毕业设计-电加热炉控制系统设计
电加热炉温度控制硬件系统设计 精品
题目:电加热炉温度控制硬件系统设计绪论随着微电子技术和微型计算机的迅猛发展,微机测量和控制技术以其逻辑简单、控制灵活、使用方便及性能价格比高的优点得到了广泛的应用。
它不仅在航空、航天、铁路交通、冶金、电力、电讯、石油化工等领域得到了广泛应用,而且在日常生活中诸如电梯、微波炉、电冰箱、电视机等高科技产品中也有广阔的使用前景,为工业生产的自动化、智能控制奠定了坚实的技术基础。
加热炉作为一种应用广泛的热工设备之一。
尽管它使用的加热方法不同,或工艺要求不同,温度有高低、精度也有差异,但作为被控参数之一的温度总是可用不同的测温元件和方法来获得,并通过微型计算机加以处理和控制,并按一定温度曲线工作,以满足生产需要。
本课题的研究现状和研究意义:电加热炉以其无污染、操作方便、自动化程度高、可调范围大、节省基建投资等诸多优点逐渐受到人们的欢迎。
但这其中对温度的控制上不是很理想,温差大、温度控制精度不准确。
针对这一情况。
本将介绍一种应用单片机对电热加热炉进行智能控制的温度系统。
一般的电加热炉温度控制系统(如温度控制表控制接触器)的主要缺点是温度波动范围大。
传统的以普通双向晶闸管(SCR) 控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率, 达到自动控制电炉温度的目的。
这种移相方式输出一种非正弦波, 实践表明这种控制方式产生相当大的中频干扰, 并通过电网传输, 给电力系统造成“公害”。
他们的工作多数是采用PID及改善的PID控制规律进行的。
但是,PID控制算法也有它的局限性。
尤其在离散系统中,采用周期较大或对象具有较大时滞特性时,控制效果不是很理想。
本的研究意义是怎么用51系列单片机作为控制器去实现温度控制,达到需要的工业要求,实现起温度控制的作用,达到工作稳定、性能可靠。
利用热电偶的冷端补偿采用铂电阻温度传感器,测量标准,克服了常规方法补偿误差大的缺点,该系统具有软启动、程序升温、键盘输入、显示打印等功能,使温度控制为误差达到≤±5℃,调节温度的超调量小于30%,实时显示炉内温度,记录温度变化的过程。
毕业设计(论文)电加热炉温度控制硬件系统设计[管理资料]
东华理工学院长江学院毕业设计(论文)题目:电加热炉温度控制硬件系统设计英文题目:The Hardware System Design for ElectricityHeating Furnace Temperature Control系别:电子与机械工程系学生姓名:班级:023122指导教师:专业:自动化二零零九年六月摘要本文以电加热炉的温度控制为被控对象,通过对电加热炉的温度控制对象特性的分析来确定电加热炉的温度控制硬件系统的设计和控制方案。
本课题是高温电加热炉的温度控制系统为研究对象,其中第一部分为硬件设计,主要由控制电路(包括8031处理器)、存储器2716、键盘/显示器接口8279等)、测温及报警电路(包括声光报警、温度检测及A/D转换等)、调功电路等组成。
系统采用温度补偿和过零触发等技术,从硬件上保证了测温精度,为提高控制精度打下了基础。
在第二部分建立了被控对象的数学模型,控制采用比较成熟的变速积分分离PID 算法,并通过仿真选择了控制律的参数。
利用8031单片机构成了控制器,实现了实时控制。
测量温度部分是靠热电偶来实现,热电偶的冷端补偿采用热电偶(铂銠10-铂铑热电偶)温度传感器,测量标准,克服了常规方法补偿误差大的缺点,该系统具有软启动、程序升温、键盘输入、显示打印等功能,使温度控制为误差达到≤±5℃,调节温度的超调量小于30%,实时显示炉内温度,记录温度变化的过程。
为了在工业现场应用中具有较强的抗干扰能力,采取了一系列抗干扰措施。
以单片机为核心,采用温度变送器桥路和8031,实现对电炉温度的自动控制。
该控制系统具有硬件成本低、控温精度较高、可靠性好、抗干扰能力强等特点。
有较高的适用价值和理论价值。
关键字电加热炉;温度控制;8031单片机AbstractThe heating furnace temperature control to call for the alleged target, Through Feb heating furnace temperature control analysis to determine the identity of the target heating furnace temperature control system hardware design and control programmers.This paper studies on improving the high-temperature resistance stove temperature control system. The hardware has been described on the first part of this paper. It consists of the control-circuit (included 831 CPU, 2746/2864A memory, key-board and display unit interface 8279 etc), temperature measurement and alarm circuit (included sound-light alarm, temperature measurement and A/D conversion circuit) and power control circuit etc. The technique of temperature compensation and zero-point trigging has been used in the system, and the precision of temperature measurement guaranteed from hardware builds a foundation to upgrade the precision of control. The mathematical model of the control object has been founded in the second part of this paper. The mature algorithm of variable speed integral separation PID has been adopted in control rule, and the parameter of control rule is selected by the simulation analysis in computer. The real-time control is used to organize control unit by the 8031. Single chip.For applications in the industrial scene had a strong anti-interference capability, adopted a series of anti-interference measures. To Shanpianji at the core, using temperature Biansongqi Kin Road and 8031, the achievement of an electric temperature automatic. The control system has a low cost hardware, electrical higher precision; reliability is good, strong anti-interference capability characteristics. High value and the theoretical value of the application.Key wordsElectrical heating stove;Temperature is controlled;8031 Single chip目录摘要与关键词英文摘要与关键词绪论 (1)1. 