2011高等数学上试卷及答案
2011级高数(上)试题及答案
2011级高数(上)试题及答案D(B ))(x f 在0x 点有定义;(C ))(x f 在0x 的某去心邻域内有定义; (D )0()k f x =4.若314lim 1x x ax b x →-++=+,则( ) (A )6a =,3b = (B )6a =-,3b = (C )3a =,6b = (D )3a =,6b =- 5.设xe2为)(x f 的一个原函数,则⎰'dx x f x )(为( )(A )C e x +221 (B )2x e C + (C )C e xe x x +-2221 (D )C e xe x x +-222 三、计算题(每小题 6分,共30分)1.求极限22sin lim2sin x x x x x x →-+2.求极限cot 0lim(cos )xx x →3.计算⎰dx x sin4.计算 22(1)x xx edx ++⎰5.计算dx x x ⎰-3 022四、解答题(每小题 8分,共 16 分)1.设可微函数)(x y y =由方程⎰⎰=+-220cos y axtdt t dt e确定,求dx dy 和22d ydx2.设232,sin 10y x t t dydx e t y ⎧=+⎨-+=⎩求五、应用题(每小题 8分,共 16 分)1.求曲线53(1)y x x=-的凹凸区间及拐点2.设函数x x y ln =,求该函数的单调区间和极值.六、证明题(本题满分8分)设()f x ,()g x 在[],a b 上连续, 证明:至少存在一个(),a b ξ∈,使得:dx x f g dx x g f ab⎰⎰=ξξξξ)()()()(.南昌大学 2011~2012学年第一学期期末考试试卷及答案一、填空题(每空 3 分,共 15 分)1. 设2()xf x e =,则[()]f f x =22x ee2. 若⎪⎩⎪⎨⎧<≥+=0,1sin 0,)(2x x x x a x x f 在0=x 处连续,则a =0。
2011年高考数学试卷(含答案)
2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C ) (B ) 2 (D )3(8)51()(2a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40 (9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
高数(上)复习题解答
《高等数学》复习题(2011——2012(1))一.计算题1.)1)1ln(1(lim 0x x x -+→ )1)1ln(1(lim 0x x x -+→ 2122x 0x 0x 0x ln(1+x)-x ln(1+x)-x 1+x lim lim lim xln(1+x)x x →→→===== 2. nn n n b a ⎪⎪⎭⎫⎝⎛+∞→2lim )0,0(>>b alim 1→∞⎧⎛⎪=+ ⎨ ⎝⎭⎝⎭⎪⎪⎩⎭n nn211lim lim lim 222→∞→∞→∞⋅=⋅+⋅n n n n n n 其中1111ln ln ln ln 1111ln lim(1)lim(1)lim lim 22222lim 2→∞→∞→∞→∞→∞=-⋅+-⋅=⋅+⋅==⎛∴= ⎝⎭a b a b n nn n n n n n nn ab e n e n n n3. nn n x nx -∞→⎪⎪⎭⎫⎝⎛++22221lim ()lim lim 222222222222221122+-⋅⋅-+-→∞→∞⎛⎫⎛⎫+++=+= ⎪ ⎪⎝⎭⎝⎭n nx x nn nx xn x n n nx x nx x e n n4. 若212lim1x x ax b x →-++=+,求a 、b lim lim ;,221122031→-→-++=⇒++=+⇒==由x x x ax b x ax x a b5.求22132x y x x -=-+的间断点,并判别间断点的类型。
()()x x y x x -+=--11, x=1是跳跃间断点,x=2是无穷间断点.6 .并在可导处求出的可导性 ,,试讨论)(,00)1ln()(sin x f x e x x k x f x '⎪⎩⎪⎨⎧<≥++=011sinxsinx k+ln(1+x), x 0f(x)=e , x 0k =1f(x), x 01+x f (x)=x =0cosx e , x 0x ≥⎧⎨<⎩=⎧>⎪⎪'⎨⎪<⎪⎩当时,在连续。
2011年1月全国自考高等数学(一)试题和答案
全国2011年1月高等教育自学考试高等数学(一)试题和答案课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数f (x )=+ln(3-x )的定义域是( )2+x A .[-3,2]B .[-3,2)C .[-2,3)D .[-2,3]2.已知函数f (x )=在x =0处连续,则常数k 的取值范围为( )⎪⎩⎪⎨⎧≤>0,00,1sin x x x x k A .k ≤0B .k >0C .k >1D .k >23.曲线y =2ln的水平渐近线为( )33-+x x A .y =-3B .y =-1C .y =0D .y =24.定积分=( )⎰---11d 2e e x xx A .0B .e 1C .1D .e5.若,则点(x 0,y 0)是函数f (x ,y )的()0),(,0),(0000==''y x f y x f y x A .极小值点B .极大值点C .最值点D .驻点二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.已知,则f (x )=_________.2ln )1(222-=-x x x f 7.函数f (x )=的间断点是_________.6512--+x x x 8.