华师大版九年级数学(上册)期末复习测试题(含答案详解)
华师大版数学九年级上册期末试卷(带解析)
华师大版数学九年级上册期末试卷(带解析)一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A.13B.512C.12D.12.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是( )A.5 B.2 C.5或2 D.2或7-1 3.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1) B.(﹣2,﹣1) C.(2,﹣1) D.(0,1)4.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD,连接AC,则tan ACD∠的值为()A.3B.31+C.31-D.235.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐6.如图,已知O的内接正方形边长为2,则O的半径是()A.1 B.2 C2D.227.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高8.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()A.23B.1.15C.11.5D.12.59.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A .30°B .35°C .40°D .50°10.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 11.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8912.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°13.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>14.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm15.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.17.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.18.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.19.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.20.抛物线y =3(x+2)2+5的顶点坐标是_____. 21.抛物线21(5)33y x =--+的顶点坐标是_______. 22.方程22x x =的根是________.23.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.24.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.25.数据1、2、3、2、4的众数是______.26.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.27.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.28.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______. 30.已知234x y z x z y+===,则_______ 三、解答题31.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?32. 为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC 与CD 的长分别为45cm ,60cm ,且它们互相垂直,座杆CE 的长为20cm ,点A ,C ,E 在同一条直线上,且∠CAB=75°,如图2. (1)求车架档AD 的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)33.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)34.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB 的高度.35.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,10,10.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)四、压轴题36.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至∠=∠.点C,使得DAC AED(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,=;①求证: CA CF②若⊙O的半径为3,BF=2,求AC的长.37.如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、⊥.FC,且EC EF∽;(1)求证:AEF BCEAC=AB的长;(2)若23△的外接圆圆心之间的距离?(3)在(2)的条件下,求出ABC的外接圆圆心与CEF38.如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.39.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P3,2),Q3,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.2.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C . 【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴(222EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴tan 1x EG ACD CG ∠==.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.5.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.C解析:C【解析】【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴222,22∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.7.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.8.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..9.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 10.B解析:B【解析】【分析】【详解】 解:将点(m ,3m )代入反比例函数k y x=得, k=m•3m=3m 2>0;故函数在第一、三象限,故选B . 11.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.12.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ;故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.15.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.18.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.19.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.20.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.21.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 22.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x -2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.23.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.24.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.25.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.26.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt △OAD 中,AD =OAsin ∠AOD =4×sin30°=4×12=2(km ), OD =OAcos ∠AOD =4×cos30°=4×2=km ), 在Rt △ABD 中,BD =AD =2km ,∴OB =OD +BD =2(km ),故答案为:2.【点睛】 本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.27.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==,∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.28.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要 解析:13【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是3193=, 故答案为13. 【点睛】 此题主要考查概率的求解,解题的关键是熟知几何概率的公式.29.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 30.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题31.每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.32.(1)75cm (2)63cm【解析】解:(1)在Rt△ACD中,AC=45,CD=60,∴AD=22456075+=,∴车架档AD的长为75cm.(2)过点E作EF⊥AB,垂足为点F,距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63.∴车座点E到车架档AB的距离是63cm.(1)在Rt△ACD中利用勾股定理求AD即可.(2)过点E作EF⊥AB,在Rt△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.33.(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小【解析】【分析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)÷5=8,则甲的方差是:15[(7-8)2+3(8-8)2+(9-8)2]=0.4,乙的平均数是:(6+6+9+9+10)÷5=8,则甲的方差是:15[2(6-8)2+2(9-8)2+(10-8)2]=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.34.4m【解析】【分析】首先根据DO=OE=1m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得AB COBF OF=,然后代入数值可得方程,解出方程即可得到答案.【详解】解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴AB COBF OF=,1.51(51)5xx+∴=+-,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.35.(1)8,8,23;(2)选择小华参赛.(3)变小。
华东师大版九年级数学上册期末复习综合测试题(含答案)
华师大版九年级数学上册期末复习综合测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 代数式√a有意义的条件是( )A.a≠0B.a≥0C.a<0D.a≤02. 如果4x=5y(y≠0),那么下列比例式成立的是( )A.x4=5yB.x4=y5C.x5=y4D.xy=453. 下列二次根式中,可与√12进行合并的二次根式为( )A.√6B.√32C.√18D.√754. 下列计算正确的是()A.√82=√4 B.√(−3)2=3 C.√2+√3=√5 D.2+√2=2√25. 下列命题中,是真命题的是( )A.直角三角形都相似B.等腰三角形都相似C.矩形都相似D.正方形都相似6. 下列计算正确的是()A.√16=±4B.√27−√123=√9−√4=1C.(2−√5)(2+√5)=1D.√2√2=3√2−17. 一个三角形三边的长是6,8,10,同时平分这个三角形周长和面积的直线有()条.A.1B.2C.3D.48. 将一个边长为a的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积()A.(2√2−2)a2B.79a2 C.√22a2 D.(3−2√2)a29. 如图,在△ABC中,点D在AB上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AD⋅AB;④AB⋅CD=AD⋅CB,能满足△ADC与△ACB相似的条件是()A.①、②、③B.①、③、④C.②、③、④D.①、②、④10. 如图,马航370失联后,“海巡31”船匀速在印度洋搜救,当它行驶到A处时,发现它的北偏东30∘方向有一灯塔B,海巡船继续向北航行4小时后到达C处,发现灯塔B在它的北偏东60∘方向.若海巡船继续向北航行,那么要再过多少时间海巡船离灯塔B最近?()A.1小时B.2小时C.√3小时D.2√3小时二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 计算:tan60∘×cos30∘=________.12. 关于x的方程k2x2−(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是________.13. 方程x2+4x+k=0的一个根是2,那么k的值是________;它的另一个根是________.14. 在△ABC中,AB=18,AC=12,点D、E分别是边AB、AC上一点,且AE=6,若△ADE与△ABC相似,则AD的长为________.15. 方程(2x−1)(x+3)=0的根是________.16. 如图,小明站在C处看甲、乙两楼楼顶的点A和E,A、E、C三点在同一直线上,甲乙两楼的底部D、B与C也在同一直线上,测得BC相距20米,DB相距20米,乙楼高BE为15米,则甲楼高(小明身高忽略不计)为________米.17. 如图,A、B两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E.若DE的长度为30m,则A、B两地的距离为________m.18. 林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知∠BAC=53∘8′,AB=0.5米,则这棵大树的直径约为________米.三、解答题(本题共计7 小题,共计66分,)=0.19. 解方程:2x2−3x+1220. 关于x的一元二次方程x2+(2m−3)x+m2+1=0.(1)当方程有两个不相等的实数根时,求m的取值范围;(2)若方程两实根x1,x2满足2x1+2x2=1,求m的值.21. 已知关于x的一元二次方程x2+(2k−1)x+k2=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程两实根x1,x2满足x1+x2+x1x2−1=0,求k的值.22. 三角形ABC三个顶点的坐标分别为A(−2, −3),B(3, 2),C(2, −1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点A1,B1,C1,依次用线段连接A1、B1、C1所得三角形A1B1C1.(1)分别写出点A1,B1,C1坐标;(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?23. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)24. 服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六⋅一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?25. (1)如图一:小明想测量一棵树的高度AB,在阳光下,小明测得一根与地面垂直、长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),墙壁上的影长CD为1.5米,落在地面上的影长BC为3米,则树高AB为多少米.25.(2)如图二:在阳光下,小明在某一时刻测得与地面垂直、长为1m的杆子在地面上的影子长为2m,在斜坡上影长为1.5m,他想测量电线杆AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=3m,BC=10m,求电线杆的高度.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:由题意得:a≥0.故选B.2.【答案】C【解答】解:4x=5y(y≠0),两边都除以20,得x5=y4.故选C.3.【答案】D【解答】解:化成最简二次根式后,如果被开方数相同才能合并.∵√12=2√3,√32=4√2,√18=3√2,√75=5√3,∴能与√12合并的二次根式是√75.故选D.4.【答案】B【解答】A、√82=√2,故此选项错误;B、√(−3)2=3,正确;C、√2+√3,无法计算,故此选项错误;D、2+√2,无法计算,故此选项错误.5.【答案】D【解答】解:A、直角三角形不一定相似,是假命题,故A选项错误;B、等腰三角形不一定相似,是假命题,故B选项错误;C、矩形不一定都相似,是假命题,故C选项错误;D、正方形一定都相似,是真命题,故D选项正确.故选D.6.【答案】D【解答】解:A、原式=4,所以A选项错误;B、原式=3√3−2√33=√33,所以B选项错误;C、原式=4−5=−1,所以C选项错误;D、原式=√2−√2√2=3√2−1,所以D选项正确.故选D.7.【答案】A【解答】(2)若直线交AB、BC于点M、N.如图,设BN=x,则BM=12−x,作MD⊥BC,由Rt△MBD∽Rt△ABC,可得MD=8(12−x)10(1)根据S△MBN=12MD⋅BN=12S△ABC,得BN=6+√6,BM=6−√6,即这样的直线存在,且只有一条,综上,同时平分这个三角形周长和面积的直线有1条.故选:A.8.【答案】A【解答】解:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为√2x,即正八边形的边长为√2x,依题意得√2x+2x=a,则x=√2+2=(2−√2)a2,∴正八边形的面积=a2−4×12×(a√2+2)2=(2√2−2)a2.故选A.9.【答案】A【解答】解:∵∠A是公共角,∴当∠ACD=∠B时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当∠ADC=∠ACB时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当AC2=AD⋅AB时,即ACAB =ADAC,△ADC∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似).当AB⋅CD=AD⋅CB,即CDAD =CBAB时,∠A不是夹角,则不能判定△ADC与△ACB相似;∴能够判定△ABC与△ACD相似的条件是:①②③.故选A.10.【答案】B【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30∘,∠DCB=60∘,则∠CBD=∠CBA=30∘.∴AC=BC,可得∠DBC=30∘,故CD=12BC,∵海巡船从A点继续向北航行4小时后到达C处,∴海巡船继续向北航行2小时到达D处.故选:B.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】32【解答】解:原式=√3×√32=32.故答案为:32.12.【答案】k>−14且k≠0【解答】解:∵方程有两个不相等的实数根,∴k≠0且Δ=b2−4ac=(2k+1)2−4k2 =4k+1>0,∴k>−14且k≠0.故答案为:k>−14且k≠0.13.【答案】−12,−6【解答】解:设方程另一根为x1,∵方程x2+4x+x=0的一个根是2,∴4+4×2+x=0,解得x=−12,∵x1+2=−4,∴x1=−6.故答案为−12,−6.14.【答案】4或9【解答】解:∵∠xxx=∠xxx,∴当△xxx∽△xxx,则xxxx =xxxx,即xx18=612,解得xx=9;当△xxx∽△xxx,则xxxx =xxxx,即618=xx12,解得xx=4,综上所述,xx的长为4或9.故答案为4或9.15.【答案】x=12或x=−3【解答】解:∵(2x−1)(x+3)=0,∴2x−1=0或x+3=0,解得:x=12或x=−3,故答案为:x=12或x=−3.16.【答案】30【解答】解:∵xx // xx,∴△xxx∽△xxx.∴xxxx =xxxx,即2040=15xx.∴xx=40×1520=30(米).故答案为:30.17.【答案】60【解答】解:∵x、x分别是xx、xx的中点,xx=30x,∴xx=2xx=60x故答案为:60.18.【答案】0.5【解答】解:由题意可知∠xxx=12∠xxx=26∘34′,且xx=xx⋅tan∠xxx=0.5tan26∘34′≈0.25,∴树的直径为2xx=0.5,三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】解:这里x=2,x=−3,x=12,∵△=9−4=5,∴x=3±√54.【解答】解:这里x=2,x=−3,x=12,∵△=9−4=5,∴x=3±√54.20.【答案】解:(1)根据题意得x=(2x−3)2−4(x2+1)>0,解得x<512.(2)根据题意得x1+x2=−2x+3,x1⋅x2=x2+1,∵2x1+2x2=1,∴ x 1⋅x 2=2(x 1+x 2),∴ x 2+1=−4x +6,解得x 1=−5,x 2=1,∵ x <512,∴ x =−5.【解答】解:(1)根据题意得x =(2x −3)2−4(x 2+1)>0,解得x <512.(2)根据题意得x 1+x 2=−2x +3,x 1⋅x 2=x 2+1,∵ 2x 1+2x 2=1,∴ x 1⋅x 2=2(x 1+x 2),∴ x 2+1=−4x +6,解得x 1=−5,x 2=1,∵ x <512, ∴ x =−5.21.【答案】解:(1)关于x 的一元二次方程x 2+(2x −1)x +x 2=0有两个不等实根x 1,x 2, ∴ x =(2x −1)2−4x 2=−4x +1>0,解得x <14,即实数x 的取值范围是x <14.