancing cold spray[82]图5㊀ 原位夯实 强化辅助冷喷涂技术制备的超厚Ti-6Al-4V 沉积物[84]Fig.5㊀Ultra-thick Ti-6Al-4V deposits prepared by in-situ shot pee-ning enhanced cold spray [84]㊀㊀采用激光辅助冷喷涂,在喷涂过程中激光能够对喷涂颗粒和基材两者同时进行加热软化处理,改善颗粒的碰撞沉积状态,实现高强度金属材料的有效沉积[85],其原理如图6[86]所示㊂剑桥大学Bray 等[86]采用激光辅助冷喷涂工艺成功制备出了高致密度(孔隙率<1%)㊁超低O 含量(0.6%,质量分数)的Ti 沉积层,并采用计算流体动力学模型计算出激光辅助冷喷涂条件下Ti 颗粒发生有效沉积的临界沉积速度大概为400m /s,大约是冷喷涂制备Ti 沉积层所需粒子速度的一半㊂美国阿拉巴马大学Barton 等[87]采用激光辅助冷喷涂沉积AISI 4340不锈钢时,在相同的喷涂参数下颗粒的沉积效率提升近50%㊂Gorunov 等[88]采用激光辅助冷喷涂技术在316L 不锈钢基体上制备出致密的316L 不锈钢沉积层,沉积层与基体结图6㊀激光辅助冷喷涂技术的原理示意图[86]Fig.6㊀Schematic diagram of laser assisting cold spraying [86]合强度高达105MPa,抗拉强度达到650MPa㊂Jones等[89]采用激光辅助冷喷涂在Mo 表面成功制备出致密W 涂层,图7显示了W 沉积层的微观组织结构,沉积层抗拉强度高达724MPa,与锻造W 相当㊂中国科学院金属研究所Wang 等[90]研究了激光功率对于冷喷涂沉积层的影响,并采用激光辅助冷喷涂制备出了性能优异的7075Al 沉积层㊂在2.2kW 的激光功率下,7075Al 沉积层孔隙率低于0.2%,极限抗拉强度和断裂伸长率为376MPa 和5.4%,与冷喷涂制备的沉积层相比分别提高了约46%和35%㊂冷喷涂结合后处理工艺也被看作是提高冷喷涂沉积层质量的一种有效手段㊂新加坡南洋理工大学Khun 等[91]将冷喷涂技术与热处理工艺相结合,对冷喷涂制备492㊀第4期彭云辉等:冷喷涂技术在材料制备领域的研究进展图7㊀激光辅助冷喷涂制备的W 沉积层微观组织[89]Fig.7㊀Microstructure of W deposited layer prepared by laser assistedcold spraying [89]的TC4涂层进行退火处理,有效改善了颗粒/颗粒和颗粒/基体间的界面结合㊂西安交通大学Zhou 等[92]对冷喷涂制备的TC4涂层分别在600,800和1000ħ下进行退火处理,热处理后也观察到了颗粒/颗粒以及沉积层和基体之间的间隙消失,沉积层与基体的结合强度由原本的30MPa 左右提升到50MPa 以上,沉积层的抗拉强度由原本的38MPa 提升至316.5MPa(如图8所示)㊂除热处理外,还有大量报道表明,冷喷涂与其他后处理工艺(轧制[28,93]㊁搅拌摩擦处理[94,95]㊁电脉冲处理[42]等)相结合也能够实现性能优异的高强度金属材料的制备㊂3.2㊀颗粒增强金属基复合材料的制备金属基复合材料是以第二相为增强相,以金属或合金为基体材料制备而成的,兼具优异的力学性能和功能性的新型复合材料,被广泛地用于航空航天和军事领域㊂然而,传统的金属基复合材料制备工艺[96],如粉末冶金㊁搅拌铸造㊁喷射沉积等,工艺复杂,成本高,而且在制备过程中容易发生有害的界面反应和增强颗粒的偏聚等问题㊂冷喷涂作为一种固态沉积技术,具有喷涂温度低和颗粒沉积速度高的特点,在金属基复合材料制备领域展现出了良好的应用前景㊂中国科学院金属研究所Zhao 等[97]采用冷喷涂技术在6061Al 合金基体表面成功制备了B 4C 颗粒均匀分布的Al /B 4C 复合涂层(图9),并可通过调节Al 颗粒和B 4C 颗粒的尺寸控制涂层中B 4C 的含量㊂Zhao 等[56]进一步研究了Al /B 4C 复合涂层的耐磨性能,结果显示,相比于纯Al涂层,Al /B 4C 复合涂层动摩擦系数更小也更稳定,具有比纯Al 涂层更优异的耐磨损性能㊂Zhang 等[98]采用冷喷涂将CNT-Al 金属基复合粉末沉积在AZ91镁合金表面,涂层的化学组成与粉末相比无任何变化,粉末中的CNT 图8㊀不同温度退火处理前后的冷喷涂TC4沉积层微观形貌以及力学性能[92]Fig.8㊀Microstructure and mechanical properties of cold sprayed TC4deposited layer before and after annealing at different temperatures [92]592中国材料进展第43卷图9㊀冷喷涂的Al /B 4C 涂层截面微观形貌[97]Fig.9㊀Cross-sectional microstructure of cold sprayed Al /B 4C coating [97]以及Al 4C 3相在所得涂层中得到很好的保留㊂涂层的显微硬度和弹性模量分别为1.66GPa 和77.6GPa,比纯Al 涂层分别提高了112.8%和11.7%㊂同时,由于CNT 的自润滑和增强作用,CNT-Al 涂层具有优异的耐磨性和耐蚀性㊂Yang 等[99]采用冷喷涂在Cu 基体表面制备出3mm 厚的Cu /Ti 3SiC 2涂层,通过调节粉末颗粒中Ti 3SiC 2的含量可以调控涂层中Ti 3SiC 2的含量㊂图10显示了不同比例的Cu 和Ti 3SiC 2原料粉末制备得到的沉积层中Ti 3SiC 2颗粒的含量和分布㊂800ħ退火2h 后,可获得兼具优异力学性能(UTS ~304MPa)和导电性能(45.4%IACS)的Cu-20Ti 3SiC 2复合材料㊂图10㊀冷喷涂Cu-x Ti 3SiC 2(x =10%,20%,30%,40%)金属基复合材料的三维形貌(a~d)和Ti 3SiC 2颗粒的相应空间分布(e~h)[99]Fig.10㊀Three-dimensional morphology of cold sprayed Cu-x Ti 3SiC 2(x =10%,20%,30%,40%)(a~d)and corresponding spatial distribution ofTi 3SiC 2particles (e~h)[99]3.3㊀层状复合板材的制备除金属基复合材料外,冷喷涂还可以用于层状复合材料的制备㊂中国科学院金属研究所Ren 等[100]开发了一种基于冷喷涂技术的复合板材制备工艺(如图11所示)㊂采用 冷喷涂+轧制 工艺制备出了性能优异的Mg /Al 复合板,复合板极限抗拉强度为(366ʃ14)MPa,界面处剪图11㊀ 冷喷涂+轧制 制备复合板工艺示意图[100]Fig.11㊀Process schematic diagram of cold spraying +rolling preparing composite plate [100]692㊀第4期彭云辉等:冷喷涂技术在材料制备领域的研究进展切强度高达(124ʃ4.6)MPa㊂与传统制备工艺(如爆炸复合法㊁轧制复合法等)相比,该方法制备的Mg /Al 复合板的综合力学性能处于领先地位㊂Zhao 等[28]采用 冷喷涂+轧制 工艺制备出性能优异的Ti /钢复板,抗拉强度达590MPa,屈服强度达446MPa,但塑性较差㊂550ħ退火3h 后,复合板内部发生回复和再结晶,界面处的应力得到消除,复合板的延伸率由原本的12%提升至18%,抗拉强度仍保持在564MPa 左右㊂大连理工大学孟宪明[101]同样采用 冷喷涂+轧制 工艺制备出304不锈钢/IF 钢复合钢板,研究了轧制温度㊁304不锈钢和IF 钢厚度比以及轧制变形量对复合钢板质量的影响㊂当轧制温度为1200ħ㊁不锈钢涂层和IF 钢基体厚度比为1ʒ25㊁轧制变形量为80%时,得到了表面状态和板型良好的复合钢板㊂4㊀结㊀语冷喷涂作为一种新型的固态沉积技术,已成功应用于多种金属/非金属及复合材料的制备和修复,尤其是在制备易变形金属材料方面已实现强度和塑性俱佳的沉积层的制备㊂随着现代工业朝着 高㊁精㊁尖 方向的不断发展,冷喷涂有望成为材料制备主要手段之一㊂目前,冷喷涂技术还有许多值得进一步开发的方面:①高质量冷喷涂沉积层的制备往往需要He 作为喷涂气体,制备成本高,需要进一步开发压缩空气作为载气的冷喷涂制备工艺;②冷喷涂粉末原料成本高,如何降低喷涂粉末成本也是冷喷涂亟需解决的问题;③冷喷涂工艺稳定性相对较差,在喷涂过程中参数的变化容易导致沉积层中局部缺陷的产生,需要进一步提升工艺稳定性;④单一的冷喷涂技术无法满足所有构件的制备/修复需求,需要进一步开发冷喷涂与其它多种技术的联合制备工艺㊂参考文献㊀References[1]㊀FRAZIER W E.Journal of Materials Engineering and Performance[J],2014,23(6):1917-1928.