设函数y =sin(2x +2x ),则d y =_________.9.极限=_________.xx x x ln 1lim 1-→10.曲线y =ln(1+x 2)的凹区间为_________.11.函数f (x )=的单调减少区间是_________.2e xx12.定积分=_________.⎰--222d 4x x 13.极限=_________.x t t x x ⎰→020d sin lim 14.无穷限反常积分=_________.⎰∞-02d e x x 15.设二元函数z =cos(2y -x ),则=_________.yx z ∂∂∂2三、计算题(一)(本大题共5小题,每小题5分,共25分)16.求极限.xx x x sin 11lim 0--+→17.设函数y =,求导数y '.x arctan e 18.已知f (x )的一个原函数是,求.2e x -⎰x x xf d )('19.求微分方程y '+y =0在初始条件y (0)=1下的特解.20.计算二重积分,其中D 是由直线y =2-x 与⎰⎰=Dy x I d d 2抛物线y =x 2所围成的平面区域.四、计算题(二)(本大题共3小题,每小题7分,共21分)21.设函数f (x )=(1+x 2)arctan x ,求f (x )的三阶导数.22.求函数f (x )=的极值.21e x x 23.试确定常数a ,b 的值,使得(1,3)是曲线y =ax 3+3x 2+b 的拐点.五、应用题(本题9分)24.某工厂生产两种产品I 和II,销售单价分别为10元与9元,生产x 件产品I 与生产y 件产品II 的总费用为C =400+2x +3y +0.01(3x 2+xy +3y 2)(元).问两种产品的产量各为多少时,才能使总利润最大?六、证明题(本题5分)25.设函数f (u )可导,,证明: .)(xy f z =0=∂∂+∂∂y z y x z x 全国2011年1月高等教育自学考试高等数学(一)参考答案课程代码:00020。
2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc
2011 年普通高等学校招生全国统一考试数学理试题(全国卷,含答案)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。
第Ⅰ卷 1 至 2 页。
第Ⅱ卷 3 至 4 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前, 考生在答题卡上务必用直径0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
..........3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
一、选择题(1) 复数 z 1i , z 为 z 的共轭复数,则 zz z 1( A ) 2i( B ) i( C ) i( D ) 2i【答案】 B(2) 函数 y 2 x( x 0) 的反函数为( A ) yx 2( x R)( B )4( C )y 4x 2( x R)( )Dyx 2( x 0)4y 4x 2 ( x 0) 【答案】 B(3) 下面四个条件中,使 a b 成立的充分而不必要的条件是( A ) a >b 1( B ) a >b 1(C ) a 2> b 2( D ) a 3> b 3【答案】 A(4) 设 S n 为等差数列a n 的前 n 项和,若 a 1 1,公差 d2 , S k 2 S k 24 ,则 k( A ) 8 (B ) 7( C ) 6( D ) 5【答案】 D(5) 设函数 f ( x) cos x(0) ,将 yf ( x) 的图像向右平移个单位长度后,所得的图3像与原图像重合,则的最小值等于( A )1(B ) 3(C ) 6( D ) 93【答案】 C(6) 已知直二面角l , 点 A , AC l , C 为垂足 , B , BD l , D 为垂足.若 AB2, AC BD 1,则 D 到平面 ABC 的距离等于2 (B) 36 (D) 1(A)3 (C)33【答案】 CA(7) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友每位朋友 1 本,则不同的赠送方法共有(A) 4 种(B)10 种(C)18 种(D)20 种lD【答案】 BCB E(8) 曲线 y e 2 x1在点 (0,2) 处的切线与直线 y 0 和 y x 围 成的三角形的面积为(A)1(B)1 (C)2 (D)1323【答案】 A(9) 设 f ( x) 是周期为 2 的奇函数,当 0x 1 时, f (x)2x(1 x) , 则 f (5 )11112(A) -(B)(C)(D)2442【答案】 A(10) 已知抛物线C : y 24x 的焦点为 F ,直线 y2x 4 与 C 交于 A , B 两点.则cos AFB(A)4(B)3 (C)3 (D)4 5555【答案】 D(11) 已知平面 α截一球面得圆 M ,过圆心 M 且与 α 成 600 二面角的平面 β 截该球面得圆 N .若该球面的半径为 4,圆 M 的面积为 4 ,则圆 N 的面积为(A) 7 (B) 9(C)11(D)13【答案】 D(12) r r rr rr r 1 rr r rr设向量 a , b , c 满足 | a | | b |1, agb, ac,bc60 ,则 | c | 的最大值2等于(A) 2 (B)3(c)2(D) 1【答案】 AB绝密★启用前2011 年普通高等学校招生全国统一考试ACD理科数学 ( 必修 +选修 II)第Ⅱ卷注意事项:1 答题前,考生先在答题卡上用直径0. 5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年高一数学上学期期末测试卷A(带详细答案)