(2)由根与系数的关系,得x 1+x 2=−(2x −1)=1−2x ,x 1x 2=x 2,∵ x 1+x 2+x 1x 2−1=0,∴ 1−2x +x 2−1=0,解得x =0或2,由(1)知x <14,∴ x =0.【解答】解:(1)关于x 的一元二次方程x 2+(2x −1)x +x 2=0有两个不等实根x 1,x 2, ∴ x =(2x −1)2−4x 2=−4x +1>0,解得x <14,即实数x 的取值范围是x <14. (2)由根与系数的关系,得x 1+x 2=−(2x −1)=1−2x ,x 1x 2=x 2,∵ x 1+x 2+x 1x 2−1=0,∴ 1−2x +x 2−1=0,解得x =0或2,由(1)知x <14, ∴ x =0.22.【答案】解:(1)∵ 三角形xxx 的顶点坐标分别是x (−2,−3),x (3,2),x (2,−1), ∴ 三个顶点的横坐标都加3,纵坐标都减1后,得x 1=(−2+3,−3−1)=(1,−4),x 1=(3+3,2−1)=(6,1),x 1=(2+3,−1−1)=(5,−2),即x 1(1, −4),x 1(6, 1),x 1(5, −2);(2)三角形x 1x 1x 1的大小、形状与三角形xxx 的大小、形状完全一样,仅是位置不同,三角形x 1x 1x 1是将三角形xxx 沿x 轴方向向右平移3个单位,再沿x 轴方向向下平移1个单位得到的.【解答】解:(1)∵ 三角形xxx 的顶点坐标分别是x (−2,−3),x (3,2),x (2,−1),∴ 三个顶点的横坐标都加3,纵坐标都减1后,得x 1=(−2+3,−3−1)=(1,−4),x 1=(3+3,2−1)=(6,1),x 1=(2+3,−1−1)=(5,−2),即x 1(1, −4),x 1(6, 1),x 1(5, −2);(2)三角形x 1x 1x 1的大小、形状与三角形xxx 的大小、形状完全一样,仅是位置不同,三角形x 1x 1x 1是将三角形xxx 沿x 轴方向向右平移3个单位,再沿x 轴方向向下平移1个单位得到的.23.【答案】气球的高度是200tan x tan x +1.2tan x +1.6tan xtan x +tan x x .【解答】过点x作xx⊥xx于点x,过点x作xx⊥xx于点x,设xx=xx,则xx=(x−1.6)x,xx=(x−1.2)x.在△xxx中,xxxx=90∘.则tan xxxx=xxxx.∴xx=x−1.6tan x.在△xxx中,xxxx=90∘.则tan xxxx=xxxx.∴xx=x−1.2tan x.∵xx+xx=xx.∴x−1.6tan x +x−1.2tan x=200.解,得x=200tan x tan x+1.2tan x+1.6tan xtan x+tan x.24.【答案】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40−x)(20+2x)=1200,整理得x2−30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.因此每件童装应降价20元.【解答】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40−x)(20+2x)=1200,整理得x2−30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.因此每件童装应降价20元.25.【答案】树高为5.25米.(2)作xx⊥xx于x.xx对应的旗杆的高度:根据同一时刻物高与影长成比例,得10÷2=5;xx对应的旗杆的高度:3÷1.5=2;故旗杆的高度是5+2=7x.【解答】解:(1)设从墙上的影子的顶端到树的顶端的垂直高度是x米.则解得10.8=x3,解得:x=3.75.∴树高是3.75+1.5=5.25(米),答:树高为5.25米.(2)作xx⊥xx于x.xx对应的旗杆的高度:根据同一时刻物高与影长成比例,得10÷2=5;xx对应的旗杆的高度:3÷1.5=2;故旗杆的高度是5+2=7x.。
华东师大版九年级数学上册期末复习试题(有答案)
华东师大版九年级数学上册期末复习试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4B.5C.6D.72. 在Rt△ABC中,∠C=90∘,当∠A=60∘,a=3√3时,c的值是()A.c=4B.c=5C.c=6D.c=73. 下列成语所描述的事件是必然事件的是()A.守株待兔B.拔苗助长C.瓮中捉鳖D.水中捞月4. 已知G是△ABC的重心,过G作EF // BC且与AB、AC分别交于E、F两点,则EF:BC的值为()A.1 2B.23C.13D.325. 对于题目“在平面直角坐标系中,已知点E(−4,2),F(−1,−1).以原点O为位似中心,把△EFO扩大到原来的2倍,求点E的对应点E′的坐标.”甲的结果为(−8,4),乙的结果为(−8,−4),则()A.甲的结果正确B.乙的结果正确C.甲的结果与乙的结果合在一起才正确D.甲的结果与乙的结果合在一起也不正确6. 若关于x的一元二次方程(2m−1)x2+(m+1)x+1=0的两根相等,那么m等于()A.−1或5B.−1或−5C.1或−5D.1或57. 一束阳光射在窗子AB上,此时光与水平线夹角为30∘,若窗高AB=1.8米,要想将光线全部遮挡住,不能射到窗子AB上,则挡板AC(垂直于AB)的长最少应为()A.1.8√3米B.0.6√3米C.3.6米D.1.8米8. 下列说法中,错误的是()A.试验所得的概率一定等于理论概率B.试验所得的概率不一定等于理论概率C.试验所得的概率有可能为0D.试验所得的概率有可能为19. 设a,b是方程x2+x−2017=0的两个实数根,则a2+2a+b的值为()A.2014B.2015C.2016D.201710. 如图,等腰直角△ABC的两直角边BC、AB分别在平面直角坐标系内的x轴、y轴的正半轴上,等腰直角△MNP与等腰直角△ABC是以AC的中点O′为中心的位似图形,已知AC=3√2,若点M的坐标为(1, 2),则△MNP与△ABC的相似比是()A.1 2B.√22C.13D.23二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若(a2+b2−3)2=25,则a2+b2=________.12. 在平面直角坐标系中,△ABC的顶点坐标分别是A(6, 8),B(7, 0),C(7, 8)以原点O为位似中心,相似比为,把△ABC缩小,得到△A1B1C1,则点A的对应点A1的坐标为________.13. 在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是________.14. 若(x+2)(x−1)=x2+mx+n,则m+n=________;15. 在平面直角坐标系中,点P(−2, 3)关于x轴对称的点P1的坐标是________.16. 方程x2−3x+1=0的解是x=________.17. 点P(5、4)关于x轴的对称点的坐标是________,关于原点的对称点的坐标是________.18. 若方程2x2−2x+3a−4=0有两个不相等的实数根,则a的取值范围为________.19. 若x1,x2是一元二次方程x2+2x−1=0的两个根,则(x1+1)(x2+1)的值是________.20. 如图,在平面直角坐标系中,已知点A(−3, 0),B(0, 4),对△OAB连续作旋转变换,依次得到三角形①②③④…,则三角形⑫的直角顶点的坐标为________.三、解答题(本题共计6 小题,共计60分,)21. 已知x2=y3=z5,求3x−y+6z2y的值.22. 在直角坐标系中,下面各点按顺序依次排列:(0, 1),(1, 0),(0, −1),(0, 2),(2, 0),(0, −2),(0, 3),(3, 0),(0, −3),…(1)这列点中的第1000个点的坐标是什么?(2)(0, 2020)是这列点中的第几个点?23. 某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出1件.若商场平均每天赢利600元,每件衬衫应降价多少元?24. 已知:如图,在△ABC中,∠ACB=90∘,以BC为边向外作正方形BEDC,连接AE交BC于F,作FG // BE交AB于G,求证:FG=FC.25. 如图,一只蚂蚁从点O出发,沿北偏东60∘方向爬行4cm后到达A地,后折向西北方向爬行3cm到达B点.(1)求∠OAB的度数;(2)测量∠OBA的度数及B地离出发点O的距离,并求出点B与O的相对位置.26. 如图,学校的围墙外有一旗杆AB,甲在操场上C处直立3m高的竹竿CD,乙从C处退到E处恰好看到竹竿顶端D,与旗杆顶端B重合,量得CE=3m,乙的眼睛到地面的距离FE=1.5m;丙在C1处也直立3m高的竹竿C1D l,乙从E处退后6m到E l处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D l与旅杆顶端B也重合,测得C l E l=4m.求旗杆AB的高.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C【解答】解:∵ △ABC中,D、E分别是AB、AC的中点,∵ DE为三角形ABC的中位线,∵ DE=12BC=12×12=6.故选C.2.【答案】C【解答】解:在Rt△ABC中,∠C=90∘,∵ sin A=ac,∵ c=3√3sin60∘=√3√32=6.故选C.3.【答案】C【解答】解:守株待兔是随机事件,A错误;拔苗助长是不可能事件,B错误;瓮中捉鳖是必然事件,C正确;水中捞月是不可能事件,D错误,故选C.4.【答案】B【解答】解:如图,连接AG并延长,交BC于点P.∵ G为△ABC的重心,∵ AG=2GP,∵ AG:AP=2:3,∵ EF过点G且EF // BC,∵ △AGF∽△APC,∵ AF:AC=AG:AP=2:3.又∵ EF // BC,∵ △AEF∽△ABC,∵ EF:BC=AF:AC=2:3.故选:B.5.【答案】D【解答】解:∵ 顶点E的坐标是(−4, 2),以原点O为位似中心相似比为1:2将△EFO扩大得到它的位似图形△E′F′O,∵ 点E′的坐标是:(2×(−4),2×2)或(−2×(−4), −2×2),即(−8, 4)或(8, −4).故甲的结果与乙的结果合在一起也不正确.故选D.6.【答案】D【解答】解:∵ 关于x的一元二次方程(2m−1)x2+(m+1)x+1=0的两根相等,∵ △=(m+1)2−4(2m−1)=m2−6m+5=0,解得:m=1,m=5,当m=1或m=5时,2m−1≠0,∵ 关于x的一元二次方程(2m−1)x2+(m+1)x+1=0的两根相等,那么m等于1或5.故选:D.7.【答案】A【解答】解:如图所示:设光线为CB,作DB⊥AB于点B,∵ 光与水平线夹角为30∘,∵ ∠CBD=30∘,∵ AC // BD,∵ ∠ACB=30∘,∵ AB=1.8米,∵ ABAC=tan30∘,∵ AC=ABtan30∘=1.8√33=1.8√3=9√35.故选:A.8.【答案】A【解答】A、试验所得的概率接近于理论概率,错误,符合题意;B、多次实验所得的概率接近于理论概率,不一定等于理论概率,正确,不符合题意;C、实验有很多偶然性,概率可能为0,正确,不符合题意;D、实验有很多偶然性,概率可能为0,正确,不符合题意;9.【答案】C【解答】∵ a是方程x2+x−2017=0的根,∵ a2+a−2017=0,∵ a2=−a+2017,∵ a2+2a+b=−a+2017+2a+b=2017+a+b,∵ a,b是方程x2+x−2017=0的两个实数根,∵ a+b=−1,∵ a2+2a+b=2017−1=2016.10.【答案】C【解答】解:∵ 等腰直角△ABC的两直角边BC、AB分别在平面直角坐标系内的x轴、y轴的正半轴上,AC=3√2,∵ AB =BC =3,∵ 点A(0, 3),C(3, 0),∵ 点O′是AC 的中点,∵ 点O′(32, 32),∵ 点M 的坐标为(1, 2),∵ O′M =√(1−32)2+(2−32)2=√22, ∵ MN =√2,∵ △MNP 与△ABC 的相似比是:MN:AC =√2:3√2=1:3. 故选C .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】8【解答】解:∵ (a 2+b 2−3)2=25,∵ a 2+b 2−3=±5∵ a 2+b 2=8或a 2+b 2=−2(不合题意舍去).故答案为:8.12.【答案】(3.4)或(−3.−4)【解答】以点O 为位似中心,相似比为12,把△ABC 缩小 点A 的坐标为(6,8)∵ 则点A 的对应点A 1的坐标为(6×12,8×12)或(−6×12,−8×12) 即(3,4)或(−3,4)故答案为:(3,4)或(−3,4)13.【答案】12【解答】解:画树状图得:∵ 共有12种等可能的结果,抽到的都是合格品的有6种情况,∵ 抽到的都是合格品的概率是:612=12.故答案为:12.14.【答案】−1【解答】略15.【答案】(−2, −3)【解答】解:∵ P(−2, 3)与P1关于x轴对称,∵ 横坐标相同,纵坐标互为相反数,∵ P1的坐标为(−2, −3).故答案为:(−2, −3).16.【答案】3±√52【解答】解:∵ a=1,b=−3,c=1∵ b2−4ac=5∵ x=3±√52.17.【答案】(5, −4),(−5, −4)【解答】解:点P(5、4)关于x轴的对称点的坐标是(5, −4),关于原点的对称点的坐标是(−5, −4).故答案为:(5, −4),(−5, −4).18.【答案】a<3 2【解答】解:∵ 方程2x2−2x+3a−4=0有两个不相等的实数根,∵ △=(−2)2−4×2×(3a−4)=−24a+36>0,解得:a<32,故答案为:a<32.19.【答案】−2【解答】∵ x1,x2是一元二次方程x2+2x−1=0的两个根,∵ x1+x2=−2,x1x2=−1,∵ (x1+1)(x2+1)=x1x2+x1+x2+1=−1+(−2)+1=−2,20.【答案】(48, 0)【解答】解:由原图到图③,相当于向右平移了12个单位长度,三角形④的直角顶点的坐标为(12, 0),象这样平移四次直角顶点是(12×4, 0),即(48, 0),则三角形⑫的直角顶点的坐标为(48, 0);故答案为:(48, 0).三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:∵x2=y3=z5,∴ 可设x=2k,则y=3k,z=5k,3x−y+6z2y =3×2k−3k+6×5k2×3k=33k6k=112.【解答】解:∵x2=y3=z5,∴ 可设x=2k,则y=3k,z=5k,3x−y+6z2y =3×2k−3k+6×5k2×3k=33k6k=112.22.【答案】观察各点规律发现:第1、4、7、10个点在y轴正半轴上,坐标分别(0, 1),(0, 2),(0, 3),(0, 4),…,第2、5、8个点在x轴正半轴上,坐标分别(1, 0),(2, 0),(3, 0),…,第3、6、9个点在y轴负半轴上,坐标分别(0, −1),(0, −2),(0, −3),…,∵ 1000÷3=333余1,∵ 第1000个点在y轴正半轴上,坐标为(0, 334).根据(1)的规律知点(0, 2012)在y轴正半轴上,设它是第n个点,则n−13+1=2012,解得:n=6034.所以(0, 2012)是这列点中的第6034个点.【解答】观察各点规律发现:第1、4、7、10个点在y轴正半轴上,坐标分别(0, 1),(0, 2),(0, 3),(0, 4),…,第2、5、8个点在x轴正半轴上,坐标分别(1, 0),(2, 0),(3, 0),…,第3、6、9个点在y轴负半轴上,坐标分别(0, −1),(0, −2),(0, −3),…,∵ 1000÷3=333余1,∵ 第1000个点在y轴正半轴上,坐标为(0, 334).根据(1)的规律知点(0, 2012)在y轴正半轴上,设它是第n个点,则n−13+1=2012,解得:n=6034.所以(0, 2012)是这列点中的第6034个点.23.【答案】若商场平均每天要盈利600元,每件衬衫应降价20元【解答】设每件衬衫降价x元,则每件赢利(40−x)元,每天可以售出(10+x)件,依题意,得:(40−x)(10+x)=600,整理,得:x2−30x+200=0,解得:x1=10,x2=20.∵ 为了扩大销售量,增加盈利,尽快减少库存,∵ x的值应为20.24.【答案】证明:∵ FG // BE,∵ FGEB =AFAE.∵ FC // ED,∵ FCED =AFAE.∵ FGEB =FCED.又∵ EB=ED,∵ FG=FC.【解答】证明:∵ FG // BE,∵ FGEB =AFAE.∵ FC // ED,∵ FCED =AFAE.∵ FGEB =FCED.又∵ EB=ED,∵ FG=FC.25.【答案】解:(1)∠AOB=(90∘−60∘)+45∘=75∘;(2)测量∠OBA的度数为75∘,B地离出发点O的距4cm,点C在O点的南偏西30∘方向上.【解答】解:(1)∠AOB=(90∘−60∘)+45∘=75∘;(2)测量∠OBA的度数为75∘,B地离出发点O的距4cm,点C在O点的南偏西30∘方向上.26.【答案】解:设BO=x,GO=y.∵ GD // OB,∵ △DGF∽△BOF,∵ 1.5:x=3:(3+y)同理1.5:x=4:(y+6+3)解上面2个方程得{x=9y=15,经检验x=9,y=15均是原方程的解,∵ 旗杆AB的高为9+1.5=10.5(米).【解答】解:设BO=x,GO=y.∵ GD // OB,∵ △DGF∽△BOF,∵ 1.5:x=3:(3+y)同理1.5:x=4:(y+6+3)解上面2个方程得{x=9y=15,经检验x=9,y=15均是原方程的解,∵ 旗杆AB的高为9+1.5=10.5(米).。
华师大版九年级上册数学期末考试题(附答案)
华师大版九年级上册数学期末考试题(附答案)一、单选题(共10题;共20分)1.对于分式,当x=-1时,其值为0,当x=1时,此分式没有意义,那么( )A. a=b= -1B. a=b=1C. a=1, b= -1D. a=- 1, b=12.已知点P(m+3,2m+4)在x轴上,那么点P的坐标为()A. (-1,0)B. (1,0)C. (-2,0)D. (0,2)3.如图所示,观察下面的国旗,是轴对称图形的是()。
A. (1)(2)(3)B. (1)(2)(4)C. (2)(3)(4)D. (1)(3)(4)4.己知x=2是关于x的方程x2-(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为( )A. 6B. 8C. 10D. 8或105.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A. 3列5行B. 5列3行C. 4列3行D. 3列4行6.△ABC中,AD是∠BAC的平分线,且AB=AC+CD.若∠BCA=60°,则∠ABC的大小为()A. 30°B. 60°C. 80°D. 100°7.如图,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,则下列结论:① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正确结论的个数是()8题A. 4个B. 3个C. 2个D. 1个8.已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A. k<0B. k<﹣1C. k<1D. k>﹣19.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A,B重合),E 是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.10.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020 , 则2S=2+22+23+24+…+22021 , 因此2S -S=22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A.B.C.D.二、填空题(共4题;共8分)11.已知命题:如果 ,那么,则该命题的逆命题...是________命题.(在横线上填“真”或“假”).12.一次函数的图象过点(0,3)且与直线y=-x 平行,那么函数解析式是________. 13.点P (2,-1)关于x 轴对称的点P′的坐标是________. 14.如图,在△ABC 中,AB=AC=, BC=2,以AB 为直径的⊙O 分别交AC 、BC 两边于点D 、E ,则△CDE的面积为________ .三、解答题(共7题;共72分)15.△ABC 在平面直角坐标系中的位置如图所示.(1)写出A 、B 、C 三点的坐标;(2)①若△ABC每个顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A'、B'、C',并依次连接这三个点,所得的△A'B'C'与原△ABC有怎样的位置关系?②在(①的基础上,纵坐标都不变,横坐标都乘以-1,请你在同一坐标系中描出对应的点A”、B”、C”,并依次连接这三个点,所得的△A”B”C”与原△ABC有怎样的位置关系?16.如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC,AO平分∠BAC吗?为什么?17.已知:一次函数的图象经过点A(4,3)和B(-2,0).(1)求这个一次函数的表达式;(2)求一次函数与y轴的交点.18.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使最大,求的最大值及点P的坐标;19.综合与实践实践操作:①如图1,是等边三角形,D为BC边上一个动点,将绕点A逆时针旋转得到,连接CE.②如图2,在中,于点D,将绕点A逆时针旋转得到,延长FE 与BC交于点G.③如图3,将图2中得到沿AE再一次折叠得到,连接MB.问题解决:(1)小明在探索图1时发现四边形ABCE是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD,CF,AC之间的数量关系为________:(2)猜想图2中四边形ADGF的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB的长为________.20.A县和B县春季分别急需化肥100吨和60吨,C县和D县分别储存化肥110吨和50吨,全部调配给A 县和B县.运费如下表所示:(1)设从C县运到A县的化肥为x吨,则从C县运往B县的化肥为________吨,从D县运往A县的化肥为________吨,从D县运往B县的化肥为________吨;(2)求总运费W(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围;(3)求最低总运费,并说明运费最低时的运送方案.21.如图,点A,B分别在x轴,y轴上,过A,B作AB垂线,交反比例函数y=(k>0,x>0)的图象于D,C,四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,CF=a,BF=b,OA=x,OB=y.(1)求证:AE=a.(2)请写出两个不同的关于a,b,x,y的关系式.(3)求证:∠OAB=45°.答案一、单选题1.A2. B3. D4. C5. C6.A7. B8. B9. C 10. C二、填空题11. 假12.y=-x+3 13.(2,1) 14.三、解答题15. (1)解:由图可知,点A(3,4),B(1,2),C(5,1)(2)解:如图,△A'B'C'与原△ABC关于x轴对称,△A”B”C”与原△ABC关于原点对称.16. 解:AO平分∠BAC∵OB⊥AB,OC⊥AC,∴∠B=∠C=90°,又∵OB=OC,AO为公共边,∴△ACO≌△ABO,∴∠BOA=∠COA,∴AO平分∠BAC.17. (1)解:∵过点A(4,3)和点B(-2,0),∴,解得:,∴一次函数表达式为(2)解:对于一次函数y= ,令x=0,得到y=1,则一次函数与y轴交点坐标为(0,1).18.(1)解:∵在反比例函数上∴∴反比例函数的解析式为把代入可求得∴.把代入为解得.∴一次函数的解析式为.(2)解:的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴, ∴的最大值为.⑶直接写出当时,的取值范围.解:根据图象的位置和图象交点的坐标可知:当时的取值范围为; 或.19. (1)CD+CF=AC (2)解:四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)20. (1)(110-x);(100-x);(x-50)(2)解:w=40x+35(110-x)+45(100-x)+50(x-50)=10x+5850,A县的化肥全从C县运进,则x=100,D县的化肥全运往A县,则x=100-50=50,所以自变量x的取值范围是50≤x≤100(3)解:w与x成一次函数,k=10>0,w随x的增大而增大,∵50≤x≤100,∴x=50时,w最小,w=10×50+5850=6350(元),从C县运到A县的化肥为50吨,从C县运往B县的化肥为110-50=60吨,从D县运往A县的化肥为100-50=50吨,D县的化肥全运往A县21. (1)证明:∵四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,∴∠BFC=∠ABC=∠BAD=∠AED=90°,BC=AD,∴∠CBF+∠ABO=∠ABO+∠OAB=90°,∴∠CBF=∠OAB,∵∠BAO+∠DAE=∠DAE+∠ADE=90°,∴∠BAO=∠ADE,∴∠CBF=∠ADE,∴△BCF≌△DAE(AAS),∴AE=CF=a(2)解:由(1)知,BF=DE=b,∵OA=x,OB=y,∴C(a,b+y),D(a+x,b),∵点D,C在反比例函数y=(k>0,x>0)的图象上,∴a(b+y)=b(a+x)=k,即ay=bx①;∵∠BFC=∠AOB=90°,∠CBF=∠BAO,∴△CBF∽△BAO,∴,∴②;(3)证明:由(2)中的①÷②得,x2=y2,∵x>0,y>0,∴x=y,∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°.。