[2]㊀LIU Y T,YE Z G,WANG X,et al .Materials Science &Engineer-ing:A[J],2021,826:142006.[3]㊀MURRAY T,THOMAS S,WU Y X,et al .Additive Manufacturing[J],2020,33:101122.[4]㊀谭振,汪殿龙,梁志敏,等.热加工工艺[J],2024,53(17):1-8.TAN Z,WANG D L,LIANG Z M,et al .Hot Working Technology [J],2024,53(17):1-8.[5]㊀DING D H,PAN Z X,VAN DUIN S,et al .Materials[J],2016,9(8):652.[6]㊀KÜÇÜKÖMERO LU T,ENTÜRK E,KARA L,et al .Journal ofMaterials Engineering and Performance[J],2016,25(1):320-326.[7]㊀PARK K S,KIM S.Journal of the Electrochemical Society[J],2011,158(10):C335-C340.[8]㊀VILLAFUERTE J.Modern Cold Spray:Materials,Process,and Ap-plications[M].Switzerland:Springer International Publishing,2015.[9]㊀YIN S,CAVALIERE P,ALDWELL B,et al .Additive Manufactur-ing[J],2018,21:628-650.[10]ASSADI H,ASSADI H,GÄRTNER F,et al .Acta Materialia[J],2016,116:382-407.[11]LI W Y,ZHANG D D,HUANG C J,et al .Surface Engineering[J],2014,30(5):299-308.[12]LI W Y,LI C J,LIAO H L.Applied Surface Science[J],2010,256(16):4953-4958.[13]LI C J,SUN B.Materials Science &Engineering:A [J],2004,379:92-101.[14]邱翔.冷喷涂增材制造A380铝合金性能研究[D].合肥:中国科学技术大学,2020.QIU X.Study on the Properties of Cold Spray Additively ManufacturedA380Aluminum Alloys[D].Hefei:University of Science and Technol-ogy of China,2020.[15]ANANTAPONG J,UTHAISANGSUK V,SURANUNTCHAI S,et al .Materials and Design[J],2014,60:233-243.[16]程广萍,韩众亚,高国璨,等.材料热处理学报[J],2014,35(11):155-160.CHENG G P,HAN Y Z,GAO G C,et al .Transactions of Materialsand Heat Treatment[J],2014,35(11):155-160.[17]程广萍,何宜柱.材料工程[J],2010(3):29-33.CHENG G P,HE Y Z.Journal of Materials Engineering[J],2010(3):29-33.[18]JAVADI M M,EDRIS H,SALEHI M.Journal of Materials Science &Technology[J],2011,27(9):816-820.[19]ALMEIDA V B,TAKANO E H,MAZZARO I,et al .Surface Engi-neering[J],2011,27(4):266-271.[20]谢瑞广,李长久,崔红.表面技术[J],2016,45(10):1-6.XIE R G,LI C J,CUI H.Surface Technology[J],2016,45(10):1-6.[21]DA SILVA F S,CINCA N,DOSTA S,et al .Surface and Coatings Technology[J],2019,361:292-301.[22]COUTO M,DOSTA S,GUILEMANY J M.Surface and CoatingsTechnology[J],2015,268:180-189.[23]TARIQ N H,GYANSAH L,WANG J Q,et al .Surface and CoatingsTechnology[J],2018,339:224-236.[24]SABARD A,MCNUTT P,BEGG H,et al .Surface and CoatingsTechnology[J],2020,385:125367.[25]陈琳,张三平,周学杰.四川化工[J],2004,7(1):43-45.CHEN L,ZHANG S P,ZHOU X J.Sichuan Chemical Industry[J],2004,7(1):43-45.[26]XIE X L,CHEN C Y,XIE Y C,et al .Surface and Coatings Tech-nology[J],2019,371:224-234.[27]QIU X,WANG J Q,TARIQ N U H,et al .Journal of Thermal SprayTechnology[J],2017,26:1898-1907.792中国材料进展第43卷[28]ZHAO Z P,TARIQ N U H,TANG J R,et al.Materials and Design[J],2020,185:108249.[29]任宇鹏. 冷喷涂+轧制 制备镁/铝复合板工艺及性能研究[D].合肥:中国科学技术大学,2023.REN Y P.Study on Process of Cold Spraying+Rolling for Mg/Al Composite Plates and Properties[D].Hefei:University of Science and Technology of China,2023.[30]HAUER M,GARTNER F,KREBS S,et al.Journal of ThermalSpray Technology[J],2021,30:1310-1328.[31]FENG X R,CUI X F,ZHENG W,et al.Journal of Materials Pro-cessing Technology[J],2019,266:544-550.[32]张志杰,苏聪聪,邵照峰,等.中国材料进展[J],2024,43(2):102-114.ZHANG Z J,SU C C,SHAO Z F,et al.Materials China[J],2024, 43(2):102-114.[33]YANG J F,YANG J L,XIE J,et al.Surface and Coatings Technolo-gy[J],2019,378:125000.[34]FU S L,LI C X,LUO X T,et al.Journal of Thermal Spray Technol-ogy[J],2018,27:624-640.[35]LEE H,LEE S,SHIN H,et al.Journal of Alloys and Compounds[J],2009,478(1-2):636-641.[36]LIU H H,TARIQ N U H,REN Y P,et al.Applied Surface Science[J],2022,601:154234.