2019-2020年高考数学微一轮复习第一章集合与常用逻辑用语第1节集合练习理

合集下载

2019版高考数学微一轮全国通用版第一章集合与常用逻辑用语第1章-第2节微课练

2019版高考数学微一轮全国通用版第一章集合与常用逻辑用语第1章-第2节微课练

微课时(二)基础对点练(时间:30分钟)1.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析:由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y 是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案:C2.(2018·金华模拟)下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x -4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”解析:C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m≥-14,不能推出m>0.所以不是真命题.故选C.答案:C3.(2018·宁夏石嘴山高三联考)若α,β是两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题可知m ⊥β?α⊥β,但α⊥β?/m ⊥β,所以“α⊥β”是“m ⊥β”的必要不充分条件.故选 B.答案:B4.(高考湖北卷)l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线,q :l 1,l 2不相交,则()A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选 A.答案:A5.(高考重庆卷)“x >1”是“log 12(x +2)<0”的()A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:当x >1时,x +2>3>1,又y =log 12x 是减函数,所以log 12(x +2)<log 121=0,则x >1?log 12(x +2)<0;当log 12(x +2)<0时,x +2>1,x >-1,则log 12(x +2)<0?/x >1.故“x >1”是“log 12(x +2)<0”的充分而不必要条件.故选 B.答案:B6.(2018·青岛模拟)已知直线m 、n 和平面α,在下列给定的四个结论中,m ∥n 的一个必要但不充分条件是()A .m ∥α,n ∥αB .m ⊥α,n ⊥αC .m ∥α,n?αD .m 、n 与α所成的角相等解析:m ∥n?m ,n 与α所成的角相等,反之,m ,n 与α所成的角相等不一定推出m ∥n.答案:D7.(2018·宜昌模拟)下列关于命题的说法正确的是()A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“a ,b 都是有理数”的否定是“a ,b 都不是有理数”D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题解析:对于A ,命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以A 错误;对于B ,x =-1时,x 2-5x -6=0;x 2-5x -6=0时,x =-1或x =6,所以应是充分不必要条件;所以B 错误;对于C ,命题“a ,b 都是有理数”的否定是“a ,b 不都是有理数”,所以C 错误;对于D ,命题“若x =y ,则sin x =sin y ”是真命题,所以它的逆否命题也是真命题,所以D 正确.故选 D.答案:D8.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件.解析:x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14?m ≤14,反之不成立.。

2019版高考数学一轮复习第一章集合与常用逻辑用语第一节集合课件理

2019版高考数学一轮复习第一章集合与常用逻辑用语第一节集合课件理

规律总结
与集合中的元素有关的问题的求解策略 (1)确定集合中的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件. (3)根据限制条件列式求参数的值或确定集合中元素的个数,要注意检 验集合是否满足元素的互异性.
1-1 已知A={x|x=3k-1,k∈Z},则下列表示正确的是( C )
∁UA= {x|x∈U,且x∉A}
意义
4.集合的运算性质
并集的性质: A∪⌀=A;A∪A=A;A∪B=B∪A;A∪B=A⇔ 交集的性质: A∩⌀=⌀;A∩A=A;A∩B=B∩A;A∩B=A⇔ 补集的性质: A∪(∁UA)= U ;A∩(∁UA)= ⌀ ;∁U(∁UA)= A . A⊆B . B⊆A .
5.设集合A={x|x>1},集合B={a+2},若A∩B=⌀,则实数a的取值范围是
(A) A.(-∞,-1] B.(-∞,1] C.[-1,+∞) D.[1,+∞)
答案 A 由题意得a+2≤1,∴a≤-1,故选A.
6.若全集U={0,1,2,3},且∁UA={2},则集合A的真子集的个数为 7 .
b 2 2 017 2 017 ,1 a, ={ (2)已知a,b∈R,若 a , a + b ,0}, 则 a + b 为( a
A.1
B.0
C.-1
D.±1
答案 (1)B (2)C
解析 (1)因为集合M中的元素x=a+b,a∈A,b∈B,所以当b=4,a=1,2,3时,x =5,6,7. 当b=5,a=1,2,3时,x=6,7,8. 由集合中元素的互异性,可知x=5,6,7,8. 即M={5,6,7,8},共有4个元素. (2)由已知得a≠0,则 =0, 所以b=0,于是a2=1,即a=1或a=-1, 又根据集合中元素的互异性可知a=1应舍去. 因此a=-1,故a2 017+b2 017=(-1)2 017+02 017=-1.

2020版高考数学微一轮复习第一章集合与常用逻辑用语第1节集合练习理

2020版高考数学微一轮复习第一章集合与常用逻辑用语第1节集合练习理

第1节集合基础对点练(时间:30分钟)1.(2015·高考陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N等于( ) A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析:由已知得M={0,1},N={x|0<x≤1},则M∪N=[0,1].故选A.答案:A2.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}解析:选项A中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合.选项C中的集合M表示由直线x+y=1上的所有点组成的集合,集合N表示由直线x+y=1上的所有点的纵坐标组成的集合,即N={y|x+y=1}=R,故集合M与N不是同一个集合.选项D中的集合M是数集,而集合N是点集,故集合M与N不是同一个集合.选项B,由集合元素的无序性,可知M,N表示同一个集合,故选B.答案:B3.(2016·高考全国卷Ⅲ)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:先化简集合S,再利用交集的定义求解.由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.答案:D4.(2018·郑州第一次质量预测)已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是( )A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1]解析:由M ⊆N ,结合数轴可得a ≥2,故选B. 答案:B5.(2018·河北沧州质检)已知集合A ={x |lg x ≤0},B ={x |x ≥14},则A ∩B 等于( )A.⎣⎢⎡⎦⎥⎤14,1B.⎣⎢⎡⎭⎪⎫14,1C.⎣⎢⎡⎦⎥⎤13,1 D.⎝ ⎛⎦⎥⎤0,14 解析:易知A ={x |0<x ≤1}, 又已知B ={x |x ≥14},所以A ∩B ={x |14≤x ≤1},故选A.答案:A6.(2018·安徽皖南八校联考)已知集合A ={y |y =⎝ ⎛⎭⎪⎫12x,x ∈R},B ={-2,-1,1,2},则下列结论正确的是( )A .A ∩B ={-2,-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-2,-1}解析:因为A =(0,+∞),所以A ∩B ={1,2},(∁R A )∪B ={y |y ≤0或y =1,2},A ∪B ={y |y >0或y =-1,-2},(∁R A )∩B ={-1,-2}. 所以D 项正确. 答案:D7.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个D .8个解析:因为M ={0,1,2,3,4},N ={1,3,5}, 所以M ∩N ={1,3}.所以M ∩N 的子集共有22=4(个).故选B. 答案:B8.(2015·高考江苏卷)已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.解析:由已知得,A ∪B ={1,2,3,4,5}, 故集合A ∪B 中元素的个数为5.答案:59.集合A ={x ||x -2|<4}中的最小整数为________. 解析:A ={x ||x -2|<4}={x |-2<x <6}, 则最小整数为-1. 答案:-110.(2018·宜春中学、新余一中联考)已知全集为R.集合A ={x |x 2-5x -6<0},B ={x |2x<1},则图中阴影部分表示的集合是________.解析:由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁R B )∩A .因为∁R B ={x |x ≥0},所以(∁R B )∩A ={x |0≤x <6}.答案:{x |0≤x <6}能力提升练 (时间:15分钟)11.已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3}.若B ∩A =B ,则a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-32,-1 B.⎝⎛⎦⎥⎤-∞,-32C .(-∞,-1]D.⎝ ⎛⎦⎥⎤-32,+∞解析:因为B ∩A =B ,所以B ⊆A . 当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;当B ≠∅时,要使B ⊆A , 则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.综上可知,a 的取值范围为(-∞,-1].故选C. 答案:C12.设全集U ,已知非空集合M 和N ,规定M -N ={x |x ∈M 且x ∉N },那么M -(M -N )等于( )A.M∪N B.M∩NC.M D.N解析:设集合M={1,2,3,4,5},N={4,5,6,7},根据定义M-N={x|x∈M且x∉N},则M-N={1,2,3},因此M-(M-N)={x|x∈M且x∉M-N}={4,5}=M∩N,故选B.答案:B13.已知R是实数集,集合P={x|y=ln(x2+2 017x-2 018)},Q={y|y=-x2+2x+3},则(∁R P)∪Q=________.解析:集合P表示函数y=ln(x2+2 017x+2 018)的定义域,由x2+2 017x+2 018>0,即(x-1)(x+2 018)>0,解得x<-2 018或x>1.故P=(-∞,-2 018)∪(1,+∞),∁R P=[-2 018,1].集合Q表示函数y=-x2+2x+3的值域,所以y∈[0,2],即Q=[0,2].所以(∁R P)∪Q=[-2 018,2].答案:[-2 018,2]14.已知集合{a,b,c}={-1,0,1},且下列三个关系:①a≠1;②b=1;③a≠-1有且只有一个正确,则10a×5b+2c等于________.解析:依题意可分下列三种情况:(1)若只有①正确,则a≠1,b≠1,c=-1,此时a =b=0,与集合中元素的互异性矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b=1,a=1,c=-1,此时a=b=1,与集合中元素的互异性矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c≠-1,a=1,b≠1,此时b=-1,c=0,所以10a×5b+2c=101×5-1+20=3.答案:315.某校高三(1)班50个学生选择选修模块课程,他们在A,B,C三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如下表:则三个模块都选择的学生人数是________.解析:设三个模块都选择的学生人数为x,则各部分人数如图所示,则有(1+x)+(5+x)+(2+x)+(12-x)+(13-x)+(11-x)+x=50,解得x=6.答案:6。

2019-2020年高考数学一轮总复习第1章集合与常用逻辑用语第1节集合高考AB卷理

2019-2020年高考数学一轮总复习第1章集合与常用逻辑用语第1节集合高考AB卷理

)
A.{1}
B.{2}
C.{0 , 1}
D.{1 , 2}
解析 N= { x| x2- 3x+2≤0} = { x|1 ≤ x≤2} ,又 M= {0 , 1, 2} ,
所以 M∩ N= {1 , 2}.
答案 D
8. (xx ·全国Ⅰ, 1) 已知集合 A= { x| x2- 2x-3≥0} , B= { x| -2≤ x<2} ,则 A∩ B= (
解析 由 ( x+ 1)( x-2)<0 解得集合 B= { x| - 1<x<2} ,又因为 x∈ Z,所以 B= {0 , 1} ,因
为 A= {1 ,2, 3} ,所以 A∪ B={0 , 1,2, 3} ,故选 C.
答案 C
5. (xx ·全国Ⅲ, 1) 设集合 S={ x|( x- 2)( x-3) ≥0} , T={ x| x> 0} ,则 S∩T= ( )
)
A.(0 , 4]
B.[0 ,4)
C.[ - 1, 0)
D.( - 1, 0]
解析 由题意可得 M= { x| -1<x<4} ,所以 M∩N= { x|0 ≤ x<4} ,故选 B.
答案 B
10. (xx ·大纲全国, 2) 已知集合 A= {1 ,3, m} , B= {1 ,m} , A∪B= A, 则 m= ( )
)
A.[ - 2,- 1]
B.[ - 1, 2)
C.[ - 1, 1]
D.[1 , 2)
解析 A= { x| x≤- 1,或 x≥3} ,故 A∩ B= [ - 2,- 1] ,选 A.
答案 A
9. (xx ·大纲全国, 2) 设集合 M= { x| x2- 3x- 4<0} ,N= { x|0 ≤ x≤5} ,则 M∩ N= (

2019版高考数学微一轮复习 第一章 集合与常用逻辑用语 第1节 集合

2019版高考数学微一轮复习 第一章 集合与常用逻辑用语 第1节 集合

考点二 集合的基本关系
【典例 2】 (1)(2018·青岛模拟)已知集合 A={x|y= 1-x2,x∈R},B={x|x=m2,
m∈A},则( )
A.A B
B.B A
C.A⊆B
D.B⊆A
(2)(2018·丹东市高三质检)已知集合 A={x|x≥2},B={x|x≤2m2},且 A⊆∁RB,那
么 m 的值可以是( )
=( )
A.3,-32 C.1,32
B.-3,32 D.32,3
解析:通过解不等式化简集合 A,B,再利用交集定义求解. ∵x2-4x+3<0,∴1<x<3, ∴A={x|1<x<3.} ∵2x-3>0,∴x>32,∴B=xx>32 . ∴A∩B={x|1<x<3}∩xx>32 =x32<x<3 . 故选 D. 答案:D
【反思归纳】 1求解集合概念问题关键要把握集合元素的特性,特别注意互异 性的验证.
2对于含有字母的集合求解要分类讨论并在求出字母的值后加以验证.
【即时训练】
(1)设集合 A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则 M 中的元素
个数为( )
A.3
B.4
C.5Leabharlann ()A.(-1,1)B.(0,1)
C.(-1,+∞)
D.(0,+∞)
(2)已知集合 A={x|x2-x-12≤0},B={x|2m-1<x<m+1},且 A∩B=B,则实数
m 的取值范围为( )
A.[-1,2)
B.[-1,3]
C.[2,+∞)
D.[-1,+∞)
解析:(1)∵A={y|y>0},B={x|-1<x<1},∴A∪B=(-1,+∞),故选 C. (2)由 x2-x-12≤0,得(x+3)(x-4)≤0,即-3≤x≤4,所以 A={x|-3≤x≤4}, 又 A∩B=B,所以 B⊆A. ①当 B=∅时,有 m+1≤2m-1, 解得 m≥2.