华师大版九年级上册期末测试数学试题(含答案)
华师大版九年级上册期末测试数学试题(含答案)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .10 C .3 D .10 3.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒ 4.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)5.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A.70°B.72°C.74°D.76°6.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确...的是( )A.12DE BC=B.AD AEAB AC=C.△ADE∽△ABCD.:1:2ADE ABCS S=7.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°8.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α9.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A 43B.3C33D.32210.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5πB.10πC.20πD.40π11.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .212.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值313.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>14.2的相反数是( ) A .12-B .12C .2D .2-15.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×109二、填空题16.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.18.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.19.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.20.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 21.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 22.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .23.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 24.抛物线2(-1)3y x =+的顶点坐标是______.25.一组数据:2,5,3,1,6,则这组数据的中位数是________. 26.抛物线()2322y x =+-的顶点坐标是______.27.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.28.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.29.若a b b -=23,则ab的值为________. 30.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.三、解答题31.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标.32.已知关于x的方程x2+ax+a﹣2=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.33.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.34.解方程:(1)3x2-6x-2=0;(2)(x-2)2=(2x+1)2.35.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调=-+. 查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?四、压轴题36.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.37.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.38.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 39.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与COQ相似?若存在,直接写出所有t的值;若不存在,说明理由.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.A解析:A【解析】【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,22,tanA=21222CDAD==,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.4.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).5.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.6.D解析:D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADEABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.7.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可.【详解】∵BC 是⊙O 的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D .【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8.D解析:D【解析】连接OC ,则有∠BOC=2∠A=2α,∵OB=OC ,∴∠OBC=∠OCB ,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.9.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.10.B解析:B【解析】【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.11.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 12.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3),∴-3=1-m+n ,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.13.D解析:D【解析】【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 14.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D .15.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题16.6【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.19.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360-=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.20.(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.21.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m≠【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键. 22.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 23.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 24.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.25.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.26.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .27.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 28.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.29.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.30.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键. 三、解答题31.(1)2y x 2x 3=-++;(2)6;(3)()1,1P【解析】【分析】(1)将M,N 两点代入2y x bx c =-++求出b,c 值,即可确定表达式;(2)令y=0求x 的值,即可确定A 、B 两点的坐标,求线段AB 长,由三角形面积公式求解.(3)求出抛物线的对称轴,确定M 关于对称轴的对称点G 的坐标,直线NG 与对称轴的交点即为所求P 点,利用一次函数求出P 点坐标.【详解】解:将点()0,3M ,()2,5N --代入2y x bx c =-++中得, 3425c b c =⎧⎨--+=-⎩,解得,23b c =⎧⎨=⎩, ∴y 与x 之间的函数关系式为2y x 2x 3=-++;(2)如图,当y=0时,2230x x -++=,∴x 1=3,x 2= -1,∴A(-1,0),B(3,0),∴AB=4,∴S △ABM =14362⨯⨯= . 即ABM ∆的面积是6.(3)如图,抛物线的对称轴为直线2122bx a , 点()0,3M 关于直线x=1的对称点坐标为G(2,3),∴PM=PG,连MG 交抛物线对称轴于点P ,此时NP+PM=NP+PG 最小,即MNP ∆周长最短.设直线NG 的表达式为y=mx+n,将N(-2,-5),G(2,3)代入得,2523m n m n -+=-⎧⎨+=⎩, 解得,21m n =⎧⎨=-⎩, ∴y=2m-1,∴P 点坐标为(1,1).【点睛】本题考查抛物线与图形的综合题,涉及待定系数法求解析式,图象的交点问题,利用对称性解决线段和的最小值问题,利用函数观点解决图形问题是解答此题的关键.如图,二次函数y=-x²+bx+c的图像经过M(0,3),N(-2,-5)两点.32.(1)见解析;(2)a=12,x1=﹣32【解析】【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x2+ax+a﹣2=0,求出a,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x2+ax+a﹣2=0得1+a+a﹣2=0,解得a=12;∴方程为x2+12x﹣32=0,即2x2+x﹣3=0,设另一根为x1,则1×x1=ca=﹣32,∴另一根x1=﹣32.【点睛】此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.33.(1)(2,﹣2);(2)(1,0);【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=10平方单位.故答案为10.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理34.(1)x1=1+153,x2=1-153;(2)x1=13,x2=-3【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=±3∴x 1=1+3,x 2=1-3 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.35.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值. 四、压轴题36.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.37.(1)点B (3,4),点C (﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB =OC =5,点C (﹣a ,﹣a ﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB ,AC ,BC 的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO =BO =CO ,可得△BCD 是直角三角形,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,由圆周角定理和角平分线的性质可得∠HBC =∠CDE =45°=∠BDE =∠BCH ,可证CH =BH ,∠BHC =90°,由两点距离公式可求解.【详解】解:(1)∵A (﹣5,0),OA =OC ,∴OA =OC =5,∵点B 、C 关于原点对称,点B (a ,a +1)(a >0),∴OB =OC =5,点C (﹣a ,﹣a ﹣1),∴5()()220+10a a -+-∴a =3,∴点B (3,4),∴点C (﹣3,﹣4);(2)∵点B (3,4),点C (﹣3,﹣4),点A (﹣5,0),∴BC =10,AB =5,AC =5∵BC 2=100,AB 2+AC 2=80+20=100,∴BC 2=AB 2+AC 2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=2,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.38.(1)∠APC=60°,∠BPC=60°;(2)见解析;(315344221【解析】【分析】(1)由△ABC是等边三角形,可知∠ABC=∠BAC=∠ACB=60°,由圆周角定理可知∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)利用上题中得到的相等的角和等边三角形中相等的线段利用AAS证得两三角形全等即可;(3)根据CM∥BP说明四边形PBCM是梯形,利用上题证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算四边形的面积即可;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,利用勾股定理求出AB的长,在△ABC中,利用等边三角形的性质求出BN,在△BON中利用勾股定理求出OB,最后根据弧长公式求出弧AB的长.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵=BC BC,=AC AC,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)证明:∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC∵AC=BC,在△ACM和△BCP中,M BPCMAC PBCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM≌△BCP(AAS);(3)∵CM∥BP,∴四边形PBCM为梯形,作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CP,AM=BP,又∠M=60°,。
华师大版九年级上册期末测试数学试题(含答案)
华师大版九年级上册期末测试数学试题(含答案)一、选择题1.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.42.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-13.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m4.在平面直角坐标系中,点A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=42且∠ACB最大时,b的值为()A.226-+C.242+B.226+D.2425.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定6.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°7.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .48.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++9.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .210.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3411.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 12.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定13.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°14.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.17.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.18.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.19.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.20.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.21.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.22.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.24.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.25.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF、EF,则CF+EF的最小值为_____.28.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.29.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.30.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.三、解答题31.解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).32.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?33.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.34.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),35.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.四、压轴题36.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.38.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.39.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.40.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.C解析:C 【解析】试题分析:由题意可得根的判别式,即可得到关于k 的不等式,解出即可. 由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.3.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是13,∴BC AC 3, ∵BC=50,∴3,∴()2222AC +BC 503+50100==(m ).故选A4.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.8.