[37]REN Y P,TARIQ N U H,LIU H H,et al.Materials and Design[J],2021,212:110271.[38]ALDWELL B,KELLY E,WALL R,et al.Journal of Thermal SprayTechnology[J],2017,26:1573-1584.[39]NING X J,JANG J H,KIM H J,et al.Surface and Coatings Tech-nology[J],2008,202(9):1681-1687.[40]QIU X,TARIQ N U H,QI L,et al.Journal of Materials Science&Technology[J],2020,44:9-18.[41]王强,李楠,周留成,等.稀有金属材料与工程[J],2023,52(4):1403-1409.WANG Q,LI N,ZHOU L C,et al.Rare Metal Materials and Engi-neering[J],2023,52(4):1403-1409.[42]VISCUSI A,ANTONUCCI V,CARRINO L,et posite Struc-tures[J],2020,250:112637.[43]LI W Y,WU D,HU K W,et al.Surface and Coatings Technology[J],2021,409:126887.[44]WANG M Y,CHANG D X,YU B Y,et al.Advanced EngineeringMaterials[J],2023,25(2):2200955.[45]GÄRTNER F,STOLTENHOFF T,VOYER J,et al.Surface andCoatings Technology[J],2006,200(24):6770-6782. [46]WAN S M,CUI X F,JIN Q W,et al.Materials Chemistry and Phys-ics[J],2022,281:125832.[47]THEIMER S,GRAUNITZ M,SCHULZE M,et al.Journal of Ther-mal Spray Technology[J],2019,28:124-134.[48]CHEN C Y,XIE X L,XIE Y C,et al.Surface and Coatings Tech-nology[J],2018,342:209-219.[49]HUANG C J,YANG K,LI N,et al.Surface and Coatings Technolo-gy[J],2019,371:172-184.[50]KOIVULUOTO H,LAGERBOM J,VUORISTO P,et al.Journal ofThermal Spray Technology[J],2007,16(4):488-497. [51]SINGH H,BALA N,KAUR N,et al.Surface and Coatings Technol-ogy[J],2015,280:50-63.[52]XU Y X,JI B J,LI W Y.Journal of Thermal Spray Technology[J],2021,30:907-917.[53]CAVALIERE P,PERRONE A,SILVELLO A.Journal of ThermalSpray Technology[J],2016,25(6):1158-1167. [54]NEELIMA DEVI G,KUMAR S,SHARANYA BALAJI T,et al.Sur-face and Coatings Technology[J],2022,445:128731. [55]TRIA S,ELKEDIM O,LI W Y,et al.Journal of Alloys and Com-pounds[J],2009,483(1-2):334-336.[56]ZHAO L J,ZHOU D,XIE G W,et al.Materials Today Communica-tions[J],2023,34:105257.[57]LIU H H,ZHAO H R,REN Y P,et al.Radiation Physics andChemistry[J],2023,207:110813.[58]WINNICKI M,JASIORSKI M,BASZCZUK A,et al.Coatings[J],2020,10(6):518.[59]MEYDANOGLU O,JODOIN B,SABRI KAYALI E,et al.Surfaceand Coatings Technology[J],2013,235:108-116. [60]ZHANG Z C,LIU Z Q,CAI Y K,et al.Journal of Thermal SprayTechnology[J],2023,32:1554-1569.[61]KAZASIDIS M,YIN S,CASSIDY J,et al.Surface and CoatingsTechnology[J],2020,382:125195.[62]YU M,DING M Y,MA H,et al.Journal of Thermal Spray Technol-ogy[J],2019,28:460-471.[63]TRIANTOU K I,PANTELIS D I,GUIPONT V,et al.Wear[J],2015,336-337:96-107.[64]MELENTIEV R,YU N,LUBINEAU G,et al.Additive Manufactur-ing[J],2021,48:102459.[65]WANG Z,CHEN X Y,GONG Y F,et al.Surface Engineering[J],2018,34(5):392-398.[66]SHIN S,XIONG Y M,JI Y,et al.Applied Surface Science[J],2008,254(8):2269-2275.[67]CHEN J,MA B,LIU G,et al.Journal of Thermal Spray Technology[J],2017,26:1381-1392.[68]CHU X,CHAKRABARTY R,CHE H Q,et al.Surface and CoatingsTechnology[J],2018,337:53-62.[69]TANG J R,TARIQ N U H,ZHAO Z P,et al.Acta Metallurgica Sin-ica(English Letters)[J],2022,35:1465-1476. [70]KUMAR A,GOYAL D K,KANT R,et al.Coatings[J],2022,12(7):1010.[71]WEI-YEE TAN A,LEK J Y,SUN W,et posites Part B:En-gineering[J],2020,202:108280.[72]AYDIN H,ALOMAIR M,WONG W,et al.Journal of Thermal SprayTechnology[J],2017,26:360-370.[73]葛洁洁,徐雅欣,李文亚.中国材料进展[J],2024,43(2):96-101.GE J J,XU Y X,LI W Y.Materials China[J],2024,43(2):96-892㊀第4期彭云辉等:冷喷涂技术在材料制备领域的研究进展101.[74]HUANG R Z,SONE M,MA W H,et al.Surface and Coatings Tech-nology[J],2015,261:278-288.[75]CHEN C Y,XIE Y C,YIN S,et al.Journal of Materials Science&Technology[J],2023,134:234-243.[76]LI W Y,CAO C C,YIN S.Progress in Materials Science[J],2020,110:100633.[77]李文亚,张正茂,徐雅欣,等.金属学报[J],2022,58(1):1-16.LI W Y,ZHANG Z M,XU Y X,et al.Acta Metallurgica Sinica[J], 2022,58(1):1-16.