2011年高一数学上学期期末测试卷A一、选择题1、下列哪组中的两个函数是同一函数( )(A)2y =与y x = (B)3y =与y x =(C)y =2y = (D)y =2x y x=2、设A={x|20≤≤x },B={y|12≤≤y },下列图形表示集合A 到集合B 的函数图形的是( )3、已知函数11)(22-+-=x x x f 的定义域是( )(A )[-1,1](B ){-1,1}(C )(-1,1) (D )),1[]1,(+∞--∞4、已知)(x f 是定义在(),0+∞上的单调增函数,若)2()(x f x f ->,则x 的范围是( ) A x>1 B. x<1 C.0<x<2 D. 1<x<25、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=--(C ))(x f ·)(x f -≤0(D )1)()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 ( )(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、给出函数)(),(x g x f 如下表,则f 〔g (x )〕的值域为( )A.{4,2}B.{1,3}C.{1,2,3,4}D. 以上情况都有可能8、若函数c bx x x f ++=2)(对任意实数都有)2()2(x f x f -=+,则( ) A )4()1()2(f f f << B. )4()2()1(f f f << C.)1()4()2(f f f << D.)1()2()4(f f f <<9、函数()f x 是(,)-∞+∞上的增函数,若对于12,x x R ∈都有121()()()f x f x f x +≥-+2()f x -成立,则必有 ( )(A )12x x ≥ (B )12x x ≤ (C )120x x +≥ (D )120x x +≤10、若奇函数f(x) 在[1,3]为增函数,且有最小值7,则它在[-3,-1]上( ) A.是减函数,有最小值是-7 B.是增函数,有最小值是-7 C .是减函数,有最大值-7 C.是增函数,有最大值是-711.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则( ) A.-2 B.2 C12. 函数 f(x)=x 2-4x+5在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( ) A . ),2[+∞ B .[2,4] C .(]2,∞- D 。
山大2011级高数上期末试题及答案
11-12高数上期末:一、填空题 (共5小题,每题4分,共20分)1. 设0 < a < b , 则()1lim .nnnn ab--→∞+=2. 2232ln (1)d ()d x t t yy y x x y t t=-+⎧==⎨=+⎩设函数由参数方程所确定,则________.3. 100()()d x x x x x ϕϕ=⎰设是到离最近的整数的距离,则.4. 322A y x x x x =-++曲线 与轴所围图形的面积=________.5.3s in (),()d x f x x f x x x'=⎰已知的一个原函数为则_________.一、选择题 (共5小题,每题4分,共20分) 6.下列命题中正确的一个是( )(A) 若0lim ()lim ()0x x x x f x g x δ→→≥⇒∃>,当00x x δ<-<时,有()()f xg x ≥;(B) 若0δ∃>,当00x x δ<-<时有()()f xg x >且0lim(),x x f x →0lim ()x x g x →都存在,则0lim()lim ()x x x x f x g x →→>(C)若0δ∃>,当00x x δ<-<时恒有()()f xg x >,则lim ()lim ()x x x x f x g x →→≥;(D)若0lim ()lim ()0x x x x f x g x δ→→>⇒∃>,当00x x δ<-<时有()()f xg x >7.0000(2)()()lim()2h f x h f x f x x h→--=设在处可导,则0000(A )()(B )()(C )()(D )2()f x f x f x f x ''''--000(3)0()()''()0()0y f x x f x f x fx '===<8.设在点的某邻域内具有连续的三阶导数,若,且,则()''00000(A )()()(B )()()(C )()()(D )(,())()f x f x f x f x f x f x x f x y f x =是的极大值是的极大值是的极小值为曲线的拐点9. 设2s in ()es in d ,x txf x t t π+=⎰则()F x ______.(A )为正常数 (B )为负常数 (C )恒为零 (D )不为常数10. 若连续函数()f x 满足关系式20()()d ln 2,2xt f x f t =+⎰则()f x =______(A )e ln 2x2(B )eln 2x()e ln 2xC + 2(D )eln 2x+三、解答题(共6道小题,4个学分的同学选作5道小题,每题12分,共60分;5个学分的同学6道题全做,每题10分,共60分)11. 求极限201(1)lim s inx x x→10(2)l i m,,,0.3xxx xx ab c a b c →⎛⎫++> ⎪⎝⎭其中(),012.(),()0(0)0,,0(0)(0)0,(),()0g x x f x g x x g x x g g f x f x x ⎧≠⎪''==⎨⎪=⎩'''===设函数其中可导,且在处二阶导数存在,且试求并讨论在处的连续性.[]110()0,1(0,1)(1)=e()d xk f x f k x f x x-⎰13.