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 9.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.10.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.13.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.17.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大, 由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=2241+=17,∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.18.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x,则BD=8-解析:3【解析】【分析】设AC=x,根据四边形的面积公式,1S sin602AC BD=⨯⨯︒,再根据3sin60︒=()1 S 822x x =-⨯,再利用二次函数最值求出答案. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.19.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.20.1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.21.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 22.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 23.54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.24.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.26.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.27.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.28.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)x=22;(2)x=52或x=12.【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x﹣2)2=2,∴x=2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0,∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.32.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.33.(1)21234y x x =-+;(2)相交,证明见解析 【解析】【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可.【详解】解:(1)设抛物线为y =a (x ﹣4)2﹣1,∵抛物线经过点()0,3A ,∴3=a (0﹣4)2﹣1,a =14; ∴抛物线的表达式为:21234y x x =-+; (2)相交. 证明:连接CE ,则CE ⊥BD ,14(x ﹣4)2﹣1=0时,x 1=2,x 2=6.()0,3A ,()2,0B ,()6,0C ,对称轴x =4,∴OB =2,AB 13BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EBC =90°,∴△AOB ∽△BEC ,∴AB OB BC CE =132CE =,解得813CE = 813>2, 故抛物线的对称轴l 与⊙C 相交.【点睛】本题考查待定系数法求二次函数解析式、相似三角形的判定与性质、直线与圆的位置关系等内容,掌握数形结合的思想是解题的关键.34.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9),∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.35.(1)A (1,0),D (4,3);(2)①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.【解析】【分析】(1)由于A 、D 是直线直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△PAD 的面积,可以过P 作PE ⊥x 轴,与AD 相交于点E ,求得PE ,再用△PAE 和△PDE 的面积和求得结果;②分两种情况解答:过D 点作DP ∥AC ,与抛物线交于点P ,求出AC 的解析式,进而得PD 的解析式,再解PD 的解析式与抛物线的解析式联立方程组,便可求得P 点坐标;当P 点在AD 上方时,延长DP 与y 轴交于F 点,过F 点作FG ∥AC 与AD 交于点G ,则∠CAD =∠FGD =∠PDA ,则FG =FD ,设F 点坐标为(0,m ),求出G 点的坐标(用m 表示),再由FG =FD ,列出m 的方程,便可求得F 点坐标,从而求出DF 的解析式,最后解DF 的解。
(必刷题)华师大版九年级上册数学期末测试卷及含答案
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在式子,,,中,x可以取2和3的是()A. B. C. D.2、如图,A、B两点分别位于一个池塘的两端,为了测量A、B之间的距离,小天想了一个办法:在地上取一点C,使它可以直接到达A﹑B两点,连接AC、BC,在AC上取一点M,使AM=3MC,作MN∥AB交BC于点N,测得MN=38m,则A、B两点间的距离为()A.76mB.95mC.114mD.152m3、某班同学毕业时将自己的照片向全班其他同学各送一张表示留念,全班共送2450张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=2450B.x(x﹣1)=2450×2C.x(x﹣1)=2450 D.2x(x+1)=24504、如图1,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家g洛尔(A. L. C'relle1780 - 1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡( Brocard1845- 1922) 重新发现,并用他的名字命名。
问题:如图2,在等腰△DEF中,DF= EF, FG是△DEF的中线,若点Q为△DEF的布洛卡点,FQ= 9, ,则DQ+ EQ= ( )A. B.10 C. D.5、如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.6、已知方程x2+mx+3=0的一个根是1,则m的值为()A.4B.﹣4C.3D.﹣37、下列各式一定是二次根式的是()A. B. C. D.8、抛掷一个均匀的正方体骰子两次,设第一次朝上的数字为x、第二次朝上的数字为y,并以此确定(x,y),那么点P落在抛物线上的概率为()A. B. C.0.5 D.0.259、如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5B.1.5C.D.110、下列事件是必然事件的是()A.瓶酒会爆B.在一段时间内汽车出现故障C.地球在自转D.下届世界杯在中国举行11、点P在四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P 的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(2,3)D.(2,﹣3)12、若二次根式在实数范围内有意义,则x的取值范围是()A.x≠5B.x<5C.x≥5D.x≤513、如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P ,若EF=2,则梯形ABCD的周长为()A.12B.10C.8D.614、如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论:;;;当时,,其中正确结论的个数是()A.1B.2C.3D.415、一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C= ,那么GE=________.17、如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.18、若一元二次方程有一根为,则________.19、如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为________.20、如图,在平面直角坐标系中,直线交坐标轴于、点,点在线段上,以为一边在第一象限作正方形.若双曲线经过点,.则的值为________.21、一元二次方程的根是________.22、若关于的一元二次方程无实数根,则一次函数的图象不经过第________象限.23、如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么BD=________24、如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,M是AC的中点,N是A'B'的中点,连接MN,若AC=4,∠ABC=30°,则线段MN的最小值为________.25、已知x=-1是一元二次方程ax2+bx-10=0的一个解,且a≠-b ,则的值为________三、解答题(共5题,共计25分)26、计算:.27、有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=,将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,当D在BA的延长线上时,设BF=x,两块三角板重迭部分的面积为y.求y与x的函数关系式,并求出对应的x取值范围.28、已知关于x的方程的两根为满足:,求实数k的值29、某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)30、为了测量悬停在空中A处的无人机的高度,小明在楼顶B处测得无人机的仰角为45°,小丽在地面C处测得A、B的仰角分别为56°、14°.楼高BD为20米,求此时无人机离地面的高度.(参考数据:tan14°≈0.25,tan56°≈1.50)参考答案一、单选题(共15题,共计45分)2、D3、C4、B5、A6、B7、C8、A9、D10、C11、D12、D13、C14、B15、C二、填空题(共10题,共计30分)17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。
华师大版初中数学九年级上册期末测试试卷-含答案01
期末测试一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3在实数范围内有意义,则x 的取值范围是( ) A .3x ≥B .3x ≤C .3x >D .3x <2.(3分)已知抛物线28y x x c =−+的顶点在x 轴上,则c 等于( ) A .4B .8C .4−D .163.(3分)下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上B .从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C .某彩票的中奖率为35%,说明买100张彩票,有35张获奖D .打开电视,中央一套一定在播放新闻联播4.(3分)在Rt ABC △中,90C ︒∠=,若斜边AB 是直角边BC 的3倍,则tan B 的值是( )A .13B .3C .4D .5.(3分)若关于x 的一元二次方程20x bx c ++=的两个实数根分别为11x =−,22x =,那么抛物线2y x bx c =++的对称轴为直线( )A .1x =B .12x =C .32x =D .12x =−6.(3分)如图,OAB △与OCD △是以点O 为位似中心的位似图形,相似比为1:2,90OCD ︒∠=,CO CD =.若()20B ,,则点C 的坐标为( )A .()22,B .()12,C .D .()21,7.(3分)抛物线2y x =向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是( ) A .()232y x =−−B .()232y x =−+C .()232y x =+−D .()232y x =++8.(3分)如图,等边ABC △的边长为6,P 为BC 上一点,2BP =,D 为AC 上一点,若60APD ︒∠=,则CD 的长为( )A .2B .43C .23D .19.(3分)如图,在ABC △中,中线BE 、CF 相交于点G ,连接EF ,下列结论:①12EF BC =;②12EGF CGB S S =△△;③AF GE AB GB =;④13EEF AEF S S =△△,其中正确的个数有( )A .1个B .2个C .3个D .4个10.(3分)已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x轴的两个交点间的距离是4;⑤若()12A x ,,()23B x ,是抛物线上两点,则12x x <,其中正确的个数是( )A .2B .3C .4D .5二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)已知3a =+3b =−22a b ab +的值是________.12.(3分)毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是________.13.(3分)如图,DAB CAE ∠=∠,请你补充一个条件,使ABC ADE △∽△,并写出推理过程.________14.(3分)如图所示是二次函数2y ax bx c =++的图象,下列结论:①二次三项式2ax bx c ++的最大值为4;②使3y ≤成立的x 的取值范围是2x −≤;③一元二次方程2ax bx c k ++=,当4k <时,方程总有两个不相等的实数根;④该抛物线的对称轴是直线1x =−;⑤420a b c −+<;其中正确的结论有________(把所有正确结论的序号都填在横线上).15.(3分)已知ABC △中,2tan 3B =,6BC =,过点A 作BC 边上的高,垂足为D ,且:2:1BD CD =,则ABC △的面积为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.(6分)计算:(1(2)()()123 3.14tan30π−−−−+−.17.(6分)用适当方法解下列方程. (1)2314x x −=(2)()()()225125x x x x +=−+18.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x .甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是________.(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.19.(9分)已知抛物线与x 轴交于点()10,和()20,且过点()34,. (1)求抛物线的解析式;(2)抛物线的顶点坐标;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.20.(10分)学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程20ax bx c ++=的两个根为1x ,2x ,由根与系数的关系有12b x x a +=−,12c x x a =,由此就能快速求出,1211x x +,2212x x +,……的值了.比如设1x ,2x 是方程2230x x ++=的两个根,则122x x +=−,123x x =,得1212121123x x x x x x ++==−, (1)小亮的说法对吗?简要说明理由;(2)写一个你最喜欢的一元二次方程,并求出两根的平方和;(3)已知2是关于x 的方程240x x c −+=的一个根,求方程的另一个根与c 的值.21.(10分)我县将对如图所示的某城市建设工程进行整改,已知斜坡AB长米,坡角(即BAC ∠)为45°,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号)(1)若修建的斜坡BE E,求休闲平台DE 的长是多少米?(2)一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30°,点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?22.(12分)将一副三角尺如图①摆放(在Rt ABC △中,90ACB ︒∠=,60B ︒∠=.Rt DEF △中,90EDF ︒∠=,45E ︒∠=).点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,且2BC =.(1)求证:ADC APD △∽△;(2)求APD △的面积;(3)如图②,将DEF △绕点D 顺时针方向旋转角α(060α︒︒<<),此时的等腰直角三角尺记为DE F ''△,DE '交AC 于点M ,DF '交BC 于点N ,试判断PMCN的值是否会随着α的变化而变化,如果不变,请求出PMCN的值;反之,请说明理由.23.(14分)如图,抛物线()21y x k =−+与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点()03C −,.P 为抛物线上一点,横坐标为m ,且0m >.答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
华师大九年级数学(上)期末大复习及答案
华师大九年级数学(上)期末大复习第Ⅰ卷(满分48分)一、选择题:(每小题3分,共48分)1、下列条件中,不一定能使两个三角形全等的条件是( ) (A )两边一角对应相等 (B )两角一边对应相等 (C )三边对应相等 (D )两边和它们的夹角对应相等2、计算:21424m m ++-的结果是( ) A 、m+2 B 、m -2 C 、12m + D 、12m - 3、方程(a+2)|a|+3ax+1=0是关于x 的一元二次方程,则a 的值为( )A 、a =±2B 、a=2C 、a=-2D 、a ≠-2 4、若x <2,则2|2|x x --的值为( ) A 、-1 B 、0 C 、1 D 、2 5、如图1,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB 交⊙O于E ,则图中与12∠BOC 相等的角共有( ) A 、2个 B 、3个 C 、4个 D 、5个6、如果关于x 的一元二次方程Kx 2-6x+9=0有两个不相等的实数根,那么K 的取值范围是( )A 、K <1B 、K ≠0C 、K <1且K ≠0D 、K >1 7、如图2,O为ABCD 的对角线AC 、BD 的交点,过O 的直线与边AD 、BC 分别交于点E 、F,则图中全等的三角形共有( )A 、2对B 、3对C 、5对D 、6对 8、圆心都在x 轴上的两圆有一个公共点是(1,2),那么这两圆的关系是( ) A 、内切 B 、外切 C 、相交 D 、外离9、如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于( ) A 、24πcm 2 B 、12πcm 2 C 、12cm 2 D 、6πcm 2 10、下面是赵明同学在一次测验中解答的填空题,其中,正确的是( )A 、若x 2 =4,则x=2B 、方程x(2x -1)=2x -1的解为x =1C 、关于x 的方程x 2-3x +m=0的一个根是1, 那么m = 2图1D图2F EDCABOD 、若分式2321x x x -+-的值为零,则x = 1或x = 211、下列命题中,真命题是( )A 、有两边相等的平行四边形是菱形。
华师大版九年级上册数学期末考试试卷带答案解析