电加热炉温度单片机控制系统总体方案设计 (4)系统的设计原则 (4)系统总体方案设计和工艺要求 (4)系统概述 (5) (5) (6)2. 温度控制硬件系统设计 (7)原理图的设计原则 (7)芯片功能介绍 (7)8031芯片介绍 (7)8279芯片介绍 (10)AD574A芯片介绍 (12)其他主要芯片 (16)分模块详述系统各部分的实现方法 (18)交流电过零检测电路 (18)A/D转换电路 (19)温度检测和变送器 (21)报警电路 (24)显示模块与键盘电路 (25)PC机与单片机(8031)的串行通讯 (26)存储器扩展电路 (27)其他主要电路 (28)电加热炉温度控制系统的硬件结构图 (29)3. 系统软件与模型 (30)数学模型建立 (30)控制系统的算法设计 (30)软件结构 (32)软件设计 (36)4. 系统实现技术 (40)硬件调试 (40)软件调试 (40)结论 (41)致谢 (42)参考文献 (43)附录 1 程序清单 (44)附录 2 电加热炉温度控制系统的硬件结构图 (55)绪论随着微电子技术和微型计算机的迅猛发展,微机测量和控制技术以其逻辑简单、控制灵活、使用方便及性能价格比高的优点得到了广泛的应用。
电加热炉温度控制系统的设计
电加热炉温度控制系统的设计目录引言 (6)1 模糊控制器的设计 (13)1.1 模糊逻辑基础 (13)1.1.1 模糊集合的概念和基本运算 (13)1.1.2 模糊关系 (14)1.1.3 模糊规则 (15)1.2 模糊控制系统 (17)1.2.1 模糊控制的基本思想 (18)1.2.2 模糊控制系统的组成 (18)1.3 基本模糊控制器的设计 (20)1.3.1 精确量的模糊量化处理 (20)1.3.2 模糊推理 (23)1.3.3 反模糊化处理 (24)2 MATLAB下的仿真实验 (26)2.1 PID控制仿真实验 (26)2.2 基本模糊控制仿真实验 (27)3 电加热炉控制系统监控程序的设计 (31)3.1 组态王简介 (31)3.1.1 概述 (31)3.1.2 组态王与I/O设备 (31)3.1.3 组态王的开放性 (32)3.1.4 建立应用工程的一般流程 (32)3.1.5 如何得到组态王的帮助 (33)3.2 组态王的设计 (33)3.2.1 设计画面 (33)3.2.2 动画连接 (36)3.3 电加热炉控制监控画面 (42)结论 (47)参考文献 (48)摘要在冶金、化工,机械等各类工业控制中,电加热炉都得到了广泛的应用。
目前国内的电加热炉温度控制器大多还停留在国际60年代水平,仍在使用继电—接触器控制或常规PID控制,自动化程度低,动态控制精度差,满足不了日益发展的工艺技术要求。
电加热炉的温度是生产工艺的一项重要指标,温度控制的好坏将直接影响产品的质量。
电加热炉由电阻丝加热,温度控制具有非线性、大滞后、大惯性、时变性、升温单向性等特点。
而且,在实际应用和研究中,电加热炉温度控制遇到了很多困难:第一,很难建立精确的数学模型;第二,不能很好地解决非线性、大滞后等问题。
以精确数学模型为基础地经典控制理论和现代控制论在解决这些问题时遇到了极大地困难,而以语言规则模型(IF-THEN)为基础的模糊控制理论却是解决上述问题的有效途径和方法。
计算机控制课程设计-基于PID算法电加热炉温度控制系统设计
成绩《计算机控制技术》课程设计题目:基于数字PID的电加热炉温度控制系统设计班级:自动化09-1姓名:学号:2013 年 1 月 1 日基于数字PID的电加热炉温度控制系统设计摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。
本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制.电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电.调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。
本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。
关键词:电加热炉;PID ; 功率;温度控制;1.课程设计方案1.1 系统组成中体结构电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。
系统采用可控硅交流调压器,输出不同的电压控制电阻炉温度的大小,温度通过热电偶检测,再经过变送器变成0 - 5 V 的电压信号送入A/D 转换器使之变成数字量,此数字量通过接口送到微机,这是模拟量输入通道。
2.控制系统的建模和数字控制器设计2.1 数字PID控制算法在电子数字计算机直接数字控制系统中,PID控制器是通过计算机PID控制算法程序实现的.计算机直接数字控制系统大多数是采样—数据控制系统。
进入计算机的连续-时间信号,必须经过采样和整量化后,变成数字量,方能进入计算机的存贮器和寄存器,而在数字计算机中的计算和处理,不论是积分还是微分,只能用数值计算去逼近.在数字计算机中,PID 控制规律的实现,也必须用数值逼近的方法.当采样周期相当短时,用求和代替积分,用差商代替微商,使PID 算法离散化,将描述连续时间PID 算法的微分方程,变为描述离散—时间PID 算法的差分方程。
毕业设计----单片机的电加热炉温度控制系统设计[管理资料]
毕业论文设计题目:单片机的电加热炉温度控制系统设计摘要随着计算机技术、控制理论和控制技术的发展,电加热炉的温度控制技术日趋成熟,已经成为工业生产中的一个重要部分。
本设计为基于单片机的电加热炉温度控制系统,通过控制电阻丝两端电压的工作时间,来控制电阻丝的输出平均功率,从而实现对电加热炉温度的自动控制。
系统分为温度测量、A/D转换、单片机系统、键盘操作系统、温度显示电路、报警电路、D/A转换等若干个功能模块。
该系统具有硬件成本低,控温精度较高,可靠性好,抗干扰能力强等特点。
关键词:电加热炉;单片机;温度控制;固态继电器目录摘要 (I)目录 (II)第1章控制系统设计 (1)系统基本结构 (1)预期达到的性能指标 (1)温度检测电路及元器件选择 (2)放大器AD522 (2)桥式测量电路设计 (3)单片机最小系统外围电路 (3)单片机8051 (3)电源电路设计 (4)看门狗电路设计 (5)系统时钟电路设计 (6)数据采集电路的设计 (7)模数转换器AD574 (7)多路转换开关CD4051 (8)键盘显示接口技术及报警电路 (10)8279的组成及工作原理 (10)管脚功能说明 (12)8279与键盘显示器的连接 (13)LED报警电路的设计 (14)温度控制电路设计 (15)温度控制系统总电路图 (15)第2章温控系统的软件设计 (16)主程序流程图 (17)键盘扫描和译码过程的流程图 (17)通道数据采集的流程图 (18)单片机主程序流程图 (19)结论 (21)参考文献 (22)致谢 (23)第1章控制系统设计系统基本结构,系统由8051单片机、温度检测电路、模数转换电路、温度控制电路、8279键盘显示器等组成。