已知函数在上连续,在内可导,且满足(1).k >其中 1(0,1),()(1)().f f ξξξξ-'∈=-证明:至少存在一点使得14.()()d xf tg x t t -⎰求(0),x ≥0x ≥其中当时,(),f x x =s in ,02.0,2x x x x ππ⎧≤<⎪⎪⎨⎪≥⎪⎩而g ()=15. 求微分方程243(1)22x y x y x y '++=满足初始条件 01|2x y ==的特解2s in s in s in 16.(1)lim 1112n n nn n n n πππ→∞⎛⎫⎪+++ ⎪+ ⎪++⎝⎭.计算 (2).()[0,1]1()2,f x f x ≤≤设函数在连续,且 证明:1119()d d .()8f x x x f x ≤⎰⎰一.填空题1.1a2.(65)(1)t t t++ 3. 25 4.37125. 22ln ln x x C -+二.选择题6. D7. A8. D9. A 10. B 三.解答题 11. 21(1)lim s inx x x→2211s in1,lim 0lim s in0x x xx xx→→≤=∴=有界10(2)l i m,,,0.3xxx xx ab c a b c →⎛⎫++> ⎪⎝⎭其中()()0013131(1)(1)(1)1ln 1lim 1limln ln ln 33333lim eeeex x xx x x x x xx x a b c a b c a b c a b c x x xx a b c →→⎛⎫⎛⎫++-++--+-+-⋅+ ⎪ ⎪++ ⎪ ⎪⎝⎭⎝⎭→=====原极限2222()(0)()()1()(0)1(0)limlimlimlim(0)222()(),0()1(0),02()()()(0)(lim ()limlimlim(0)l x x x x x x x x f x f g x g x g x g f g xxxxx g x g x x xf xg x x g x g x g x g g x f x xxxg →→→→→→→→'''--'''====='-⎧≠⎪⎪'=⎨⎪''=⎪⎩'''--'==-''=-12.解:)0()1im(0)(0)22()0x g x g f xf x x →''''=='∴=在处连续1-11-1111113.[0,],(1)e().11, 1.(0,1).()e (),()[0,](0,)(1)=(1)e ()().(0,)()e()e()e()0,e0,xf f kk kF x x f x F x F f f F F f f f f ηηξξξξηηηηηηηηηηξξξξξξξ-----∃∈=><∈===''=-+=>由积分中值定理,使得得则令由题意知在上连续,内可导且由罗尔中值定理,在内存在一点,使得得-1()()()0()(1-)().(0,1).f f f f ξξξξξξξξξ''-+=⇒=∈其中20014.,d d .()()d ()()d ()()d ;()()d =()s in d s in ;2()()d ()s in d 0 1.2s in 2()()d =12xxxx x xxu x t u t f t g x t t f x u g u u f x u g u u x f x u g u u x u u u x x x f x u g u u x u u u x x x x f t g x t t x x πππππ=-=--=--=-≤<--=-≥-=-+=--≤<--≥⎰⎰⎰⎰⎰⎰⎰⎰令则于是当0时,当时,,0所以,⎧⎪⎪⎨⎪⎪⎩4322342222222d 2215.,d 3(1)3(1)d d ,3d d 1d 22d 22-,--(1)3d 3(1)3(1)d 11d 2-0,(1)z (1)(d 1y x x yyxx x z y z y yxxz xx zxx z z xx x x xxzxz z C x x u x x ----+=++==-+==++++==+=++讲方程改写为:这是贝努里方程.令则,代入上述方程得:即, 这是一阶线性非齐次方程,它对应的齐次方程为它的通解为,令22222222203321)d d (1)2(),(1)d d d 22d 2(1)2()(1)()-,-,d 11d 11,(1)1(1),1111(1).|81,7.2(78).x x z u x x u x xxu x x u x x x u x x u x xxxxxu C z C x xC x y C C yy x =--=++++-+==+++=+=+++=++==+==+则将其代入得即积分得即的通解为从而原方程的通解为由初始条件,有故所求的特解为11112s ins ins in 12116.(1)(s ins ins in )s in111212lims ins in ()d .2s ins ins in 121(s ins ins in )s in111112limni nn i ni n i n nn nnnnnn n ni x x nnn i n nn n nnn nnn n nnn πππππππππππππππππ=→∞==→∞+++<+++=+++==+++>+++=++++++∑∑⎰∑而另一方面且1112s in=s in ()d .12.ni i x x nnππππ===∑⎰所以由夹逼准则知原式111011100(2)1()2(()1)(()2)0,(()1)(()2)10()d 2d 3()()1d 3()19()d d .()8f x f x f x f x f x f x x x f x f x xx f x f x xx f x ≤≤∴--≤--≤+≤≤≤⎰⎰⎰⎰⎰⎰得,即,得到从而整理得:。
2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)