新高考数学一轮复习考点知识专题讲解与练习 1 集合

新高考数学一轮复习考点知识专题讲解与练习 1 集合

新高考数学一轮复习考点知识专题讲解与练习第一章 集合与常用逻辑用语考点知识总结1 集合高考 概览本考点在高考中是必考知识点,常考题型为选择题,分值为5分,低难度考纲 研读1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题3.理解集合之间包含与相等的含义,能识别给定集合的子集 4.在具体情境中,了解全集与空集的含义5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集 6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集 7.能使用Venn 图表达集合的关系及运算一、基础小题1.已知集合A ={x |x 2-x -6<0},B ={x |2<x <5},则A ∪B =( ) A .(1,6) B .(-2,5) C .(2,3) D .(3,5) 答案 B解析 A ={x |-2<x <3},A ∪B =(-2,5).故选B.2.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 集合M ={a 1,a 2}或{a 1,a 2,a 4},有2个.故选B. 3.已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13,则(∁R P )∩N =()A .{x |0<x <3}B .{x |0<x ≤3}C .{0,1,2,3}D .{1,2,3} 答案 C 解析 由题意,得P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -33x >0={x |x >3或x <0},则(∁R P )∩N ={x |0≤x≤3}∩N ={0,1,2,3}.故选C.4.已知集合A ={1,2},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 的子集共有( ) A .2个 B .4个 C .6个 D .8个 答案 A解析 由已知得B ={(2,1)},所以B 的子集有2个.故选A.5.已知集合A ={x |(x -2)(x +2)≤0},B ={y |x 2+y 2=16},则A ∩B =( ) A .[-3,3] B .[-2,2] C .[-4,4] D .∅ 答案 B解析 由题意,得A ={x |-2≤x ≤2},B ={y |-4≤y ≤4},所以A ∩B ={x |-2≤x ≤2}.故选B.6.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{2,4}C .{1,2,4}D .∅ 答案 A解析 由∁U (A ∪B )={4},得A ∪B ={1,2,3}.由A ∩(∁U B )={3},得3∈A 且3∉B .现假设1∉B ,∵A ∪B ={1,2,3},∴1∈A .又1∉A ∩(∁U B )={3},∴1∉∁U B ,即1∈B ,矛盾.故1∈B .同理2∈B .故选A.7.已知集合A ={x |y =x 2-2},集合B ={y |y =x 2-2},则有( ) A .A =B B .A ∩B =∅ C .A ∪B =A D .A ∩B =A 答案 C解析 A ={x |y =x 2-2}=R ,B ={y |y =x 2-2}=[-2,+∞),所以B ⊆A ,故A ∪B =A .故选C.8.已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤12B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-4≤x <12 C .⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪x <12且y ≥-4D .∅ 答案 B解析 由题意,得M =⎝ ⎛⎭⎪⎫-∞,12,N =[-4,+∞),所以M ∩N =⎣⎢⎡⎭⎪⎫-4,12.故选B.9.若集合U =R ,A ={1,2,3,4,5},集合B ={x |0<x <4},则图中阴影部分表示( )A .{1,2,3,4}B .{1,2,3}C .{4,5}D .{1,4} 答案 C解析 集合A ={1,2,3,4,5},B ={x |0<x <4},图中阴影部分表示A ∩(∁U B ),又∁U B ={x |x ≥4或x ≤0},所以A ∩(∁U B )={4,5}.故选C.10.已知集合A ={(x ,y )|y =2x },B ={(x ,y )|y =x +1},则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 答案 B解析 由y =2x 与y =x +1的图象可知,两函数图象有两个交点,如图所示.∴A ∩B中元素的个数为2.故选B.11.(多选)已知全集U=R,函数y=ln (1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)≠∅C.M∪N=U D.M⊆(∁U N)答案AB解析由题意知M={x|x<1},N={x|0<x<1},所以M∩N=N.又∁U N={x|x≤0或x≥1},所以M∩(∁U N)={x|x≤0}≠∅,M∪N={x|x<1}=M,M⊆/(∁U N).故选AB.12.(多选)已知集合A={0,1,2},若A∩(∁Z B)≠∅(Z是整数集合),则集合B可以为()A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}答案ABD解析由题意知,集合A={0,1,2}.{x|x=2a,a∈A}={0,2,4},则A∩(∁Z B)={1}≠∅,A满足题意;{x|x=2a,a∈A}={1,2,4},则A∩(∁Z B)={0}≠∅,B满足题意;{x|x=a-1,a∈N}={-1,0,1,2,3,…},则A∩(∁Z B)=∅,C不满足题意;{x|x=a2,a∈N}={0,1,4,9,16,…},则A∩(∁Z B)={2}≠∅,D满足题意.故选ABD.二、高考小题13.(2022·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=() A.{2} B.{2,3} C.{3,4} D.{2,3,4}答案 B解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3}.故选B. 14.(2022·新高考Ⅱ卷)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( )A .{3}B .{1,6}C .{5,6}D .{1,3} 答案 B解析 由题意可得∁U B ={1,5,6},故A ∩(∁U B )={1,6}.故选B.15.(2022·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x ≤13B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4C .{x |4≤x <5}D .{x |0<x ≤5} 答案 B 解析 由已知得M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4.故选B.16.(2022·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A .∅B .SC .TD .Z 答案 C解析 因为s =2n +1,n ∈Z ,当n =2k ,k ∈Z 时,s =4k +1,k ∈Z ;当n =2k +1,k ∈Z 时,s =4k +3,k ∈Z ,所以TS ,S ∩T =T .故选C.17.(2022·天津高考)设集合A ={-1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( )A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4} 答案 C解析 ∵A ={-1,0,1},B ={1,3,5},C ={0,2,4},∴A ∩B ={1},∴(A ∩B )∪C={0,1,2,4}.故选C.18.(2022·新高考Ⅰ卷)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 答案 C解析 A ∪B =[1,3]∪(2,4)=[1,4).故选C.19.(2022·全国Ⅰ卷)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4 答案 B 解析 ∵A ={x |x2-4≤0}={x |-2≤x ≤2},B ={x |2x +a ≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2,A ∩B ={x |-2≤x ≤1},∴-a2=1,解得a =-2.故选B.20.(2022·全国Ⅲ卷)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6 答案 C解析 由题意,A ∩B 中的元素满足⎩⎨⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4,所以A ∩B 中的元素有(1,7),(2,6),(3,5),(4,4),共4个.故选C.三、模拟小题21.(2022·江苏镇江市第一中学高三上学期期初考试)已知集合A ={x ||x |≤2,x ∈N },集合B ={x |x 2+x -6=0},则A ∩B =( )A .{2}B .{-3,2}C .{-3,1}D .{-3,0,1,2}答案 A解析集合A={x||x|≤2,x∈N}={0,1,2},集合B={x|x2+x-6=0}={-3,2},所以A∩B={2}.故选A.22.(2022·广东广州荔湾区高三上调研考试)已知全集U=R,设集合A={x|x2-x-6≤0},B={x|x-1<0},则图中阴影部分表示的集合是()A.{x|x≤3} B.{x|-3≤x<1}C.{x|-2≤x<-1} D.{x|1≤x≤3}答案 D解析由题意得,A={x|-2≤x≤3},B={x|x<1},∴∁U B={x|x≥1},∴A∩(∁U B)={x|1≤x≤3}.故选D.23.(2022·新高考八省联考)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=()A.∅B.M C.N D.R答案 B解析解法一:∵∁R M⊆N,∴M⊇∁R N,据此可得M∪(∁R N)=M.故选B.解法二:如图所示,设矩形区域ABCD表示全集R,矩形区域ABHE表示集合M,则矩形区域CDEH表示集合∁R M,矩形区域CDFG表示集合N,满足∁R M⊆N,结合图形可得M∪(∁R N)=M.故选B.24.(2022·河南南阳模拟)设集合P={3,log2a},Q={a,b},若P∩Q={0},则P ∪Q=()A.{3,0} B.{3,0,1}答案 B解析 ∵P ∩Q ={0},∴log 2a =0,∴a =1,从而b =0,∴P ∪Q ={3,0,1}.故选B.25.(2022·河北沧州第一中学等十五校高三上摸底考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪y = x -4x -7,集合B ={3,4,5,6,7},则A ∩B =( ) A .(3,4) B .{3,4} C .[3,4] D .{3,4,7} 答案 B解析 由x -4x -7≥0得⎩⎨⎧(x -4)(x -7)≥0,x ≠7,得x ≤4或x >7,所以A ={x |x ≤4或x >7},因为B ={3,4,5,6,7},所以A ∩B ={x |x ≤4或x >7}∩{3,4,5,6,7}={3,4}.故选B.26.(2022·湖北襄阳五中高三开学考试)已知集合M ={x |1-a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,0]C .⎝ ⎛⎦⎥⎤-∞,13D .⎣⎢⎡⎭⎪⎫13,2答案 C解析 因为M ⊆N ,而∅⊆N ,所以当M =∅时,2a ≤1-a ,则a ≤13;当M ≠∅时,M ⊆N ,则⎩⎪⎨⎪⎧1-a <2a ,1-a ≥1,2a ≤4⇒⎩⎪⎨⎪⎧a >13,a ≤0,a ≤2,无解.综上得a ≤13,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,13.故选C.27.(2022·湖南长沙长郡中学高三上开学考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,B={x |x 2-4x +m =0},若1∈A ∩B ,则A ∪B =( )A .{1,2,3}B .{1,2,3,4}答案 D 解析由题可知,A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,即2-1<2x +1<24,解得-2<x <3,又x ∈N ,所以A ={0,1,2}.因为1∈A ∩B ,则1∈B ,所以1-4+m =0,解得m =3,所以B ={x |x 2-4x +3=0}={1,3},所以A ∪B ={0,1,2,3}.故选D.28.(多选)(2022·江苏沭阳如东中学测试)设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以为( )A .15B .0C .3D .13 答案 ABD解析 ∵x 2-8x +15=0的两个根为3和5,∴A ={3,5},∵A ∩B =B ,∴B ⊆A ,∴B =∅或B ={3}或B ={5}或B ={3,5},当B =∅时,满足a =0即可,当B ={3}时,满足3a -1=0,∴a =13,当B ={5}时,满足5a -1=0,∴a =15,当B ={3,5}时,显然不符合条件,∴实数a 的值可以是0,13,15.故选ABD.29.(多选)(2022·山东滨州模拟)设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题中的真命题有( )A .集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集B .若S 为封闭集,则一定有0∈SC .封闭集一定是无限集D .若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集 答案 AB解析 因为两个复数的和是复数,两个复数的差是复数,两个复数的积也是复数,所以集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集,A 正确;当S 为封闭集时,因为x -y ∈S ,取x =y ,得0∈S ,B 正确;集合S ={0}显然是封闭集,但S 是有限集,C 错误;取S ={0},T ={0,1},满足S ⊆T ⊆C ,但由于0-1=-1不属于T ,故T 不是封闭集,D 错误.故选AB.30.(多选)(2022·湖南衡阳模拟)对于集合M ,定义函数f M (x )=⎩⎨⎧-1,x ∈M ,1,x ∉M .对于两个集合M ,N ,定义集合M ⊗N ={x |f M (x )·f N (x )=-1}.已知集合A ={2,4,6},B ={1,2,4},则下列结论正确的是( )A .1∈A ⊗B B .2∈A ⊗BC .4∉A ⊗BD .A ⊗B =B ⊗A 答案 ACD解析 由题意知,f A (x )=⎩⎨⎧-1,x ∈{2,4,6},1,x ∉{2,4,6},f B (x )=⎩⎨⎧-1,x ∈{1,2,4},1,x ∉{1,2,4}.当x =1时,f A (1)=1,f B (1)=-1,所以f A (1)f B (1)=1×(-1)=-1,故1∈A ⊗B ,A 正确;当x =2时,f A (2)=-1,f B (2)=-1,所以f A (2)f B (2)=(-1)×(-1)=1,故2∉A ⊗B ,B 错误;当x =4时,f A (4)=-1,f B (4)=-1,所以f A (4)f B (4)=(-1)×(-1)=1,故4∉A ⊗B ,C 正确;由定义及乘法的交换律可知,D 正确.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·江西南昌高三模拟)已知全集U =R ,集合A ={x |x 2-4x -5≤0},B ={x |2≤x ≤4}.(1)求A ∩(∁U B );(2)若集合C ={x |a ≤x ≤4a ,a >0},满足C ∪A =A ,C ∩B =B ,求实数a 的取值范围. 解 (1)由题意,得A ={x |-1≤x ≤5},∁U B ={x |x <2或x >4}, ∴A ∩(∁U B )={x |-1≤x <2或4<x ≤5}.(2)由C ∪A =A 得C ⊆A ,则⎩⎨⎧a ≥-1,4a ≤5,解得-1≤a ≤54.由C ∩B =B 得B ⊆C ,则11 / 11 ⎩⎨⎧a ≤2,4a ≥4,解得1≤a ≤2. 从而实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪1≤a ≤54. 2.(2022·云南师大附中月考)设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4,B ={x |x 2+(b -a )x -ab ≤0}. (1)若A =B 且a +b <0,求实数a ,b 的值;(2)若B 是A 的子集,且a +b =2,求实数b 的取值范围. 解 (1)A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4={x |-1≤x ≤2}, ∵a +b <0,∴a <-b ,∴B ={x |(x -a )(x +b )≤0}={x |a ≤x ≤-b },∵A =B ,∴a =-1,b =-2.(2)∵a +b =2,∴B ={-b ≤x ≤2-b },∵B 是A 的子集,∴-b ≥-1且2-b ≤2,解得0≤b ≤1,即实数b 的取值范围为[0,1].。

2019年高考数学一轮总复习第一章集合与常用逻辑用语1.1集合课件理

2019年高考数学一轮总复习第一章集合与常用逻辑用语1.1集合课件理

(2)元素与集合的两种关系:属于,记为 ∈ ,不属于,记为 ∉ . (3)集合的三种表示方法: 列举法 、 描述法 、 图示法 .
(4)五个常用的集合
集合 自然数集 正整数集 整数集 有理数集 实数集
符号
_N_
__Z__或 N+ _N_*_
_Q__
_R__
2.集合间的基本关系
3.集合的基本运算
表示 运算
等实根.当 a=0 时,x=23,符合题意;当 a≠0 时,由 Δ=(-3)2-8a=0,得 a=98,
所以 a 的值为 0 或89. 答案:D
4.(2017 届成都诊断)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值为 ________.
解析:∵3∈A,∴m+2=3 或 2m2+m=3. 当 m+2=3, 即 m=1 时,2m2+m=3, 此时集合 A 中有重复元素 3, ∴m=1 不符合题意,舍去; 当 2m2+m=3 时,
5 年 18 考 5 年 39 考
集合及其关系, 常利用集合元 素的互异性确 定集合中元素 或元素个数,求 集合子集的个 数,根据集合间 的关系求参数 的值或取值范 围.集合的运算 多与函数、方 程、不等式等知 识结合,偶尔有 新情境设置题.
2
基础自主梳理
「基础知识填一填」
1.集合的相关概念 (1)集合元素的三个特性: 确定性 、 无序性 、 互异性 .
_A__∪__B__ _∁__U_A__
「应用提示研一研」 1.常用结论 (1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B,A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB ⇔A∩(∁UB)=∅. (2)A∩A=A,A∩∅=∅. (3)A∪A=A,A∪∅=A. (4)A∩(∁UA)=∅,A∪(∁UA)=U,∁U(∁UA)=A. (5)若集合 A 中含有 n 个元素,则它的子集个数为 2n,真子集个数为 2n-1,非空 真子集个数为 2n-2.