炉内温度由热电阻测温元件和电阻元件构成的桥式电路测量并转换成电压信号送给放大器的输入端,使信号变成0-5V电压信号,再经多路转换开关CD4051将信号送入A/D转换器,将此数字量经过数字滤波,标度转换后,一方面通过LED将炉温显示出来;另一方面,将该温度值与被测温度值比较,根据其偏差值的大小,采用比例微分控制(PID控制),通过固态继电器控温电路控制电炉丝的加热功率大小,从而控制电炉的温度,使其逐渐趋于给定值且达到平衡。
(毕业设计)-电加热炉控制系统设计
摘要温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。
由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。
本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。
此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。
此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。
提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。
关键词:温度;电加热炉;PLC;控制系统Control System Design of BoilerABSTRACTTemperature is a very popular parameter of pyrology in flow industry,so temperature control is an emphases of process control.Considering some special condition such as heating mechanism and the special structure of heater there are often some features such as long time lag,nonlinearity and difficulties of modeling of targets of process.It's difficult to control very well by traditional PID algorithm,the Digital PID control algorithm can get better control effect.This article described a type of imp roved regenerative heating furnace, which makes the temperature invariable and auto ignition using PLC. It can be available in aluminum and steelmill and other metal industry, which can bring obvious economic and social benefits.The industrial design of the prototype electric oven to laboratory electric furnace of the real object, PID control algorithm for temperature control.The paper presents a target for electric furnace characteristics of control algorithms, and PLC as the core to form the furnace adaptive control system. Control accuracy, reliability and stability indicators are much higher than the system which is consisted of the conventional instrument, thedesign uses PID algorithm to control its temperature.Keyword: Temperature;heating furnace;PLC;control system目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1选题的背景及意义 (1)1.2加热炉控制研究现状 (2)1.3本设计的主要工作及技术路线 (3)1.3.1主要工作 (3)1.3.2本论文的技术路线 (4)第二章控制方案确定 (5)2.1控制对象的数学模型及仿真 (5)2.2 电加热炉控制系统分析: (9)2.3控制系统的控制过程 (11)2.3.1 温度--流量串级控制系统 (11)2.3.2 液位-流量串级控制系统 (11)2.4 控制系统主要特色 (12)第三章PLC 控制系统硬件设计及仪表选型 (14)3.1系统特性分析 (14)3.2 PROFIBUS 现场总线介绍 (14)3.3电加热炉PLC系统结构 (15)3.4 PLC控制系统设计 (16)3.4.1 恒温控制系统 (16)3.4.2 恒压控制系统 (17)第四章控制系统的软件设计 (20)4.1 下位机软件设计 (20)4.1.1Step-7简介 (20)4.1.2下位机软件设计流程图 (22)4.2上位机软件设计 (22)4.2.1Win CC 简介 (23)4.2.2监控系统的设计 (24)第五章仪器仪表的选型 (26)5.1现场仪表的选型 (26)5.1.1控制阀的选型 (26)5.1.2节流装置的计算 (27)5.1.3电气阀门的定位器 (28)5.1.4 压力变送器的选型 (29)5.1.5 压力表的选型 (30)5.1.6流量计的选择 (30)5.1.7 温度变送器的选型 (31)5.1.8浮子液位计的选型 (32)5.2控制室仪表选型 (33)5.2.1PLC的选型 (33)5.2.2 控制柜的选型 (33)5.2.3安全栅的选型 (34)5.2.4供电箱的选型 (34)5.2.5智能调节器的选型 (35)5.3其他仪器的选型 (36)5.3.1水箱的选型 (36)5.3.2水泵的选型 (36)5.3.4接线箱的选型 (37)5.3.5三相调压模块的选型 (37)第六章总结和展望 (38)6.1 设计总结 (38)6.2 课题展望 (39)参考文献(References) (40)致谢 (42)第一章绪论1.1选题的背景及意义我国的电加热锅炉在10多年前问世,由于受到当时电力因素的制约,发展非常缓慢,只有几个非锅炉行业的厂家在生产。
(毕业设计)电炉控温系统设计[管理资料]