2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是(A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011山东高考数学及答案(完整高清版)
2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh=,其中S是柱体的底面积,h是柱体的高。
圆柱的侧面积公式:S cl=,其中c是圆柱的地面周长,l是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:=1221ˆˆ,.ni ii n ii X Y nx yay bx Xnx ==-=--∑∑ 如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B =。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{}{}2|60,|13,M x xx N x x =+-<=≤≤则MN =(A)[1,2)(B) [1,2] (C) (2,3] (D) [2,3]2、复数2()2iz i i-=+为虚数单位在复平面内对应的点所在象限为 (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3、若点a (,9)在函数3xy =的图象上,则tan 6a π的值为(A) 0(B)(C) 1(D) 4、不等式5310x x -++≥的解集是(A) []5,7- (B) []4,6- (C) (][),57,-∞-+∞ (D) (][),46,-∞-+∞ 5、对于函数(),y f x x R =∈,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6、若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=(A) 3 (B) 2 (C) 32(D) 237、某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y bx a =+中的b 为9.4,据此模型预报广告费用为6万元时销售额为(A) 63.6万元(B) 65.5万元 (C) 67.7万元 (D) 72.0万元8、已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22650x y x +--=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 (A)22154x y -= (B)22145x y -= (C)22136x y -= (D)22163x y -= 9、函数2sin 2xy x =-的图象大致是(A) (B)(C) (D)10、已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x xx =-,则函数()y f x = 的图象在区间[的交点的个数为(A) 6 (B) 7 (C) 8 (D) 911 ①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图; ③存在圆柱,其正(主)视图、俯视图如右图。
2011年全国高考理科数学试题含答案(新课标卷)
2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是( ) (A )35i - (B)35i (C)i - (D)i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) (A)3y x = (B) 1y x =+ (C)21y x =-+ (D)2xy -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( ) (A)120 (B )720 (C )1440 (D)5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A)13 (B)12 (C)23 (D)34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )(A)45- (B)35- (C )35 (D)45(6)在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(B) (C)2 (D)3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )(A)-40 (B)-20 (C)20 (D)40(9)由曲线y =2y x =-及y 轴所围成的图形的面积为 ( )(A )103 (B)4 (C )163(D)6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 ( )12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 ( ) (A)14,P P (B)13,P P (C)23,P P (D)24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A)()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B)()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C)()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增ﻩ(D)()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11-y x=的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) (A)2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011高等数学上试卷及答案(Bear)