高考数学一轮复习 第一部分 考点通关练 第一章 集合与常用逻辑用语 考点测试3 简单的逻辑联结词、全

高考数学一轮复习 第一部分 考点通关练 第一章 集合与常用逻辑用语 考点测试3 简单的逻辑联结词、全

考点测试3 简单的逻辑联结词、全称量词与存在量词高考概览本考点是高考的常考知识点,常考题型为选择题,分值5分,低难度 考纲研读1.了解逻辑联结词“或”“且”“非”的含义2.理解全称量词与存在量词的意义 3.能正确地对含有一个量词的命题进行否定一、基础小题1.命题“所有实数的平方都是正数”的否定为( ) A .所有实数的平方都不是正数 B .有的实数的平方是正数 C .至少有一个实数的平方是正数 D .至少有一个实数的平方不是正数 答案 D解析 根据全称命题的否定为特称命题知,把“所有”改为“至少有一个”,“是”的否定为“不是”,故命题“所有实数的平方都是正数”的否定为“至少有一个实数的平方不是正数”,故选D.2.“p ∨q 为真”是“綈p 为假”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 因为綈p 为假,所以p 为真,所以“p ∨q 为真”,反之不成立,可能q 为真,p 为假,綈p 为真.所以“p ∨q 为真”是“綈p 为假”的必要不充分条件.故选B.3.已知命题p :若a >|b |,则a 2>b 2;命题q :若x 2=4,则x =2.下列说法正确的是( ) A .“p ∨q ”为真命题 B .“p ∧q ”为真命题 C .“綈p ”为真命题 D .“綈q ”为假命题答案 A解析 由a >|b |≥0,得a 2>b 2,所以命题p 为真命题.因为x 2=4⇔x =±2,所以命题q 为假命题.所以“p ∨q ”为真命题,“p ∧q ”为假命题,“綈p ”为假命题,“綈q ”为真命题.综上所述,可知选A.4.已知命题“∃x ∈R,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值X 围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)答案 D解析 因为命题“∃x ∈R,4x 2+(a -2)x +14≤0”是假命题,所以该命题的否定“∀x ∈R,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.5.已知命题p :∃x 0∈(0,+∞),x 0>x 20;命题q :∀x ∈⎝ ⎛⎭⎪⎫12,+∞,2x +21-x >2 2.则下列命题中是真命题的为( )A .綈qB .p ∧(綈q )C .p ∧qD .(綈p )∨(綈q )答案 C解析 取x 0=12,可知12>⎝ ⎛⎭⎪⎫122,故命题p 为真;因为2x +21-x ≥22x ·21-x=22,当且仅当x =12时等号成立,故命题q 为真;故p ∧q 为真,即C 正确,故选C.6.下列命题中,是真命题的为( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1D .若x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1 答案 D解析 指数函数y =e x >0,A 错误;当x =2时,2x =x 2=4,B 错误;当a =0,b =0时,满足a +b =0,但b a没有意义,C 错误;对于D ,应用反证法,当x ,y 都不大于1时,不可能有x +y >2,D 正确.7.下列命题中的假命题为( ) A .∀x ∈R ,e x>0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1 D .∃x 0∈N *,sin πx 02=1答案 B解析 由函数y =e x的图象可知,∀x ∈R ,e x>0,故A 为真命题;当x =0时,x 2=0,故B 为假命题;当x 0=1e 时,ln 1e =-1<1,故C 为真命题;当x 0=1时,sin π2=1,故D 为真命题.故选B.8.已知命题p :∀a ∈R ,方程ax +4=0有解;命题q :∃m >0,直线x +my -1=0与直线2x +y +3=0平行.给出下列结论,其中正确的有( )①命题“p ∧q ”是真命题; ②命题“p ∧(綈q )”是真命题; ③命题“(綈p )∨q ”是真命题; ④命题“(綈p )∨(綈q )”是真命题. A .1个 B .2个 C .3个 D .4个答案 B解析 因为当a =0时,方程ax +4=0无解,所以命题p 是假命题;当1-2m =0,即m =12时两条直线平行,所以命题q 是真命题.所以綈p 是真命题,綈q 是假命题,所以①②错误,③④正确.故选B.9.已知命题p :“a >b ”是“2a>2b”的充要条件;命题q :∃x 0∈R ,|x 0+1|≤x 0,则( ) A .(綈p )∨q 为真命题 B .p ∨q 为真命题 C .p ∧q 为真命题 D .p ∧(綈q )为假命题答案 B解析 对于命题p ,由函数y =2x 是R 上的增函数,知命题p 是真命题.对于命题q ,当x +1≥0,即x ≥-1时,|x +1|=x +1>x ;当x +1<0,即x <-1时,|x +1|=-x -1,由-x-1≤x ,得x ≥-12,无解,因此命题q 是假命题.所以(綈p )∨q 为假命题,A 错误;p ∨q 为真命题,B 正确;p ∧q 为假命题,C 错误;p ∧(綈q )为真命题,D 错误.故选B.10.下列语句中正确的个数是( )①∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数;②命题“若x =y 则sin x =sin y ”的否命题是真命题;③若p 或q 为真,则p ,q 均为真;④“a ·b >0”的充分不必要条件是“a 与b 夹角为锐角”.A .0B .1C .2D .3答案 B解析 ∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数,是错误的,当φ=π2时,函数表达式为y =cos2x ,是偶函数,故①错误.命题“若x =y 则sin x =sin y ”的否命题为“若x ≠y ,则sin x ≠sin y ”,是错误的,当x =π,y =3π时,函数值相等,故②错误.若p 或q 为真,则p ,q 至少一个为真即可,故③错误.“a ·b >0”的充分不必要条件是“a 与b 夹角为锐角”,正确,夹角为锐角则两向量的数量积一定大于0,反之两向量的数量积大于0,夹角有可能为0角,故④正确.故选B.11.已知全集U =R ,A ⊆U ,B ⊆U ,如果命题p :x ∈(A ∩B ),那么綈p 是________. 答案 x ∉A 或x ∉B解析 x ∈(A ∩B )即x ∈A 且x ∈B ,所以其否定为:x ∉A 或x ∉B .12.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值X 围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1⊆[a ,a +1].∴a ≤12且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值X围是⎣⎢⎡⎦⎥⎤0,12. 二、高考小题13.(2019·全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D,2x +y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题:①p ∨q ;②綈p ∨q ;③p ∧綈q ;④綈p ∧綈q . 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④答案 A解析 解法一:画出可行域如图中阴影部分所示.目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 的纵截距.显然,直线过点A (2,4)时,z min =2×2+4=8,即z =2x +y ≥8.∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9是真命题; 命题q :∀(x ,y )∈D,2x +y ≤12是假命题. ∴①③真,②④假.故选A.解法二:取x =4,y =5,满足不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假.∴①③真,②④假.故选A.14.(2017·某某高考)已知命题p :∀x >0,ln (x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q )答案 B解析 ∵∀x >0,x +1>1,∴ln (x +1)>0,∴命题p 为真命题;当b <a <0时,a 2<b 2,故命题q 为假命题.由真值表可知B 正确,故选B.15.(2016·某某高考)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2答案 D解析 先将条件中的全称量词变为存在量词,存在量词变为全称量词,再否定结论.故选D.16.(2015·某某高考)命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x 0∈(0,+∞),ln x 0≠x 0-1 D .∃x 0∉(0,+∞),ln x 0=x 0-1 答案 A解析 特称命题的否定为全称命题,所以∃x 0∈(0,+∞),ln x 0=x 0-1的否定是∀x ∈(0,+∞),ln x ≠x -1,故选A.17.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n,则綈p 为( ) A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析 根据特称命题的否定为全称命题,所以綈p :∀n ∈N ,n 2≤2n,故选C.18.(2015·某某高考)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1 解析 ∵0≤x ≤π4,∴0≤tan x ≤1.∵“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,∴m ≥1,∴实数m 的最小值为1.三、模拟小题19.(2019·某某质量监测)设命题p :∀x ∈R ,x 2-x +1>0,则綈p 为( ) A .∃x ∈R ,x 2-x +1>0 B .∀x ∈R ,x 2-x +1≤0 C .∃x ∈R ,x 2-x +1≤0 D .∀x ∈R ,x 2-x +1<0 答案 C解析 全称命题的否定是特称命题.故选C.20.(2019·某某质量检测)命题p :∀a ≥0,关于x 的方程x 2+ax +1=0有实数解,则綈p 为( )A .∃a <0,关于x 的方程x 2+ax +1=0有实数解 B .∃a <0,关于x 的方程x 2+ax +1=0没有实数解 C .∃a ≥0,关于x 的方程x 2+ax +1=0没有实数解 D .∃a ≥0,关于x 的方程x 2+ax +1=0有实数解 答案 C解析 根据全称命题的否定可知,綈p 为∃a ≥0,关于x 的方程x 2+ax +1=0没有实数解.故选C.21.(2019·某某调研)设有下面四个命题:p 1:∃n ∈N ,n 2>2n ;p 2:x ∈R ,“x >1”是“x >2”的充分不必要条件;p 3:命题“若x -312是有理数,则x 是无理数”的逆否命题; p 4:若“p ∨q ”是真命题,则p 一定是真命题.其中为真命题的是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4D .p 1,p 3解析 ∵n =3时,32>23,∴∃n ∈N ,n 2>2n,∴p 1为真命题;∵(2,+∞)⊆(1,+∞),∴x >2能推出x >1,x >1不能推出x >2,“x >1”是“x >2”的必要不充分条件,∴p 2是假命题;根据逆否命题的定义可知p 3为真命题.根据复合命题的真假判断法则可知p 4为假命题.故选D.22.(2019·某某某某、马某某联考)已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,e x>x ,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题 答案 B解析 显然,当x =10时,x -2>lg x 成立,所以命题p 为真命题.设f (x )=e x-x ,则f ′(x )=e x -1,当x >0时,f ′(x )>0,当x <0时,f ′(x )<0,所以f (x )≥f (0)=1>0,所以∀x ∈R ,e x>x ,所以命题q 为真命题.故命题p ∧q 是真命题,故选B.23.(2019·某某第一次调研)设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R ,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( )A .p 为假命题B .綈q 为真命题C .p ∨q 为真命题D .p ∧q 为假命题答案 C解析 函数f (x )不是偶函数,仍然可得∃x ∈R ,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎪⎨⎪⎧x 2x ≥0,-x 2x <0在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C.24.(2019·某某质量检测)已知命题p :∀x >0,总有x >sin x ;命题q :直线l 1:ax +2y +1=0,l 2:x +(a -1)y -1=0.若l 1∥l 2,则a =2或a =-1;则下列命题中是真命题的是( )A .p ∧qB .(綈p )∧(綈q )C .(綈p )∨qD .p ∨q答案 D解析 设f (x )=sin x -x ,则f ′(x )=cos x -1≤0,则函数f (x )在x ≥0上为减函数,则当x >0时,f (x )<f (0)=0,即此时sin x <x 恒成立,即命题p 是真命题,若a =0,则两直线方程为l 1:2y +1=0,l 2:x -y -1=0,此时两直线不平行,不满足条件.若a ≠0,若两直线平行,则满足1a =a -12≠-11,由1a =a -12得a (a -1)=2,即a 2-a -2=0,解得a =2或a =-1,由1a≠-1得a ≠-1,则a =2,即命题q 是假命题,则p ∨q 是真命题,其余为假命题,故选D.25.(2019·某某二调)命题“∃x ∈R,2x >0”的否定是________. 答案 ∀x ∈R,2x ≤0解析 根据特称命题的否定法则可得.26.(2020·某某一中月考)已知命题p :关于x 的方程x 2-mx -2=0在[0,1]上有解;命题q :f (x )=log 2⎝ ⎛⎭⎪⎫x 2-2mx +12在[1,+∞)上单调递增.若“綈p ”为真命题,“p ∨q ”为真命题,则实数m 的取值X 围为________.答案 ⎝ ⎛⎭⎪⎫-1,34解析 对于命题p :令g (x )=x 2-mx -2,则g (0)=-2,∴g (1)=-m -1≥0,解得m ≤-1,故命题p 为真命题时,m ≤-1.∴綈p 为真命题时,m >-1.对于命题q :⎩⎪⎨⎪⎧m ≤1,1-2m +12>0,解得m <34.又由题意可得p 假q 真,∴-1<m <34,即实数m 的取值X 围为⎝ ⎛⎭⎪⎫-1,34.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·某某某某模拟)命题p :实数a 满足a 2+a -6≥0;命题q :函数y =ax 2-ax +1的定义域为R .若命题p ∧q 为假,p ∨q 为真,某某数a 的取值X 围.解 当命题p 为真时,即a 2+a -6≥0, 解得a ≥2或a ≤-3;当命题q 为真时,可得ax 2-ax +1≥0对任意x ∈R 恒成立, 若a =0,则满足题意;若a ≠0,则有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4,∴0≤a ≤4.∵p ∧q 为假,p ∨q 为真,∴“p 真q 假”或“p 假q 真”,①当p 真q 假时,则⎩⎪⎨⎪⎧a ≥2或a ≤-3,a >4或a <0,∴a >4或a ≤-3;②当p 假q 真时,则⎩⎪⎨⎪⎧-3<a <2,0≤a ≤4,∴0≤a <2.综上,实数a 的取值X 围是(-∞,-3]∪[0,2)∪(4,+∞).2.(2019·潍坊联考)已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0成立;q :∃x ∈[1,2],(x 2-mx +1)<-1成立.如果“p ∨q ”为真,“p ∧q ”为假,某某数m 的取值X 围.解 若p 为真,则∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3, ∴f (x )在[-1,1]上的最小值为-3, ∴4m 2-8m ≤-3,解得12≤m ≤32,∴p 为真时,12≤m ≤32.若q 为真,则∃x ∈[1,2],x 2-mx +1>2成立,即m <x 2-1x成立.设g (x )=x 2-1x =x -1x ,则g (x )在[1,2]上是增函数,∴g (x )的最大值为g (2)=32,∴m <32,∴q 为真时,m <32.∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假. 当p 真q 假时,⎩⎪⎨⎪⎧ 12≤m ≤32,m ≥32,∴m =32;当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,∴m <12.综上所述,实数m 的取值X 围是⎩⎨⎧⎭⎬⎫m |m <12或m =32.。

2020版高考数学一轮复习第一章集合与常用逻辑用语1.1集合学案解析版

2020版高考数学一轮复习第一章集合与常用逻辑用语1.1集合学案解析版

§1.1集合1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系A B(或B A) 3.集合的基本运算概念方法微思考1.若一个集合A 有n 个元素,则集合A 有几个子集,几个真子集. 提示 2n ,2n-1.2.从A ∩B =A ,A ∪B =A 可以得到集合A ,B 有什么关系? 提示 A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)任何一个集合都至少有两个子集.( × )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若{x 2,1}={0,1},则x =0,1.( × ) (4){x |x ≤1}={t |t ≤1}.( √ )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( √ ) (6)若A ∩B =A ∩C ,则B =C .( × ) 题组二 教材改编2.[P11例9]已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________. 答案 {x |x 是直角}3.[P44A 组T5]已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________. 答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆,集合B 表示直线y =x ,圆x 2+y 2=1与直线y =x 相交于两点⎝ ⎛⎭⎪⎫22,22,⎝ ⎛⎭⎪⎫-22,-22,则A ∩B 中有两个元素. 题组三 易错自纠4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3 D .1或3或0答案 B解析 A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B.5.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .2 答案 C解析 当x =-1,y =0时,z =-1;当x =-1,y =2时,z =1;当x =1,y =0时,z =1;当x =1,y =2时,z =3,故集合{z |z =x +y ,x ∈A ,y ∈B }中的元素个数为3,故选C. 6.已知集合A ={x |x 2-2x -3≤0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是____________. 答案 (3,+∞)解析 A ={x |x 2-2x -3≤0}={x |-1≤x ≤3}, ∵A ⊆B ,B ={x |x <a },∴a >3.7.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 0或98解析 若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.题型一 集合的含义1.若A ={2,3,4},B ={x |x =n ·m ,m ,n ∈A ,m ≠n },则集合B 中的元素个数是( ) A .2B .3C .4D .5 答案 B解析 B ={x |x =n ·m ,m ,n ∈A ,m ≠n }={6,8,12}.2.若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析 若a -3=-3,则a =0,此时集合A 中含有元素-3,-1,-4,满足题意; 若2a -1=-3,则a =-1,此时集合A 中的三个元素为-4,-3,-3,不满足集合中元素的互异性;若a 2-4=-3,则a =±1,当a =1时,集合A 中的三个元素为-2,1,-3,满足题意; 当a =-1时,不符合题意. 综上可知,a =0或a =1.思维升华(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.题型二 集合的基本关系例1 (1)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的值为( ) A.13或-12 B .-13或12C.13或-12或0 D .-13或12或0答案 D解析 由题意知,A ={2,-3}. 当a =0时,B =∅,满足B ⊆A ; 当a ≠0时,ax -1=0的解为x =1a,由B ⊆A ,可得1a =-3或1a =2,∴a =-13或a =12.综上可知,a 的值为-13或12或0.(2)已知集合A ={x |x 2-2019x +2018<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是_______________________________________. 答案 [2018,+∞)解析 由x 2-2019x +2018<0,解得1<x <2018, 故A ={x |1<x <2018}.又B ={x |x <a },A ⊆B ,如图所示, 可得a ≥2018. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2018},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练1 (1)(2018·浙江教育绿色评价联盟高考适应性考试)已知集合A ={1,2},B ={x |x 2-(a +1)x +a =0,a ∈R },若A =B ,则a 等于( ) A .1B .2C .-1D .-2 答案 B解析 由B ={1,a }={1,2},得a =2,故选B.(2)已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1},若A ⊆B ,则实数m 的取值范围是________________________. 答案 ⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞解析 因为y =⎝ ⎛⎭⎪⎫x -342+716,x ∈⎣⎢⎡⎦⎥⎤34,2, 所以y ∈⎣⎢⎡⎦⎥⎤716,2.又因为A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34.题型三 集合的基本运算 命题点1 集合的运算例2(1)(2017·浙江)已知集合P ={x |-1<x <1},Q ={x |0<x <2},则P ∪Q 等于( ) A .(-1,2) B .(0,1) C .(-1,0) D .(1,2)答案 A解析 ∵P ={x |-1<x <1},Q ={x |0<x <2}, ∴P ∪Q ={x |-1<x <2}. 故选A.(2)(2018·浙江)已知全集U ={1,2,3,4,5},A ={1,3},则∁U A 等于( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5} 答案 C解析 ∵U ={1,2,3,4,5},A ={1,3}, ∴∁U A ={2,4,5}. 故选C.命题点2 利用集合的运算求参数例3 (1)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .-1<a ≤2 B .a >2 C .a ≥-1 D .a >-1 答案 D解析 因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.(2)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B ,则实数a 的取值范围是______. 答案 (-∞,-1]∪{1}解析 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}. 思维升华(1)集合基本运算的求解策略①当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算.②当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验. ③根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解. (2)集合的交、并、补运算口诀交集元素仔细找,属于A 且属于B ;并集元素勿遗漏,切记重复仅取一;全集U 是大范围,去掉U 中A 元素,剩余元素成补集.跟踪训练2 (1)(2018·浙江“七彩阳光”联盟联考)已知全集为R ,集合A ={y |y =3x,x ≤1},B ={x |x 2-6x +8≤0},则A ∪B =________,A ∩(∁R B )=________.答案 (0,4] (0,2)解析 因为A ={y |y =3x,x ≤1}={y |0<y ≤3},B ={x |x 2-6x +8≤0}={x |2≤x ≤4},所以A ∪B =(0,4].又因为∁R B ={x |x <2或x >4}, 所以A ∩(∁R B )=(0,2).(2)已知集合A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A解析 因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.题型四 集合的新定义问题例 4 (1)定义集合的商集运算为A B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =m n ,m ∈A ,n ∈B.已知集合A ={2,4,6},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2-1,k ∈A,则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9 答案 B解析 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则BA ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素,故选B.(2)如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.答案 {0,6}解析 由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}. 思维升华解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.跟踪训练3 (1)定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A 等于( ) A .{x |3<x ≤4} B .{x |3≤x ≤4} C .{x |3<x <4} D .{x |2≤x ≤4}答案 B解析 A ={x |1<x <3},B ={x |2≤x ≤4},由题意知,B △A ={x |x ∈B ,且x ∉A }={x |3≤x ≤4}. (2)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.1.(2018·浙江嘉兴一中适应性考试)若集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A },则集合B 中的元素个数为( ) A .9B .6C .4D .3 答案 D解析 由于x ,y ∈A 的数对共C 13C 13=9对,其中(2,3),(3,2),(3,3)满足x +y -4>0,所以集合B 中的元素个数为3,故选D.2.(2018·绍兴质检)已知集合A ={x ∈R ||x |<2},B ={x ∈R |x +1≥0},则A ∩B 等于( ) A .(-2,1] B .[-1,2) C .[-1,+∞) D .(-2,+∞)答案 B解析 由题意得集合A ={x |-2<x <2},B ={x |x ≥-1},所以A ∩B ={x |-1≤x <2},故选B.3.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -1x =0,则满足A ∪B ={-1,0,1}的集合B 的个数是( ) A .2B .3C .4D .9 答案 C解析 解方程x -1x=0,得x =1或x =-1,所以A ={1,-1},又A ∪B ={-1,0,1},所以B ={0}或{0,1}或{0,-1}或{0,1,-1},集合B 共有4个.4.设集合A ={x |-x 2-x +2<0},B ={x |2x -5>0},则集合A 与集合B 的关系是( ) A .B ⊆A B .B ⊇A C .B ∈A D .A ∈B答案 A解析 因为A ={x |-x 2-x +2<0}={x |x >1或x <-2},B ={x |2x -5>0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >52,所以B ⊆A ,故选A.5.(2018·浙江杭州第二中学月考)若集合A ={x |x =x 2-2,x ∈R },B ={1,m },若A ⊆B ,则m 的值为( ) A .2 B .-2 C .-1或2D .2或 2解析 由集合A 易得⎩⎪⎨⎪⎧x ≥0,x 2-2≥0,x =x 2-2,所以A ={2},而A ⊆B ,则m =2,故选A.6.(2019·宁波调研)已知集合M ={x ||x |≤2},N ={x |x 2+2x -3≤0},则M ∩N 等于( ) A .{x |-2≤x ≤1} B .{x |1≤x <2} C .{x |-1≤x ≤2} D .{x |-3≤x ≤2}答案 A解析 由题意得集合M ={x |-2≤x ≤2},N ={x |-3≤x ≤1},则M ∩N ={x |-2≤x ≤1},故选A. 7.(2018·温州十校联考)已知集合P ={x |y =2-x },Q ={x |y =ln(x +1)},则P ∩Q 等于( )A .{x |-1≤x ≤2}B .{x |-1≤x <2}C .{x |-1<x ≤2}D .{x |-1<x <2}答案 C解析 由题意得集合P ={x |x ≤2},Q ={x |x >-1},所以P ∩Q ={x |-1<x ≤2},故选C.8.(2018·浙江金华一中月考)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =⎝ ⎛⎭⎪⎫12x,x ≥-1,B ={y |y =e x +1,x ≤0},则下列结论正确的是( ) A .A =B B .A ∪B =R C .A ∩(∁R B )=∅ D .B ∩(∁R A )=∅答案 D解析 由题意得集合A ={y |0<y ≤2},B ={y |1<y ≤2},所以∁R A ={y |y ≤0或y >2},所以B ∩(∁R A )=∅,故选D.9.(2018·金华十校模拟)已知集合U ={1,2,3,4,5,6},S ={1,3,5},T ={2,3,6},则S ∩(∁UT )=________,集合S 共有________个子集.答案 {1,5} 8解析 由题意可得∁U T ={1,4,5},则S ∩(∁U T )={1,5}.集合S 的子集有∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},共8个.10.(2018·浙江名校协作体联考)已知集合U ={-1,1,2,3,4,5},且集合A ={-1,1,3}与集合B ={a +2,a 2+4}满足A ∩B ={3},则实数a =________,A ∩(∁U B )=________. 答案 1 {-1,1}解析 因为A ∩B ={3},所以3∈B ,当a +2=3时,a =1,此时a 2+4=5,集合B ={3,5},符合题意;当a 2+4=3时,a 无实数解,综上所述,a =1,此时∁U B ={-1,1,2,4},则A ∩(∁U B )={-1,1}.11.(2019·宁波模拟)已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =________. 答案 {0,2,4,6}解析 由A ∩(∁U B )={1,3,5}得,元素1,3,5不在集合B 内.若元素0不在集合B 内,则由A ∪B ={x ∈Z |0≤x ≤6},得元素0在集合A 内,则0∈A ∩(∁U B ),与题意不符,所以元素0在集合B 内,同理可得元素2,4,6也在集合B 内,所以B ={0,2,4,6}.12.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________. 答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.13.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =∅,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫13,+∞ B.⎣⎢⎡⎭⎪⎫0,13C .(-∞,0]D .[0,+∞)答案 D解析 ∵A ∩B =∅,①若当2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若当2m <1-m ,即m <13时,需满足⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,解得0≤m <13或∅,即0≤m <13.综上,实数m 的取值范围是[0,+∞). 14.若集合A 具有以下性质:(1)0∈A,1∈A ;(2)x ,y ∈A ,则x -y ∈A ,且x ≠0时,1x∈A ,则称集合A 是“完美集”,给出以下结论:①集合B ={-1,0,1}是“完美集”; ②有理数集Q 是“完美集”;③设集合A 是“完美集”,若x ,y ∈A ,则x +y ∈A ;④设集合A 是“完美集”,若x ,y ∈A ,则xy ∈A ;⑤对任意的一个“完美集”A ,若x ,y ∈A ,且x ≠0,则y x ∈A .其中正确结论的序号是____________.答案 ②③④⑤解析 ①-1∈B ,1∈B ,但是-1-1=-2∉B ,B 不是“完美集”;②有理数集满足“完美集”的定义;③0∈A ,x ,y ∈A,0-y =-y ∈A ,那么x -(-y )=x +y ∈A ;④对任意一个“完美集”A ,任取x ,y ∈A ,若x ,y 中有0或1时,显然xy ∈A ,若x ,y 均不为0,1,而1xy =12xy +12xy =1(x +y )2-x 2-y 2+1(x +y )2-x 2-y 2,x ,x -1∈A ,那么1x -1-1x=1x (x -1)∈A ,所以x (x -1)∈A ,进而x (x -1)+x =x 2∈A .结合前面的算式,知xy ∈A ; ⑤x ,y ∈A ,若x ≠0,那么1x ∈A ,那么由④得y x∈A . 故填②③④⑤.15.在n 元数集S ={a 1,a 2,…,a n }中,设x (S )=a 1+a 2+…+a n n,若S 的非空子集A 满足x (A )=x (S ),则称A 是集合S 的一个“平均子集”,并记数集S 的k 元“平均子集”的个数为f S (k ).已知集合S ={1,2,3,4,5,6,7,8,9},T ={-4,-3,-2,-1,0,1,2,3,4},则下列说法错误的是( )A .f S (4)=f S (5)B .f S (4)=f T (5)C .f S (1)+f S (3)=f T (5)D .f S (2)+f S (3)=f T (4)答案 C解析 由题意知,f T (k )=f S (k ),k =1,2,…,9.再由对称性知f T (k )=f T (9-k ),k =1,2,…,9,故A ,B 正确.现在仅考虑集合T ,利用列举法,当n =1时,“平均子集”A :{0},故f T (1)=1;当n =2时,“平均子集”A 可取{-k ,k },其中k =1,2,3,4,故f T (2)=4;当n =3时,“平均子集”A 可取{-4,0,4},{-4,1,3},{-3,-1,4},{-3,0,3},{-3,1,2},{-2,-1,3},{-2,0,2},{-1,0,1},故f T (3)=8;当n =4时,“平均子集”A 可取{-4,-3,3,4},{-4,-2,2,4},{-4,-1,1,4},{-4,-1,2,3},{-4,0,1,3},{-3,-2,1,4},{-3,-2,2,3},{-3,-1,1,3},{-3,-1,0,4},{-3,0,1,2},{-2,-1,0,3},{-2,-1,1,2},故f T (4)=12.利用对称性知,f T (5)=12.所以D 正确、C 错误,故选C.16.(2019·温州十校模拟)设有序集合对(A ,B )满足:A ∪B ={1,2,3,4,5,6,7,8},A ∩B =∅,记Card A ,Card B 分别表示集合A ,B 的元素个数,则符合条件Card A ∉A ,Card B ∉B 的集合的对数是________.答案44解析由条件可得Card A∈B,Card B∈A.当Card A=0,Card B=8时,显然不成立;当Card A =1,Card B=7时,则7∈A,1∈B,所以A={7},B={1,2,3,4,5,6,8},符合条件的集合对有1对;当Card A=2,Card B=6时,则6∈A,2∈B,所以A中的另一个元素从剩下的6个数中选一个,故符合条件的集合对有C16=6(对);当Card A=3,Card B=5时,则5∈A,3∈B,所以A中的另两个元素从剩下的6个数中选两个,故符合条件的集合对有C26=15(对);当Card A=4,Card B=4时,则4∈A,4∈B,矛盾;由对称性,剩下的几种情况类似,故符合条件的集合的对数是2×(1+6+15)+0=44(对).。