电炉控温系统设计白荣腾摘要本论文介绍了以AT89S52单片机为核心的温控系统设计,采用温度传感器和固体继电器控温电路,实现对电炉温度的控制。
采用基于PWM控制的温控系统的设计和实现方法,采用5档控制:最大档、较大档、中间档、较小档、最小档,控制方法简单实用。
温控系统由AT89S52单片机、行列式操作键盘、显示、继电器控温电路等部分组成,使用AT89S52单片机对温度进行实时的检测和控制,显示电路采用74164芯片进行动态扫描,能够同时显示当前温度和设定温度值。
本设计介绍的单片机温控系统的主要内容包括:系统方案、硬件设计、软件设计及系统调试,并配有必要的流程图和电路图,从硬件和软件方面做了较详尽的阐述。
温控系统经过调试运行,可对电炉温度进行控制,工作稳定可靠,实现控制精度的要求,可使温度保持在设定值,具有硬件成本低、控温精度较高、可靠性好等优点。
关键词:电炉;温度控制;单片机;固体继电器AbstractThis paper introduces a temperature control system that is based on the AT89S52 single-chip microcomputer,and the temperature control of electric furnace is realized by temperature sensor and a temperature control circuit of solid state relay. The design and implementation of the temperature control system based on PWM control uses five different scopes : the biggest scope, the bigger scope, the center scope, the smaller scope, minimum scope, and controlling method is simple and temperature control system consists of AT89S52 single-chip microcomputer, cortege type keyboard unit , display unit and temperature control circuit of solid state relay,using microprocessor AT89S52 to collect and control temperature in real time.The temperature control system based on Single-Chip Microcomputer is described in the article including system scheme, hardware and software system testing ,and it also goes with debug routine, essential flow chart and circuit this part , The hardware composition and software design are described in detail parameters.The temperature control system can control the temperature of electric furnace with debugging ,and make it keep in the enacted control system has such advantages as low cost、high control accuracy、good reliability and so on.Keywords:Electric furnace ;Temperature control; Single-Chip Microcomputer ;Solid state relay目录摘要 (I)Abstract (II)0前言 (5) (5) (6) (7)1系统硬件设计 (8) (8) (9) (10)固体继电器及其驱动电路 (14)固体继电器介绍 (14) (14) (15) (15) (17)按键控制电路 (17)2系统软件结构设计 (17) (19) (20) (22)3系统调试 (23) (23) (24)总结 (25)参考文献 (26)致谢 (27)附录A 系统设计原理图 (28)附录B 系统实物图 (29)附录C 系统程序 (30)附录D 英文文献1原文 (34)附录E 英文文献1翻译 (38)附录F 英文文献2原文 (42)附录G 英文文献2翻译 (44)附件1 毕业设计任务书 (47)附件2 开题报告 (48)附件3 验收登记表 (54)附件4 答辩记录表 (55)附件5 评语表 (56)0前言温度作为工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。
电加热炉温度控制系统设计
电加热炉温度控制系统设计摘要:1.引言电加热炉广泛应用于金属加热、熔化、回火等工艺过程中,其温度控制对产品质量的稳定性和一致性具有重要影响。
因此,设计一套高效可靠的电加热炉温度控制系统对于提高生产效率和节约能源具有重要意义。
2.系统结构设计电加热炉温度控制系统主要由传感器、控制器、执行器和人机界面组成。
传感器用于实时感知电加热炉内部温度变化,控制器根据传感器数据进行温度控制算法的计算,执行器根据控制器输出的控制信号调节电加热炉的供电功率,人机界面用于显示和操作温度控制系统。
3.温度传感器设计温度传感器一般采用热电偶或热电阻器进行测量,其工作原理基于材料的温度和电阻之间的相关性。
在电加热炉温度控制系统中,传感器应具有快速响应、精确稳定的特性,选择合适的传感器材料和安装位置对于准确测量温度值至关重要。
4.控制器设计电加热炉温度控制系统常用的控制器包括PID控制器和模糊控制器。
PID控制器基于比例、积分和微分三个部分的线性组合,能够根据系统的误差进行相应的调节,具有简单可靠的特点。
模糊控制器基于模糊逻辑推理,能够根据模糊规则进行决策,适应性强。
选择合适的控制器取决于电加热炉的温度调节需求和实际使用场景。
5.执行器设计电加热炉的供电功率调节通常通过调整炉内的电阻或使用可调电压/电流源实现。
执行器的设计应考虑到功率调节的精度和响应时间等因素,确保控制系统能够快速准确地调节电加热炉的供电功率,实现温度控制目标。
6.人机界面设计温度控制系统的人机界面一般包括温度显示、参数设置、报警显示和历史数据查询等功能。
界面设计应简洁明了,易于操作,提供必要的温度控制信息和报警提示,方便操作员进行实时监测和调节。
7.系统安全与优化温度控制系统应考虑到系统的安全性和优化性能。
安全性包括对系统故障的检测和处理,例如传感器异常、控制器故障等;优化性能包括对温度变化的快速响应和精确控制,例如减小温度波动、提高温度稳定性等。
8.结论本文基于电加热炉温度控制系统设计原理和方法进行了综合考虑,针对不同的温度控制要求给出了相应的解决方案。
电加热炉温度控制系统设计
电加热炉温度控制系统设计电加热炉是一种广泛应用于工业生产中的设备,用于加热各种材料或工件。
电加热炉的温度控制是保证炉内温度稳定和精确的关键,对于生产质量和设备寿命有重要影响。