华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案) 1.下列二次根式是最简二次根式的是( )A B C D2.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是( ) A .16B .-4C .4D .83.在Rt △ABC 中,∠C =90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是( )A .13B .3CD .4. 为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A 、B 、C 、D 四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的大约有900人5.已知(m -3)x 2+是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠3 B .m≥3 C .m≥-2 D .m≥-2且m≠3 6.在平面直角坐标系中,将抛物线y =x 2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为( )A .y =(x -3)2-2B .y =(x -3)2+2C .y =(x +3)2-2D .y =(x +3)2+27.如图,等边△ABC 的边长为6,P 为BC 上一点,BP=2,D 为AC 上一点,若∠APD=60°,则CD 的长为( )A .2B .43C .23D .18.当1<a <2|1-a|的值是( ) A .-1B .1C .2a -3D .3-2a9.如图,在△ABC 中,中线BE 、CF 相交于点G ,连接EF ,下列结论: ①EF BC =12; ②EGF CGB S S =12; ③AF AB =GEGB; ④GEF AEFS S =13.其中正确的个数有( )A .1个B .C .3个D .4个10.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,3).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2017个正方形的面积为( )A .10×(43)2016B .10×(169)2016C .10×(169)2017D .10×(169)4032二、填空题11.已知a=3+b=3-a 2b +ab 2=_________.12.在一个不透明的布袋中装有4个白球、8个红球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是35,则n=_______.13.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .14.如图所示是二次函数y=ax 2+bx +c 的图象.下列结论:①二次三项式ax 2+bx +c 的最大值为4;②使y≤3成立的x 的取值范围是x≤-2;③一元二次方程ax 2+bx +c=1的两根之和为-1;④该抛物线的对称轴是直线x=-1;⑤4a -2b +c <0.其中正确的结论有______________.(把所有正确结论的序号都填在横线上)15.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为点D ,且满足BD :C D =2:1,则△ABC 面积的所有可能值为____________.16.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C ,并把△ABC 的边长放大到原来的2倍.设点B 的横坐标是a ,则点B 的对应点B′的横坐标是___________.三、解答题17.(1)计算:-32-(π-3.14)0+(tan30°)-1-2√12+√2−1(2)解方程:2x 2-4x -1=018.已知某二次函数图象的对称轴是直线x=2,与y轴的交点坐标为(0,1),且经过点(5,6),且若此抛物线经过点(-2,y1)、(3,y2),求抛物线的解析式并比较y1与y2的大小.19.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.20.已知关于x的一元二次方程(x-m)2+6x=2m-1有实数根.(1)求m的取值范围;(2)设方程的两实根分别为x1与x2,求代数式x12+x22-x1·x2的最小值.21.为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜⊥,现计划在斜坡中点D处挖去部分斜坡,坡AB长坡角(即BAC∠)为45︒,BC AC修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE1,求休闲平台DE的长是多少米?AG=米),小亮在D点测得建筑物顶部H的仰角(即(2)一座建筑物GH距离A点33米远(即33HDM∠)为30.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且⊥,问建筑物GH高为多少米?HG CG22.某工厂生产的某种产品按质量分为10个档次,生产第一档次(即最低档次)的产品一天生产76件,每件利润10元,每提高一个档次,利润每件增加2元.(1)每件利润为16元时,此产品质量在第几档次?(2)由于生产工序不同,此产品每提高一个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工厂生产的是第几档次的产品?23.二次函数y=ax2+bx+c图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,l).若此二次函数的图象与x轴的另一个交点为C.(1)试求a,b所满足的关系式;倍时,求a的值;(2)当△AMC的面积为△ABC面积的52(3)是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.24.如图,在Rt△ADC中,∠C=90°,B是CD的延长线上的一点,且AD=BD=5,AC=4,求cos∠BAD的值.25.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2. (1)求证:△ADC∽△APD;(2)求△APD的面积;(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断PM的值是否随着α的变化而变CN的值;反之,请说明理由.化?如果不变,请求出PMCN参考答案1.B 【解析】根据最简二次根式的概念判断即可. 【详解】,不是最简二次根式;=,不是最简二次根式;=,不是最简二次根式; 故选B 【点睛】考查最简二次根式的概念,掌握最简二次根式的定义是解题的关键. 2.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答. 【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=- 2b a = -82-=4, ∵顶点在x 轴上, ∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得: 16-32+c=0, 解得:c=16, 故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单. 3.D 【分析】先求出AC ,再根据正切的定义求解即可.【详解】设BC=x ,则AB=3x ,由勾股定理得,AC=,tanB=AC BC = 故选D .考点:1.锐角三角函数的定义;2.勾股定理. 4.B 【详解】抽取的样本容量为50÷25%=200. 所以C 等所占的百分比是20÷200×100%=10%. D 等所占的百分比是1-60%-25%-10%=5%. 因此D 等所在扇形的圆心角为360°×5%=18°. 全校学生成绩为A 等的大约有1500×60%=900(人). 故选B . 5.D 【解析】根据一元二次方程二次项系数不为0,二次根式被开方数大于等于0.列出不等式组求解即可. 【详解】(m -3)x 2+x =1是关于x 的一元二次方程,则3020,m m -≠⎧⎨+≥⎩ 解得:m ≥-2且m ≠3 故选D. 【点睛】考查一元二次方程的定义以及二次根式有意义的条件,比较基础,难度不大. 6.C 【解析】先确定抛物线y=x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为(−3,−2),然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0) 向左平移3个单位、再向下平移2个单位所得对应点的坐标为(−3,−2),所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.7.B【解析】由等边三角形的性质结合条件可证明△ABP∽△PCD,由相似三角形的性质可求得CD.【详解】∵△ABC为等边三角形,∴∠B=∠C=60∘,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60∘,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD =ABPC,∵AB=BC=6,BP=2,∴PC=4,∴2CD =64,∴CD=43.故选:B.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键. 8.B【详解】解:∵1<a<2,(a-2),|1-a|=a-1,(a-2)+(a-1)=2-1=1. 故选B . 9.C 【解析】根据三角形的中位线定理推出FE ∥BC ,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可. 【详解】∵AF =FB ,AE =EC ,∴FE ∥BC ,FE :BC =1:2,∴AF FE GEAB BC GB==,故①③正确. ∵FE ∥BC ,FE :BC =1:2,∴FG :GC =1:2,△FEG ∽△CBG .设S △FGE =S ,则S △EGC =2S ,S △BGC =4s ,∴14EGF CGBS S=,故②错误. ∵S △FGE =S ,S △EGC =2S ,∴S △EFC =3S . ∵AE =EC ,∴S △AEF =3S ,∴ GEFAEFSS=13,故④正确.故选C . 【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 10.B 【解析】先求出正方形ABCD 的边长和面积,再求出正方形A 1B 1C 1C 的面积,得出规律,根据规律即可求出第2017个正方形的面积. 【详解】∵点A 的坐标为(1,0),点D 的坐标为(0,3), ∴OA =1,OD =3, ∵∠AOD =90∘,∴AB =AD =√12+32=√10,∠ODA +∠OAD =90∘, ∵四边形ABCD 是正方形,∴∠BAD =∠ABC =90∘,S 正方形ABCD =(√10)2=10,∴∠ABA 1=90∘,∠OAD +∠BAA 1=90∘, ∴∠ODA =∠BAA 1, ∴△ABA 1∽△DOA , ∴BA 1OA=ABOD,即BA 11=√103, ∴BA 1=√103,∴CA 1=√10+√103=4√103,∴正方形A 1B 1C 1C 的面积=(4√103)2=10×(43)2, …,第n 个正方形的面积为10×(43)2n−2,∴第2017个正方形的面积为10×(43)4034−2=10×(43)4032=10×(169)2016.故选:B. 【点睛】考查正方形的性质,相似三角形的判定与性质等知识点,找出面积之间的关系是得到规律是解题的关键. 11.6 【解析】 【分析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a =3+b =3-即可. 【详解】解:待求式提取公因式,得22(),a b ab ab a b +=+ 将已知代入,得(((3(33316 6.⎡⎤+⨯-⨯++-=⨯=⎣⎦故答案为6. 【点睛】考查代数式求值,熟练掌握提取公因式法是解题的关键. 12.18 【解析】 【分析】根据黄球的概率公式3.485n n ==++列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n +4+8个球,其中黄球n 个, 根据古典型概率公式知:P (黄球)3.485n n ==++解得n =18. 故答案为18. 【点睛】考查概率的计算,掌握概率=所求情况数与总情况数之比是解题的关键. 13.解:∠D=∠B 或∠AED=∠C . 【分析】根据相似三角形的判定定理再补充一个相等的角即可. 【详解】解:∵∠DAB=∠CAE ∴∠DAE=∠BAC∴当∠D=∠B 或∠AED=∠C 或AD :AB=AE :AC 或AD•AC=AB•AE 时两三角形相似. 故答案为∠D=∠B (答案不唯一). 14.①④. 【分析】①由抛物线的顶点坐标为(-1,4),可得出①正确;②由当x=0或x=-2时,y=3,结合抛物线的开口向下,即可得出使y≤3成立的x 的取值范围是x≥0或x≤-2,②正确;③由抛物线的对称轴为直线x=-1,可得出一元二次方程ax 2+bx+c=1的两根之和为-2,③错误;④根据图象可知,该抛物线的对称轴是直线x =-1,④正确.⑤由x=-2时,0y >,可得出420a b c -+>,⑤错误,综上即可得出结论. 【详解】①∵抛物线y =ax 2+bx +c 的顶点坐标为(−1,4), ∴二次三项式ax 2+bx +c 的最大值为4,①正确; ②∵当x =0时,y =3, ∴当x =−2时,y =3.观察函数图象,可知:当x≥0或x≤-2,y≤3, ②错误;③∵抛物线的对称轴为直线x =−1,∴一元二次方程ax 2+bx +c =1的两根之和为−2,③错误; ④抛物线的对称轴为直线x =−1,④正确. ⑤∵2x =-时,0y >, ∴420a b c -+>,⑤错误. 综上所述:正确的结论为①④. 故答案为①④. 【点睛】二次函数图象与系数的关系,根与系数的关系,二次函数的最值,是中考常考题型. 15.8或24. 【详解】试题分析:如图1所示:∵BC=6,BD :CD=2:1,∴BD=4,∵AD ⊥BC ,tanB=23,∴AD BD =23,∴AD=23BD=83,∴S △ABC =12BC•AD=12×6×83=8;如图2所示:∵BC=6,BD :CD=2:1,∴BD=12,∵AD ⊥BC ,tanB=23,∴AD BD =23,∴AD=23BD=8,∴S △ABC =12BC•AD=12×6×8=24; 综上,△ABC 面积的所有可能值为8或24,故答案为8或24.考点:解直角三角形;分类讨论. 16.-2a-3 【解析】 【分析】设点B ′的横坐标为x ,然后表示出BC 、B ′C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点B ′的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣a ,B ′、C 间的横坐标的长度为x +1. ∵△ABC 放大到原来的2倍得到△A ′B ′C ,∴2(﹣1﹣a )=x +1,解得:x =-2a -3. 故答案为:-2a -3. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键. 17. (1) −9+√3;(2) x 1=1+√62, x 2=1-√62.【解析】 【分析】(1)分别根据数的开方及乘方法则、负整数指数幂的运算法则,特殊角的三角函数值以及二次根式分母有理化等计算出各数,再根据实数混合运算的法则进行计算即可; (2)利用公式法求出x 的值即可. 【详解】(1)原式=−9−1+(√33)−1−√2+√2+1=−9+√3 (2)△=16+8=24 ∴x =4±2√64,∴x 1=1+√62, x 2=1-√62【点睛】考查实数的混合运算以及公式法解一元二次方程,比较基础,难度不大. 18.y 1>y 2 【解析】 【分析】设该抛物线的解析式为y =ax 2+bx +c (a ≠0),用待定系数法即可求出二次函数解析式,把点(-2,y 1)、(3,y 2)代入抛物线,求出y 1与y 2,即可比较y 1与y 2的大小. 【详解】设该抛物线的解析式为y =ax 2+bx +c (a ≠0),由题意可得:{−b2a=2 1=c25a+5b+c=6,解得:{a=1b=−4c=1,∴该抛物线的解析式为y=x2-4x+1,当x=-2时,y1=13,当x=3时,y2=-2,∵13>-2,∴y1>y2【点睛】考查待定系数法求二次函数的解析式以及二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.19.(1)13.(2)不公平.【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可.【详解】(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:13;(2)不公平,从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:59,乙获胜的概率为:13.∵59>13,∴甲获胜的概率大,游戏不公平.20.(1)m≤2;(2) 最小值是1【解析】【分析】(1)根据判别式的意义得到△=-16m+32≥0,然后解不等式即可;(2)根据根与系数的关系得到得x1+x2=2m-6,x1·x2= m2-2m+1,再把要求的式子进行变形,即可得出答案.【详解】(1)由(x-m)2+6x=2m-1,得x2+(6-2m)x+m2-2m+1=0.∴△=b2-4ac=(6-2m)2-4×1×(m2-2m+1) =-16m+32∵方程有实数根,∴-16m+32≥0.解得m≤2.∴m的取值范围是m≤2(2)∵方程的两实根分别为x1与x2,由根与系数的关系,得∴x1+x2=2m-6,x1·x2= m2-2m+1,∴x12+x22-x1·x2=(x1+x2)2-3 x1·x2=(2m-6)2-3(m2-2m+1)=m2-18m+33=(m-9)2-48∵m≤2,且当m<9时,(m-9)2-48的值随m的增大而减小,∴当m=2时,x12+x22-x1·x2的值最小,最小值为(2-9)2-48=1.∴x12+x22-x1·x2的最小值是1【点睛】考查一元二次方程根的判别式以及一元二次方程根与系数的关系,熟记根与系数的关系是解题的关键.21.(1)(30-m (2)(30+米【详解】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中, 求得HE =50HG =米. 详解:(1)∵MF ∥BC ,∴∠AMF =∠ABC =45°,∵斜坡AB 长M 是AB 的中点,∴AM =(米),∴AF =MF =AM •cos ∠AMF =50=(米),在RT ANF 中,∵斜坡AN 1,∴AF NF =∴NF =,∴.(2)在RT △BMK 中,BM=∴BK=MK=50(米), EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴tan30HE EM =︒=,∴84HE =∴50HG HE EG HE MK =+=+=(米)答:休闲平台DE GH 高为()50米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用. 22.(1)每件利润是16元时,此产品的质量档次是在第四档次. (2)设生产产品的质量档次是在第x 档次时,一天的利润是y (元), 根据题意得:[][])1(476)1(210---+=x x y整理得:64012882++-=x x y 当利润是1080时,即108064012882=++-x x 解得:11,521==x x (不符合题意,舍去)答:当生产产品的质量档次是在第5档次时,一天的利润为1080元. 【解析】(1)依题意可得此产品质量在第4档次.(2)设生产产品的质量档次是在第x 档次时,一天的利润是y ,求出y 与x 的函数解析式,令y=1080,求出x 的实际值.23. (1)a +b =-1;(2)a =-4+√15;(3)不存在. 【解析】 【分析】(1)把点A (1,0)和点B (0,1)的坐标代入抛物线的解析式,就可以得到关于a ,b ,c 关系式.整理就得到a ,b 的关系.(2)利用公式求出抛物线的顶点的纵坐标,进而表示出△AMC 的面积,根据S △AMC =52S △ABC,就可以得到关于a 的方程,解得a 的值;(3)本题应分A 是直角顶点,B 是直角顶点,C 是直角顶点三种情况进行讨论. 【详解】(1)将A (1,0),B (0,l )代入y =ax 2+bx +c 得: {a +b +c =0c =1,可得:a +b =-1 (2)(2)∵a +b =−1,∴b =−a −1代入函数的解析式得到:y =ax 2−(a +1)x +1, 顶点M 的纵坐标为4a−(a+1)24a=−(a−1)24a,因为S △AMC =52S △ABC , 由同底可知:−(a−1)24a=52×1整理得:a 2+8a +1=0,得:a =-4±√15由图象可知:a <0,因为抛物线过点(0,1),顶点M 在第二象限,其对称轴x =a+12a <0, ∴-1<a <0,∴a =-4-√15舍去,从而a =-4+√15 (3)① 由图可知,A 为直角顶点不可能;② 若C 为直角顶点,此时与原点O 重合,不合题意; ③ 若设B 为直角顶点,则可知−15,得:令85,可得:ax 2−(a +1)x +1=0,x 1=1,x 2=1a , 得:AC =1−1a ,BC =√12+1a 2,AB =√2,∴(1−1a )2=2+(1+1a 2)解得:a =-1,由-1<a <0,不合题意.所以不存在 综上所述:不存在. 【点睛】本题是二次函数与三角形综合题,注意数形结合思想在解题中的应用.24【分析】利用勾股定理求得CD 和AB 的长,再利用三角函数的定义求得cos ∠B 的值,即可求解. 【详解】 ∵AD=BD , ∴∠BAD=∠B ,∵∠C=90°,AD=BD=5,AC=4,∴, ∴BC= CD + BD =8,∴∴cos ∠BAD=cos ∠B=BC AB =. 【点睛】本题考查了解直角三角形,涉及勾股定理的应用,锐角三角函数的定义等知识,熟练掌握锐角三角函数的定义是解题的关键.25.(1)见解析;(2) √33;(3) 不会随着α的变化而变化【解析】 【分析】(1)先判断出△BCD 是等边三角形,进而求出∠ADP=∠ACD ,即可得出结论; (2)求出PH ,最后用三角形的面积公式即可得出结论;(3)只要证明△DPM 和△DCN 相似,再根据相似三角形对应边成比例即可证明. 【详解】(1)证明:∵△ABC 是直角三角形,点D 是AB 的中点, ∴AD =BD =CD ,∵在△BCD 中,BC =BD 且∠B =60°, ∴△BCD 是等边三角形, ∴∠BCD =∠BDC =60°, ∴∠ACD =90°-∠BCD =30°, ∠ADE =180°-∠BDC -∠EDF =30°,在△ADC 与△APD 中,∠A =∠A ,∠ACD =∠ADP , ∴△ADC ∽△APD .(2)由(1)已得△BCD 是等边三角形,∴BD =BC =AD =2, 过点P 作PH ⊥AD 于点H ,∵∠ADP =30°=90°-∠B =∠A , ∴AH =DH =1, tan A =PH AH=√33,∴PH =√33.∴△APD 的面积=12AD ·PH =12×2×√33=√33(3)PMCN 的值不会随着α的变化而变化.∵∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°, 在△MPD 与△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD∽△NCD,∴PMCN =PDCD,由(1)知AD=CD,∴PMCN =PDAD,由(2)可知PD=2AH,∴PD=2√33,∴PMCN =PDCD=2√332=√33.∴PMCN的值不会随着α的变化而变化.【点睛】属于相似三角形的综合题,考查相似三角形的判定与性质,锐角三角函数,三角形的面积等,综合性比较强,对学生综合能力要求较高.21。
华师大版九年级上册数学期末考试试卷含答案详解