[78]SOVA A,GRIGORIEV S,OKUNKOVA A,et al.Surface and Coat-ings Technology[J],2013,235:283-289.[79]KHUN N W,TAN A W Y,BI K J W,et al.Surface and CoatingsTechnology[J],2016,302:1-12.[80]崔烺,刘光,冯胜强,等.稀有金属材料与工程[J],2023,52(1):351-373.CUI L,LIU G,FENG S Q,et al.Rare Metal Materials and Engineer-ing[J],2023,52(1):351-373.[81]LUO X T,WEI Y K,WANG Y,et al.Materials and Design[J],2015,85:527-533.[82]LIU H H,TARIQ N U H,REN Y P,et al.Surface and CoatingsTechnology[J],2022,446:128752.[83]LUO X T,YAO M L,MA N S,et al.Materials and Design[J],2018,155:384-395.[84]LETT S,QUET A,HÉMERY S,et al.Journal of Thermal SprayTechnology[J],2023,32:1018-1032.[85]李波,胡耀峰,田凯,等.中国材料进展[J],2024,43(2):115-123.LI B,HU Y F,TIAN K,et al.Materials China[J],2024,43(2): 115-123.[86]BRAY M,COCKBURN A,OᶄNEILL W,et al.Surface and CoatingsTechnology[J],2009,203(19):2851-2857.[87]BARTON D J,BHATTIPROLU V S,THOMPSON G B,et al.Sur-face and Coatings Technology[J],2020,400:126218. [88]GORUNOV A I,GILMUTDINOV A K.Optics&Laser Technology[J],2017,88:157-165.[89]JONES M,COCKBURN A,LUPOI R,et al.Materials Letters[J],2014,134:295-297.[90]WANG K,ZHAO L J,MAO T L,et al.Materials Science&Engi-neering:A[J],2023,879:145224.[91]KHUN N W,TAN A W Y,SUN W,et al.Tribology Transactions[J],2017,60(6):1033-1042.[92]ZHOU H X,LI C X,LUO X T,et al.Journal of Thermal SprayTechnology[J],2020,29:1054-1069.[93]LI Z M,YANG X P,ZHANG J B,et al.Advanced Engineering Ma-terials[J],2016,18(7):1240-1249.[94]KHODABAKHSHI F,MARZBANRAD B,SHAH L H,et al.Journalof Thermal Spray Technology[J],2019,28:1185-1198. [95]HUANG C J,YAN X C,LI W Y,et al.Applied Surface Science[J],2018,451:56-66..[96]刘建华,沈胜利.热加工工艺[J],2011,40(10):106-108.LIU J H,SHEN S L.Hot Workng Technology[J],2011,40(10): 106-108.[97]ZHAO L J,TARIQ N U H,REN Y P,et al.Journal of ThermalSpray Technology[J],2022,31:2505-2516.[98]ZHANG Y P,WANG Q,CHEN G,et al.Surface and CoatingsTechnology[J],2020,403:126380.[99]YANG Z B,XU J J,QIAN Y H,et al.Journal of Alloys and Com-pounds[J],2023,946:169473.[100]REN Y P,TARIQ N U H,LIU H H,et al.Materials Science& Engineering A[J],2022,849:143515.[101]孟宪明.冷喷涂制备304不锈钢-IF钢复合钢板及其轧制共变形行为研究[D].大连:大连理工大学,2011.MENG X M.Study on the Fabrication of304SS-IF Composite Steel Sheet by Cold Spraying and Its Rolling Deformation Behavior[D].Dalian:Dalian University of Technology,2011.(编辑㊀惠㊀琼)992中国材料进展第43卷专栏特约编辑雒晓涛雒晓涛:男,1986年生,西安交通大学教授㊁博士生导师,入选国家级青年人才计划,主要从事冷喷涂㊁热喷涂涂层与增材制造技术研究,致力于研发我国航空㊁核电㊁高铁等重要领域急需的高质量涂层与修复技术㊂主持国家自然科学基金青年项目与面上项目㊁ 两机专项 课题㊁ 两机 科学中心重点项目㊁ 173 项目㊁军品配套㊁装备预研等20余项项目㊂以第一或通讯作者发表SCI论文60余篇,撰写国内首部冷喷涂专著㊂授权发明专利20余件㊂获陕西省自然科学一等奖,陕西省优秀博士毕业论文,欧特约撰稿人所新坤洲热喷涂专家 奖,国际热喷涂大会 最佳论文奖 ㊂任中国机械工程学会表面工程分会委员㊁焊接分会堆焊与再制造专委会委员,陕西省机械工程学会焊接分会副主任㊂所新坤:男,1982年生,教授,博士生导师,宁波大学机械工程与力学学院多维增材制造研究所所长㊂率领团队在新材料研发㊁二维涂层和三维打印等领域开展研究,形成了多项技术成果,应用于医疗㊁军工等领域㊂近年来获中国产学研合作创新奖1项,主持国家自然科学基金项目㊁国防基础科研项目㊁浙江省重点特约撰稿人谢迎春研发计划项目等省部级以上项目10余项,发表SCI论文50余篇,授权发明专利20余项,参与制订地方标准1项㊁行业标准2项㊂浙江省省级高层次人才专家,入选浙江省 钱江人才 项目,入选宁波市领军拔尖人才第一层次,宁波大学A类学术领军人才㊂兼任中国机械工程学会表面工程分会常务委员㊁中国钢铁协会冶金机电标准委员会委员㊁浙江省工程师学会理事㊁浙江省汽车行业工程师职务任职资格评审委员会专家㊁‘材料保护“编委㊁‘稀有金属“青年编委等㊂谢迎春:男,1987年生,广东省科学院新材特约撰稿人王吉强料研究所高级工程师,从事冷喷涂技术基础理论研究及在军民两用技术领域的应用研究工作㊂在Additive Manufactur-ing,Scripta Materialia等期刊发表论文60余篇,总被引2500余次,H指数30,参编专著1部,授权中国发明专利20余项㊁美国专利1项㊂兼任中国机械工程学会再制造分会委员㊁中国表面工程学会青年委员㊁广东省材料研究学会青年委员㊁‘材料科学与应用“青年编委㊂王吉强:男,1988年生,中国科学院金属研究所研究员㊁博士生导师,主要从事高性能喷涂涂层的组织性能调控与应用研究,研发的多种涂层在重点装备用关键部件的表面防护㊁功能扩展和修复再制造等方面获得应用㊂主持国家自然科学基金面上项目和青年项目㊁国家科技重大专项子课题㊁国家重点研发计划项目子课题㊁辽宁省自然科学基金项目㊁国防重点实验室基金项目等10余项;以第一作者和通讯作者在Materials&De-sign,Materials Scienceand Engineering A,Ap-plied Surface Science和Surface&Coatings Tech-nology等期刊发表SCI收录论文49篇,被引1000余次;申请发明专利20余项,获授权发明专利10项㊂兼任中国科学院青促会会员㊁中国机械工程学会表面工程分会和中国空间学会空间材料委员会青年委员㊁‘中国表面工程“和‘热喷涂技术“杂志青年编委㊂003。