本文将介绍电加热炉温度控制系统的设计。
首先,电加热炉温度控制系统的设计需要考虑以下几个方面:1.温度传感器:选择合适的温度传感器用于测量炉内温度,如热电偶或热电阻。
传感器需要能够对温度进行准确测量,并具有较高的可靠性和耐高温性能。
2.控制算法:根据温度传感器的反馈信号,控制算法计算控制信号以调节炉内加热功率。
最常用的控制算法是PID控制算法,它根据温度偏差、偏差变化率和偏差累积进行控制信号计算,以实现温度的稳定控制。
3.控制器:选择合适的控制器用于执行控制算法并输出控制信号。
控制器需要具有快速的计算能力和稳定的控制性能。
常见的控制器类型包括单片机、PLC和工业控制计算机。
4.加热装置:选择合适的加热装置用于向电加热炉提供能量。
常见的加热装置包括电阻丝、电加热器和感应加热器。
加热装置需要能够根据控制信号调节加热功率,并具有可靠的性能。
5.温度控制系统的安全保护:设计温度控制系统需要考虑安全保护措施,以防止温度过高造成设备事故和人身伤害。
常见的安全保护措施包括过温保护、短路保护和漏电保护等。
在电加热炉温度控制系统的设计过程中,需要进行系统建模和参数调节。
系统建模是将电加热炉、加热装置和温度传感器等组成部分抽象为数学模型,以进行控制算法的设计和仿真验证。
参数调节是根据实际工艺要求对控制算法参数进行调整,以达到良好的控制性能。
最后,电加热炉温度控制系统的设计需要考虑实际应用情况和要求。
不同的工艺要求和生产环境可能需要不同的控制精度和性能需求,因此需要根据实际情况进行设计定制。
在总结上述内容后,设计电加热炉温度控制系统需要考虑温度传感器、控制算法、控制器、加热装置和安全保护等方面。
系统建模和参数调节是设计过程中的关键步骤。
根据实际应用情况和要求进行设计定制,以实现温度的稳定和精确控制。
加热炉设计毕业设计
加热炉设计毕业设计摘要:本毕业设计旨在设计并制作一个加热炉,用于加热金属材料。
该加热炉采用能源高效的电加热方式,具有瞬时加热和温度控制功能。
设计包括电路设计、结构设计和控制系统设计。
通过实验验证了该加热炉的性能和效果。
关键词:加热炉、电加热、温度控制、结构设计、性能验证1.引言加热炉是一种常见的工业设备,用于加热各种材料。
它在金属加工、玻璃制造、陶瓷制品生产等领域广泛应用。
传统的加热炉通常使用燃气或燃油作为能源,效率低下。
而电加热炉由于其能源高效、可控性好的特点,越来越受到人们的关注。
2.设计目标本设计的目标是制作一个电加热炉,实现金属材料的快速加热和温度控制。
具体目标包括:(1)设计一个高效的加热电路,能够提供足够的功率;(2)设计一个合适的结构,能够容纳不同尺寸的材料;(3)设计一个稳定可靠的控制系统,能够精确控制温度。
3.电路设计电路设计是电加热炉设计的核心。
根据加热材料的不同需求,选择合适的加热元件。
本设计采用了电阻丝作为加热元件,通过调整电阻丝的长度和布局位置,控制不同区域的加热功率。
电路控制部分采用了微控制器进行控制,通过PWM调整电源输出的占空比控制加热功率。
通过传感器测量温度,将测得的温度与设定温度进行比较,调整PWM占空比,实现温度的闭环控制。
4.结构设计为了适应不同尺寸的加热材料,设计了一个可调节的结构。
该结构由固定底座和可上下移动的夹具组成,夹具通过滑轨与底座连接,可以根据材料尺寸的不同进行调整。
5.控制系统设计控制系统设计包括硬件设计和软件设计两个部分。
硬件设计主要是选择合适的传感器、微控制器和开关电源。
软件设计主要是编写控制程序,实现温度控制、显示和参数设定等功能。
6.实验与验证为了验证设计的加热炉的性能和效果,进行了一系列实验。
通过测量不同材料在不同温度下的加热速度和温度控制的精度,对设计进行了评估。
7.结论本设计成功制作了一个加热炉,实现了金属材料的快速加热和温度控制。
电加热炉温度控制系统设计范文
电加热炉温度控制系统设计(发布日期: -6-10)电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,而且在国民经济中占有举足轻重的地位。
对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。
单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。
采用单片机进行炉温控制,能够提高控制质量和自动化水平。
1 前言在人类的生活环境中,温度扮演着极其重要的角色。
温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。
对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。
无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。
自18世纪工业革命以来,工业发展对是否能掌握温度有着绝正确联系。
在冶金、钢铁、石化、水泥、玻璃、医药等等行业,能够说几乎80%的工业部门都不得不考虑着温度的因素。
在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常见的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
从市场角度看[1],如果中国的大中型企业将温度控制系统引入生产,能够降低消耗,控制成本,从而提高生产效率。
嵌入式温度控制系统符合国家提出的“节能减排”的要求,符合国家经济发展政策,具有十分广阔的市场前景。
现今,应用比较成熟的如电力脱硫设备中,主控制器在主蒸汽温度控制系统中的应用,已经达到了世界前进水平。
如今,在微电子行业中。
温度控制系统也越来越重要,如单晶炉、神经网络系统的控制。
因此。
温度控制系统经济前景非常广泛,中国的高新精尖行业研究其应用的意义更是更加重大。
电加热炉温度控制系统模型建立及控制算法
东华理工学院长江学院毕业设计(论文)题目电加热炉温度控制系统模型建立及控制算法英文题目The Electric Heating Furnace Temperature Control System Models and Control Algorithms to Establish学生姓名杨芳芳专业自动化班级023122指导教师罗先喜二零零六年六月摘要本文以电加热炉为控制对象.通过对电加热炉对象特性的分析来确定电加热炉系统的构成及控制方案。
而这里主要采用的设计方案是普通电加热炉温度控制系统模型建立及控制算法,对电加热炉的温度进行控制的计算机控制系统,所含系统结构复杂,干扰多。
这个系统结构简单,实施容易。
对炉温控制,采用的主要是由8051单片机组成系统。
此外由于PID算法具有计算量小,控制器结果简单,静动态性能指标好等特点,则应用了PID控制算法。
本文还建立电加热炉数学模型。
此外在论文中也介绍了史密斯预估方案,以及关于占空比,这两个问题都有在论文中提到,其中史密斯预估方案对系统的稳态性能影响很大,而占空比问题也对系统温度加热时间有很大关系。
出此之外,论文中还介绍了电加热炉温度控制系统中要运用到的主要芯片.以及这些芯片在系统中的各自功能也都有介绍。