新课标2020年高考数学一轮总复习第一章集合与常用逻辑用语1_1集合课时规范练理含解析新人教A版

新课标2020年高考数学一轮总复习第一章集合与常用逻辑用语1_1集合课时规范练理含解析新人教A版

1-1 集合课时规范练(授课提示:对应学生用书第211页)A组 基础对点练1.(2017·高考浙江卷)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( A ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)2.(2018·高考浙江卷)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( C )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}3.(2018·丰台区二模)已知A={x|x>1},B={x|x2-2x-3<0},则A∪B=( D )A.{x|x<-1或x≥1}B.{x|1<x<3}C.{x|x>3} D.{x|x>-1}解析:A={x|x>1},B={x|x2-2x-3<0}={x|-1<x<3},则A∪B={x|x>-1}.故选D.4.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=( B )A.∅B.{2}C.{0} D.{-2}5.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( A )A.{1,4} B.{2,3}C.{9,16} D.{1,2}6.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( A )A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}7.(2018·河南一模)已知集合A={x|x2-2x-3>0},B=N,则集合(∁R A)∩B中元素的个数为( C )A.2 B.3C.4 D.5解析:A={x|x<-1或x>3},∴∁R A={x|-1≤x≤3},∴(∁R A)∩B={0,1,2,3}.故选C. 8.(2016·高考天津卷)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=( A ) A.{1,3} B.{1,2}C.{2,3} D.{1,2,3}9.(2018·河北模拟)已知集合A={x∈N|x<3},B={x|x=a-b,a∈A,b∈A},则A∩B=( D )A.{1,2} B.{-2,-1,1,2}C.{1} D.{0,1,2}10.(2018·邕宁区校级模拟)已知集合M,N⊂I,若M∩N=N,则( C )A.∁I M⊇∁I N B.M⊆∁I NC.∁I M⊆∁I N D.M⊇∁I N解析:∵集合M,N⊂I,M∩N=N,∴N⊆M,作Venn图,∴由Venn图得∁I M⊆∁I N.故选C.11.(2017·郑州质量预测)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=( A )A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}12.(2018·云南模拟)集合A={x|x2-a≤0},B={x|x<2},若A⊆B,则实数a的取值范围是( B )A.(-∞,4] B.(-∞,4)C.[0,4] D.(0,4)13.若A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},则A∩B= {(1,2)} .解析:由A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},得A∩B=Error!={(1,2)}.{x|x2≤32}14.(2018·江苏模拟)已知集合A=,集合B={-2,-1,0,1,2},则A∩B={-1,0,1} .{x|x2≤32}{x|-62≤x≤62}解析:∵集合A==,集合B={-2,-1,0,1,2},∴A∩B={-1,0,1}.15.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B={7,9} .解析:依题意得U={1,2,3,4,5,6,7,8,9,10},∁U A={4,6,7,9,10},(∁U A)∩B={7,9}.16.集合A={x∈R||x-2|≤5}中的最小整数为-3 .解析:由|x-2|≤5,得-5≤x-2≤5,即-3≤x≤7,所以集合A中的最小整数为-3.B组 能力提升练1.已知全集U={0,1,2,3},∁U M={2},则集合M=( B )A.{1,3} B.{0,1,3}C.{0,3} D.{2}4-2x2.(2018·岳麓区校级期末)已知P={x|x2-5x+4<0},Q={x|y=},则P∩Q等于( C )A.(1,4) B.[2,4)C.(1,2] D.(-∞,2]解析:化不等式x2-5x+4<0为(x-1)(x-4)<0,解得1<x<4,则集合P=(1,4).4-2x集合Q表示函数y=的定义域,令4-2x≥0,解得x≤2,即Q=(-∞,2].则P∩Q=(1,2].故选C.3.设全集U=R,集合A=Error!,B={x∈R|0<x<2},则(∁U A)∩B=( B )A.(1,2] B.[1,2)C.(1,2) D.[1,2]4.(2018·西城区二模)若集合A={x|0<x<1},B={x|x2-2x<0},则下列结论中正确的是( C )A.A∩B=∅B.A∪B=RC.A⊆B D.B⊆A解析:∵集合A={x|0<x<1},B={x|x2-2x<0}={x|0<x<2},∴A⊆B.故选C. 5.(2017·高考全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( C )A.{1,-3} B.{1,0}C.{1,3} D.{1,5}6.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( A )A.9 B.8C.5 D.4解析:当x=-1时,y2≤2,得y=-1,0,1;当x=0时,y2≤3,得y=-1,0,1;当x=1时,y2≤2,得y=-1,0,1,即集合A中元素有9个,故选A.7.(2017·广雅中学测试)若全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( B )8.已知集合M ={0,1,2},N ={y |y =sin x ,x ∈M },则M ∩N =( A )π2A .{0,1} B .{0,1,2}C .{-1,0,1}D .{-1,0}9.已知集合A 满足条件{1,2}⊆A {1,2,3,4,5},则集合A 的个数为( B )A .8 B .7C .4D .310.(2018·兴庆区校级期末)已知集合A ={x |x <a },B ={x |1≤x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( C )A .a ≤1 B .a <1C .a ≥2D .a >2解析:∵B ={x |1≤x <2},∴∁R B ={x |x <1或x ≥2},∵A ={x |x <a },A ∪(∁R B )=R ,∴a 的范围为a ≥2,故选C.11.设全集U =R ,集合A ={x |y =lg x },B ={-1,1},则下列结论中正确的是( D )A .A ∩B ={-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-1}12.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件13.(2018·浙江模拟)已知集合A ={x |-x 2+4x ≥0},B =Error!,C ={x |x =2n ,n ∈N },则(A ∪B )∩C =( C )A .{2,4} B .{0,2}C .{0,2,4}D .{x |x =2n ,n ∈N }解析:集合A ={x |-x 2+4x ≥0}={x |0≤x ≤4},B =Error!={x |3-4<3x <33}={x |-4<x <3},则A ∪B ={x |-4<x ≤4},C ={x |x =2n ,n ∈N },可得(A ∪B )∩C ={0,2,4},故选C.14.(2017·山西大学附中模拟)给出下列四个结论:①{0}是空集;②若a∈N,则-a∉N;③集合A={x|x2-2x+1=0}中有两个元素;④集合B=Error!是有限集.其中正确结论的个数是( A )A.0 B.1C.2 D.315.已知集合A={x|-2<x<5},B={x|p+1<x<2p-1},若A∪B=A,则实数p的取值范围是 (-∞,3] .解析:∵A={x|-2<x<5},B={x|p+1<x<2p-1},由A∪B=A,得B⊆A.当B=∅时,有p+1≥2p-1,即p≤2;当B≠∅时,要使B⊆A,则Error!解得2<p≤3.综上,实数p的取值范围是(-∞,3].。