A1 半导体工艺生产流程

A1 半导体工艺生产流程

A1 半导体工艺生产流程半导体的生产工艺流程,做工艺一、洁净室一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。

但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。

为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。

洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。

所以class后头数字越小,洁净度越佳,当然其造价也越昂贵(参见图2-1)。

为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:1、内部要保持大于一大气压的环境,以确保粉尘只出不进。

所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。

2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。

换言之,鼓风机加压多久,冷气空调也开多久。

3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。

4、所有建材均以不易产生静电吸附的材质为主。

5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。

6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。

) 当然,化妆是在禁绝之内,铅笔等也禁止使用。

7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。

一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS) 晶体管结构之带电载子信道(carrier channel),影响半导体组件的工作特性。

山茶花花瓣表面的疏水性与黏附性

山茶花花瓣表面的疏水性与黏附性

山茶花花瓣表面的疏水性与黏附性刘莹;胡静茹;刘静娟;康光林;韩委委【摘要】选取22个品种的山茶花花瓣制成试样,采用激光扫描显微镜在不同放大倍数下分别观察山茶花表面的微观形貌,发现表面由若干个规则的微米级多边形突起结构及凹槽构成.接触角测量仪用于测量花瓣表面的接触角,证实了所研究的不同山茶花的花瓣表面的接触角测量值均大于90°.山茶花花瓣表现出的良好疏水性,可能是由花瓣上的微米结构所决定.将花瓣表面旋转180°置于接触角测量仪中的高清摄像机下观察,发现所有花瓣上的水滴仍黏附于表面上,固、液、气三相界面使花瓣表面均具有良好的黏附性.【期刊名称】《南昌大学学报(工科版)》【年(卷),期】2018(040)004【总页数】5页(P370-374)【关键词】山茶花;接触角;微观结构;疏水性;黏附性【作者】刘莹;胡静茹;刘静娟;康光林;韩委委【作者单位】南昌大学机电工程学院,江西南昌330031;南昌大学机电工程学院,江西南昌330031;南昌大学机电工程学院,江西南昌330031;南昌大学机电工程学院,江西南昌330031;南昌大学机电工程学院,江西南昌330031【正文语种】中文【中图分类】O647自然界中一些动植物表面具有独特的性质,像荷叶的自清洁性、蚯蚓的防污性、鲨鱼皮的减阻性等[1-4],这类现象均与表面的疏水性有关。

表面亲疏性通常由液体与固体、气体三相形成的接触角表征,接触角小于90°为亲水表面,大于90°为疏水表面,接触角大于150°且滑动角小于10°为超疏水表面[5]。

对于具有疏水特性的表面,还存在2种不同的现象:一种是低黏附的“荷叶效应”,表面具有低于10°的滑动角;另一种是高黏附的“花瓣效应”,液滴会黏附于表面上,不会滚落。