2011高等数学上试卷及答案(Bear)D装订线装订线装订线A.21xB.3x C.x D.211x+4.设()f x为连续函数,则下列等式中正确的是()A.()()f x d x f x'=⎰B.()()df x d x f x Cd x=+⎰C.()()d f x d x f x=⎰D.()()d f x d x f x d x=⎰5.已知()232ax xd x-=⎰,则a=()A.1-B.0C.12D.1三、计算题(本大题共7小题,每小题7分,共49分)1.求极限()11limxxxe xx e→---。
2. 设函数1s i n2 ,0(),,0x xf xa b x x+≤⎧=⎨+>⎩在点0x=处可导,求,a b的值。
得分1.5CM装订线3. 设参数方程()1sincosx t ty t t=-⎧⎪⎨=⎪⎩确定y是x的函数,求d yd x。
4.设方程2290y x y-+=确定隐函数()y y x=,求ddyx。
5.求函数321xyx=-的单调区间,极值和拐点。
6.计算定积分1lnex xdx⎰。
装订线7.求不定积分321xdxx-⎰。
四、解答题(本大题共 3 小题,每小题7 分,共21 分)1.证明不等式:当0x>时,3sin6xx x>-。
2.设0,()a f x>在[],a b上连续,在(,)a b内可导,又()0f a=,试证:存在(,)abξ∈,使得()'()bf faξξξ-=。
3.如图,在区间[]0,1上给出函数2y x=,问a为何值时,图中阴影部分的面积得分1.5CM装订线1A与2A之和最小?华南农业大学期末考试试卷(A卷)2011~2012学年第1 学期考试科目:高等数学AⅠ参考答案一、填空题(本大题共5小题,每小题3分,共15分)1.522.13.'()()f xd xf x4.3221(3)3x C-+5.16二、单项选择题(本大题共5小题,每小题3分,共15分)1.A2.C 3.D 4.D 5.A三、计算题(本大题共7小题,每小题7分,共49分)1.求极限()11limxxxe xx e→---。
2011钻石卡高等数学(上)测试答案
2011届钻石卡学员基础阶段高等数学(上)测试卷答案一、选择题(本题共6小题,每小题4分,满分24分,每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
) (1)设sin 2340()=sin d ()xf x t tg x x x =+∫,,则当0x →时,()f x 是()g x 的 ( )()A 等价无穷小 ()B 同阶但非等价的无穷小 ()C 高阶无穷小 ()D 低阶无穷小【答案】B【解析】sin 220342300sin d sin (sin )cos ()lim =lim ()34xx x t t x x f x g x x x x x→→⎡⎤⋅⎣⎦=++∫∵ 22232000(sin )1lim lim cos lim 34(34)3x x x x x x x x x x →→→=⋅==++ 0x ∴→时,()f x 与()g x 同阶不等价.(2)设函数()()()2,00,0f x x F x x f x ⎧≠⎪=⎨⎪=⎩,其中()f x 在0x =处二阶可导,()00f ′′≠,()00f ′=,()00f =,则0x = 是()F x 的( ). ()A 连续点 ()B 第一类间断点()C 第二类间断点 ()D 连续点或间断点不能由此确定【答案】(B )【解析】 ()()()()()20001lim limlim 0(0),22x x x f x f x f F x f F x x →→→′′−′′===≠ 所以0x =是()F x 的第一类(可去)间断点.(3)设()f x 在x a =的某个邻域内有定义,则()f x 在x a =处可导的一个充分条件是( )()A 1lim (()h h f a f a h →+∞⎡⎤+−⎢⎥⎣⎦存在 ()B 0(2)()limh f a h f a h h→+−+存在()C 0()()limh f a f a h h →−−存在 ()D 0()()lim h f a h f a h h→+−−存在【答案】(C )【解析】0()()limh f a f a h h →−−存在,即0()()lim h f a h f a h→−−−存在,正好是导数定义,所以选C 。
00022高等数学(工专)2011年1月高等教育自学考试全国统一命题考试与答案
2011年1月高等教育自学考试全国统一命题考试
高等数学(工专)试题
课程代码:00022
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数y =ln(x -1)的反函数是( )
A.y =10x +1
B.y=e x +1
C.y =10x -1
D.y=e -x +1
2.当x →0时,3x 2是( )
A.x 的同阶无穷小量
B.x 的等价无穷小量
C.比x
D.比x 低阶的无穷小量
3.设f (x x =0处连续,则a =(
) A.2
B.-1
C.-2
D.1 4.设f (x ) A.不存在
B.-1
C.0
D.1
5.矩阵A=的⎥⎦
⎤⎢⎣⎡1 22 5( ) A.⎥⎦
⎤⎢⎣⎡5 2-2- 1 B.⎥⎦⎤⎢⎣⎡1 2-2- 5 C.⎥⎦⎤⎢⎣⎡5 2 2- 1 D ⎥⎦
⎤⎢⎣⎡5 2-2 1 二、填空题(本大题共10小题,每小题3分,共
30分)
6.
_______________. 13.曲线.______________2
的水平渐近线是x e y -= 14.设矩阵A
15.16.