核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理

核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理

核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理1.集合(1)集合的含义与表示①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用Venn图表达集合间的基本关系及集合的基本运算.2.常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.(4)了解逻辑联结词“或”“且”“非”的含义.(5)理解全称量词和存在量词的意义.(6)能正确地对含一个量词的命题进行否定.§1.1 集合及其运算1.集合的基本概念(1)我们把研究对象统称为________,把一些元素组成的总体叫做________.(2)集合中元素的三个特性:________,________, ________.(3)集合常用的表示方法:________和________.2.常用数集的符号数集自然数集正整数集整数集有理数集实数集复数集符号3.元素与集合、集合与集合之间的关系(1)元素与集合之间存在两种关系:如果a是集合A中的元素,就说a________集合A,记作________;如果a不是集合A中的元素,就说a________集合A,记作________.(2)集合与集合之间的关系:表示关系文字语言符号语言相等集合A与集合B中的所有元素都相同__________⇔A=B子集A中任意一个元素均为B中的元素________或________真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素________或________空集空集是任何集合的子集,是任何______的真子集∅⊆A,∅B(B≠∅)结论:集合{a1,a2,…,a n}的子集有______个,非空子集有________个,非空真子集有________个.集合的并集集合的交集集合的补集符号表示若全集为U,则集合A 的补集记为________Venn图表示(阴影部分)意义5.集合运算中常用的结论(1)①A∩B________A;②A∩B________B;③A∩A=________;④A∩∅=________;⑤A∩B________B∩A.(2)①A∪B________A; ②A∪B________B;③A∪A=________;④A∪∅=________;⑤A∪B________B∪A.(3)①∁U(∁U A)=________;②∁U U=________;③∁U∅=________;④A∩(∁U A)=____________;⑤A∪(∁U A)=____________.(4)①A∩B=A⇔________⇔A∪B=B;②A∩B=A∪B⇔____________.(5)记有限集合A,B的元素个数为card(A),card(B),则:card(A∪B)=____________________________;card[∁U(A∪B)]=________________________.自查自纠1.(1)元素集合(2)确定性互异性无序性(3)列举法描述法2.N N*(N+) Z Q R C3.(1)属于a∈A不属于a∉A(2)A⊆B且B⊆A A⊆B B⊇A A B B A非空集合2n2n-1 2n-24.A∪B A∩B∁U A{x|x∈A或x∈B}{x|x∈A且x∈B} {x|x∈U且x∉A}5.(1)①⊆②⊆③A④∅⑤=(2)①⊇ ②⊇ ③A ④A ⑤= (3)①A ②∅ ③U ④∅ ⑤U (4)①A ⊆B ②A =B(5)card(A )+card(B )-card(A ∩B ) card(U )-card(A )-card(B )+card(A ∩B )(2015·安徽)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁UB )=( )A .{1,2,5,6}B .{1}C .{2}D .{1,2,3,4}解:∵∁U B ={1,5,6},∴A ∩(∁U B )={1}.故选B .(2015·陕西)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解:∵M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},∴M ∪N =[0,1].故选A .(2015·全国Ⅱ)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}解:由已知得B ={x |-2<x <1},∴A ∩B ={-1,0}.故选A .已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________.解:根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.故填3.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.解:A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,则其对称轴x =a >0,由对称性知,若A ∩B 中恰含有一个整数,则这个整数为2,∴f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0, 得34≤a <43.故填⎣⎢⎡⎭⎪⎫34,43.类型一 集合的概念(1)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( )A .4B .2C .0D .0或4解:由ax 2+ax +1=0只有一个实数解,可得当a =0时,方程无实数解; 当a ≠0时,Δ=a 2-4a =0,解得a =4.故选A .(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3,2m 2+m=3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,2m 2+m =3,综上知,m =-32.故填-32.【点拨】(1)用描述法表示集合,首先要弄清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.(1)(2015·苏州一模)集合⎩⎨⎧⎭⎬⎫x ∈N *|12x∈Z 中含有的元素个数为( )A .4B .6C .8D .12解:令x =1,2,3,4,5,6,7,8,9,10,11,12,代入验证,得x =1,2,3,4,6,12时,12x∈Z ,即集合中有6个元素.故选B .(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b ,0},则a 2 017+b 2 017=________.解:由已知得b a=0及a ≠0,∴b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =-1,∴a2 017+b2 017=-1.故填-1.类型二 集合间的关系已知集合A ={x |x 2-3x -10≤0}.(1)若B ={x |m +1≤x ≤2m -1},B ⊆A ,求实数m 的取值范围; (2)若B ={x |m -6≤x ≤2m -1},A =B ,求实数m 的取值范围; (3)若B ={x |m -6≤x ≤2m -1},A ⊆B ,求实数m 的取值范围. 解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5}, (1)若B ⊆A ,则①当B =∅,有m +1>2m -1,即m <2,此时满足B ⊆A ;②当B ≠∅,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5, 解得m ∈∅,即不存在实数m 使得A =B .(3)若A ⊆B ,则⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得3≤m ≤4.∴m 的取值范围为[3,4].【点拨】本例主要考查了集合间的关系,“当B ⊆A 时,B 可能为空集”很容易被忽视,要注意这一“陷阱”.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集的个数; (3)当x ∈R 时,若A ∩B =∅,求实数m 的取值范围.解:(1)①当m +1>2m -1,即m <2时,B =∅,满足B ⊆A .②当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5, 可得2≤m ≤3.综上,m 的取值范围是(-∞,3].(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, ∴A 的非空真子集个数为28-2=254. (3)∵x ∈R ,且A ∩B =∅,∴当B =∅时,即m +1>2m -1,得m <2,满足条件; 当B ≠∅时,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得m >4.综上,m 的取值范围是(-∞,2)∪(4,+∞).类型三 集合的运算(1)已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( )A .∅ B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎦⎥⎤13,1 D .(-∞,1] 解:由题意知,A =(0,1],B =⎝ ⎛⎦⎥⎤-∞,13, ∴A ∪B =(-∞,1].故选D .(2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解:∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩(∁U B )={3}.故填{3}.(3)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,由B ={x |m <x <2},画出数轴,可得m =-1,n =1.故填-1,1.【点拨】(1)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2)在解决有关A ∩B =∅的问题时,往往忽略空集的情况,一定要先考虑A (或B )=∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(1)已知集合A ={x |y =x },B ={x|12<2x<4},则(∁R A )∩B 等于( )A .{x |-1<x <2}B .{x |-1<x <0}C .{x |x <1}D .{x |-2<x <0}解:∵A ={x |y =x }={x |x ≥0},∴∁R A ={x |x <0}.又B =⎩⎨⎧⎭⎬⎫x|12<2x <4={x |-1<x <2},∴(∁R A )∩B ={x |-1<x <0}.故选B .(2)(2015·唐山模拟)集合M ={2,log 3a },N ={a ,b },若M ∩N ={1},则M ∪N =( ) A .{0,1,2} B .{0,1,3} C .{0,2,3}D .{1,2,3}解:∵M ∩N ={1},∴log 3a =1,即a =3,∴b =1.∴M ={2,1},N ={3,1},M ∪N ={1,2,3}.故选D .(3)设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}解:|x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,由A ∩B =∅知,a +1≤1或a -1≥5,解得a ≤0或a ≥6.故选C .类型四 Venn 图及其应用设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )等于( )A.P B.M∩P C.M∪P D.M解:作出Venn图.当M∩P≠∅时,由图知,M-P为图中的阴影部分,则M-(M-P)显然是M∩P.当M∩P=∅时,M-(M-P)=M-M={x|x∈M,且x∉M}=∅=M∩P.故选B.【点拨】这是一道信息迁移题,属于应用性开放问题.“M-P”是我们不曾学过的集合运算关系,根据其元素的属性,借助Venn图将问题简单化.已知集合A={-1,0,4},集合B={x|x2-2x-3≤0,x∈N},全集为U,则图中阴影部分表示的集合是________.解:B={x|x2-2x-3≤0,x∈N}={x|-1≤x≤3,x∈N}={0,1,2,3},图中阴影部分表示的为属于A且不属于B的元素构成的集合,该集合为{-1,4}.故填{-1,4}.类型五和集合有关的创新试题在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 017∈[2];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中正确命题的个数是( )A.1 B.2 C.3 D.4解:∵2 017=403×5+2,∴2 017∈[2],结论①正确;-3=-1×5+2,∴-3∈[2],-3∉[3],结论②不正确;整数可以分为五“类”,这五“类”的并集就是整数集,即Z=[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a,b属于同一“类”,则a=5n+k,b=5m+k,a-b=5(n-m)+0∈[0],反之,若a-b∈[0],则a,b被5除有相同的余数,故a,b属于同一“类”,结论④正确,综上知,①③④正确.故选C.【点拨】(1)以集合语言为背景的新信息题,常见的类型有定义新概念型、定义新运算型及开放型,解决此类信息迁移题的关键是在理解新信息并把它纳入已有的知识体系中,用原来的知识和方法来解决新情境下的问题.(2)正确理解创新定义,分析新定义的表述意义,把新定义所表达的数学本质弄清楚,转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.设S为复数集C的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集,下列命题:①集合S={a+b i|a,b为整数,i为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)解:①对,当a ,b 为整数时,对任意x ,y ∈S ,x +y ,x -y ,xy 的实部与虚部均为整数;②对,当x =y 时,0∈S ;③错,当S ={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T ,T ={0,1},显然T 不是封闭集.因此,真命题为①②.故填①②.1. 首先要弄清构成集合的元素是什么,如是数集还是点集,要明了集合{x |y =f (x )}、{y |y =f (x )}、{(x ,y )|y =f (x )}三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.5.五个关系式A ⊆B ,A ∩B =A ,A ∪B =B ,∁U B ⊆∁U A 以及A ∩(∁U B )=∅是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.6.正难则反原则对于一些比较复杂、比较抽象、条件和结论不明确、难以从正面入手的涉及集合的数学问题,在解题时要调整思路,考虑问题的反面,探求已知与未知的关系,化难为易、化隐为显,从而解决问题.例如:已知A ={x |x 2+x +a ≤0},B ={x |x 2-x +2a -1<0},C ={x |a ≤x ≤4a -9},且A ,B ,C 中至少有一个不是空集,求a 的取值范围.这个问题的反面即是三个集合全为空集,即⎩⎪⎨⎪⎧1-4a <0,1-4(2a -1)≤0,a >4a -9,解得58≤a <3,从而所求a 的取值范围为⎩⎨⎧⎭⎬⎫a|a <58或a ≥3.1.(2015·全国Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2解:A ∩B ={x |x =3n +2,n ∈N }∩{6,8,10,12,14}={8,14}.故选D .2.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1} 解:∵N ={x |0≤x ≤1},M ={-1,0,1},∴M ∩N ={0,1}.故选B .3.(2013·辽宁)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( )A.()0,1B.(]0,2C.()1,2D.(]1,2解:易知A ={}x |1<x <4,∴A ∩B =(]1,2.故选D .4.(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9解:由题意知,x -y =0,-1,-2,1,2.故B 中元素个数为5,故选C . 5.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为( )A .3B .4C .7D .8 解:A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意知,图中阴影部分表示的集合为A ∩B ={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.故选C .6.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的个数是( )A .0B .1C .2D .3解:①(-4)+(-2)=-6∉A ,不正确;②设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,正确;③令A 1={n |n =5k ,k ∈Z },A 2={n |n =2k ,k ∈Z },则A 1,A 2为闭集合,但A 1∪A 2不是闭集合,不正确.故选B .7.(2014·重庆)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解:∵U ={1,2,3,…,9,10},A ={1,2,3,5,8},∴∁U A ={4,6,7,9,10}.∴(∁U A )∩B ={7,9}.故填{7,9}.8.已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个.解:由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}这样的集合,共有6个.故填6.9.(2014·天津)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n },当q =2,n =3时,用列举法表示集合A .解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+2x 2+4x 3,x i ∈M ,i =1,2,3}={0,1,2,3,4,5,6,7}.10.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解:(1)A =⎩⎨⎧⎭⎬⎫x|12≤x ≤3, 当a =-4时,B ={x |-2<x <2},A ∩B =⎩⎨⎧⎭⎬⎫x|12≤x <2,A ∪B ={x |-2<x ≤3}. (2)∁R A =⎩⎨⎧⎭⎬⎫x|x <12或x >3, 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,只须-a ≤12,解得-14≤a <0. 综上可得,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a|a ≥-14. 11.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R },若B ⊆A ,求实数a 的取值范围.解:易知A ={0,-4},若B ⊆A ,则可分以下三种情况:①当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当∅≠B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =A 时,B ={0,-4},由此知0和-4是方程 x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系, 得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上所述,a 的取值范围为{}a |a ≤-1或a =1.(2015·杭州模拟)已知集合A ={x |x 2-3(a +1)x +2(3a +1)<0},B =⎩⎨⎧⎭⎬⎫x|x -2a x -(a 2+1)<0.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 时实数a 的取值范围.解:(1)当a =2时,A ={x |x 2-9x +14<0}=(2,7), B =⎩⎨⎧⎭⎬⎫x|x -4x -5<0=(4,5),∴A ∩B =(4,5).(2)当a ≠1时,B =(2a ,a 2+1);当a =1时,B =∅. 又A ={x |(x -2)[x -(3a +1)]<0},①当3a +1<2,即a <13时,A =(3a +1,2),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a ≥3a+1,a 2+1≤2,解得a =-1;②当a =13时,A =∅,B =⎝ ⎛⎭⎪⎫23,109,B ⊆A 不成立;③当3a +1>2,即a >13时,A =(2,3a +1),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a≥2,a 2+1≤3a +1,或a =1,a ≠1,解得1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}.。

高中数学一轮复习(含答案)1.1 集合

高中数学一轮复习(含答案)1.1 集合

第一章 集合与常用逻辑用语 第一节 集合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中.(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A . A B ⇔⎩⎪⎨⎪⎧ A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A . (3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B . 两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A ∩B ,即A ∩B ={x |x ∈A ,且x ∈B }.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A ,即∁U A ={x |x ∈U ,且x ∉A }.求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为∁U A .二、常用结论(1)子集的性质:A ⊆A ,∅⊆A ,A ∩B ⊆A ,A ∩B ⊆B .(2)交集的性质:A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(3)并集的性质:A ∪B =B ∪A ,A ∪B ⊇A ,A ∪B ⊇B ,A ∪A =A ,A ∪∅=∅∪A =A .(4)补集的性质:A ∪∁U A =U ,A ∩∁U A =∅,∁U (∁U A )=A ,∁A A =∅,∁A ∅=A .(5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集.(6)等价关系:A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .考点一 集合的基本概念[典例] (1)(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0 (2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( )A .1B .0C .-1D .±1[解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.(2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1.[答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意.[题组训练]1.设集合A ={0,1,2,3},B ={x |-x ∈A,1-x ∉A },则集合B 中元素的个数为( )A .1B .2C .3D .4解析:选A 若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ;当-2∈B 时,1-(-2)=3∈A ;当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( )A.92B.98 C .0 D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98. 3.(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为_____________ 解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6.答案:(5,6] 考点二 集合间的基本关系[典例] (1)已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则( )A .B ⊆AB .A =BC .A BD .B A(2)(2019·湖北八校联考)已知集合A ={x ∈N *|x 2-3x <0},则满足条件B ⊆A 的集合B 的个数为( )A .2B .3C .4D .8(3)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________.[解析] (1)由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知A B ,故选C. (2)∵A ={x ∈N *|x 2-3x <0}={x ∈N *|0<x <3}={1,2},又B ⊆A ,∴满足条件B ⊆A 的集合B 的个数为22=4,故选C.(3)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}.若B ⊆A ,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. [答案] (1)C (2)C (3)(-∞,1][变透练清]1.(变条件)若本例(2)中A 不变,C ={x |0<x <5,x ∈N},则满足条件A ⊆B ⊆C 的集合B 的个数为( )A .1B .2C .3D .4解析:选D 因为A ={1,2},由题意知C ={1,2,3,4},所以满足条件的B 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.(变条件)若本例(3)中,把条件“B ⊆A ”变为“A ⊆B ”,其他条件不变,则m 的取值范围为________.解析:若A ⊆B ,由⎩⎪⎨⎪⎧-m ≤-1,m ≥3得m ≥3,∴m 的取值范围为[3,+∞).答案:[3,+∞) 3.已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R},若B ⊆A ,则实数m 的取值范围为________. 解析:①若B =∅,则Δ=m 2-4<0,解得-2<m <2;②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意;③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意. 综上所述,实数m 的取值范围为[-2,2).答案:[-2,2)考点三 集合的基本运算考法(一) 集合的运算[典例] (1)(2018·天津高考)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R|-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}(2)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}[解析] (1)∵A ={1,2,3,4},B ={-1,0,2,3},∴A ∪B ={-1,0,1,2,3,4}.又C ={x ∈R|-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}.(2)依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2}. [答案] (1)C (2)D考法(二) 根据集合运算结果求参数[典例] (1)已知集合A ={x |x 2-x -12>0},B ={x |x ≥m }.若A ∩B ={x |x >4},则实数m 的取值范围是( )A .(-4,3)B .[-3,4]C .(-3,4)D .(-∞,4](2)(2019·河南名校联盟联考)已知A ={1,2,3,4},B ={a +1,2a },若A ∩B ={4},则a =( )A .3B .2C .2或3D .3或1[解析] (1)集合A ={x |x <-3或x >4},∵A ∩B ={x |x >4},∴-3≤m ≤4,故选B.(2)∵A ∩B ={4},∴a +1=4或2a =4.若a +1=4,则a =3,此时B ={4,6},符合题意;若2a =4,则a =2,此时B ={3,4},不符合题意.综上,a =3,故选A. [答案] (1)B (2)A[题组训练]1.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z},则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C 因为集合B ={x |-1<x <2,x ∈Z}={0,1},而A ={1,2,3},所以A ∪B ={0,1,2,3}.2.(2019·重庆六校联考)已知集合A ={x |2x 2+x -1≤0},B ={x |lg x <2},则(∁R A )∩B =( )A.⎝⎛⎭⎫12,100B.⎝⎛⎭⎫12,2C.⎣⎡⎭⎫12,100 D .∅解析:选A 由题意得A =⎣⎡⎦⎤-1,12,B =(0,100),则∁R A =(-∞,-1)∪⎝⎛⎭⎫12,+∞,所以(∁R A )∩B =⎝⎛⎭⎫12,100. 3.(2019·合肥质量检测)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎡⎦⎤12,1C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:选A 因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1. [课时跟踪检测]1.(2019·福州质检)已知集合A ={x |x =2k +1,k ∈Z},B ={x |-1<x ≤4},则集合A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B 依题意,集合A 是由所有的奇数组成的集合,故A ∩B ={1,3},所以A ∩B 中元素的个数为2.2.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}解析:选A 因为A ={1,3,5},B ={3,4,5},所以A ∪B ={1,3,4,5}.又U ={1,2,3,4,5,6},所以∁U (A ∪B )={2,6}.3.(2018·天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( )A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1},∴∁R B ={x |x <1}.∵集合A ={x |0<x <2},∴A ∩(∁R B )={x |0<x <1}.4.(2018·南宁毕业班摸底)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∩N =MB .M ∪(∁R N )=MC .N ∪(∁R M )=RD .M ∪N =M解析:选D 由题意可得,N =(0,2),M =(-∞,4),所以M ∪N =M .5.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x <2,B ={x |ln x ≤0},则A ∩B 为( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1 D .[-1,1]解析:选A ∵12≤2x <2,即2-1≤2x <212,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x <12.∵ln x ≤0,即ln x ≤ln 1,∴0<x ≤1,∴B ={x |0<x ≤1},∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12. 6.(2019·郑州质量测试)设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( )A .(-∞,2]B .(-∞,1]C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又因为A ={x |1<x <2},B ={x |x <a },所以a ≥2.7.已知全集U =A ∪B 中有m 个元素,()∁U A ∪()∁U B 中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D 因为()∁U A ∪()∁U B 中有n 个元素,如图中阴影部分所示,又U =A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.8.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合B A∪B 中的元素个数为( ) A .6B .7C .8D .9解析:选B 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则B A ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素.9.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________. 答案:{-1,0}解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.10.已知集合U =R ,集合A =[-5,2],B =(1,4),则下图中阴影部分所表示的集合为________.解析:∵A =[-5,2],B =(1,4),∴∁U B ={x |x ≤1或x ≥4},则题图中阴影部分所表示的集合为(∁U B )∩A ={x |-5≤x ≤1}.答案:{x |-5≤x ≤1}11.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________. 解析:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组⎩⎪⎨⎪⎧ y =3x 2-3x +1,y =x ,解得⎩⎨⎧ x =13,y =13或⎩⎪⎨⎪⎧x =1,y =1, 故A ∩B =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫13,13,(1,1),所以A ∩B 中含有2个元素. 法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.答案:212.已知集合A ={x |log 2x ≤2},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B ={x |x <a },由于A ⊆B ,在数轴上标出集合A ,B ,如图所示,则a >4.答案:(4,+∞)13.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}.易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3. 故实数a 的取值范围是(2,3).。

高考数学一轮复习 第一章 集合与常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式练习题(含解

高考数学一轮复习 第一章 集合与常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式练习题(含解

高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1)的全部内容。

充分条件、必要条件与命题的四种形式一、选择题1.“a=2”是“直线(a2-a)x+y=0和直线2x+y+1=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析因为两直线平行,则(a2-a)×1-2×1=0,解得a=2或-1,所以选A.答案A2.已知命题p:∃n∈N,2n>1 000,则綈p为( ).A.∀n∈N,2n≤1 000 B.∀n∈N,2n>1 000C.∃n∈N,2n≤1 000 D.∃n∈N,2n<1 000解析特称命题的否定是全称命题.即p:∃x∈M,p(x),则綈p:∀x∈M,綈p(x).故选A。

答案A3.与命题”若a M∉"等价的命题是( )∈,则b MA。

若a M∉∉,则b MB。

若b M∈∉,则a MC.若a M∈∉,则b MD。

若b M∉∈,则a M解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D. 答案 D4.“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π"的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析函数y=cos2ax-sin2ax=cos2ax的最小正周期为π⇔a=1或a=-1,所以“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件.故选A。