华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=2.方程x2-3x=0的解是()A.0 B.3 C.0或3 D.1或33.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=( )cm.A.3 B.4 C.5 D.24.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A.512B.125C.513D.10135.如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是()A.5.5 B.5 C.4.5 D.46.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S△CDE=3cm2,则△BCF的面积为()A.6cm2B.9cm2C.18cm2D.27cm27.两个相似三角形,他们的周长分别是36和12.周长较大的三角形的最大边为15,周长较小的三角形的最小边为3,则周长较大的三角形的面积是()A.52 B.54 C.56 D.58.8.如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,则AB长为()A.2B.7C.5D.25二、填空题9x的取值范围是___.10.如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为________.11.一元二次方程2x+px-2=0的一个根为2,则p的值________.12.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是_____________.13.式子________ .14.各边长度都是整数、最大边长为11的三角形共有_____个.15.在Rt△ABC中,∠C=90°,cosA=13,则tanA=________16.将直线y=3x向上平移1个单位,可以得到直线________.17.(2016湖北省孝感市)如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为_________.18.如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P 与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是_____.(1);(2)S四边形OEBF:S正方形ABCD=1:4;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(4)OG•BD=AE2+CF2.三、解答题19.计算:()012tan60π-⨯--︒20.张老师担任初一(2)班班主任,她决定利用假期做一些家访,第一批选中8位同学,如果他们的住处在如图所示的直角坐标系中,A(-1,-2),B(0,5),C(-4,3),D(-2,5),E(-4,0),F(1,5),G(1,0),H(0,-1),请你在图中的直角坐标系中标出这些点,设张老师家在原点O,再请你为张老师设计一条家访路线.21.关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2,求k的值.22.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,月份的营业额达到633.6万元.求3月份到5月份营业额的平均月增长率.23.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.24.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.25.在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同.甲、乙、两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号.将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜.问:这个游戏公平吗?请说明理由.26.如图,明亮同学在点A处测得大树顶端C的仰角为36°,斜坡AB的坡角为30°,沿在同一剖面的斜坡AB行走16米至坡顶B处,然后再沿水平方向行走6.4米至大树脚底点D 处,那么大树CD的高度约为多少米?)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,).27.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.参考答案1.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.2.C【分析】利用因式分解法解方程.【详解】x(x-3)=0,x=0或x-3=0,所以x1=0,x2=3.故选C.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.D【解析】【分析】连接BD,根据三角形的内角和定理和等腰三角形性质求出DC=2BD,根据线段垂直平分线的性质求出AD=BD,即可求出答案.【详解】连接BD.∵AB=BC,∠ABC=120°,∴∠A=∠C=12(180°-∠ABC)=30°,∴DC=2BD,∵AB的垂直平分线是DE,∴AD=BD,∴DC=2AD,∵AC=6,∴AD=13×6=2,故选D.【点睛】本题主要考查对等腰三角形的性质,含30度角的直角三角形,线段的垂直平分线,三角形的内角和定理等知识点的理解和掌握,能求出AD=BD和DC=2BD是解此题的关键.4.A【详解】试题解析:∵△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,∴AD⊥BC,CD=12BC=5,∴,∴tan∠CAD=CDAD=512.∵AD⊥BC,DE⊥AC,∴∠CDE+∠ADE=90°,∠CAD+∠ADE=90°,∴∠CDE=∠CAD,∴tan∠CDE=tan∠CAD=5 12.故选A.考点:解直角三角形.5.A【详解】试题分析:本题依据三角形三边关系,可求第三边大于2小于8,原三角形的周长大于10小于16,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于5而小于8,看哪个符合就可以了.解:设三角形的三边分别是a、b、c,令a=3,b=5,∴2<c<8,∴10<三角形的周长<16,∴5<中点三角形周长<8.故选A.考点:三角形中位线定理;三角形三边关系.6.D【解析】试题分析:根据平行四边形的性质得BC=AD,BC∥AD,CD∥AB,∠D=∠B,则BC=3DE,再证明△CDE∽△FBC,然后利用三角形相似的性质可计算出△BCF的面积.考点:(1)、相似三角形的判定与性质;(2)、平行四边形的性质.7.B【解析】【分析】根据已知先求得两相似三角形的相似比,然后根据相似比可求得较大的三角形的三边的长,根据其边长判定三角形为直角三角形,从而不难求得其面积.【详解】∵两相似三角形的周长分别是36和12∴相似比为3:1∵周长较大的三角形的最大边为15,周长较小的三角形的最小边为3∴周长较大的三角形的最小边为9,周长较小的三角形的最大边为5∴周长较大的三角形的第三条边为12∴两个三角形均为直角三角形∴周长较大的三角形的面积=12×9×12=54故选B.【点睛】此题主要考查学生对相似三角形的性质及三角形面积公式的运用能力.8.B【解析】【分析】先求出BD的长度,再求得∠ADB=30°.过A作AE⊥BD于E,在△AED中,求AE、ED 的长,可求BE,最后在Rt△ABE中,利用勾股定理求AB的长.【详解】过点A作AE⊥BD,垂足为E.∵BD⊥DC,∠C=60°,BC=6,∴∠1=30°,BD=BC•sin60°=∵AD∥BC,∴∠2=∠1=30°.∵AE⊥BD,AD=4,∴AE=2,DE=∴BE=BD−DE=∴AB故选B.【点睛】本题利用直角三角形30°角所对的直角边等于斜边的一半、平行线的性质和勾股定理求解,需要熟练掌握并灵活运用.9.x2≥【详解】x﹣2≥0,解得x≥2.故答案是x≥2.【点睛】考点:二次根式有意义的条件.10.4【解析】∵这三个正方形的边都互相平行,∴它们均相似,∴x6=69,解得:x=4.故答案为4.11.-1【详解】把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为﹣1.12.23;【详解】试题解析:列表得:所有等可能的情况有12种,其中之和为奇数的情况有8种,则82.123 P==故答案为:2 . 313.1<x≤3【解析】【分析】根据题意得x-1>0,3-x≥0,解不等式组即可.【详解】∵x-1>0,3-x≥0,∴x>1且x≤3,即1<x≤3.故答案为1<x≤3.【点睛】本题考查了二次根式的乘除法,被开方数要大于等于0,分母不能为0.14.36【解析】试题解析:设另外两边长为x,y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取值11时,x=1,2,3,…,11,可有11个三角形;当y取值10时,x=2,3,…,10,可有9个三角形;当y取值分别为9,8,7,6时,x取值个数分别是7,5,3,1,∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.故答案是:36.15.【解析】【分析】根据锐角三角函数的概念,可以证明:同一个角的正弦和余弦的平方和等于1;同一个角的正切等于它的正弦除以它的余弦.【详解】因为在△ABC中,∠C=90°,cosA=13,所以所以tanA=313故答案为【点睛】解答此题要用到同角三角函数关系式,同角三角函数关系常用的是:sin2x+cos2x=1;sinAtanAcosA=.16.y=3x+1【解析】试题分析:图象的平移法则为:“左加右减,上加下减”,然后根据法则就可以得到答案. 考点:一次函数图象与几何变换.17.23.【解析】试题分析:小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,则小正方形EFGH边长是a ,则大正方形ABCD 的面积是a ,设AE=DH=x ,利用勾股定理求出x ,最后利用熟记函数即可解答.设小正方形EFGH 面积是a 2,则大正方形ABCD 的面积是13a 2, ∴小正方形EFGH 边长是a ,则大正方形ABCD 的面积是a ,∵图中的四个直角三角形是全等的, ∴AE=DH , 设AE=DH=x , 在Rt △AED 中,AD 2=AE 2+DE 2,即13a 2=x 2+(x+a )2 解得:x 1=2a ,x 2=﹣3a (舍去), ∴AE=2a ,DE=3a , ∴tan ∠ADE=考点:(1)勾股定理;(2)全等三角形的判定;(3)锐角三角函数的定义. 18.(1)(2)(4) 【解析】 【分析】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得结论;(2)由(1)易证得S 四边形OEBF =S △BOC =14S 正方形ABCD ,则可证得结论; (3)首先设AE=x ,则BE=CF=1﹣x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案;(4)易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG•OB=OE 2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论. 【详解】∵四边形ABCD 是正方形,∴OB=OC ,∠OBE=∠OCF=45°,∠BOC=90°, ∴∠BOF+∠COF=90°, ∵∠EOF=90°, ∴∠BOF+∠COE=90°, ∴∠BOE=∠COF , 在△BOE 和△COF 中, BOE COF OB OCOBE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOE ≌△COF (ASA ), ∴OE=OF ,BE=CF , ∴;故(1)正确;∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD , ∴S 四边形OEBF :S 正方形ABCD =1:4;故(2)正确; 过点O 作OH ⊥BC , ∵BC=1, ∴OH=12BC=12,设AE=x ,则BE=CF=1-x ,BF=x , ∴S △BEF +S △COF =12BE•BF+12CF•OH=12x (1-x )+12(1-x )×12=-12(x-14)2+932,∵a=-12<0,∴当x=14时,S △BEF+S △COF 最大;即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=14;故(3)错误;∵∠EOG=∠BOE ,∠OEG=∠OBE=45°, ∴△OEG ∽△OBE , ∴OE :OB=OG :OE , ∴OG•OB=OE 2,∵OB=12BD ,,∴OG•BD=EF 2,∵在△BEF 中,EF 2=BE 2+BF 2, ∴EF 2=AE 2+CF 2,∴OG•BD=AE 2+CF 2.故(4)正确,综上所述:(1)(2)(4)正确, 故答案为(1)(2)(4) 【点睛】本题考查四边形的综合题、正方形的性质、旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题,灵活运用所学知识,学会正确寻找全等三角形解决问题,学会构建二次函数解决最值问题是解题关键.19.【分析】按照实数的运算法则依次计算,注意:()0tan60π11︒=-=. 【详解】解:原式12=⨯2=【点睛】考查实数的混合运算,掌握二次根式,零次幂以及特殊角的三角函数值是解题的关键. 20.O→G→H→A→E→C→D→B→F 【解析】 【分析】先在平面直角坐标系中描出各点,然后顺次连接即可. 【详解】描出各点,如下图所示,设计家访路线时,以路程较短为原则,如:O→G→H→A→E→C→D→B→F【点睛】本题考查了在平面直角坐标系中描点,注意在描点时点的纵横坐标不要写反了. 21.(1)12k ≤;(2)3k =- 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围;(2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12;(2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.22.20% 【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设3月份到5月份营业额的平均增长率是x ,则四月份的营业额是400(1+10%)(1+x ),5月份的营业额是400(1+10%)(1+x )2,据此即可列方程求解.要注意根据实际意义进行值的取舍. 【详解】设月份至月份的营业额的平均月增长率为. 依题意,得: 2400(110%)(1)633.6x ++=. 整理得: 2(1) 1.44x +=.解得: 120.2, 2.2x x ==-(不合题意,舍去). 答:月份至月份的营业额的平均月增长率为20%. 【点睛】可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键. 23.该建筑物的高度为:(tan ?tan tan tan m n αββα+-)米.【解析】试题分析:首先由题意可得,,CE CEBE AE tan tan ,βα== 由AE −BE =AB =m 米,可得CE CEm tan tan αβ-=,继而可求得CE 的长,又由测角仪的高度是n 米,即可求得该建筑物的高度.试题解析:由题意得:,CE CEBE AE tan tan ,βα== ∵AE −BE =AB =m 米, CE CEm tan tan αβ∴-= (米), mtan tan CE tan tan αββα⋅∴=- (米),∵DE =n 米, mtan tan CD n tan tan αββα⋅∴=+- (米).∴该建筑物的高度为:mtan tan n tan tan αββα⋅+-米24【解析】 【分析】根据相似多边形的性质列出比例式,得到一元二次方程,解方程即可. 【详解】∵矩形ABCD ∽矩形ECDF , ∴BC CDCD EC =,即BC CD CD BC AB=- ∴BC 2﹣BC•AB ﹣CD 2=0,解得,CD , ∵BC 、CD 是正数,∴BC AB =【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键. 25.这个游戏不公平,理由见解析. 【分析】用列表法或树状图法求出两位数的个数和两位数能被4整除的个数,从而求出甲胜和乙胜的概率,比较两概率是否相等,得出结论.【详解】根据题意列出表格如下:共有9种可能.22,23,24,32,33,34,42,43,44 能被4整除有:24,32,44,∴P(甲胜)=3193,P(乙胜)=23.∵P(甲胜)≠P(乙胜),∴这个游戏不公平.26.大树CD的高度约为6.6米.【解析】【分析】作BF⊥AE于F,则FE=BD=6.4米,DE=BF,设BF=x米,则米,在Rt△ABF 中,由勾股定理得出方程,解方程求出DE=BF=8米,AF≈13.6米,得出AE的长度,在Rt△ACE 中,由三角函数求出CE,即可得出结果.【详解】作BF⊥AE于F,如图所示:则FE=BD=6.4米,DE=BF,∵斜坡AB的坡角为30°,∴,设BF=x米,则米,在Rt△ABF中,由勾股定理得:x2+)2=162,解得:x=8,∴DE=BF=8米,AF≈13.6米,∴AE=AF+FE=20米,在Rt△ACE中,CE=AE•tan36°≈20×0.73=14.6米,∴CD=CE﹣DE=14.6﹣8=6.6米.故大树CD的高度约为6.6米.【点睛】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.27.【详解】试题分析:方法一:作BF⊥DE于点F,CG⊥DE于点G,∴∠F=∠CGE=90°.又∵∠BEF=∠CEG,BE=CE,∴△BFE≌△CGE.∴BF=CG.在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,∴△ABF≌△DCG.∴AB=CD.方法二:作CF∥AB,交DE的延长线于点F,∴∠F=∠BAE.又∵∠ABE=∠D,∴∠F=∠D.∴CF=CD.∵∠F=∠BAE,∠AEB=∠FEC,BE=CE,∴△ABE≌△FCE.∴AB=CF.∴AB=CD.方法三:延长DE至点F,使EF=DE,又∵BE=CE,∠BEF=∠CED,∴△BEF≌△CED.∴BF=CD,∠D=∠F.又∵∠BAE=∠D,∴∠BAE=∠F.∴AB=BF.∴AB=CD.考点:1.全等三角形的判定与性质;2.阅读理解.。
华师大版九年级数学上册期末考试试卷(附带答案)
华师大版九年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 一、选择题(本题共10小题,每小题4分,共40分)1.下列根式中,与20是同类二次根式的是()A.15B.45C.35 D.182.关于x的一元二次方程x2=1的根是()A.x=1 B.x1=1,x2=-1C.x=-1 D.x1=x2=13.用配方法解方程x2+4x-1=0时,配方结果正确的是()A.(x+4)2=5 B.(x+2)2=5 C.(x+4)2=3 D.(x+2)2=34.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有2个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.某班一同学在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又各自教会了同样多的同学,这样全班共有36名同学会做这个实验.若设1名同学每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=3663的整数部分为x,小数部分为y,则3x-y的值是()A.3 3-3 B.3C.1D.37.定义运算:a*b=2ab, 若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.m B.2-2m C.2m-2 D.-2m-28.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cos α=35,AB=4,则AC的长为( ) A .3B.165C.203D.163(第8题)(第9题) 9.如图,在菱形ABCD 中,∠ABC =60°,连结AC 、BD ,则ACBD =( )A.12B.22C.32D.3310.如图,正方形ABCD 的边AB =3,对角线AC 和BD 交于点O ,P 是边CD 上靠近点D 的三等分点,连结P A 、PB ,分别交BD 、AC 于点M 、N ,连结MN .有下列结论:①OM =MD ;②S △OMA S △ONB=52;③MN =35820;④S △MDP =38,其中正确的是( )(第10题)A .①②③B .①②④C .②③④D .①②③④二、填空题(本题共6小题,每小题4分,共24分) 11.计算:12+27=________.12.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出1个球是红球的概率为________.13.若关于x 的方程x 2+(k -3)x -k 2=0的两根互为相反数,则k =________.14.如图,添加一个条件:__________________________,使△ADE ∽△ABC .(写一个即可)(第14题)(第15题)15.如图,在三角形纸片ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,BF =4,CF =6.将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为________.16.如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B、D两点.若AB=2,∠BAD=30°,则k=________.(第16题)三、解答题(本题共9小题,共86分)17.(8分)计算:(-3)2-2sin 45°+||2-1.18.(8分)解方程:2x2-7x-4=0.19.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧按21放大,画出△OAB的一个位似图形△OA1B1;(2)画出将△OAB向左平移2个单位长度,再向上平移1个单位长度后得到的△O2A2B2;(3)△OA1B1与△O2A2B2是位似图形吗?若是,请在图中标出位似中心点M,并写出点M的坐标.(第19题)20.(8分)如图,将Rt△AOB绕直角顶点O按顺时针方向旋转,得到△A′OB′,使点A的对应点A′落在边AB上,过点B′作B′C∥AB,交AO的延长线于点C.(第20题)(1)求证:∠BA′O=∠C;(2)若OB=2OA,求tan∠OB′C的值.21.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在边BC上找一点E,使得△DCE∽△CBF(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若E为BC的中点,AD=8,BF=3,求AB的长.(第21题)22.(10分)定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根互为相反数,那么称这样的方程是“对称方程”.例如:一元二次方程x2-4=0的两个根是x1=2,x2=-2,2和-2互为相反数,则方程x2-4=0是“对称方程”.(1)通过计算,判断下列方程是否是“对称方程”:①x2+x-2=0;②x2-12=0.(2)已知关于x的一元二次方程x2-(k2-4)x-3k=0 (k是常数)是“对称方程”,求k的值.23.(10分)如图,在等腰三角形ADC中,AD=AC,B是DC上的一点,连结AB,且有AB=DB.(1)若∠BAC=90°,AC=3,求CD的长;(第23题)(2)若ABCD=13,求证:∠BAC=90°.24.(12分)在如今智能手机的功能中,都可以利用手势密码进行锁屏和解锁.其中最常见的就是利用3×3的正方形点阵设置密码,我们将其称为“9点码”.通常,在设置“9点码”时,只能连结相邻的两点(如图,不妨将9个点依次对应数字1到9,例如图中路线Ⅰ,Ⅱ是可行的,路线Ⅲ,Ⅳ是不可行的),不能走重复的路线,从而形成相应的密码线段,线段越多,密码越复杂.已知小明设置的“9点码”从右上角的点“3”出发,且用了3个数字.(1)已知横向和纵向的相邻两点距离为1,且以小明设置的“9点码”所经过的点为顶点的三角形恰好是等腰三角形,则该等腰三角形的面积所有可能的值为________;(2)用概率知识并结合树状图回答:若小明设置的“9点码”用了3个数字,对于一个不知道该密码的人(已知出发点和用了3个数字),通过画树状图,求其一次尝试能将小明手机解锁的概率.(第24题)25.(14分)如图,在正方形ABCD中,AB=4,P、Q分别是边AD、AC上的动点.(1)填空:AC=________;(2)若AP=3PD,且点A关于PQ的对称点A′落在边CD上,求tan∠A′QC的值;(3)设AP=a,直线PQ交直线BC于点T,求△APQ与△CTQ面积之和S的最小值.(用含a的代数式表示)(第25题)参考答案一、1.B 2.B 3.B 4.B 5.B 6.C7.D8.C9.D10.D二、11.5 312.3 813.314.∠ADE=∠B(答案不唯一) 15.5 316.6+2 3三、17.解:原式=3-2×22+2-1=2.18.解:原方程可化为(x -4)(2x +1)=0 ∴x -4=0或2x +1=0 ∴x 1=4,x 2=-12.19.解:(1)如图,△OA 1B 1为所作.(2)如图,△O 2A 2B 2为所作.(3)△OA 1B 1与△O 2A 2B 2是位似图形.如图,点M 为所求,其坐标为(-4,2).(第19题)20.(1)证明:如图,∵B ′C ∥AB ,∴∠A +∠C =180°.由旋转,得OA ′=OA ,∴∠1=∠A .∵∠1+∠BA ′O =180°,∴∠A +∠BA ′O =180° ∴∠BA ′O =∠C .(第20题)(2)解:如图,由旋转,得OB ′=OB ∠A ′OB ′=∠AOB =90°,∴∠2+∠3=90°. ∵∠3+∠4=90°,∴∠2=∠4. 由(1)得,∠BA ′O =∠C∴△A ′OB ≌△COB ′,∴∠B =∠OB ′C . 在Rt △AOB 中,OB =2OA∴tan B=OAOB=12.∴tan∠OB′C=tan B=1 2.21.解:(1)如图,点E即为所求.(第21题)(2)∵四边形ABCD是平行四边形,AD=8∴BC=AD=8,AB=CD.∵E为BC的中点,∴CE=BE=12BC=4.∵△DCE∽△CBF,∴CEBF=DCBC∴43=DC8,∴DC=323,∴AB=DC=323.22.解:(1)①x2+x-2=0,即(x+2)(x-1)=0∴x1=-2,x2=1.∵-2和1不互为相反数,∴不是“对称方程”.②由题意,得x=±12=±2 3即x1=2 3,x2=-2 3.∵2 3与-2 3互为相反数,∴是“对称方程”.(2)设x1,x2为原方程的解,∵该方程为“对称方程”∴x1+x2=k2-4=0,即k2=4,解得k=±2.当k=-2时,方程为x2+6=0,无解,不符合题意.当k=2时,方程为x2-6=0,符合题意.∴k的值为2.23.(1)解:∵AD=AC,AB=DB∴∠C=∠D,∠D=∠DAB,∴∠C=∠D=∠DAB.∵∠BAC=90°,∠C+∠D+∠DAC=∠C+∠D+∠DAB+∠BAC=180°,∴∠C+∠D+∠DAB=90°∴∠C=∠D=∠DAB=30°.在△ABC中,∠BAC=90°,∠C=30°∴AB=AC·tan 30°=3×33=1∴BC=2AB=2,BD=AB=1 ∴CD=BD+BC=1+2=3.(2)证明:∵ABCD=13,AB=DB∴BC=2AB,DC=3AB.∵∠DAB=∠C,∠D=∠D∴△DAB∽△DCA,∴ABAC=ADCD.∵AD=AC,∴AC2=3AB2.∵BC=2AB,∴BC2=4AB2.∴AB2+AC2=BC2,∴∠BAC=90°.24.解:(1)12或1(2)如图.(第24题)由树状图可得,所有等可能的结果有15种,而符合条件的结果只有1种,所以一次尝试能将小明手机解锁的概率为1 15.25.解:(1)4 2(2)∵在正方形ABCD中,AB=4,AC为对角线∴AD=AB=4,∠DAC=∠DCA=45°,∠ADC=90°.∵点A关于PQ的对称点A′落在CD边上∴△APQ和△A′PQ关于PQ对称∴AP=A′P,∠P AQ=∠P A′Q=45°.∵∠DA′Q=∠DCA+∠A′QC=∠P A′Q+∠P A′D∴∠A′QC=∠P A′D.∵AP=3PD,AD=4,∴A′P=AP=3,PD=1第 11 页 共 11 页 ∴A ′D =A ′P 2-PD 2=2 2∴tan ∠A ′QC =tan ∠P A ′D =PD A ′D =12 2=24. (3)如图,过点Q 作直线MN ⊥AD 于点M ,交BC 于点N ,则MN ⊥BC .(第25题)∵AP ∥CT ,∴△APQ ∽△CTQ ,∴AP CT =QM QN .设QM =h ,则QN =4-h ,∴a CT =h 4-h解得CT =a (4-h )h∴S =12ah +12·a (4-h )h ·(4-h )=12ah +a (4-h )22h整理得ah 2-(4a +S )h +8a =0.∵方程有实数根∴[-(4a +S )]2-4a ·8a ≥0,即(4a +S )2≥32a 2.又∵4a +S >0,a >0,∴4a +S ≥4 2a∴S ≥(4 2-4)a .当S =(4 2-4)a 时,由方程可得h 1=h 2=2 2,满足题意.故当h =2 2时,△APQ 与△CTQ 面积之和S 最小,最小值为(4 2-4)a .。