四、综合题(本大题共2小题,每小题6分,共12分)
24.试证当.,1ex e x x
>>时
25.求直线.1,202
面积轴所和由曲线之间和x x y x x -===。
2011年全国高考数学试卷(含标准答案)
2011年普通高等学校招生全国统一考试(全国卷)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1z z z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24xy x R =∈ (B)()204xy x =≥(C)()24y xx R =∈ (D)()240y xx =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1A B A C B D ===,则D 到平面ABC 的距离等于(A) 22(B) 33(C) 63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13(B)12(C)23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14-(C)14(D)1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos A F B ∠= (A)45(B)35(C) 35-(D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60 二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) 3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927xyC -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F A F ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABC D A B C D - 的棱11BB C C 、上,且12B E E B =,12C F FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年上海高考数学试题及答案(理科)
更多名校精彩内容请进入QQ 群:上海高考数学总群 566892532,12011年普通高等学校招生全国统一考试(上海卷)理科数学一、填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= 。
2.若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4.不等式13x x+<的解为 。
5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6.在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8.函数sin()cos()26y x x ππ=+-的最大值为 。
9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯 定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10.行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= 。
12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13.设()g x 是定义在R 上.以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
?!?321P(ε=x )x更多名校精彩内容请进入QQ 群:上海高考数学总群 566892532,214.已知点(0,0)O .0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q .1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q .2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。
青岛理工大学2011级高等数学(上)B试题及答案
一、选择题:每题2分,共10分 注意:请将答案填入下表,否则不给分。
1.“当0x x →时,A x f -)(是无穷小”是A x f x x =→)(lim 0的( )。
A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件2.若)(0x f '存在,则xx f x x f x ∆-∆-→∆)()(lim000=( )。
A. )(0x f '-B.)(0x f 'C. )(20x f 'D.)(20x f '- 3.若)(x f 在],[b a 上连续,在),(b a 内可导,且),(b a x ∈时,0)(<'x f ,又0)(<a f ,则( )。
A.)(x f 在],[b a 上单增且)(b f >0B.)(x f 在],[b a 上单增且)(b f <0C.)(x f 在],[b a 上单减且)(b f <0D.)(x f 在],[b a 上单增,但)(b f 的符号无法确定 4.下列反常积分发散的是( )。
A.⎰1xdx B.⎰-112x dx C.⎰+∞-0dx xe xD.⎰+∞∞-+21x dx 5.如函数y=(C 1+C 2x)e 2x,满足初始条件: y|x=0=0, y '|x=0=1,则C 1,C 2的值为( )。
A. C 1=0,C 2=1 B. C 1=1,C 2=0 C. C 1=π,C 2=0 D. C 1=0,C 2=π 二、填空题:每题2分,共10分 注意:请将答案填入下表,否则不给分。
1.极限⎪⎭⎫ ⎝⎛+∞→x x x x x 7sin 3sinlim =_______________。
2.设x x f arctan )(=,则)0(f ''=_____________。
3.反常积分⎰+∞∞-++222x x dx=___________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南农业大学期末考试试卷(A 卷)2011~2012学年第1学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟学号姓名年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.0sin 5lim 2x x x→=。
2.曲线2x xe e y -+=在点(0,1)处的曲率是2014年不做要求。
3.设()f x 可导,[]ln ()y f x =,则dy =。
4.不定积分⎰=。
5.反常积分60x e dx +∞-⎰=。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.设2,01(),,12x x f x x x ⎧<≤=⎨<<⎩在点1x =处必定() A .连续但不可导B .连续且可导C .不连续但可导D .不连续,故不可导2.曲线y =4x =处的切线方程是()A .114y x =-B .112yx =+ C .114y x =+D .124y x =+ 3.下列函数在区间[1,1]-上满足罗尔定理条件的是()A .21xB .3xC .xD .211x + 4.设()f x 为连续函数,则下列等式中正确的是()A .()()f x dx f x '=⎰B .()()d f x dx f xC dx =+⎰C .()()d f x dx f x =⎰D .()()d f x dx f x dx =⎰5.已知()0232ax x dx -=⎰,则a =() A .1-B .0 C .12D .1 三、计算题(本大题共7小题,每小题7分,共49分)1.求极限()011lim x x x e x x e →---。