2019版高考数学一轮复习训练: 基础与考点过关 第一章 集合与常用逻辑用语

2019版高考数学一轮复习训练:  基础与考点过关 第一章 集合与常用逻辑用语

第一章 集合与常用逻辑用语第1课时集合的概念1. (必修1P 7练习1改编)用列举法表示集合{x|x 2-3x +2=0}为______________. 答案:{1,2}解析:∵ x 2-3x +2=0,∴ x =1或x =2.故集合为{1,2}.2. (必修1P 10习题5改编)由x 2,x 组成一个集合A ,A 中含有2个元素,则实数x 的取值不可以是______________.答案:0和1解析:由 x 2=x 可解得x =0或x =1.3. (必修1P 9练习1改编)集合A ={x|0≤x<3且x∈N }的真子集个数是__________. 答案:7解析:A ={x|0≤x<3且x∈N }={0,1,2},∴ 真子集有7个. 4. (必修1P 10练习6改编)设A ={x|2<x<3},B ={x|x<m}.若A ⊆B ,则m 的取值范围是____________.答案:[3,+∞) 解析:A ={x|2<x<3},B ={x|x<m},A ⊆B ,将集合A ,B 在数轴上表示(图略),可得m≥3.5. (必修1P 10习题5改编)A ={x|kx 2+4x +4=0}中只有一个元素,则实数k 的值为____________.答案:0或1解析:当k =0时,集合A ={x|kx 2+4x +4=0}={x|x=-1},满足条件,当k≠0时,由判别式等于0可得16-16k =0,解得k =1,此时,集合A ={x|kx 2+4x +4=0}={x|x 2+4x +4=0}={-2},满足条件,综上可得,k =0或k =1.1. 集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(1) 若a 是集合A 的元素,记作a∈A;若b 不是集合A 的元素,记作b ∉A. (2) 集合中元素的特征:确定性、互异性、无序性.确定性:设A 是一个给定的集合,x 是某一个具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合的不同与元素的排列顺序无关. (3) 集合的常用表示方法:列举法、描述法、Venn 图法. 列举法:把集合中的元素一一列举出来,写在大括号{ }内;描述法:把集合中的元素的公共属性描述出来,写在大括号{ }内. 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5) 常用数集及其记法:自然数集记作N ;正整数集记作N *或N +;整数集记作Z ;有理数集记作Q ;实数集记作R ;复数集记作C .2. 两类关系(1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系.(2) 集合与集合之间的关系① 包含关系:如果集合A 中的每一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B 或B ⊇A ,读作“集合A 包含于集合B”或“集合B 包含集合A”.② 真包含关系:如果A ⊆B ,并且A≠B,那么集合A 称为集合B 的真子集,记为A B 或B A ,读作“集合A 真包含于集合B”或“集合B 真包含集合A ”.③ 相等关系:如果两个集合所含的元素完全相同,即A 中的元素都是B 中的元素且B 中的元素都是A 中的元素,则称这两个集合相等.(3) 简单关系 ① A ⊆A ; ② ∅⊆A ;③ 若A ⊆B ,B ⊆C ,则A ⊆C ;④ 含有n 个元素的集合的子集共有2n 个,真子集共有2n -1个,非空子集共有2n-1个,非空真子集有⎩⎪⎨⎪⎧0,n =0,2n -2,n ≥1个.[备课札记]1 集合的基本概念1 已知集合A 含有两个元素a -3和2a -1.若-3∈A,试求实数a 的值. 解:∵ -3∈A,∴ -3=a -3或-3=2a -1,若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意.若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.变式训练已知集合A 中有且仅有三个数1,0,a ,若a 2∈A ,求a 的值.解:若a 2=0,则a =0,不符合集合中元素的互异性,∴ a 2≠0.若a 2=1,则a =±1,由元素的互异性知a≠1,∴ a =-1时适合.若a 2=a ,则a =0或1,由上面讨论知均不符合集合中元素互异性的要求.综上可知a =-1.2 集合间的基本关系2 已知A ={-1,1},B ={x|x 2-ax +b =0}≠∅.若B ⊆A ,求实数a ,b 的值.解:∵ B ⊆A ,A ={-1,1},B ≠∅,∴ B ={-1}或B ={1}或B ={-1,1}.若B ={-1},则方程x 2-ax +b =0有且只有一个实数根-1,即Δ=(-a)2-4b =0,且(-1)2-a×(-1)+b =0,此时a =-2,b =1.若B ={1},则方程x 2-ax +b =0有且只有一个实数根1,即Δ=(-a)2-4b =0,且12-a×1+b =0,此时a =2,b =1.若B ={-1,1},则方程x 2-ax+b =0有两个不相等的实数根-1,1,即(-1)2-a×(-1)+b =0,12-a×1+b =0,此时a =0,b =-1.综上所述,当⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =0,b =-1时,B ⊆A., 3) 已知集合M ={a ,a +d ,a +2d},N ={a ,aq ,aq 2}(a 为非零常数).若M =N ,求q 的值.解:由题意,若⎩⎪⎨⎪⎧a +d =aq ,a +2d =aq 2,则a(q -1)2=0,q =1(a≠0).然而q =1与集合中元素的互异性矛盾,所以⎩⎪⎨⎪⎧a +d =aq 2,a +2d =aq ⇒a(q -1)(2q +1)=0.因为a≠0,q ≠1,所以q =-12.故所求q 的值为-12.变式训练已知A ={x|-2≤x≤5},B ={x|m +1≤x≤2m-1},B ⊆A ,求m 的取值范围.解:当m +1>2m -1,即m<2时,B =∅,满足B ⊆A ,即m<2;当m +1=2m -1,即m =2时,B ={3},满足B ⊆A ,即m =2;当m +1<2m -1,即m>2时,由B ⊆A ,得⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,即2<m≤3.综上,得m≤3.备选变式(教师专享)一个含有三个实数的集合可表示为⎩⎨⎧⎭⎬⎫a ,1,b a ,也可表示为{a +b ,0,a 2},则a 2 018+b2 018=________.答案:1解析:若集合相等,则集合的元素对应相等,并且集合还需满足确定性、互异性、无序性,所以b a =0,得b =0,此时{a ,1,0}={a ,0,a 2},即⎩⎪⎨⎪⎧a 2=1,a ≠1,故a =-1,所以a 2 018+b 2 018=1., 3 根据集合的关系求参数的取值范围), 4) 已知集合A ={x|x 2+4x =0,x ∈R },B ={x|x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R }.若B ⊆A ,求实数a 的取值范围.解:B ⊆A 可分为B A 和B =A 两种情况,易知A ={0,-4}.(1) 当A =B ={0,-4}时,∵ 0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,∴ ⎩⎪⎨⎪⎧16-8(a +1)+a 2-1=0,a 2-1=0, ∴ a =1.(2) 当B A 时,有B≠∅或B =∅.① 当B≠∅时,B ={0}或B ={-4},∴ 方程x 2+2(a +1)x +a 2-1=0有相等的实数根0或-4,∴ Δ=4(a +1)2-4(a 2-1)=0,∴ a =-1,∴ B ={0}满足条件.② 当B =∅时,Δ<0,∴ a<-1.综上,所求实数a 的取值范围是a≤-1或a =1.变式训练已知集合A ={x|-2≤x≤a},B ={y|y =2x +3,x ∈A},C ={z|z =x 2,x∈A},且C ⊆B ,求正数a 的取值范围.解:B ={x|-1≤x≤2a+3},当0<a≤2时,C ={x|0≤x≤4},而C ⊆B ,则2a +3≥4,即a≥12,即12≤a ≤2;当a>2时,C ={x|0≤x≤a 2},而C ⊆B ,则2a +3≥a 2,即 2<a≤3.综上,得 12≤a ≤3.备选变式(教师专享)设集合A ={1,2,3,…,10},求集合A 的所有非空子集元素的和.解:含有1的子集有29个,含有2的子集有29个,含有3的子集有29个,…,含有10的子集有29个,∴ (1+2+3+…+10)×29=28 160.1. (2018·溧阳中学周练)已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x∈A时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个.答案:6解析:由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},这样的集合共有6个.2. 已知集合A ={(x ,y)|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y)|x ,y ∈R ,且y =x},则A∩B 的元素个数为________________________________________________________________________.答案:2解析:直接解方程组可得两组解,即A∩B 的元素个数为2.3. 若x∈A,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.答案:3解析:具有伙伴关系的元素是-1,12,2,所以具有伙伴关系的集合有3个:{-1},{12,2},⎩⎨⎧⎭⎬⎫-1,12,2.4. (2017·溧阳中学月考)若集合A ={x|ax 2-3x +2=0}的子集至多有两个,则实数a 的取值范围是________.答案:{0}∪⎣⎢⎡⎭⎪⎫98,+∞ 解析:若集合A 的子集只有两个,则A 中只有一个元素.当a =0时,x =23符合要求.当a ≠0时,Δ=(-3)2-4a×2=0,∴ a =98.故a =0或98.若集合A 的子集只有一个,则A =∅,∴ ⎩⎪⎨⎪⎧Δ<0,a ≠0,解得a>98,故实数a 的取值范围是{0}∪⎣⎢⎡⎭⎪⎫98,+∞.5. 已知集合A ={x|x 2-3x +2=0,x ∈R },B ={x|0<x<5,x ∈N },则满足条件A ⊆C ⊆B的集合C 的个数为________.答案:4解析: 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数.由x 2-3x +2=0得x =1或x =2,∴ A ={1,2}.由题意知B ={1,2,3,4},∴ 满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}., 1. 遗忘空集致误)典例 若集合M ={x|x 2+x -6=0},N ={x|ax +1=0},且N ⊆M ,则由a 的可取值组成的集合为________.易错分析:从集合的关系看,N ⊆M ,则N =∅或N≠∅,易遗忘N =∅的情况. 解析:M ={-3,2}.当a =0时,N =∅,满足N ⊆M ;当a≠0时,方程ax +1=0的解为x =-1a,为满足N ⊆M 可使-1a =-3或-1a=2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.答案:⎩⎨⎧⎭⎬⎫0,13,-12特别提醒:(1) 根据集合间的关系求参数的关键是抓住集合间的关系以及集合元素的特征;(2) 在解答本题时,一是不要忽略对空集的讨论,如a =0时,N =∅;二是注意对字母的讨论,如-1a可以为-3或2.一定要注意分类讨论,避免漏解.1. (2018·溧阳中学期初)已知集合A ={2+a ,a},B ={-1,1,3},且A ⊆B ,则实数a 的值是________.答案:1解析:易知a>0.当a =1时,A ={1,3},B ={-1,1,3},满足题意;当a =3时,A ={3,2+3},B ={-1,1,3},不满足题意.所以实数a 的值为1.2. 若集合A ={-1,1},B ={0,2},则集合{z ︱z =x +y ,x ∈A ,y ∈B}中的元素的个数为________.答案: 3解析:容易看出x +y 只能取-1、1、3这三个数值.故共有3个元素.3. 已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ax -1x -a <0,且2∈A,3∉A ,则实数a 的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫13,12∪(2,3] 解析:因为2∈A,所以2a -12-a <0,即(2a -1)(a -2)>0,解得a >2或a <12.①若3∈A,则3a -13-a <0,即(3a -1)(a -3)>0,解得a >3或a <13,所以3∉A 时,13≤a≤3.②由①②可知,实数a 的取值范围是⎣⎢⎡⎭⎪⎫13,12∪(2,3]. 4. 已知集合A ={1,2,3,4,5},B ={(x ,y )|x∈A,y ∈A ,x -y ∈A},则B 中所含元素的个数为________.答案:10解析:由x -y∈A 及A ={1,2,3,4,5}得x>y.当y =1时,x 可取2,3,4,5,有4个;当y =2时,x 可取3,4,5,有3个;当y =3时,x 可取4,5,有2个;当y =4时,x 可取5,有1个.故共有1+2+3+4=10(个).1. 研究一个集合,首先要看集合中的代表元素是什么,然后再看元素的限制条件,即有何属性,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y =f(x)}、{y|y =f(x)}、{(x ,y)|y =f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ⊆B ,则需考虑A =∅和A≠∅两种可能的情况.3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn 图帮助分析.第2课时 集合的基本运算(对应学生用书(文)、(理)4~5页)1. (必修1P 13练习1改编)设集合A ={平行四边形},B ={对角线相等的四边形},则A∩B =________.答案:{矩形}解析:对角线相等的平行四边形为矩形.2. (必修1P 13练习3改编)已知集合A ={y|y =x 2-2x ,x ∈R },B ={y|y =x 2+6x +16,x ∈R },则A∪B=________.答案:[-1,+∞)解析:依题意知A =[-1,+∞),B =[7,+∞),所以A∪B=[-1,+∞). 3. (必修1P 9练习2改编)设全集U ={-2,-1,0,1,2},A ={x|x ≤1},B ={-2,0,2},则∁U (A∩B)=__________.答案:{-1,1,2}解析:∵ A∩B={-2,0}∴ ∁U (A∩B)={-1,1,2}.4. (必修1P 10习题4改编)已知集合A ={0,2,4,6},∁U A ={-1,1,-3,3},∁U B ={-1,0,2},则集合B =__________.答案:{1,4,6,-3,3} 解析:∵ ∁U A ={-1,1,-3,3},∴ U ={-1,1,0,2,4,6,-3,3}.又∁U B ={-1,0,2},∴ B ={1,4,6,-3,3}.5. (必修1P 14习题10改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A∪B,则集合∁U (A∩B)中的元素共有__________个.答案:3解析:全集U =A∪B={3,4,5,7,8,9},A ∩B ={4,7,9},∴ ∁U (A∩B)={3,5,8},∴ ∁U (A∩B)中的元素共有3个.1. 集合的运算(1) 交集:由所有属于A 且属于B 的元素组成的集合,叫做集合A 与集合B 的交集,记作A∩B,即A∩B={x|x ∈A 且x∈B}.(2) 并集:由所有属于A 或属于B 的元素组成的集合,叫做集合A 与集合B 的并集,记作A∪B,即A∪B={x|x ∈A 或x∈B}.(3) 全集:如果集合S 含有我们所研究的各个集合的全部元素,那么这个集合就可以看作一个全集,通常用U 来表示.一切所研究的集合都是这个集合的子集.(4) 补集:集合A 是集合S 的一个子集,由S 中所有不属于A 的元素组成的集合叫做A 的补集,记作∁S A ,即∁S A ={x|x∈S,且x ∉A}.2. 常用运算性质及一些重要结论(1) A∩B=B∩A,A ∩A =A ,A ∩∅=∅,A∩B=A ⇔A ⊆B. (2) A∪B=B∪A,A ∪A =A ,A ∪∅=A ,A ∪B =B ⇔A ⊆B. (3) ∁S (∁S A)=A ,∁S ∅=S , (∁S A )∪(∁S B)=∁S (A∩B), (∁S A )∩(∁S B)=∁S (A∪B).[备课札记], 1 集合的运算), 1) 已知A =⎩⎨⎧⎭⎬⎫x|1x ≥1,B ={y|y =x 2+x +1,x ∈R }.(1) 求A ,B ;(2) 求A∪B,A ∩(∁R B).解:(1) 由1x ≥1,得1x -1=1-xx≥0,即x(x -1)≤0且x≠0,解得0<x≤1,所以A =(0,1].由y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34≥34,得B =⎣⎢⎡⎭⎪⎫34,+∞.(2) 因为∁R B =⎝ ⎛⎭⎪⎫-∞,34,所以A∪B=(0,+∞),A ∩(∁R B)=⎝ ⎛⎭⎪⎫0,34. 变式训练已知A ={x|x 2-3x +2=0},B ={x|x 2-ax +a -1=0},C ={x|x 2-mx +2=0},且A∪B =A ,A ∩C =C ,求实数a 及m 的值.解:∵ A={1,2},B ={x|(x -1)[x -(a -1)]=0},又A∪B=A ,∴ B ⊆A. ∴ a -1=2⇒a =3(此时A =B), 或a -1=1⇒a =2(此时B ={1}).由A∩C=C ⇒C ⊆A ,从而C =A 或C =∅(当C ={1}或C ={2}时,可检验不符合题意). 当C =A 时,m =3;当C =∅时,Δ=m 2-8<0⇒-22<m<2 2.综上可知a =2或a =3,m =3或-22<m<2 2. 备选变式(教师专享)已知两个正整数集合A ={a 1,a 2,a 3,a 4},B ={a 21,a 22,a 23,a 24},其中a 1<a 2<a 3<a 4.若A∩B ={a 1,a 4},且a 1+a 4=10,且A∪B 的所有元素之和是124,求集合A ,B.分析:命题中的集合是列举法给出的,只需要根据“交、并”的意义及元素的基本性质解决,注意“正整数”这个条件的运用.解:∵ 1≤a 1<a 2<a 3<a 4,∴ a 21<a 22<a 23<a 24,∵ A ∩B ={a 1,a 4},∴ 只可能有a 1=a 21⇒a 1=1,而a 1+a 4=10,∴ a 4=9,∴ a 24≠a 4.(1) 若a 22=a 4,则a 2=3,∴ A ∪B ={1,3,a 3,9,a 23,81},∴ a 3+a 23+94=124⇒a 3=5;(2) 若a 23=a 4,则a 3=3,同样可得a 2=5>a 3,与条件矛盾,不合题意. 综上,A ={1,3,5,9},B ={1,9,25,81}., 2 根据集合的运算求参数的取值范围), 2) 设A ={x|a≤x≤a+3},B ={x|x<-1或x>5},当a 为何值时, (1) A∩B≠∅; (2) A∩B=A ;(3) A∪(∁R B)=∁R B. 解:(1) A∩B≠∅,∵ 集合A 的区间长度为3,∴ 由图可得a<-1或a +3>5,解得a<-1或a>2,∴ 当a<-1或a>2时,A ∩B ≠∅.(2) ∵ A∩B=A ,∴ A ⊆B.由图得a +3<-1或a>5,即a<-4或a>5时,A ∩B =A.(3) 由补集的定义知∁R B ={x|-1≤x≤5}, ∵ A ∪(∁R B)=∁R B ,∴ A ⊆∁R B.由图得⎩⎪⎨⎪⎧a≥-1,a +3≤5,解得-1≤a≤2.变式训练设全集是实数集R ,A ={x|2x 2-7x +3≤0},B ={x|x 2+a<0}. (1) 当a =-4时,求A∩B 和A∪B;(2) 若(∁R A )∩B=B ,求实数a 的取值范围.解:(1) A =⎩⎨⎧⎭⎬⎫x|12≤x≤3.当a =-4时,B ={x|-2<x<2},∴ A ∩B =⎩⎨⎧⎭⎬⎫x|12≤x<2,A ∪B ={x|-2<x≤3}.(2) ∁R A =⎩⎨⎧⎭⎬⎫x|x<12或x>3. 当(∁R A )∩B=B 时,B ⊆∁R A ,即A∩B=∅. ① 当B =∅,即a≥0时,满足B ⊆∁R A ;② 当B≠∅,即a<0时,B ={x|--a<x<-a},要使B ⊆∁R A ,需-a ≤12,解得-14≤a<0.综上可得,a 的取值范围是⎩⎨⎧⎭⎬⎫a|a≥-14.备选变式(教师专享)设集合A ={x|x 2-2x +2m +4=0},B ={x|x<0},若A ∩B ≠∅,求实数m 的取值范围. 解:(解法1)命题⇔方程x 2-2x +2m +4=0至少有一个负实数根,设M ={m|关于x 的方程x 2-2x +2m +4=0两根均为非负实数},则⎩⎪⎨⎪⎧Δ=4(-2m -3)≥0,x 1+x 2=2>0,x 1x 2=2m +4≥0,⇒-2≤m≤-32,∴ M =⎩⎨⎧⎭⎬⎫m|-2≤m≤-32.设全集U ={m|Δ≥0}=⎩⎨⎧⎭⎬⎫m|m≤-32,∴ m 的取值范围是∁U M ={m|m<-2}.(解法2)命题⇔方程的小根x =1--2m -3<0 ⇒-2m -3>1⇒-2m -3>1⇒m<-2., 3 集合的综合应用), 3) 已知集合A =⎩⎨⎧⎭⎬⎫x|x -5x +1≤0,B ={x|x 2-2x -m<0}. (1) 当m =3时,求A∩(∁R B);(2) 若A∩B={x|-1<x<4},求实数m 的值.解:因为x -5x +1≤0,所以-1<x≤5,所以A ={x|-1<x≤5}.(1) 当m =3时,B ={x|-1<x<3}, 则∁R B ={x|x≤-1或x≥3}, 所以A∩(∁R B)={x|3≤x≤5}.(2) 因为A ={x|-1<x≤5},A ∩B ={x|-1<x<4},所以有42-2×4-m =0,解得m =8. 此时B ={x|-2<x<4},符合题意, 故实数m 的值为8. 