此论文重点讨论了电加热炉温度控制系统系统的控制算法,关键词电加热炉;温度控制;单片机;PID算法;AbstractThis method resolves the Electrical-heated furnace is the controlled target .By analyzing the characteristic of electrical-heated furnace control system. Under this condition We choose the chief in the article is the contradiction between static and dynamic performances, the computer control system for controlling the stove temperature adopt the expert system and its deficiencies are complex and has much interference .this system is easily implemented. the most important in this design is that the electric heating elements, control algorithm, and soft-ware design of the system .Besides,this methord introduce selectrical-heated by maths. And also introduce about the O.J.M des Smith’idea.And also introduce other things about this method. In the method we also can find about the chip about the design ,it also includes the function about the chip. The ideas in the method what had been mentioned are all very important for me to design this method .The results of algorithm simulation prove that single neuron adaptive PSD intelligent control algorithm is simple and its effect is the better .it has very high theoretical value and practical value.The most important mental in this method is how to design the selectrical-heated by PID algorithmKey wordsselectrical-heated furnace; temperature control; Single chip micyoco; PID algorithm.目录中文摘要与关键词英文摘要与关键词绪论 (1)1. 电加热炉温度控制系统的构成 (2)1.1 各个主要元件电加热炉温度控制系统中的功能 (2)1.2 电加热炉温度控制系统的结构框图及工作原理 (2)1.3 系统中要用的主要芯片的简介 (3)1.3.1 8051芯片简介 (3)1.3.2 定时计数器 (5)1.3.3 锁存器74LS373 (6)1.3.4 光可控硅 (6)1.3.5 8279芯片的简介 (10)1.3.6 A/D转换器 (12)1.3.7 电源电路 (13)1.4 电加热炉温度控制系统的控制实例 (14)2..电加热炉温度控制系统的控制算法 (15)2.1 电加热炉温度控制系统的性能指标 (15)2.2 电加热炉温度控制系统数学模型的建立 (15)2.3 PID控制器的控制算法 (16)2.3.1 PID调节器参数对控制性能的影响 (18)2.3.2 PID控制系统参数设定及其控制系统的优点 (18)2.4 电加热炉积分分离PID控制的仿真研究 (20)3. 控制系统的仿真实验图及分析 (21)3.1 积分分离PID控制算法 (21)3.2 占空比 (25)结论 (27)致谢 (28)参考文献 (29)附录1 (30)附录2 (49)绪论电加热炉的出现,给人类的生活带来了很多方便,使人类不管是在生活还是在工业方面都有了很多便利之处。
电加热炉控制系统设计资料
密级:NANCHANG UNIVERSITY学士学位论文THESIS OF BACHELOR(2006 —2010 年)题目锅炉控制系统的设计学院:环境与化学工程系化工专业班级:测控技术与仪器学生姓名:学号:指导教师:职称:起讫日期:锅炉控制系统设计摘要温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。
由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。
本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。
此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。
此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。
提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。
关键词:温度;电加热炉;PLC;控制系统Control System Design of BoilerABSTRACTTemperature is a very popular parameter of pyrology in flow industry,so temperature control is an emphases of process control.Considering some special condition such as heating mechanism and the special structure of heater there are often some features such as long time lag,nonlinearity and difficulties of modeling of targets of process.It's difficult to control very well by traditional PID algorithm,the Digital PID control algorithm can get better control effect.This article described a type of imp roved regenerative heating furnace, which makes the temperature invariable and auto ignition using PLC. It can be available in aluminum and steelmill and other metal industry, which can bring obvious economic and social benefits.The industrial design of the prototype electric oven to