这类既具有黏附性和疏水性的表面在微量液滴的运输[6-9]和微流体芯片[10-11]领域有广泛应用,越来越受到科研人员的关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Trans. Nonferrous Met. Soc. China 24(2014) 441−448A gradient nano/micro-structured surface layer on copper induced bysevere plasticity roller burnishingJing ZHAO, Wei XIA, Ning LI, Feng-lei LINational Engineering Research Center of Near-net-shape Forming Technology for Metallic Materials,South China University of Technology, Guangzhou 510640, ChinaReceived 28 January 2013; accepted 12 September 2013Abstract: In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100 μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities; deformation twinning was found to be the primary form for the formation of submicron grains; the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region. Key words: burnishing; pure copper; gradient nano/micro-structure; surface nanocrystallization1 Introduction Owing to the extraordinary mechanical and physical properties of surface nanocrystallization (SNC) materials [1,2], numerous SNC techniques have been proposed. Among these techniques, surface self-nanocrystallization (SSNC) techniques gradually attract great interests of researchers since they can utilize the traditional surface processing techniques to fabricate SNC materials without considering the adhesion force between the nanocrystalline surface layer and matrix [3]. Most SSNC techniques rely on multidirectional or monotonic high-speed impact on the sample surface to refine coarse grains into nano-sized grains, such as surface mechanical attrition treatment (SMAT) [4−6], high energy shot peening (HESP) [7], ultrasonic shot peening (USSP) [8], ultrasonic surface processing (USER) [9]. Nevertheless, the poor surface qualities of the treated surface layer hinder the extensive industrial application. It is worth noting that LU et al [10] have synthesized a gradient nano/micro-structure in the surface layer on copper, by the surface mechanical grinding treatment (SMGT) in recent years. The treated nano-sized copper wouldbecome an ideal engineering material because of its high strength and good tensile plasticity [11]. However, theusage of liquid nitrogen cooling to avoid grain recovery and/or recrystallization is not suitable for industrial production. In short, difficulty in finding an easy-implementation and low-cost SSNC technique is a main obstacle for industrial application and development of SNC metals and alloys. Burnishing, similar with SMGT, has a processing way of repetitive extrusion on material surface, which makes it possible to fabricate the gradient nano/micro- structured surface layer. In fact, recent investigation has demonstrated that Mg alloy with a gradient ultrafine- grain surface layer was produced using cryogenic burnishing [12]. In our work, a new SSNC technique based on burnishing is proposed, named severe plasticity roller burnishing (SPRB), which has produced a gradient nano/micro-structure on copper successfully at room temperature. This newly developed technique has a promising prospect in industrial application than SMGT since it achieved the gradient nano/micro-structured surface layer only by an ordinary lathe and a simpleFoundation item: Project (50975095) supported by the National Natural Science Foundation of China; Project (2012ZM0048) supported by theFundamental Research Funds for the Central Universities, ChinaCorresponding author: Jing ZHAO; Tel: +86-20-87112948-303; E-mail: zhjing.zh@ DOI: 10.1016/S1003-6326(14)63080-6Jing ZHAO, et al/Trans. Nonferrous Met. Soc. China 24(2014) 441−448 442burnishing tool. The microstructural evolutionmechanism and the formation of gradient nano/micro- structure involved in SPRB are essential and crucial issues to help us to understand the properties of SNC material induced by SPRB more comprehensively.The strain-induced microstructure evolution and the refinement mechanism of SSNC process have been of great concern in the past decades. The diversity of the plastic deformation mode caused by various techniques and materials affects the behavior and microstructural evolution of nanostructured materials [3]. So the obvious difference in plastic deformation mode between impact- typed SSNC and extrusion-typed SSNC definitely causes the distinction on deformation mechanism and microstructure characteristics. For example, the fibrous structure in the plastic deformation layer is not seen in SMAT [5], but is common seen in SMGT [10]. However, most investigations on deformation mechanism of SSNC processes are based on the impact-typed SSNC techniques, but little work has been reported on the mechanism underlying the grain refinement of the extrusion-typed ones up to now.The objective of the present work is to study the grain refinement mechanism involved in SPRB by the microstructure features of gradient nano/micro- structured surface layer on copper at different depths from the top surface. The surface performance improvement of the deformation layer including surface roughness and hardness is also our concern.2 ExperimentalA rod sample with dimensions of d40 mm×10 mm was attained from a pure copper (99.97% in mass fraction) bar for SPRB. The initial grain size of the sample was about 75 μm. In order to increase the pressure induced by burnishing tool, a boss (1 mm in width and 6 mm in height) was machined on the end face of the sample at a feed rate of 0.12 mm/r and a spindle speed of 560 r/min under oil lubrication (SAE10W−30).Figure 1(a) gives the experimental set-up of SPRB. The process was conducted on a C6132A1 lathe. A designed tool with 5 equally distributed rollers (d6 mm×8 mm), made of YG-8 cemented carbide, was used. An S-type pressure sensor was connected with the lathe to obtain the real-time radial burnishing force (F r). The sensor signal was acquired through the Advantech USB−4711A DAQ card and processed on PC. Before SPRB, the burnishing tool was clamped on the lathe tailstock and applied a given preload on the boss. When the SPRB began, the roller rotated at a high speed to decrease the height of boss rapidly, as shown in Fig. 1(b). The process was time-controlled with the duration of 90 s per pass. The process was conducted at a spindleFig. 1 Experimental set-up: (a) Site set-up; (b) Schematic of SPRB (Inset gives TD, ND in sample reference system)speed of 560 r/min and a burnishing load of 2100 N 8 passes under oil lubrication (SAE10W−30) at room temperature. The height of boss was finally reduced to ~1 mm. The stain rate was estimated at 102−103 s−1 in the top surface layer of the sample [13].The sample was polished with carbide papers to the specified depths, measured by displacement sensor OD5-25W01 at a resolution of 0.02 μm. The microstructural evolution at different depths was characterized by an optical microscope (OM, Leica DM1500) and scanning electron microscope (SEM, Nano 430). The top surface of sample was investigated by a transmission electron microscope (TEM, JEOL 3010). The X-ray diffraction (XRD, Rigaku D/max 2500PC X-ray diffractometer) measurement was carried out at 40 kV and 150 mA using Cu Kα radiation on the RD−TD plane of sample, as shown in Fig. 1(b). The surface roughness improvements of the sample were measured by a BMT Expert 3D measurement system. The microhardness at each depth was determined by a HVS−1000 Vickers hardness testing machine, with a load of 4.9 N and a loading time of 20 s. The mean value was determined from the values around a mark point. The grain size distribution was a statistical result of 200 grains selected randomly from Fig. 5. A pair ofJing ZHAO, et al/Trans. Nonferrous Met. Soc. China 24(2014) 441−448 443orthogonal lines were drawn through the long axis and short axis of a grain. The pixel lengths of long axis and short axis were read and converted into the real lengths.3 Results3.1 Microstructure3.1.1 Cross-sectional observationsThe cross-sectional SEM observation of the sampleis shown in Fig. 2. It can be seen that a gradient structure forms in the surface layer, representing the strain decrease from the maximum at the topmost surface to zero in the matrix. The grain boundaries of the top layer (depth<100 μm) could hardly be identified, which indicates that severe plastic deformation occurs in the top layer during SPRB. It is worth mentioning that the gradient structure is similar with the one observed after