备选变式(教师专享)已知集合A =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=1,x ∈R ,y ∈R ,B ={(x ,y)|y =ax +2,x ∈R ,y ∈R },若A∩B=∅,求实数a 的值.解:由方程组⎩⎪⎨⎪⎧y -3x -2=1,y =ax +2得(1-a)x =1,当a =1时,方程组无解;当a≠1时,x =11-a ,若11-a =2,即a =12,此时x =2为增根,所以方程组也无解. 从而a =1或a =12时,A ∩B =∅.反思:本题也可利用数形结合方法解., 4 与集合运算有关的新定义问题), 4) 定义集合运算A*B ={x|x∈A,或x∈B,但x ∉A ∩B},设A ={1,2,3,4},B ={1,2,5,6,7},则(A*B)*A =________.答案:{1,2,5,6,7}解析:A*B ={3,4,5,6,7},∴ (A*B)*A ={1,2,5,6,7}.变式训练(必修1P 14习题13改编)设A ,B 是非空集合,定义A×B={x|x∈A∪B,且x ∉A ∩B}.若A ={x|y =x 2-3x},B ={y|y =3x},则A×B=__________.答案:(-∞,3)解析:集合A 即为函数f(x)=x 2-3x 的定义域,由x 2-3x≥0⇒x ≤0或x≥3,故集合A =(-∞,0]∪[3,+∞),集合B 即为函数g(x)=3x的值域,故B =(0,+∞),从而有A∪B =R ,A ∩B =[3,+∞),由定义知A×B=(-∞,3).备选变式(教师专享)(2018·洪泽中学单元卷)对于任意两集合A ,B ,定义A -B ={x|x ∈A 且x ∉B},A*B =(A -B)∪(B-A),记A ={y|y ≥0},B ={x|-3≤x≤3},则A*B =________.答案:[-3,0)∪(3,+∞) 解析:由题意知,A -B ={x|x >3},B -A ={x|-3≤x<0},A*B =(A -B)∪(B-A)=[-3,0)∪(3,+∞).反思:本题考查集合的运算新定义问题,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义一种运算A -B ={x|x∈A 且x ∉B},A*B =(A -B)∪(B-A)达到考查集合运算的目的.1. (2018·四川雅安中学月考)已知M ={y|y =x 2,x ∈R },N ={y|x 2+y 2=1,x ∈R ,y ∈R },则M∩N=________.答案:[0,1]解析:由题意得M =[0,+∞),由x 2+y 2=1,得到-1≤y≤1,即N =[-1,1],则M∩N =[0,1].2. 已知集合A ={0,a},B ={0,1,3}.若A∪B={0,1,2,3},则实数a 的值为__________. 答案:2解析:A ={0,a},B ={0,1,3},A ∪B ={0,1,2,3},则a =2. 3. 已知全集U ={1,2,3,4,5},A ={1,2},B ={2,3,4},那么A ∪(∁U B)=__________. 答案:{1,2,5}解析:∵ ∁U B ={1,5},∴ A ∪(∁U B)={1,2,5}.4. 已知集合A ={1,2,3,4,5},B ={1,3,5,7,9},C =A∩B,则集合C 的子集的个数为__________.答案:8解析:C ={1,3,5},则集合C 的子集的个数为8.5. 设集合A ={-1,0,1},B ={a -1,a +1a},A ∩B ={0},则实数a 的值为__________.答案:1解析:0∈⎩⎨⎧⎭⎬⎫a -1,a +1a ,由 a +1a ≠0,则a -1=0,则实数a 的值为1., 2. 集合关系不能转化)典例 设A ={(x ,y)|y 2-x -1=0},B ={(x ,y)|4x 2+2x -2y +5=0},C ={(x ,y)|y =kx +b},是否存在k ,b ∈N ,使得(A∪B)∩C=∅,并证明你的结论.易错分析:难点在于对集合关系的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手.解:∵ (A∪B)∩C=∅, ∴ A∩C=∅且B∩C=∅.∵ ⎩⎪⎨⎪⎧y 2=x +1,y =kx +b ,∴ k 2x 2+(2bk -1)x +b 2-1=0. ∵ A ∩C =∅,∴ Δ1=(2bk -1)2-4k 2(b 2-1)<0,∴ 4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1 ①.∵ ⎩⎪⎨⎪⎧4x 2+2x -2y +5=0,y =kx +b , ∴ 4x 2+(2-2k)x +(5-2b)=0.∵ B ∩C =∅,∴ Δ2=(1-k)2-4(5-2b)<0,∴ k 2-2k +8b -19<0,从而8b<20,即b<2.5 ②.由①②及b∈N ,得b =2,代入由Δ1<0和Δ2<0组成的不等式组,得⎩⎪⎨⎪⎧4k 2-8k +1<0,k 2-2k -3<0,∴k =1.故存在自然数k =1,b =2,使得(A∪B)∩C=∅.特别提醒:解决此题的闪光点是将条件(A∪B)∩C=∅转化为A∩C=∅且B∩C=∅.要能够借助Venn 图充分理解集合的交、并、补之间的关系及熟练转化.1. (2018·遂宁射洪中学入学考试)设集合U ={x|x <5,x ∈N *},M ={x|x 2-5x +6=0},则∁U M =________.答案:{1,4}解析:集合U ={x|x<5,x ∈N *}={1,2,3,4},M ={x|x 2-5x +6=0}={2,3},则∁U M ={1,4}.2. 设集合A ={x∈R |⎩⎪⎨⎪⎧x +1≥0,x -3≤0},B ={x ∈Z |x -2>0},则A∩B=________.答案:{3}解析:∵ A={x|-1≤x≤3},B ={x∈Z |x>2},∴ A ∩B ={x ∈Z |2<x ≤3}={3}.3. 设U =R ,集合A ={x|x 2+3x +2=0},B ={x|x 2+(m +1)x +m =0}.若(∁U A )∩B=∅,则m 的值是________.答案:1或2解析:A ={-2,-1},由(∁U A )∩B=∅,得B ⊆A.∵ 方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴ B ≠∅. ∴ B ={-1}或B ={-2}或B ={-1,-2}. ① 若B ={-1},则m =1;② 若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)×(-2)=4,这两式不能同时成立,∴ B ≠{-2};③ 若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)×(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴ m 的值是1或2.4. 某校高一年级举行语、数、英三科竞赛,高一(2)班共有32名 同学参加三科竞赛,有16人参加语文竞赛,有10人参加数学竞赛,有16人参加英语竞赛,同时参加语文和数学竞赛的有3人,同时参加语文和英语竞赛的有3人,没有人同时参加全部三科竞赛,问:同时参加数学和英语竞赛的有多少人?只参加语文一科竞赛的有多少人?解:设所有参加语文竞赛的同学组成的集合用A 表示,所有参加数学竞赛的同学组成的集合用B 表示,所有参加英语竞赛的同学组成的集合用C 表示,设只参加语文竞赛的有x 人,只参加数学竞赛的有y 人,只参加英语竞赛的有z 人,同时参加数学和英语竞赛的有m 人.根据题意,可作出如图所示Venn 图,则有⎩⎪⎨⎪⎧x +3+3+y +m +z =32,x +3+3=16,y +m +3=10,z +m +3=16,解得⎩⎪⎨⎪⎧x =10,y =3,z =9,m =4.答:同时参加数学和英语竞赛的有4人,只参加语文一科竞赛的有10人.1. 集合的运算结果仍然是集合.进行集合运算时应当注意: (1) 勿忘对空集情形的讨论; (2) 勿忘集合中元素的互异性;(3) 对于集合A 的补集运算,勿忘A 必须是全集的子集; (4) 已知两集合间的关系求参数或参数范围时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn 图化抽象为直观.还要注意“回代检验”,从而对所求数值进行合理取舍.2. 在集合运算过程中应力求做到“三化” (1) 意义化:首先明确集合的元素的意义,它是怎样类型的对象(数集、点集,图形等)?是表示函数的定义域、值域,还是表示方程或不等式的解集?(2) 具体化:具体求出相关集合中函数的定义域、值域或方程、不等式的解集等;不能具体求出的,也应力求将相关集合转化为最简形式.(3) 直观化:借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来,从而借助数形结合思想解决问题.[备课札记]第3课时 简单的逻辑联结词、量词(对应学生用书(文)、(理)6~8页)1. 写出命题“若a =0,则ab =0”的逆否命题:________________________________________________________________________.答案:若ab≠0,则a≠02. 原命题“设a ,b ,c ∈R ,若ac 2>bc 2,则a>b”的逆命题、否命题、逆否命题中,真命题共有________个.答案:1 3. (改编题)已知集合A ={1,a},B ={1,2,3},则“a=3”是“A ⊆B ”的____________条件.答案:充分不必要解析:a =3时,A ={1,3},显然A ⊆B.但A ⊆B 时,a =2或3.所以a =3是A ⊆B 的充分不必要条件.4. (改编题)函数f(x)=x 2+mx +1的图象关于直线x =1 对称的充要条件是____________.答案:m =-2解析:已知函数f(x)=x 2+mx +1的图象关于直线x =1对称,则m =-2;反之也成立.所以函数f(x)=x 2+mx +1的图象关于直线x =1对称的充要条件是m =-2.5. (改编题)已知命题p :∃x ∈R ,x 2+x -1<0,则綈p 为__________.答案:∀x ∈R ,x 2+x -1≥0解析:含有存在量词的命题的否定,需将存在量词改为全称量词,并将结论否定,即綈p :∀x ∈R ,x 2+x -1≥0.1. 四种命题及其关系 (1) 四种命题① 如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题互为逆命题;② 如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;③ 如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题互为逆否命题,这个命题叫做原命题的逆否命题.(2)(3) 四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 充分条件与必要条件(1) 如果p⇒q,那么称p是q的充分条件,q是p的必要条件.(2) 如果p⇒q,且q⇒p,那么称p是q的充要条件,记作p⇔q.(3) 如果p⇒q,q⇒/__p,那么称p是q的充分不必要条件.(4) 如果q⇒p,p⇒/__q,那么称p是q的必要不充分条件.(5) 如果p⇒/ q,且q⇒/ p,那么称p是q的既不充分也不必要条件.3. 简单的逻辑联结词(1) “或”“且”“非”叫做逻辑联结词.①或:两个简单命题至少一个成立.②且:两个简单命题都成立.③非:对一个命题的否定.(2) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(3) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(4) 一个命题p的否定记作綈p,读作“非p”或“p的否定”.(5) 命题p∧q,p∨q,綈p的真假判断p∧q中p,q有一假为假,p∨q中p,q有一真为真,p与非p必定是一真一假.4. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“∀x”表示“对任意x”.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“∃x”表示“存在x”.含有存在量词的命题,叫做存在性命题.存在性命题“M中存在一个x,使p(x)成立”可用符号简记为∃x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.5. 含有一个量词的命题的否定[备课札记], 1 四种命题及其相互关系), 1) (1) 命题“若a >b ,则2a >2b-1”的否命题为______________;(2) (2018·溧阳中学摸底)命题“∃x<0,有x 2>0”的否定是________________.(3) 命题“若x 2+x -m =0没有实根,则m≤0”是________命题.(选填“真”或“假”)答案:(1) 若a≤b,则2a ≤2b -1 (2) ∀x<0,有x 2≤0 (3) 真 解析:(3) 很可能许多同学会认为它是假命题(原因m =0时显然方程有根),其实不然,由x 2+x -m =0没有实根可推得m<-14,而⎩⎨⎧⎭⎬⎫m|m<-14是{m|m≤0}的真子集,由m<-14可推得m≤0,故原命题为真.其实,用逆否命题很容易判断它是真命题.【精要点评】 本题考查了命题间的关系,由原命题写出其否命题、逆否命题.原命题与逆否命题同真同假,逆命题与否命题同真同假.变式训练下列命题中不是真命题的是__________.(填序号) ① “若ab =0,则a =0或b =0”的逆命题;② “若x 2+y 2≠0,则x, y 不全为零”的否命题;③ “∃x ∈R ,使x 2+1>3x”的否定;④ “若m>0,则x 2+x -m =0有实根”的逆否命题. 答案:③解析:①中命题的逆命题为若a =0或b =0,则ab =0,为真命题,故①正确;②中命题的否命题为若x 2+y 2=0,则x ,y 全为零,为真命题,故②正确;③中命题的否定为∀x∈R ,使x 2-3x +1≤0 ,因为Δ=(-3)2-4=5>0,故③错误;④中命题x 2+x -m =0有实根⇔Δ=1+4m≥0⇒m ≥-14⇒若m>0,则x 2+x -m =0有实根为真命题⇒其逆否命题也为真命题,故④正确.故填③.备选变式(教师专享)命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是____________________________________.答案:若x +y 不是偶数,则x ,y 不都是偶数解析:由于“x,y 都是偶数”的否定表达是“x,y 不都是偶数”,“x +y 是偶数”的否定表达是“x+y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”., 2 充分条件和必要条件)●典型示例, 2) 已知集合A =⎩⎨⎧⎭⎬⎫y|y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x|x +m 2≥1}.p :x∈A,q :x∈B,并且p 是q 的充分条件,求实数m 的取值范围.【思维导图】 对集合进行化简→将条件间的关系转化为集合间的包含关系→利用集合间的关系列出关于m 的不等式→求出实数m 的范围【规范解答】 解: 化简集合A ,由y =x 2-32x +1配方得y =⎝ ⎛⎭⎪⎫x -342+716.∵ x ∈⎣⎢⎡⎦⎥⎤34,2,∴ y min =716,y max =2.∴ y∈⎣⎢⎡⎦⎥⎤716,2.∴ A =⎩⎨⎧⎭⎬⎫y|716≤y≤2.化简集合B ,由x +m 2≥1,得x≥1-m 2,B ={x|x≥1-m 2}.∵ 命题p 是命题q 的充分条件,∴ A ⊆B.∴ 1-m 2≤716,解得m≥34或m≤-34.∴ 实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞. 【精要点评】 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.●总结归纳充要关系的几种判断方法(1) 定义法:直接判断若p 则q 、若q 则p 的真假.(2) 等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3) 利用集合间的包含关系判断:设A ={x|p(x)},B ={x|q(x)},若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A =B ,则p 是q 的充要条件.●题组练透1. “m<14”是“一元二次方程x 2+x +m =0有实数解”的______________(选填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.答案:充分不必要解析:x 2+x +m =0有实数解等价于Δ=1-4m≥0,即m≤14.2. 已知p :x≥k,q :(x +1)(2-x)<0,如果p 是q 的充分不必要条件,则k 的取值范围是____________.答案:(2,+∞)解析:由q :(x +1)(2-x)<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞).3. 设n∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =__________. 答案:3或4解析:已知方程有根,由判别式Δ=16-4n≥0,解得n≤4,又n∈N *,逐个分析,当n =1,2时,方程没有整数根;而当n =3时,方程有整数根1,3;当n =4时,方程有整数根2.4. 若命题p :∃x ∈R ,使x 2+ax +1<0,则綈p :__________________.答案:∀x ∈R ,使x 2+ax +1≥0 解析:存在性命题的否定需要将存在量词∃改为全称量词∀,并且将命题的结论进行否定.所以命题“∃x ∈R ,使x 2+ax +1<0”的否定是“∀x ∈R ,使x 2+ax +1≥0”., 3 逻辑联结词), 3) 已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p∨q为假命题,则实数m 的取值范围是____________.答案:[2,+∞)解析:依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m≥2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m≥0,m ≤-2或m≥2,即m≥2. 变式训练已知命题p :“∀x ∈[0,1],a ≥e x ”;命题q :“∃x ∈R ,使得x 2+4x +a =0”.若命题“p∧q”是真命题,则实数a 的取值范围是____________.答案:[e ,4]解析:若命题“p∧q”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x,得a≥e ;由∃x ∈R ,使得x 2+4x +a =0,知Δ=16-4a≥0,a ≤4,因此e ≤a ≤4.备选变式(教师专享)已知命题p :|x 2-x|≥6,q :x∈Z ,若“p∧q”与“綈q”都是假命题,求x 的值. 解:∵ 綈q 假,∴ q 真.又p∧q 假,∴ p 假.∴ ⎩⎪⎨⎪⎧|x 2-x|<6,x ∈Z ,即⎩⎪⎨⎪⎧-6<x 2-x <6,x ∈Z ,∴ ⎩⎪⎨⎪⎧-2<x <3,x ∈Z , ∴ x =-1,0,1,2., 4 全称命题与存在性命题), 4) 已知命题p :“∀x ∈R ,∃m ∈R ,使4x -2x +1+m =0”.若命题綈p 是假命题,则实数m 的取值范围是________.答案:(-∞,1]解析:命题綈p 是假命题,即命题p 是真命题,由4x -2x +1+m =0得m =-(4x -2x +1),令f(x)=-(4x -2x +1),由于f(x)=-(2x -1)2+1,所以当x ∈R 时f(x)≤1,因此实数m 的取值范围是m≤1.备选变式(教师专享)若命题“∃x ∈R ,有x 2-mx -m<0”是假命题,则实数m 的取值范围是________. 答案:[-4,0]解析:“∃x ∈R ,有x 2-mx -m<0”是假命题,则“∀x ∈R ,有x 2-mx -m≥0”是真命题,即Δ=m 2+4m≤0,∴ -4≤m≤0.1. 已知命题p :∃x ∈R ,使ax 2+2x +1<0.当綈p 为真命题时,实数a 的取值范围是____________.答案:{a|a≥1}解析:綈p :∀x ∈R ,使ax 2+2x +1≥0.若此命题为真命题,则⎩⎪⎨⎪⎧a>0,4-4a≤0,即a≥1,从而所求a 的取值范围是{a|a≥1}.2. (2016·全国Ⅰ卷)命题“∃x ∈R ,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是____________.答案:[-22,22]解析:因题中的命题为假命题,则它的否定“∀x ∈R ,2x 2-3ax +9≥0”为真命题,也就是常见的“恒成立”问题,因此只需Δ=9a 2-4×2×9≤0,即-22≤a ≤2 2.3. (2018·衡水中学周测)设p :2x -1x -1≤0,q :x 2-(2a +1)x +a(a +1)<0,若p 是q的充分不必要条件,则实数a 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫0,12 解析:因为p :12≤x<1,q :a<x<a +1,所以由题意可得⎩⎪⎨⎪⎧a<12,a +1≥1⇒0≤a<12.4. (2018·阳春一中月考)设命题p :∀x ∈(0,+∞),3x >2x;命题q :∃x ∈(-∞,0),3x>2x ,则下列命题为真命题的是________.(填序号)① p ∧q ;② p∧(綈q);③ (綈p)∧q;④ (綈p)∧(綈q). 答案:②解析:∀x ∈(0,+∞),3x >2x,所以命题p 为真命题;∀x ∈(-∞,0),3x<2x ,所以命题q 为假命题,因此p∧q,(綈p)∧q,(綈p)∧(綈q)为假命题,p ∧(綈q)为真命题,填②.点睛:若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非”:真假相反,做出判断即可.5. (2017·溧阳中学月考)已知函数f(x)=x 1+|x|+e x,则x 1+x 2>0是f(x 1)+f(x 2)>f(-x 1)+f(-x 2)的________条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)答案:充要解析:当x>0时, y =x 1+x =1-11+x ,易知y =x 1+x 在(0,+∞)上单调递增,又y =x1+|x|。