laboratory electric furnace of the real object, PID control algorithm for temperature control.The paper presents a target for electric furnace characteristics of control algorithms, and PLC as the core to form the furnace adaptive control system. Control accuracy, reliability and stability indicators are much higher than the system which is consisted of the conventional instrument, thedesign uses PID algorithm to control its temperature.Keyword: Temperature;heating furnace;PLC;control system目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1选题的背景及意义 (1)1.2加热炉控制研究现状 (2)1.3本设计的主要工作及技术路线 (3)1.3.1主要工作 (3)1.3.2本论文的技术路线 (4)第二章控制方案确定 (5)2.1控制对象的数学模型及仿真 (5)2.2 电加热炉控制系统分析: (10)2.3控制系统的控制过程 (11)2.3.1 温度--流量串级控制系统 (11)2.3.2 液位-流量串级控制系统 (11)2.4 控制系统主要特色 (12)第三章PLC 控制系统硬件设计及仪表选型 (14)3.1系统特性分析 (14)3.2 PROFIBUS 现场总线介绍 (14)3.3电加热炉PLC系统结构 (15)3.4 PLC控制系统设计 (16)3.4.1 恒温控制系统 (16)3.4.2 恒压控制系统 (17)第四章控制系统的软件设计 (20)4.1 下位机软件设计 (20)4.1.1Step-7简介 (20)4.1.2下位机软件设计流程图 (22)4.2上位机软件设计 (22)4.2.1Win CC 简介 (23)4.2.2监控系统的设计 (24)第五章仪器仪表的选型 (26)5.1现场仪表的选型 (26)5.1.1控制阀的选型 (26)5.1.2节流装置的计算 (27)5.1.3电气阀门的定位器 (28)5.1.4 压力变送器的选型 (29)5.1.5 压力表的选型 (30)5.1.6流量计的选择 (30)5.1.7 温度变送器的选型 (31)5.1.8浮子液位计的选型 (32)5.2控制室仪表选型 (33)5.2.1PLC的选型 (33)5.2.2 控制柜的选型 (33)5.2.3安全栅的选型 (34)5.2.4供电箱的选型 (34)5.2.5智能调节器的选型 (35)5.3其他仪器的选型 (36)5.3.1水箱的选型 (36)5.3.2水泵的选型 (36)5.3.4接线箱的选型 (37)5.3.5三相调压模块的选型 (37)第六章总结和展望 (38)6.1 设计总结 (38)6.2 课题展望 (39)参考文献(References) (40)致谢 (42)第一章绪论1.1选题的背景及意义我国的电加热锅炉在10多年前问世,由于受到当时电力因素的制约,发展非常缓慢,只有几个非锅炉行业的厂家在生产。
电加热炉控制系统
理工大学城市学院本科生毕业设计(论文)学院:电子与自动化学院专业:自动化学生:启轩指导教师:吕攀完成日期:2015年5月26日理工大学城市学院本科生毕业设计(论文)电加热炉控制系统设计总计毕业设计(论文)63 页表格 1 个插图15 幅摘要电加热炉控制系统设计实际上的意义就是对于工业用的电加热炉的温度进行智能控制的手段。
而温度又是工业领域里最为重要的几个模拟量参数之一。
因此,对于温度的控制也是在过程控制领域中的一个重要的步骤。
电加热炉作为特种工业炉,其优点在于高效节能而且安全性相比于传统的工业用锅炉更高。
其核心为导热油以及热油泵,也就是所谓的电加热导热油系统,通过它们从而提供高效的热量。
导热油在电加热炉工作系统中扮演着介质这样一个角色。
加热元件通电后产生热量,热量通过导热油传递给用热设备。
而导热油的循环是通过循环泵的工作,热量因此被传递出去。
综上所述,电加热炉在工业领域有着举足轻重的地位,其特点大致可以总结为以下几点:(1)运行控制完备齐全,达到自动化控制(2)在压力较为低的环境中依旧可以工作,且工作温度同样很高(3)工作效率高、控制精度高(4)空间小,结构简单,安装简便电加热炉自身有着如此大的优势,而在控制的过程当中,较为难加以控制的当属于某些控制对象的时滞性以及非线性,这些原因则往往来自于加热的过程的不同,以及加热的对象的构造成分上的差异,因此,而产生难以建立数学模型的结果。
然而,伴随着社会的不断进步,工业领域对于温度的控制也极大地不同。
传统老套的PID控制的策略方法显然已经难以适应高新技术的浪潮的席卷。
而新型的数字式PID或者更为先进的嵌入式微控制器则可以更好地完成对于温度的调控。
嵌入式微控制器的使用已经越来越接近于工业领域的发展需求,使用嵌入式微控制器来调控电加热炉的温度则是简单且灵活,而且,嵌入式微控制器还有成本低的优势,构造及操作也相对于其他的调控方式更为简单,温度调控的技术指标也可以得到大幅度的提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密级:NANCHANG UNIVERSITY学士学位论文THESIS OF BACHELOR(2006 —2010 年)题目锅炉控制系统的设计学院:环境与化学工程系化工专业班级:测控技术与仪器学生姓名:魏彩昊学号:5801206025指导教师:杨大勇职称:讲师起讫日期:2010-3至2010-6南昌大学学士学位论文原创性申明本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。
本人完全意识到本申明的法律后果由本人承担。
作者签名:日期:学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在年解密后适用本授权书。
本学位论文属于不保密□。
(请在以上相应方框内打“√”)作者签名:日期:导师签名:日期:锅炉控制系统设计专业:测控技术与仪器学号:5801206025学生姓名:魏彩昊指导教师:杨大勇摘要温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。
由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。
本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。
此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。
此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。
提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。