SMGT [10], but is more uniform compared with latter at the same depth. The thickness of the deformation layer is about 600 μm, which is twice that by SMAT for 5 min [5].Fig. 2 SEM image showing cross-section of sampleIn order to investigate the grain refinement process involved in SPRB, microstructure characterizations of sample at different depths from the topmost surface, marked by h0−h6 in Fig. 2, were conducted.3.1.2 Microstructure characteristics of deformation layerFigure 3(a) shows that the grains at h6 have no obvious deformation, and the grain boundaries are straight, which can be defined as the matrix. With increasing the deformation strain at h5, as shown in Fig. 3(b), the grains are elongated slightly and some grain boundaries are blurred and curved. At h4, fiber structures form along burnishing direction, leading to the segmentation of coarse grains. The refinement degree of the coarse grains is significantly different. The grain refinement in some regions is faster than other regions. For example, equiaxed grains with size of ~5 μm marked with arrows in Fig. 3(c), are quite smaller than ones in other regions.It is well recognized that the degree of etch is same for the same lattice plane of a material, so we define two types of regions in Figs. 3(d)−(f): bright (a region labeled with ‘B’ in Fig. 3(d)) and dark (a region labeled with ‘D’ in Fig. 3(d)) regions, to reveal the evolutions of microstructure and grain orientation. The grains in dark regions are smaller than the ones in bright regions (Fig. 3(d)), indicating that the dark regions are of newly generated fine-grained structure. The grain orientations of dark regions are approximate with those of the preferential refinement regions in Fig. 3(c). It can be observed that the total area ratio of the dark regions to the bright ones increases with decreasing the depths from the top surface (Figs. 3(e)−3(f)). These findings indicate clearly that the dark regions play an important role in the grain refinement.It can be concluded that the grain orientations of dark regions are preferential at h1 from Fig. 3(f). Texture analysis gives more details of grain orientation to reveal the formation of submicron grains. The deformation textures were determined from the (200), (220), (111) and (311) pole figures. The experimental data were processed to obtain the orientation distribution function f(g) (ODF). The φ2=0, 45° sections of ODF for the samples before and after SPRB are shown in Fig. 4. The XRD measured depth is about 30 μm from the topmost surface of sample. The textures before SPRB consist of components like {001}〈110〉 rotated cube (RC), {110}〈001〉 Goss (G), {110}〈110〉 rotated Goss (RG) and {114}〈221〉 (G T), which is the ideal twin orientation of goss. The ODF of the burnished sample shows an orientation density increase around the RG component while other components existing before SPRB almost disappear. The strength of {114}〈110〉 (RG T), the ideal twin orientation of the rotated Goss, is roughly equal to that of RG component after SPRB.SPRB can be simplified in the form of tension along TD and compression along ND, so the Schmid factor m can be expressed as [14]cos cos cos cosmαβγδ=−(1) where α is the angle between TD direction and slip/twin direction; β is the angle between TD direction and the normal of slip/twin plane; γis the angle between ND direction and slip/twin direction; δ is the angle between ND direction and the normal of slip/twin plane. According to Eq. (1), the Schmid factors (SF) for slip/twin systems of the components existing before and after SPRB are calculated. The maximum Schmid factors for slip/twin systems and the corresponding number of active slip/twin systems having the maximum SF are listed in Table 1.Jing ZHAO, et al/Trans. Nonferrous Met. Soc. China 24(2014) 441−448444Fig. 3 OM images showing microstructures of sample at different depths from topmost surface: (a) h6=600 μm; (b) h5= 300 μm;(c) h4=200 μm; (d) h3=100 μm; (e) h2=60 μm; (f) h1= 30 μmFig. 4 ODF representing textures of samples before SPRB (I max=2.4; level=0.45, 0.46, 1.00, 1.30, 1.60, 1.80, 2.10) and after SPRB(I max=4.8; level=0.00, 1.00, 1.80, 2.50, 3.30, 4.00): (a) φ2=0, before SPRB; (b) φ2=45°, before SPRB; (c) φ2=0, after SPRB; (d) φ2=45°, after SPRB Table 1 The maximum Schmid factors M max for slip systemsand twin systems and corresponding numbers of active slip systems and twin systems during SPRBSlip system Twin system Texturecomponent Number MmaxNumber M max RG 4 0.82 2 0.94 RC 4 0.82 2 0.94 RG T 2 0.82 1 0.94 Larger SF of component means that the grain with this orientation is easier to deform, which can promotethe grain refinement. The RG, RG T and RC have the largest SF for twin systems shown in Table 1, which is consistent with the texture results of the burnished sample. Assume that the critical resolved shear stress forslip is equal to that for twinning. The results show the onset of twinning is easier than dislocation slip for theJing ZHAO, et al/Trans. Nonferrous Met. Soc. China 24(2014) 441−448 445 three components. The twinning relation between RGand RG T indicates that part of RG T component evolves from RG component. Meanwhile, the strength values of two components are almost the same. It can be concluded that most grains are in the form of twins. Besides, the Schmid factors for slip systems of these three components are also high, which means that the dislocation slipping is also activated and works together with the twinning in microstructural evolution. It should be noticed that XRD has a certain penetration depth for a given material. The penetration depth of copper is verified as 19 μm by Beer–Lambert law, so the texture measured is an average value in the range of 30−50 μm depth from the topmost surface.In the top surface, the microstructure is characterized by nano-sized grains from TEM observations (Fig. 5). The corresponding selected-area electron diffraction (SAED) pattern shown in Fig. 5 indicates that randomly oriented grains are obtained by SPRB. The grain size distributions of long axis and short axis confirm to the normal logarithmic distribution approximately (Fig. 6). The average long axis grain size (d l) and short axis grain size (d s) are 11 and 8 nm respectively. So the nano-sized grains can be fairly considered being equiaxed with the (d l/d s) of 1.2.Fig. 5 Bright field image of top surface of burnished copper3.1.3 Region definition of gradient nano/micro-structured surface layerThe grain size distributions at h0−h3 are shown in Fig. 7. The error bars for the arithmetic mean that values of grain sizes are calculated. The arithmetic mean values of grain size get smaller when the depth is close to the topmost surface, which indicates that the grain refinement is more uniform in the top surface. The grain size of short axis at h1 is partly in the nanometer range, so the SNC layer is defined as 0−30 μm. The average size of short axis at h3 is out of 1000 nm, so the sub-micron layer is defined as 30−100 μm. In short, the thickness of the gradient nano/micro-structured surface layer is about 100 μm from the topmost surface, which is much larger than that in Ref. [15].Fig. 6 Grain size distributions of long axis (d l) (a) and short axis (d s) (b) in top surface (Inset gives the ratio of d l/d s)Fig. 7 Grain size distributions at h0, h1, h2, h3 and corresponding hardness values3.2 Improvement on surface properties ofdeformation layerSPRB improves the surface quality greatly because the surface roughness (R a) decreases from (1.5±0.35) μm to (0.56±0.04) μm after SPRB.The hardness increases from HV68 in the matrix to HV 120 in the top surface. The hardness at the topmost surface is about 1.76 times that of the matrix, which is lower than the hardness of SMGT copper [5]. The nano-sized twins have been proven to have the higherJing ZHAO, et al/Trans. Nonferrous Met. Soc. China 24(2014) 441−448 446hardness [16]. However, few twins are found in the topmost surface in the burnished sample (hereafter referred in discussion). So it may explain the difference in hardness between two techniques. The hardness within 100 μm from the topmost surface is greater than HV 100, as indicated in Fig. 8. The relationship between hardness and d−1/2 (d is the average grain size) in this range is examined, as shown in Fig. 8. The result shows that it is consistent with the