2019版高考数学微一轮复习第一章集合与常用逻辑用语第

2019版高考数学微一轮复习第一章集合与常用逻辑用语第

A.{x|-2≤x<-1} C.{x|-1<x≤2}
B.{x|x<-2 或 x>5} D.{x|x<-2 或 x>-1}
解析:从韦恩图可知阴影部分是 M∪N,又 M={x|x<-2 或 x>2},所以 M∪N= {x|x<-2 或 x>-1}.
答案:D
5.下面结论正确的是______.(写出所有正确结论的编号) (1){1,2,3}={3,2,1}. (2)∅={0}. (3)若 A∩B=A∩C,则 B=C. (4)已知集合 M={1,2,3,4},N={2,3},则 M∩N=N. (5)若全集 U={-1,0,1,2},P={x∈Z|x2<4},则∁UP={2}.
第一章 集合与常用逻辑用语
第一节 集合
1.集合与元素 (1)集合元素的三个特征:___确__定__性___、__互__异__性____、无序性. (2)元素与集合的关系是_属__于__或__不__属__于____关系,用符号_∈____或__∉___表示. (3)集合的表示法:__列__举__法____、__描__述__法____、图示法.
解析:(1)集合中元素有无序性,正确; (2)∅不含任何元素,不正确; (3)若 A={1},B={1,2},C={1,2,3}满足 A∩B=A∩C, 而 B≠C.不正确; (4)正确; (5)由题知 P={0,-1,1},则∁UP={2},正确. 答案:(1)(4)(5)
考点一 集合的基本概念
=( )
A.3,-32 C.1,32
B.-3,32 D.32,3
解析:通过解不等式化简集合 A,B,再利用交集定义求解. ∵x2-4x+3<0,∴1<x<3, ∴A={x|1<x<3.} ∵2x-3>0,∴x>32,∴B=xx>32 . ∴A∩B={x|1<x<3}∩xx>32 =x32<x<3 . 故选 D. 答案:D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高考数学微一轮复习第一章集合与常用逻辑用语第1节集合练习理1.(xx·高考陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N等于( ) A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析:由已知得M={0,1},N={x|0<x≤1},则M∪N=[0,1].故选A.答案:A2.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}解析:选项A中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合.选项C中的集合M表示由直线x+y=1上的所有点组成的集合,集合N表示由直线x+y=1上的所有点的纵坐标组成的集合,即N={y|x+y=1}=R,故集合M与N不是同一个集合.选项D中的集合M是数集,而集合N是点集,故集合M与N不是同一个集合.选项B,由集合元素的无序性,可知M,N表示同一个集合,故选B.答案:B3.(xx·高考全国卷Ⅲ)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:先化简集合S,再利用交集的定义求解.由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.答案:D4.(xx·郑州第一次质量预测)已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是( )A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1]解析:由M⊆N,结合数轴可得a≥2,故选B.答案:B5.(xx·河北沧州质检)已知集合A ={x |lg x ≤0},B ={x |x ≥14},则A ∩B 等于( )A.⎣⎢⎡⎦⎥⎤14,1B.⎣⎢⎡⎭⎪⎫14,1C.⎣⎢⎡⎦⎥⎤13,1 D.⎝ ⎛⎦⎥⎤0,14 解析:易知A ={x |0<x ≤1}, 又已知B ={x |x ≥14},所以A ∩B ={x |14≤x ≤1},故选A.答案:A6.(xx·安徽皖南八校联考)已知集合A ={y |y =⎝ ⎛⎭⎪⎫12x,x ∈R},B ={-2,-1,1,2},则下列结论正确的是( )A .A ∩B ={-2,-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-2,-1}解析:因为A =(0,+∞),所以A ∩B ={1,2},(∁R A )∪B ={y |y ≤0或y =1,2},A ∪B ={y |y >0或y =-1,-2},(∁R A )∩B ={-1,-2}. 所以D 项正确. 答案:D7.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个D .8个解析:因为M ={0,1,2,3,4},N ={1,3,5}, 所以M ∩N ={1,3}.所以M ∩N 的子集共有22=4(个).故选B. 答案:B8.(xx·高考江苏卷)已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.解析:由已知得,A ∪B ={1,2,3,4,5}, 故集合A ∪B 中元素的个数为5. 答案:59.集合A ={x ||x -2|<4}中的最小整数为________. 解析:A ={x ||x -2|<4}={x |-2<x <6}, 则最小整数为-1. 答案:-110.(xx·宜春中学、新余一中联考)已知全集为R.集合A ={x |x 2-5x -6<0},B ={x |2x<1},则图中阴影部分表示的集合是________.解析:由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁R B )∩A .因为∁R B ={x |x ≥0},所以(∁R B )∩A ={x |0≤x <6}.答案:{x |0≤x <6}能力提升练 (时间:15分钟)11.已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3}.若B ∩A =B ,则a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-32,-1 B.⎝⎛⎦⎥⎤-∞,-32C .(-∞,-1]D.⎝ ⎛⎦⎥⎤-32,+∞解析:因为B ∩A =B ,所以B ⊆A . 当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;当B ≠∅时,要使B ⊆A , 则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.综上可知,a 的取值范围为(-∞,-1].故选C. 答案:C12.设全集U ,已知非空集合M 和N ,规定M -N ={x |x ∈M 且x ∉N },那么M -(M -N )等于( )A.M∪N B.M∩NC.M D.N解析:设集合M={1,2,3,4,5},N={4,5,6,7},根据定义M-N={x|x∈M且x∉N},则M-N={1,2,3},因此M-(M-N)={x|x∈M且x∉M-N}={4,5}=M∩N,故选B.答案:B13.已知R是实数集,集合P={x|y=ln(x2+2 017x-2 018)},Q={y|y=-x2+2x+3},则(∁R P)∪Q=________.解析:集合P表示函数y=ln(x2+2 017x+2 018)的定义域,由x2+2 017x+2 018>0,即(x-1)(x+2 018)>0,解得x<-2 018或x>1.故P=(-∞,-2 018)∪(1,+∞),∁R P=[-2 018,1].集合Q表示函数y=-x2+2x+3的值域,所以y∈[0,2],即Q=[0,2].所以(∁R P)∪Q=[-2 018,2].答案:[-2 018,2]14.已知集合{a,b,c}={-1,0,1},且下列三个关系:①a≠1;②b=1;③a≠-1有且只有一个正确,则10a×5b+2c等于________.解析:依题意可分下列三种情况:(1)若只有①正确,则a≠1,b≠1,c=-1,此时a =b=0,与集合中元素的互异性矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b=1,a=1,c=-1,此时a=b=1,与集合中元素的互异性矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c≠-1,a=1,b≠1,此时b=-1,c=0,所以10a×5b+2c=101×5-1+20=3.答案:315.某校高三(1)班50个学生选择选修模块课程,他们在A,B,C三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如下表:解析:设三个模块都选择的学生人数为x,则各部分人数如图所示,则有(1+x)+(5+x)+(2+x)+(12-x)+(13-x)+(11-x)+x=50,解得x=6.答案:62019-2020年高考数学微一轮复习第一章集合与常用逻辑用语第3节简单逻辑联结词全称量词与存在量词练习理1.(xx·郑州第一次质量预测)已知命题p:∀x>0,x3>0,那么綈p是( )A.∃x≤0,x3≤0B.∀x>0,x3≤0C.∃x>0,x3≤0 D.∀x<0,x3≤0解析:“∀x>0,x3>0”的否定应为“∃x>0,x3≤0”,故选C.答案:C2.(xx·天津质检)已知命题p:∀x>0,总有(x+1)e x>1,则綈p为( )A.∃x0≤0,使得(x0+1)e x0≤1B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤1解析:利用全称命题的否定是特称(存在性)命题求解.“∀x>0,总有(x+1)e x>1”的否定是“∃x0>0,使得(x0+1)e x0≤1”.故选B.答案:B3.(xx·滁州模拟)“对x∈R,关于x的不等式f(x)>0有解”等价于( )A.∃x0∈R,使得f(x0)>0成立B.∃x0∈R,使得f(x)≤0成立C.∀x∈R,f(x)>0成立D.∀x∈R,f(x)≤0成立解析:“对x∈R,关于x的不等式f(x)>0有解”的意思就是∃x0∈R,使得f(x0)>0成立,故选A.答案:A4.已知命题p:∃k∈R,使得直线l:y=kx+1和圆C:x2+y2=2相离;q:若ac2<bc2,则a<b.则下列命题是真命题的是( )A.p∧q B.p∨(綈q)C.p∧(綈q) D.(綈p)∧q解析:直线l:y=kx+1经过定点P(0,1),显然点P在圆C内,所以直线l和圆C恒相交,故命题p为假命题;命题q,因为c2>0(分母不为零),所以该命题为真命题.所以(綈p)∧q为真命题.故选D.答案:D5.(xx·湖北模拟)已知命题“∃x0∈R,x02+ax0-4a<0”为假命题,则实数a的取值范围为( )A.[-16,0] B.(-16,0)C.[-4,0] D.(-4,0)解析:由题意可知“∀x∈R,x2+ax-4a≥0”为真命题,所以Δ=a2+16a≤0,解得-16≤a≤0,故选A.答案:A6.(xx·太原模拟)已知命题p:∃x0∈R,e x0-mx0=0,q:∀x∈R,x2+mx+1≥0,若p∨(綈q)为假命题,则实数m的取值范围是( )A.(-∞,0)∪(2,+∞) B.[0,2]C.R D.∅解析:由p∨(綈q)为假命题知p假q真.由p假知命题“∀x∈R,e x-mx≠0”为真命题,即函数y=e x与y=mx的图象无交点.设直线y=mx与曲线y=e x相切的切点为(x0′,y0′),则切线方程为y-e x0′=e x0′(x-x0′),又切线过原点,则可求得x0′=1,y0′=e,从而m=e,所以命题p为假时有0≤m<e.命题q为真时有Δ=m2-4≤0.即-2≤m≤2.综上知,m的取值范围是0≤m≤2.故选B.答案:B7.命题“∃x0∈R,cos x0≤1”的否定是________.解析:因为特称命题的否定是把特称量词改为全称量词,且对结论否定,所以该命题的否定为∀x ∈R ,cos x >1.答案:∀x ∈R ,cos x >18.已知命题p :a 2≥0(a ∈R ),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题①p ∨q ②p ∧q ③(綈p )∧(綈q ) ④(綈p )∧q 其中为假命题的序号为________.解析:显然命题p 为真命题,綈p 为假命题.因为f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,所以函数f (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增. 所以命题q 为假命题,綈q 为真命题.所以p ∨q 为真命题,p ∧q 为假命题,(綈p )∧(綈q )为假命题,(綈p )∨q 为假命题. 答案:②③④9.(xx·高考山东卷)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.解析:因为0≤x ≤π4,所以0≤tan x ≤1,所以“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,所以m ≥1.所以实数m 的最小值为1. 答案:110.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围.解:由2x 2+ax -a 2=0,得(2x -a )(x +a )=0, 所以x =a2或x =-a ,所以当命题p 为真命题时,x =⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, 所以|a |≤2.又“只有一个实数x 满足不等式x 2=2ax +2a ≤0”. 即抛物线y =x 2+2ax +2a 与x 轴只有一个公共点, 所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2. 因为命题“p ∨q ”为假命题, 所以a >2或a <-2;即a 的取值范围为(-∞,-2)∪(2,+∞).11.已知c >0,且c ≠1,设p :函数y =c x在R 上单调递减;q :函数f (x )=x 2-2cx+1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围. 解:∵函数y =c x在R 上单调递减,∴0<c <1. 即p :0<c <1.∵c >0且c ≠1,∴綈p :c >1.又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,∴c ≤12.即q :0<c <12,∵c >0且c ≠1,∴綈q :c >12且c ≠1.又∵“p 或q ”为真,“p 且q ”为假, ∴p 真q 假或p 假q 真. ①当p 真,q 假时,{c ⎪⎪⎪ 0<c <1}∩⎩⎪⎨⎪⎧ c ⎪⎪⎪⎭⎬⎫c >12且c ≠1=⎩⎨⎧ c ⎪⎪⎪⎭⎬⎫12<c <1.②当p 假,q 真时,{c |c >1}∩⎩⎨⎧c ⎪⎪⎪⎭⎬⎫0<c ≤12=∅.综上所述,实数c 的取值范围是⎩⎨⎧c ⎪⎪⎪⎭⎬⎫12<c <1.能力提升练 (时间:15分钟)12.(xx·山东实验中学第四次诊断)下列有关命题的叙述错误的是( ) A .若綈p 是q 的必要条件,则p 是綈q 的充分条件 B .若p 且q 为假命题,则p ,q 均为假命题C .命题“∀x ∈R ,x 2-x >0”否定是“∃x ∈R ,x 2-x ≤0” D .“x >2”是“1x <12”的充分不必要条件解析:易知,A 正确;p 且q 为假,p ,q 至少有一个为假,B 错误; “∀”的否定是“∃”,“>”的否定是“≤”,C 正确;“x >2”一定能推出“1x <12”,但当x =-1时,满足1x <12,但不满足x >2,所以“x >2”是“1x <12”的充分不必要条件,D 正确.综上可知,选B. 答案:B13.(xx·成都模拟)已知命题p :∃x 0∈R,2-x 0>e x 0,命题q :∀∈R +且a ≠1,log a (a 2+1)>0,则正确的结论为( )A .命题p ∨(綈q )是假命题B .命题p ∧(綈q )是真命题C .命题p ∨q 是假命题D .命题p ∧q 是真命题解析:对于命题p :∃x 0∈R,2-x 0>e x 0, 当x 0=0时,此命题成立,故是真命题;命题q :∀a ∈R +且a ≠1,log a (a 2+1)>0,当0<a <1时,对数式的值是负数,故命题q 是假命题.由此知命题p ∨(綈q )是真命题,命题p ∧(綈q )是假命题,命题p ∨q 是真命题,命题p ∧q 是假命题,故选B.答案:B14.(xx·潍坊高三内部材料)已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1,且给定条件p :x <π4或x >π2,x ∈R .若条件q :-2<f (x )-m <2,且綈p 是q 的充分条件,求实数m 的取值范围.解:由条件q 可得⎩⎪⎨⎪⎧m >fx -2,m <f x +2.因为綈p 是q 的充分条件,所以在π4≤x ≤π2的条件下,⎩⎪⎨⎪⎧m >f x -2,m <f x +2恒成立.又f (x )=2⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x -23cos 2x -1 =2sin 2x -23cos 2x +1 =4sin ⎝⎛⎭⎪⎫2x -π3+1. 由π4≤x ≤π2,知π6≤2x -π3≤2π3, 所以3≤4sin ⎝⎛⎭⎪⎫2x -π3+1≤5,故当x =5π12时,f (x )max =5;当x =π4时,f (x )min =3.所以只需⎩⎪⎨⎪⎧m >5-2,m <3+2成立,即3<m <5.所以m 的取值范围是3<m <5. 15.已知a >0,设命题p :函数y =ax在R 上单调递减,q :函数y =⎩⎪⎨⎪⎧2x -2a x ≥2a,2a x <2a 且y >1恒成立,若p ∧q 为假,p ∨q 为真,求a 的取值范围.解:若p 是真命题,则0<a <1, 若q 是真命题,则y >1恒成立, 即y 的最小值大于1,而y 的最小值为2a ,只需2a >1, 所以a >12,所以q 为真命题时,a >12.又因为p ∨q 为真,p ∧q 为假, 所以p 与q 一真一假, 若p 真q 假, 则0<a ≤12;若p 假q 真, 则a ≥1,故a 的取值范围为⎩⎨⎧⎭⎬⎫a |0<a ≤12或a ≥1.。

相关文档
最新文档