华师版九年级数学上册期末测试题(含答案)
华东师大版数学九年级上期期末测试题一、选择题1. 下列方程中, 是一元二次方程的是(A )221x y += (B )21121x x =+ (C )24535x x --= (D0= 2. 下列各组二次根式中, 化简后是同类二次根式的是(A)(B和3 (C)n(D3. 下列说法正确的是(A )做抛掷硬币的实验, 如果没有硬币用图钉代替硬币, 做出的实验结果是一致的 (B )抛掷一枚质地均匀的硬币, 已连续掷出5次正面, 则第6次一定掷出背面 (C )某种彩票中奖的概率是1%, 因此买100张该彩票一定会中奖(D )天气预报说明天下雨的概率是50%, 也就是说明天下雨和不下雨的机会是均等的4.若 = , 则 的值为 (A )5 (B )15 (C )3 (D )135. △ 的顶点 的坐标为 , 先将△ 沿 轴对折, 再向左平移两个单位, 此时 点的坐标为(A )(2,4)- (B )(0,4)- (C )(4,4)-- (D )(0,4)6. 用配方法解方程 , 下列配方变形正确的是(A )2(2)2x += (B )2(2)2x -= (C )2(2)4x += (D )2(2)4x -= 7. 如图(1), 小正方形的边长均为1, 则下列图中的三角形 (阴影部分)与△ABC 相似的是8. 某服装店搞促销活动, 将一种原价为56元的衬衣第一次降价后, 销量仍然不好, 又进行第二次降价, 两次降价的百分率相同, 现售价为31.5元, 设降价的百分率为 , 则列出方程正确的是 (A )256(1)31.5x -= (B )56(1)231.5x -÷= (C )256(1)31.5x += (D )231.5(1)56x -=二、填空题: (本大题共8个小题, 每小题3分, 共24分.请把答案填在题中的横线上. )(B )(C )(D )(A )CAB图(1)9. 若二次根式有意义, 则实数的取值范围是__________.10. 在比例尺为1∶4000000的地图上, 量得甲、乙两地距离为2.5cm, 则甲、乙两地的实际距离为____________km.11. 如图(4), 在菱形中, 、分别是、的中点,•如果, 那么菱形的周长__________.12. 有30张扑克牌, 牌面朝下, 随机抽出一张记下花色再放回;洗牌后再这样抽, 经历多次试验后, 得到随机抽出一张牌是红桃的概率为20%, 则红桃牌大约有张.13. 关于的一元二次方程有实数根, 则的取值范围是________.14. 如图(5), 在中, ∠是直角, , ,矩形的一边在上, 顶点、分别在、上, 若∶=1∶4, 则矩形的面积是;15. 设, 是关于的方程的两个实数根,且.则= .三、(本大题共4个小题, 每小题6分, 共24分. )16. 化简:· . 17. 解方程:.18. 解方程: . 19. 已知中, , ,, 求和.20. (2007山东青岛)一艘轮船自西向东航行, 在A处测得东偏北21.3°方向有一座小岛C, 继续向东航行60海里到达B处, 测得小岛C此时在轮船的东偏北63.5°方向上. 之后, 轮船继续向东航行多少海里, 距离小岛C最近?(参考数据:sin21.3°≈ , tan21.3°≈ , sin63.5°≈ , tan63.5°≈2)((第16题图) 四、(本大题共4个小题, 每小题7分, 共28分. )21.一个不透明的袋子中装有三个完全相同的小球, 小球上分别标有数字3, 4, 5, •从袋中随机取出一个小球, 用小球上的数字作十位, 然后放回, •搅匀后再取出一个小球, 用小球上的数字作个位, 这样组成一个两位数;试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为8的两位数的概率是多少?•用列表法或画树状图加以说明.22. 如图(7), 在△ 中, 是∠ 的平分线, 的垂直平分线 交 于 , 交 的延长线于 , 连结 .求证: · . 五、(本大题共2个小题, 每题9分, 共18分. ) 29.为适应市场需要, 某灯具商店采购了一批某种型号的节能灯, 共用去400元, 在搬运过程中, 不小心打碎了5盏, 该店把余下的灯每盏加价4元全部售出;仍然获得利润90元.求每盏灯的进价.A BC 东参考答案与评分建议一、CBDAA CBADA CC二、13. 14. 100 15. 40 16. 17. 6 18. 且 19. 100 20. ②③三、21. 解:原式 ………………………………(4分)3a = ………………………………(6分) 22. 解: ………………………………(2分)2(1)0x += ………………………………(4分)1x =- ………………………………(6分) 23. 解: ( ) ……………(4分)125,2x x ==- (125,2x x ==-) ………………………………(6分)24. 解: 在 中, ∵∴ , ……………(4分)∴ , ∴ ……………(6分)四、25.解:可以组成33, 34, 35, 43, 44, 45, 53, 54, 55 ……………(2分)……………(5分)3 4 4 5 3 3 4 5 3 45 5十位上的数字与个位上的数字之和为8的两位数的概率是:……………(7分) 26. (1)解: 设抛物线为:∵抛物线的图象与 轴交于 、 两点, 且经过点∴ , ∴ ……………(4分)∴抛物线的解析式为2(2)(1)y x x =+-(也可以是2224y x x =+-)…………(5分) (2)2224y x x =+-2211192()42()4222y x x x =++--=+- ∴抛物线的对称轴为12x =-(直接用公式求出也得分)……………(7分)27. 证明: ∵ 是 的垂直平分线, ∴ , …………(2分) 又∵ 平分 , ∴ ……………(3分)∵,ADF B BAD DAF CAD CAF ∠=∠+∠∠=∠+∠ ∴B CAF ∠=∠ ……………(4分) ∴BAF AFC ∆∆ ……………(5分) ∴ , 即 ……………(6分)∴2FD FB FC =⋅ ……………(7分)28. 解: 根据题意得: ……………(1分)∴222121212()2x x x x x x +=+- ……………(2分)2(2)(21)11k k =+-+= ……………(3分) 解得124,2k k =-= ……………(4分)当 时, ……………(5分)当 时, , 不合题意, 舍去……………(6分) ∴4k =- ……………(7分)五、解: 设每盏灯的进价为 元, ……………(1分) 根据题意列方程得: ……………(4分) 解方程得: ……………(7分)经检验 都是原方程的根, 但 不合题意, 舍去∴10x = ……………(8分) 答: 每盏灯的进价为10元.……………(9分) 30. 解:正确画出图形得5分方法一: 如图(8.1)(没有考虑人的高度不扣分)①将标杆EF 立在一个适当的位置; ……………(6分)②人 站在一个适当的位置: 通过标杆的顶部 , 刚好看到旗杆的顶部 ……(7分) ③测出人的身高CD ,标杆的高度EF ,人到标杆DF 的距离和人到旗杆DB 的距离 …(8分) ④计算旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) (方法二: 如图(8.2)①将平面镜放在 处, ……………(6分)②人 走到适当的地方: 刚好能从平面镜 中看到旗杆的顶部 …………(7分) ③测出人的高度 , 人到平面镜的距离 , 平面镜到旗杆底部的距离 …(8分) ④计算出旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) )六、31.(1)证明:∵ , ∴∴BPD BMA ∆∆…………(1分)∴,DP BP BPPD AM AM AB AB==…………(2分) 同理: …………(3分) 又∵ 是等边三角形, ∴ ∴12()BP CP BP CPh h AM AM h h AB AC BC BC+=+=+=…………(4分) (也可以用面积相等、三角函数来证明) (2)123h h h h ++=…………(5分) 过 作 ∥ , 交 于 , 交 于 , 交 于 又∵ , ∴ …………(6分)由(1)可得: …………(7分) ∴123h h h AN MN h ++=+=…………(8分) (3)123h h h h ++= …………(10分)32. 解: (1)∵直线 经过 轴上的点 和 轴上的点 ∴ , ∴, ∴ …………(1分)又∵抛物线2y x bx c =++经过A 、B 两点∴2204488b b c c c=-⎧=++⎧⇒⎨⎨=--=⎩⎩…………(2分) ∴抛物线为822--=x x y …………(3分)(2)由(1)可得 (注意: 可以由公式求出, 也可由配方得出)…………(4分) 过 作 轴的垂线, 交 轴于 ∴1OG =ABD AOB AGD AOB AOBD OBDG S S S S S S ∆∆∆∆=-=+-四边形梯形111(89)1(41)9486222=⨯+⨯+⨯-⨯-⨯⨯=…………(6分) (3)过 作 轴, 交 于 , 交抛物线于 , 设 则2(,28);(,28)H t t N t t t ---由图可知: …………(7分)①当 时, 解得: 都不合题意, 舍去…………(8分) ②当 时, 解得: (不合题意, 舍去)…………(9分) 由①和②可得: ∴22228028()28339t t --=-⨯-=- ∴280(,)39N -……………………(10分)。
华师大版九年级上册数学期末测试卷及含答案
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、sin30°=()A.0B.1C.D.2、一元二次方程的常数项是()A.-2B.0C.1D.23、关于的一元二次方程的一个根为,则另一根为().A.-6B.2C.4D.14、用配方法解方程时,可将方程变形为()A. B. C. D.5、“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件6、如图,Rt△ABC中,∠C=90°,AC=4,BC=3,则tanA的值为()A. B. C. D.7、小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B. C. D.8、如图,中,A,B两个顶点在x轴的上方,点C的坐标是以点C为位似中心,在x轴的下方作的位似图形,并把的边长放大到原来的2倍.设点B的对应点的横坐标是a,则点B的横坐标是( )A. B. C. D.9、下列说法正确的是( )A.调查市场上某种白酒的塑化剂的含量,采用普查方式;B.要反映兴化市一周内每天的最高气温的变化情况,宜采用折线统计图;C.为了解一批电视机的使用寿命,任意抽取80台电视机进行试验,样本容量为80台; D.在一个透明的口袋中装有大小、外形一模一样的5个黄球,1个红球,摸出一个球是黄球是必然事件.10、如图,O为△ABC中线的交点,则S△ABC :S△BOC的值为()A. B.2:1 C.3:1 D.4:111、如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为()米.(不计宣传栏的厚度)A.4B.5C.6D.812、与是同类二次根式的是()A. B. C. D.13、如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.714、下列说法正确的是()A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是B.国家级射击运动员射靶一次,正中靶心是必然事件C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是D.如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品15、在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是________.17、等腰三角形的三边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣8x+n﹣2=0的两根,则n的值为________.18、如图所示,D,E分别在△ABC的边AB、AC上,DE与BC不平行,当满足________条件时,有△ABC∽△AED.19、如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB 相交于点D,则BC′=________.20、如图,在Rt△ABC中,∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠ADC=30°,BD=18cm,则AC的长度是________cm.21、已知m是关于x的方程x2+4x﹣5=0的一个根,则m2+4m=________.22、已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= ________.23、若方程x2﹣4x+1=0的两根是x1, x2,则x1(1+x2)+x2的值为________.24、已知3a=4b,那么=________.25、如图,已知△ABC∽△DEF,且相似比为k,则k=________,直线y=kx+k的图象必经过________象限.三、解答题(共5题,共计25分)26、计算:.27、计算:﹣4cos30°+(π﹣)0+()﹣1.28、已知四条线段依次成比例,其中,,,.求的值.29、如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AB平行,一条与AD平行,其余部分种植草坪,若使草坪的面积为570米,问小路宽为多少米?30、如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C 以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、D5、B6、A7、A8、D9、B10、C11、C12、D13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
华师大版九年级上册数学期末测试卷及含答案(必考题)
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、点A(﹣1,2)绕坐标原点O逆时针方向旋转90°得到的点A'的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(1,﹣2)D.(2,1)2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D ,如果AC=3,AB=6,那么AD的值为()A. B. C. D.3、在△ABC中,,, 那么的值是()A. B. C. D.4、x取()时,式子在实数范围内有意义.A.x≥1且x≠2B.x≥2且x≠1C.x≥2D.都错误5、如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为()A. B. C. D.6、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=1,MC=4,动点P在AB边上,连接PC,PM,则PC+PM的最小值是()A. B.6 C. D.77、如图,ABC中,正方形DEFG的顶点D,G分别在AB,AC上,顶点E,F 在BC上.若△ADG、△BED、△CFG的面积分别是1、3、1,则正方形的边长为()A. B. C.2 D.28、如图,己知在矩形ABCD中,AB=2,BC=6,点E从点D出发,沿DA方向以每秒1个单位的速度向点A运动,点F从点B出发,沿射线AB以每秒3个单位的速度运动,当点E运动到点A时,E、F两点停止运动.连接BD,过点E作EH⊥BD,垂足为H,连接口,交BD于点G,交BC于点旭连接CF.给出下列结论:①△CDE∽△CBF;②∠DBC=∠EFC;③=;④GH的值为定值;上述结论中正确的个数为()A.1B.2C.3D.49、小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A. B. C. D.10、如图,在△ABC中,∠C=90°,AB=15,sinB=,则AC等于()A.3B.9C.4D.1211、某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A. B.C. D.12、如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=3CE,AB=8,则AD的长为()A.3B.4C.5D.613、下列事件中,属于必然事件的是 )A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心 C.任意画一个三角形,其内角和是 D.抛一枚硬币,落地后正面朝上14、下列各数中是有理数的是()A. B.4π C.sin45° D.15、已知为锐角,且,则()A. B. C. D.二、填空题(共10题,共计30分)16、若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为________.17、已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=________.18、比较大小:________ .19、如图,AC与BC为⊙O的切线,切点分别为A,B,OA=2,∠ACB=60°,则阴影部分的面积为________.20、在一个不透明的袋中装有2个黑色小球和若干个红色小球,每个小球除颜色外都相同,每次摇匀后随机摸出一个小球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红色小球的频率稳定于0.8,则可估计这个袋中红色小球的个数约为________.21、如图,在△中,, ∥,的平分线交于, = ________.22、计算:•=________.23、如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).24、在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为________.25、如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是________,cosA的值是________.(结果保留根号)三、解答题(共5题,共计25分)26、计算:tan30°cos60°+tan45°cos30°.27、为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)28、如图,强强同学为了测量学校一棵笔直的大树OE的高度,先在操场上点A 处放一面平面镜,从点A处后退1m到点B处,恰好在平面镜中看到树的顶部E 点的像;再将平面镜向后移动4m(即AC=4m)放在C处,从点C处向后退1.5m到点D处,恰好再次在平面镜中看到大树的顶部E点的像,测得强强的眼睛距地面的高度FB、GD为1.5m,已知点O,A,B,C,D在同一水平线上,且GD⊥OD,FB⊥OD,EO⊥OD.求大树OE的高度.(平面镜的大小忽略不计)29、下图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1 m).(参考数据:tan15°≈0.27,tan30°≈0.58)30、已知x= +2,y= ﹣2,求x2+2xy+y2的值.参考答案一、单选题(共15题,共计45分)2、A3、B4、C5、B6、C7、C8、C9、A10、B11、B12、D13、C14、D15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
华东师大版九年级数学上册期末考试卷(含答案)
华东师大版九年级数学上册期末考试卷(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<<2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:x 3﹣4x=_______.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1.2、x(x+2)(x﹣2)3、k<44、10.5、6、4 9三、解答题(本大题共6小题,共72分)1、无解2、(1)k﹥34;(2)k=2.3、(1)略(2)64、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
华师大版九年级数学上册期末测试题1(含答案)