Hall−Petch relationship. The slope in the nanometer scale is different from the one out of the nanometer size range, which can be explained that the Hall−Petch relationship becomes temperature-dependent and size-dependent when the grain size of crystals is less than 100 nm [17].Fig. 8 Variation of hardness with distance from top surface (Inset gives the relationship between hardness and d−1/2)4 DiscussionThe increasing strain and strain rate from the topmost surface to matrix play a key role in fabricating the gradient nano/micro-structured surface layer induced by SPRB technique. Based on the features of the gradient microstructure, the mechanisms of grain refinement are discussed at different depths.Copper is a FCC crystal with medium stacking fault energy (78 mJ/m2). It has been observed that slipping is the prevalent deformation mode at a low strain level [5]. In the micron layer, slipping is hard for the grains with “hard” orientations, leading to the formation of dislocations in the interior of grains. The dislocation multiplication helps to form some dislocation areas with a certain length. Only narrow and long deformed regions generate in some local areas (Fig. 3(c)) since the number of activated slip systems is few at a low strain level. The new grains/sub-grains are formed in these areas probably through continuous dynamic recrystallization (DRX) to release the energy localization [18]. With the increase of strain, more grains turn to have “hard” orientations, so the dislocation intensity increases and the dislocation areas cover wider, as shown in Fig. 3(d), which propels the formation of dislocation walls (DDWs) to refine the grains to a few microns.Texture results reveal that the submicron grains are mostly in the form of twins in the range of 30−50 μm depth. So the increasing strain will give rise to the onset of twins. It is worth noting that this microstructural feature is very similar to the formation of twin lamellae in the SMAT of polycrystalline copper [5], which indicates that the deformation twinning is the predominant refinement mechanism to form the submicron grains. It has been shown that the existence of deformed twins is evidenced by the RG T and RG components are preferred orientations under SPRB.In order to reveal the formation of nanograins (depth 0−30 μm), another TEM image (Fig. 9) with a low magnification in the top surface is given. The dislocation tangles can be seen in region A (marked by the white dotted ellipse) and the dislocation walls (DDWs) with parallel structure are also found as the white arrows in region B, which reveal that dislocation activities play a key role in refining grains to the nanometer scale. This is confirmed by a high resolution TEM image shown in Fig. 10. It is widely recognized that the low-angle grain boundary consists of a series of dislocations. Most grains in Fig. 10 have low-angle grain boundaries (LAGBs), namely, grain A has a small misorientation with the surrounding grains, which proves the existence of dislocations at the grain boundaries. The dislocations and/or stacking faults are found in the interior of grain H (Fig. 10(a)) by inverse fast Fourier transform (IFFT), indicating that the dislocations will trigger the formation of nanograins. Some equiaxed grains have high contrast relative to the surrounding grains (e.g. the grains marked by dark arrows in Fig. 9). It is an evidence to support the rotation of grains occurring during the formation of the equiaxed grains [19]. Almost no evidence of twining relationship was identified in HRTEM image (Fig. 10). Therefore, deformation twinning may not be a major formation mechanism of nanosized grains.Fig. 9 TEM observation in low magnificationJing ZHAO, et al/Trans. Nonferrous Met. Soc. China 24(2014) 441−448 447Fig. 10 HRTEM observations in top surface: (a) HRTEM image; (b) FFT figure in region marked by dark dotted box in Fig. 10(a); (c) IFFT figure in region marked by dark dotted boxin Fig. 10(a)5 Conclusions1) A gradient nano/micro-structured surface layer was fabricated using a new SPB technique on pure copper. The average grain size of equiaxed nano-sized grains with low-angle grain boundaries (LAGBs) is about 10 nm. The thickness of the gradient nano/micro- structured surface layer is ~100 μm.2) The formation of the equiaxed nano-sized grains is mainly dominated by dislocation activities accomplished with the rotation of grains.3) A strong texture consisting of rotated Goss and twin of rotated Goss components reveals that deformation twinning is the primary microstructural evolution mechanism for the formation of submicron grains.4) The coarse grains are refined into the few micro-sized grains by dislocation activities.5) The surface properties of copper by SPRB are enhanced obviously. The hardness of topmost surface is 1.76 times that of the matrix. The roughness decreases from 1.5 μm to 0.56 μm after SPRB.References[1]TONG W P, TAO N R, WANG Z B, LU J, LU K. Nitriding iron atlower temperatures [J]. Science, 2003, 299: 686−688.[2]ZHANG Y S, HAN Z, LU K. Fretting wear behavior ofnanocrystalline surface layer of copper under dry condition [J]. Wear,2008, 265: 396−401.[3]XU Bing-shi. Nano surface engineering [M]. Beijing: ChemicalIndustry Press, 2004. (in Chinese)[4]SUN H Q, SHI Y N, ZHANG M X, LU K. Plastic strain-inducedgrain refinement in the nanometer scale in a Mg alloy [J]. ActaMaterialia, 2007, 55(3): 975−982.[5]WANG K, TAO N R, LIU G, LU J, LU K. Plastic strain-inducedgrain refinement at the nanometer scale in copper [J]. Acta Materialia,2006, 54(19): 5281−5291.[6]TAO N R, WANG Z B, TONG W P, SUI M L, LU J, LU K. Aninvestigation of surface nanocrystallization mechanism in Fe inducedby surface mechanical attrition treatment [J]. Acta Materialia, 2002,50(18): 4603−4616.[7]HU Lan-qing, LI Mao-lin, WANG Ke, LIU Gang, WEI Ying-hui, XUBing-shi. Microstructure and characterization of surface nanocrystallization of aluminum alloy [J]. The Chinese Journal ofNonferrous Metals, 2004, 14(12): 2016−2020. (in Chinese)[8]WU X, TAO N, HONG Y, XU B, LU J, LU K. Microstructure andevolution of mechanically-induced ultrafine grain in surface layer ofAl-alloy subjected to USSP [J]. Acta Materialia, 2002, 50(8):2075−2084.[9]WANG Ting, WANG Dong-po, LIU Gang, GONG Bao-ming, SONGNing-xia. 40Cr nano-crystallization by ultrasonic surface rollingextrusion processing [J]. Journal of Mechanical Engineering, 2009,45(5): 177−183. (in Chinese)[10]LI W L, TAO N R, LU K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surfacemechanical grinding treatment [J]. Scripta Materialia, 2008, 59(5):546−549.[11]FANG T H, LI W L, TAO N R, LU K. Revealing extraordinaryintrinsic tensile plasticity in gradient nano-grained copper [J].Science, 2011, 331: 1587−1590.[12]PU Z, YANG S, SONG G L, DILLON JR O W, PULEOC D A,JAWAHIRA I S. Ultrafine-grained surface layer on Mg−Al−Zn alloyproduced by cryogenic burnishing for enhanced corrosion resistance[J]. Scripta Materialia, 2011, 65(6): 520−523.[13]ZHU S Q, YAN H G, CHEN J H, WU Y Z, LIU J Z, TIAN J. Effectof twinning and dynamic recrystallization on the high strain raterolling process [J]. Scripta Materialia, 2010, 63(10): 985−988.[14]YANG Ping. Electron backscatter diffraction technique andapplication [M]. Beijing: Metallurgical Industry Press, 2007: 88−90.(in Chinese)[15]RA VI SHANKAR M, RAO B C, LEE S, CHANDRASEKAR S,KING A H, DALE COMPTON W. Severe plastic deformation (SPD)of titanium at near-ambient temperature [J]. Acta Materialia, 2006,54: 3691−3700.[16]SHEN Y F, LU L, LU Q H, JIN Z H, LU K. Tensile properties ofcopper with nano-scale twins [J]. Scripta Materialia, 2005, 52(10):989−994.[17]ZHAO M, LI J C, JIANG Q. Hall–Petch relationship in nanometersize range [J]. Journal of Alloys and Compounds, 2003, 361(1−2):160−164.[18]BELYAKOV A, SAKAI T, MIURA H, TSUZAKI K. Grainrefinement in copper under large strain deformation [J].Philosophical Magazine A, 2001, 81(11): 2629−2643.[19]HAN Jing, SHENG Guang-min, HU Guo-xiong. Mechanism of grainrefinement for TA17 near α-Ti alloy by high energy shot peening [J].The Chinese Journal of Nonferrous Metals, 2008, 18(5): 799−804.(in Chinese)Jing ZHAO, et al/Trans. Nonferrous Met. Soc. China 24(2014) 441−448448剧烈塑性滚柱滚压诱导纯铜表层的梯度纳米/微米结构赵婧,夏伟,李宁,李风雷华南理工大学国家金属材料近净成型工程技术中心,广州 510640摘 要:为了研究由剧烈塑性滚柱滚压在纯铜表层诱导出的梯度纳米/微米结构特征及其晶粒细化机制,采用SEM、TEM、XRD、OM等方法观察样品距表面不同深度的组织特点和材料特性。

相关文档
最新文档