2.设函数1sin 2 ,0 (), ,0 x x f x a bx x +≤⎧=⎨+>⎩在点 0x =处可导,求,a b 的值。
3.设参数方程()1sin cos x t t y t t=-⎧⎪⎨=⎪⎩确定y 是x 的函数,求dy dx 。
4.设方程2290y xy -+=确定隐函数()y y x =,求d d y x。
5.求函数321x y x =-的单调区间,极值和拐点。
6.计算定积分1ln ex xdx ⎰。
7.求不定积分3。
四、解答题(本大题共3小题,每小题7分,共21分)1.证明不等式:当0x >时,3sin 6x x x >-。
2.设0,()a f x >在[],a b 上连续,在(,)a b 内可导,又()0f a =,试证:存在(,)a b ξ∈,使得()'()b f f aξξξ-=。
3.如图,在区间[]0,1上给出函数2y x =,问a 为何值时,图中阴影部分的面积1A 与2A 之和最小?华南农业大学期末考试试卷(A 卷)2011~2012学年第1学期 考试科目:高等数学AⅠ参考答案一、填空题(本大题共5小题,每小题3分,共15分) 1.522.13.'()()f x dx f x 4.3221(3)3x C -+5.16 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.A2.C3.D4.D5.A 三、计算题(本大题共7小题,每小题7分,共49分)1.求极限()011lim x x x e x x e →---。
解:()001111lim lim x x x x x x x e x e e xe x e →→---=-+-...........2分 =02lim xx x x e e xe →+...............4分 =012lim x x →+............5分 =12................7分2.设函数1sin 2 ,0(), ,0 x x f x a bx x +≤⎧=⎨+>⎩在点 0x =处可导,求,a b 的值。
解:因为函数在点 0x =处可导,所以在点 0x =处连续,即00()()(0)lim lim x x f x f x f -+→→==...............1分即00(1sin 2)()1lim lim x x x a bx -+→→+=+=.............2分所以1a =.......................................3分又函数在点 0x =处可导,所以00()(0)()(0)lim lim x x f x f f x f x x -+∆→∆→∆-∆-=∆∆............5分 即001sin 211lim lim x x x a b x x x -+∆→∆→+∆-+∆-=∆∆..........6分 所以2b =.........................................7分 1.5CM3.设参数方程()1sin cos x t t y t t=-⎧⎪⎨=⎪⎩确定y 是x 的函数,求dy dx 。
解:cos sin dy t t t dt=-.................2分 1sin cos dx t t t dt=--....................4分 所以cos sin 1sin cos dydy t t t dt dx dx t t t dt -==--...........7分 4.设方程2290y xy -+=确定隐函数()y y x =,求d d y x。
解:方程两边对x 求导,..............1分得2'22'0yy y xy --=................5分 所以d d y y x y x=-......................7分 5.求函数321x y x =-的单调区间,极值和拐点。
解:2222(3)'(1)x x y x -=-...........1分 3232(3)''(1)x x y x +=-..........................2分 令'0y =,得驻点0,x =............................3分令''0y =,得驻点0x =.............................4分讨论得单调递增区间为(,)-∞+∞,单调递减区间为(1),(--.............................5分当x =,当x =2.............................6分 拐点为(0,0)。
............................7分 6.计算定积分1ln e x xdx ⎰。
解:2111ln ln 2e e x xdx xdx =⎰⎰..........2分 =221111(ln )ln 22e e x x x d x -⎰............4分 =211122e e xdx -⎰....................6分 =214e +...........................7分 7.求不定积分3。
解:设sin x t =........................1分则33sin tdt =⎰.................2分 =2(cos 1)(cos )t d t -⎰...................4分 =31cos cos 3t t C -+....................6分C ...............7分 四、解答题(本大题共3小题,每小题7分,共21分)1.证明不等式:当0x >时,3sin 6x x x >-。
解:设3()sin 6x f x x x =-+ 则2'()cos 12x f x x =-+................1分 1.5CM所以''()sin f x x x =-....................2分 当0x >时,''()sin 0f x x x =->,即'()f x 单调递增............4分所以当0x >时,'()'(0)f x f > 即2'()cos 102x f x x =-+>,故3()sin 6x f x x x =-+单调递增........6分所以当0x >时,()(0)f x f > 即3sin 6x x x >-...........................................7分2.设0,()a f x >在[],a b 上连续,在(,)a b 内可导,又()0f a =,试证:存在(,)a b ξ∈,使得()'()b f f aξξξ-=。
证明:令()()()a F x b x f x =-................2分 则()f x 在[],a b 上连续,在(,)a b 内可导................3分且()()F a F b =....................4分由罗尔定理知,存在(,)a b ξ∈,使得1'()()()()'()0a a F a b f b f ξξξξξ-=--+-=............6分 即()'()b f f aξξξ-=...........................................7分 3.如图,在区间[]0,1上给出函数2y x =,问a 为何值时,图中阴影部分的面积1A 与2A 之和最小? 解:223102()3a A a x dx a =-=⎰..........1分12223112()33a A x a dx a a =-=-+⎰.........2分 所以23121433A A A a a =+=-+...........3分2'24A a a=-+..........................4分令2'240A a a=-+=,得0a=或12a=.......5分''28A a=-+,1''()202A=>..................6分所以当12a=时阴影部分的面积1A与2A之和最小.....7分。