华师大版九年级数学上册期末测试题1(含答案)(本试卷满分120分 考试时间120分钟)第Ⅰ卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列计算正确的是( A ) A.2×3= 6B.3+2=5C.(-2)2=-2D .4÷2=22.方程(x -3)2=1的根是( D ) A .x =4B .x =2C .x 1=-4,x 2=2D .x 1=4,x 2=23.(甘南州中考)在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成的概率是( B )A.13B.23C.16D.344.如图,一座公路桥离地面高度AC 为6米,引桥AB 的水平宽度BC 为24米,为降低坡度,现决定将引桥坡面改为AD ,使其坡度为1∶6,则BD 的长是( C )A .36米B .24米C .12米D .6米第4题图 第5题图 第6题图5.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为( D )A .3B .4C .2.5D .3.56.如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12 m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( A )A .6(3+1)mB .6(3-1)mC .12(3+1)mD .12(3-1)m7.如图,在等腰直角三角形ABC 中,∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA =15,则AD 的长是( B )A. 2B .2C .1D .22第7题图 第8题图8.★如图,△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的点C ′处,并且C ′D ∥BC ,则CD 的长是( A )A.409B.509C.154D.254第Ⅱ卷 (非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.(遂宁中考)在一个不透明的盒子中装有5个红球,2个黄球,3个绿球,这些球除颜色外没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为 12.10.计算(1-2)2+18的值是 .11.(烟台中考)在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin A 2= 12 .12.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连结BE ,ED ,BD .若∠BAD =58°,则∠EBD 的度数为 32 度.13.关于x 的方程x 2-6x +p =0的两个根是α,β,且2α+3β=20,则p = -16 . 14.如图,在平面直角坐标系中,以P (4,6)为位似中心,把△ABC 缩小得到△DEF ,若变换后,点A ,B 的对应点分别为点D ,E ,则点C 的对应点F 的坐标为 (4,4) .第14题图 第15题图 第16题图15.★如图,在正方形ABCD 中,F 是AD 的中点,BF 与AC 交于点G ,则△BGC 与四边形CGFD 的面积之比是 4∶5 .16.如图,某天然气公司的主输气管道从A 市的北偏东60°方向直线延伸,测绘员在A 处测得安装天然气的M 小区在A 市的北偏东30°方向,测绘员沿主输气管道步行1 000米到达点C 处,测得M 小区位于点C 的北偏西75°方向,试在主输气管道上寻找支管道连结点N ,使到该小区铺设的管道最短,此时AN 的长是三、解答题(本大题共8小题,共72分) 17.(10分)计算: (1)45+27+113-125; 解:原式=1133-25;(2)212÷328×⎝⎛⎭⎫-5227. 解:原式=1210÷67×⎝⎛⎭⎫-5×477=-51021.18.(6分)解方程: (1)x (x +8)=16;(2)(2x -1)2=x (3x +2)-7. 解:x =-4±42; 解:x 1=2,x 2=4;19.(8分)已知关于x 的一元二次方程x 2+(m +3)x +m +1=0. (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)给m 选取一个值,使方程的根是整数,并求出这两个根.(1)证明:Δ=(m+3)2-4(m+1)=m2+6m+9-4m-4=m2+2m+5=(m+1)2+4.∵(m +1)2≥0,∴(m+1)2+4>0.∴无论m取何值,原方程总有两个不相等的实数根.(2)解:取m=-1,方程为x2+2x=0,解得x1=0,x2=-2.20.(8分)已知:如图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其点B,C,D的坐标分别为(1,2),(1,1),(3,1).(1)直接写出E点和A点的坐标;(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为3∶1;(3)直接写出图形A1B1C1D1E1的面积.解:(1)由图形可得E(3,2),∵△ABE为边长为2的等边三角形,∴BE边长的高为3,∴A(2,2+3);(2)画图略;(3)∵△ABE为边长是2的等边三角形,∴S△ABE=12×2×3=3,又矩形BCDE的面积为1×2=2,∴五边形ABCDE的面积为2+ 3.∵五边形ABCDE与五边形A1B1C1D1E1相似,且相似比为1∶3,则五边形A1B1C1D1E1的面积为9(2+3)=18+9 3.21.(8分)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时:(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.解:分别用A,B,C,D,E代表大拇指,食指,中指,无名指,小拇指,画树状图如下:共有25种等可能的结果.(1)甲伸出小拇指取胜有1种可能,∴P(甲伸出小拇指取胜)=1 25;(2)乙取胜有5种可能,∴P(乙取胜)=525=15.22.(10分)(宜宾中考)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号).解:作CF⊥AB于点F,设AF=x米,tan∠ACF=AFCF,则CF=AFtan∠ACF=xtanα=xtan 30°=3x米.AB=x+BF=(4+x)米,tan∠AEB=ABBE,则BE=ABtan∠AEB=x+4tan 60°=33(x+4)米.∵CF-BE=DE,即3x-33(x+4)=3.解得x=33+42,则AB=33+42+4=33+122米.答:树高AB是33+122米.23.(10分)(眉山中考)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC =90°,点P为线段BE延长线上一点,连结CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:PCCD=CE CB;(2)连结BD,请你判断AC与BD有什么位置关系?并说明理由.(1)证明:∠ECB =∠PCD =45°,∠CEB =∠CPD =90°, ∴△BCE ∽△DCP ,∴PC DC =ECCB;(2)解:AC ∥BD ,理由:∵∠PCE +∠ECD =∠BCD +∠ECD =45°,∴∠PCE =∠BCD ,又∵PC DC =EC CB,∴△PCE ∽△DCB ,∴∠CBD =∠CEP =90°,∵∠ACB =90°,∴∠ACB =∠CBD ,∴AC ∥BD.24.(12分)已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A(-3,0),C(1,0),tan ∠BAC =34.(1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连结DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连结PQ ,设AP =DQ =m ,问是否存在这样的m 使得△APQ 与△ADB 相似,如存在,请求出m 的值;如不存在,请说明理由.解:(1)∵点A(-3,0),C(1,0),∴AC =4,BC =tan ∠BAC ×AC =34×4=3,B 点坐标为(1,3).设过点A ,B 的直线的函数表达式为y =kx +b ,由⎩⎨⎧0=k ×(-3)+b ,3=k +b ,得k=34,b =94,∴直线AB 的函数表达式为y =34x +94.(2)如图①,过点B 作BD ⊥AB ,交x 轴于点D ,在Rt △ABC 和Rt △ADB 中,∵∠BAC =∠DAB ,∴Rt △ABC ∽Rt △ADB ,∴D 点为所求.又tan ∠ADB =tan ∠ABC =43,∴CD =BC÷tan ∠ADB =3÷43=94.∴OD =OC +CD =134,∴D ⎝⎛⎭⎫134,0. (3)这样的m 存在,在Rt △ABC 中,由勾股定理得AB =5.如图①,当PQ ∥BD 时,△APQ ∽△ABD.则m 5=3+134-m3+134,解得m =259.如图②,当PQ ⊥AD 时,△APQ ∽△ADB ,则m 3+134=3+134-m5,解得m =12536.综上,m =259或12536.。
华东师大版九年级数学上册期末试卷(附答案)
华东师大版九年级数学上册期末试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.因式分解:a3-ab2=____________.3.若a、b为实数,且b=22117a aa-+-++4,则a+b=__________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.5.如图,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm2.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:24 1x-+1=11xx-+2.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、B6、A7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、a(a+b)(a﹣b)3、5或34、425、4π6、2.5×10-6三、解答题(本大题共6小题,共72分)1、无解.2、(1)12,32-;(2)证明见解析.3、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、河宽为17米5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
【期末复习】华师大版九年级数学上册期末综合检测试卷(含答案)
【专题突破训练】华师大版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则常数c的值为()A. ±4B. 4C. ±16D. 162.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1) B. (,-1) C. (1,- ) D. (2,-1)3.点P(﹣1,4)关于x轴对称的点P′的坐标是()A. (﹣1,﹣4)B. (﹣1,4)C. (1,﹣4)D. (1,4)4.已知=,则=()A. 6B.C.D. -5.已知三角形的两边分别为5和8,则此三角形的第三边可能是()A. 2B. 3C. 5D. 136.如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,垂足为D,若BE=6 cm,则AC等于( )A. 6cmB. 5cmC. 4cmD. 3cm7.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A. B. C. D. h•sinα8.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A. B. C. D.9.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为()A. 20%B. 30%C. 50%D. 120%10.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A. 1B. 2C. 3D. 4二、填空题(共10题;共30分)11.已知一个三角形的三边长分别是a+4,a+5和a+6,则a的取值范围是________.12.当x________时,在实数范围内有意义.13.化简=________.14.在草稿纸上计算:① ;② ;③ ;④ ,观察你计算的结果,用你发现的规律直接写出下面式子的值=________.15.如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=136°,则∠ANM=________°.16.如图,已知点A(2,2)关于直线(k>0)的对称点恰好落在x轴的正半轴上,则k的值是________.17.在△ABC中,点D,E分别在边AB,AC上,如果= ,AE=4,那么当EC的长是________时,DE∥BC.18.如图,矩形ABCD的对角线AC、BD相交于点O,AB=4,BC=8,过点O作OE⊥AC交AD于点E,则AE的长为________.19.如图∠AOP=∠BOP=15°,PC∥OA ,PD⊥OA ,若PC=6,则PD等于________.三、解答题(共9题;共60分)20.若a=1﹣,先化简再求+的值.21.如图,△ABC中,∠ACB=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D.若BD=7,求AC的长.22.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?23.阅读下列材料,然后回答问题.在进行二次根式的化简运算时,我们有时会碰上形如的式子,其实我们还可以将其进一步简化:= = =﹣1.以上这种化简的步骤叫做分母有理化.请用上面的方法化简:.24.如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)26.如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.27.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?28.如图,小平为了测量学校教学楼的高度,她先在A处利用测角仪测得楼顶C的仰角为30°,再向楼的方向直行50米到达B处,又测得楼顶C的仰角为60度.已知测角仪的高度是1.2米,请你帮助小平计算出学校教学楼的高度CO.()答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】D9.【答案】A10.【答案】C二、填空题11.【答案】12.【答案】≥313.【答案】14.【答案】40615.【答案】4416.【答案】17.【答案】618.【答案】519.【答案】3三、解答题20.【答案】解:+=+.∵a=1﹣<1,∴原式=+=.把a=1﹣代入得:===(1+)2=3+2.21.【答案】解:连接AD,∵AB的垂直平分线交AB于E,∴AD=BD,∴∠DAB=∠B,∵BD=7,∴AD=7,∵∠B=15°,∴∠DAB=15°,∴∠ADC=30°,∵∠C=90°,∴AC= AD=3.5.22.【答案】解:根据题意得:AC=12×2=24,BC=30,∠BAC=90°.∴AC2+AB2=BC2.∴AB2=BC2-AC2=302-242=324∴AB=18.∴乙船的航速是:18÷2=9海里/时.23.【答案】解:原式= =2+.24.【答案】解:∵△PCD是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP∽△PDB,∴∠APC=∠B,又∠A=∠A,∴△ACP∽△ABP,∴∠APB=∠ACP=120°25.【答案】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时) ∴此车没有超过限制速度.26.【答案】证明:∵AB=AC,∴∠B=∠C,∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∴∠B=∠ADE,∵∠DAE=∠BAD,∴△ADE∽△ABD27.【答案】现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.28.【答案】解:设CM=x米∵∠CEM=30°,∴tan30°=,∴EM=x .∵∠CFM=60°,∴tan60°=,∴MF=,∴x ﹣=50.解得x=25≈42.5,∴CO=42.5+1.2=43.7.答:学校教学楼的高度CO是43.7米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.A 解析:
9. 解析:由勾股定理,知 ,又 ,所以
所以这个三角形的面积
10.A解析:在Rt△ 中,∵ ,∴ .
∵∠ ∠ °,∠ ∠ °,∴∠ ∠ .
∴ .
11.D解析:如图, 米, 米,∠ 90°,∠ 45°,∠ 30°.设 米,在Rt△ 中,tan∠ = ,即tan30°= = ,∴ x.在Rt△ 中,∵∠ 90°,∠ 45°,∴ .根据题意,得 ,解得 .∴ (米).
A.12B.9C.4D.3
9.已知直角三角形的两条直角边的比为 其斜边长为 ,那么这个三角
形的面积是()
A. B. C. D.
10.如图,在Rt△ 中,∠ °, 于点 .已知 , ,那么 ( )
A. B. C. D.
11.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在 处测得她看塔顶的仰角 为 ,小丽站在 处测得她看塔顶的仰角 为30°.她们又测出 两点的距离为30米.假设她们的眼睛离头顶都为 ,则可计算出塔高约为(结果精确到 ,参考数据: , )()
期末检测题参考答案
1.A解析:
所以 ,所以 所以 .
2.C解析:一个正偶数的算术平方根是 ,则这个正偶数是 与这个正偶数相邻的下一个正偶数是 ,算术平方根是 .
3.B 解析:依题意得, 解得 且 .故选B.
4.B 解析:方法1:∵
∴ ,∴ ∴ 这个直角三角形的斜边长是3,故选B.
方法2:设 和 是方程 的两个根,由一元二次方程根与系数的关系可得: ∴ ,∴ 这个直角三角形的斜边长是3,故选B.
A. B. 且 C. D. 且
4.已知一个直角三角形的两条直角边的长恰好是方程 的两个根,则这个直角三角形的斜边长是( )
A. B.3C.6D.9
5.下列四个三角形,与左图中的三角形相似的是( )
6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在 和 ,则口袋中白色球的个数可能是( )
16. 解析:因为 , ,所以 .
17. 解析: 四条线段组成三角形三边有四种情况: .其中 不能组成三角形,所以从中任取三条线段能组成三角形的概率是 .
18. 解析:当 时, ;
当 时,
所以 .
19. 解析:过点 作 则 ,所以点 的坐标为 .
20.6解析:如图,因为 ,
所以 ,所以△ ∽△ ,所以
,所以 所以
21.解:原式= +
+ =
.
∵ ,∴ 且 ,
解得 , ∴ , ∴ .
22.解:(1) =
.
(2) + .
23.解:设该地区 年到 年高效节能灯年销售量的平均增长率为 .
依据题意,列出方程 化简整理,得
解这个方程,得 ∴ .
∵该地区 年到 年高效节能灯年销售量的平均增长率不能为负数.
∴ 舍去,∴ .
答:该地区 年到 年高效节能灯年销售量的平均增长率为
24.解:(1)过 作 ∥ 交 于 ,则△ ∽△ .
又 为 的中点,所以 所以 .
再由 ∥ 可证得△ ∽△ ,所以 .
(2)过 作 ∥ 交 于 ,设 ,则 , ,
由△ ∽△ ,得 .
再由△ ∽△ 得 .
由勾股定理可知 , ,则 ,可得 ,
则∠ ∠ ∠ ,所以tan∠ tan∠ .
5.B解析:图中的三角形的三边长分别为 A项中的三角形的三边长分别为 B项中的三角形的三边长分别为 C项中的三角形的三边长分别为 D项中的三角形的三边长分别为 只有B项中的三角形的三边长与题图中的三角形的三边长对应成比例,所以选B.
6.C 解析:∵摸到红色球、黑色球的频率稳定在 和 ,∴摸到白球的频率为 ,故口袋中白色球的个数可能是 .
(结果保留整数,参考数据: )
26.(8分)某住宅小区为了美化环境,增加绿地面积,决定在坡地上的甲楼和乙楼之间建一块斜坡草地,如图,已知两楼的水平距离为 米,在距离甲楼 米(即 米)开始修建坡角为 的斜坡,斜坡的顶端距离乙楼 米(即 米),求斜坡 的长度(结果保留根号).
27.(10分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它 们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游 戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
A.24 B.18C.16D.6
7.从分别写有数字 、 、 、 、 、 、 、 、 的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( )
A. B. C. D.
8.在一个暗箱里放有 个除颜色外其他完全相同的球,这 个球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在 ,那么可以推算出 大约是( )
期末检测题
(时间:120分钟,满分:120分)
一、选择题(每 小题3分,共36分)
1 ..若 ,则 的值为()
A. B.8C.9D.
2.一个正偶数的算术平方根是 那么与这个正偶数相邻的下一个正偶数的算术平方根
是()
A. B. C. D.
3.如果关于 的一元二次方程 有两个不相等的实数根,那么 的取值范围是( )
25.解:在Rt△ 中,∠ , ,
∵ , ∴ (米).
故测得东江的宽度约为346米.
26.解:如图,过点 作 地面于点 .
∵两楼水平距离为 米,且 米, 米,
∴
在Rt△ 中, ° ,∴
答:斜坡 的长度为 米.
27.解:树形图为:
A.36.21米B.37.71米C.40.98米D.42.48米
12.如图,菱形 的周长为 , ,垂足为 , ,则下列结论正确的有()
① ;② ;
③菱形面积为 ;④ .
A. 个B. 个C. 个D. 个
二、填空题(每小题3分,共24分)
13.计算: ________.
14.三角形的每条边的长都是方程 的根,则三角形的周长是___________ ____.
15.已知点 关于原点对称的 点在第一象限,那么 的取值范围是________.
16.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字 ,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为 (偶数),指针指向标有奇数所在区域的概率为 (奇数),则 (偶数)_______ (奇数)(填“ ”“ ”或“ ”).
17.长度为 的四条线段,从中任取三条线段能组成三角形的概率
是_______.
18.若 ,则
19.菱形 在平面直角坐标系中的位置如图所示, ,则点 的坐标为 _____________.
20.如图,小明在 时测得某树的影长为3米, 时又测得该树的影长为12米, 若两次日照的光线互相垂直,则树的高度为_______米.
三、解答题(共60 分)
21.(7分)已知 ,其中 是实数,将式子 + 化简并求值.
22.(10分)计算下列各题:
(1) ;(2) + .
23.(7分)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量 年为 万只, 预计 年将达到 万只.求该地区 年到 年高效节能灯年销售量的平均增长率.
12.C解析:由菱形 的周长为 ,知 因为 ,所以 再由勾股定理可得 所以 所以菱形的面积
13. 解析:
14.6或10或12 解析:解方程 ,得 , .∴ 三角形的每条边的长可以为2、2、2或2、4、4或4、4、4(2、2、4不能构成三角形,故舍去),∴ 三角形的周长是6或10或12.
15. 解析:点 关于原点对称的点的坐标为 ,且在第一象限,所以 所以 .
24.(10分)已知线段 , 为 的中点, 为 上一点,连结 交于 点.
(1)如图①,当 且 为 中点时,求 的值;
(2)如图②,当 , = 时,求tan∠ .
25.(8分)某校九年级数学兴趣小组的同学开展了测量东江宽度的活动。如图,他们在河东岸边的 点测得河西岸边的标志物 在它的正西方向,然后从 点出发沿河岸向正北方向行进 米到点 处,测得 在点 的南偏西60°的方向上,他们测得东江的宽度是多少米?