关键词:温度;电加热炉;PLC;控制系统Control System Design of BoilerABSTRACTTemperature is a very popular parameter of pyrology in flow industry,so temperature control is an emphases of process control.Considering some special condition such as heating mechanism and the special structure of heater there are often some features such as long time lag,nonlinearity and difficulties of modeling of targets of process.It's difficult to control very well by traditional PID algorithm,the Digital PID control algorithm can get better control effect.This article described a type of imp roved regenerative heating furnace, which makes the temperature invariable and auto ignition using PLC. It can be available in aluminum and steelmill and other metal industry, which can bring obvious economic and social benefits.The industrial design of the prototype electric oven to laboratory electric furnace of the real object, PID control algorithm for temperature control.The paper presents a target for electric furnace characteristics of control algorithms, and PLC as the core to form the furnace adaptive control system. Control accuracy, reliability and stability indicators are much higher than the system which is consisted of the conventional instrument, thedesign uses PID algorithm to control its temperature.Keyword: Temperature;heating furnace;PLC;control system目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1选题的背景及意义 (1)1.2加热炉控制研究现状 (2)1.3本设计的主要工作及技术路线 (3)1.3.1主要工作 (3)1.3.2本论文的技术路线 (4)第二章控制方案确定 (5)2.1控制对象的数学模型及仿真 (5)2.2 电加热炉控制系统分析: (10)2.3控制系统的控制过程 (11)2.3.1 温度--流量串级控制系统 (11)2.3.2 液位-流量串级控制系统 (11)2.4 控制系统主要特色 (12)第三章PLC 控制系统硬件设计及仪表选型 (14)3.1系统特性分析 (14)3.2 PROFIBUS 现场总线介绍 (14)3.3电加热炉PLC系统结构 (15)3.4 PLC控制系统设计 (16)3.4.1 恒温控制系统 (16)3.4.2 恒压控制系统 (17)第四章控制系统的软件设计 (20)4.1 下位机软件设计 (20)4.1.1Step-7简介 (20)4.1.2下位机软件设计流程图 (22)4.2上位机软件设计 (22)4.2.1Win CC 简介 (23)4.2.2监控系统的设计 (24)第五章仪器仪表的选型 (26)5.1现场仪表的选型 (26)5.1.1控制阀的选型 (26)5.1.2节流装置的计算 (27)5.1.3电气阀门的定位器 (28)5.1.4 压力变送器的选型 (29)5.1.5 压力表的选型 (30)5.1.6流量计的选择 (30)5.1.7 温度变送器的选型 (31)5.1.8浮子液位计的选型 (32)5.2控制室仪表选型 (33)5.2.1PLC的选型 (33)5.2.2 控制柜的选型 (33)5.2.3安全栅的选型 (34)5.2.4供电箱的选型 (34)5.2.5智能调节器的选型 (35)5.3其他仪器的选型 (36)5.3.1水箱的选型 (36)5.3.2水泵的选型 (36)5.3.4接线箱的选型 (37)5.3.5三相调压模块的选型 (37)第六章总结和展望 (38)6.1 设计总结 (38)6.2 课题展望 (39)参考文献(References) (40)致谢 (42)第一章绪论1.1选题的背景及意义我国的电加热锅炉在10多年前问世,由于受到当时电力因素的制约,发展非常缓慢,只有几个非锅炉行业的厂家在生产。
1998年以来,特别是2000年,电热锅炉市场迅速发展。
行业内许多厂家都已经或者正在准备生产电热锅炉。
由于起步晚、规模小,电加热锅炉的控制水准很低,甚至很原始。
电加热锅炉的控制与燃油(气)锅炉的控制有很大的不同[1]:1 电流巨大,属大电流或超大电流控制;2 没有现成的燃烧器及其程控器,锅炉的加热过程和控制品质完全由自己决定;3 比燃油(气)锅炉的自动化程度和蓄热要求更高,外观要求也更现代、更美观。
因此,电热锅炉控制存在较大难度。
1998年我们抓住了市场机遇,再次把工业控制技术应用于电加热锅炉控制领域,把大型电力负荷控制的成功经验移植到电加热锅炉的大电流控制上来,率先提出了电加热锅炉的循环投切和分段模糊控制的控制模式,较好地解决了电加热锅炉控制的理论和实际问题。
国内电加热炉的加热形式主要有以下两个:1 电阻加热式国内绝大多数厂家采用该方式,并选用电阻式管状电热元件。
电阻加热方式的电气特点是锅水不带电,但在电加热元件漏水或爆裂时会使锅水带电或称漏电。
另外,受电热元件绝缘导热层的绝缘程度的影响,电热管存在一定的泄漏电流。
泄漏电流的国家标准是<0.5ma。
该方式在结构上易于叠加组合,控制灵活,更换方便。
2 电磁感应加热式该方式的加热原理是:当电流通过加热线圈时,就会形成电磁场,把金属锅壳置于电磁场之中,就会使锅壳产生涡流,并导致其发热,从而完成对锅水加热的目的。
其电流愈大,发热量愈大。
电磁感应加热方式在工业上的应用较早,典型的应用就是中频加热炉。
但是把它应用到锅炉上,确属首次,很有创意值得关注。
目前国内只有一家厂家生产这种电热锅炉。
该方式的优点是,与水和锅炉是非接触式加热,因此绝无漏电的可能性;另一个优点是该方式须用可控硅做驱动输出,因此具有无触点开关的独特优势;机械噪声小,可多级或无级调节,使用寿命长。
该方式的缺点是热效率比电阻加热方式要稍低,约96%:。
这是因为后者是直接与锅水接触加热,而前者是间接加热,况且作为功率驱动元件的可控硅元件,其本身也要消耗一定功率。
1.2加热炉控制研究现状国内电加热炉控制有四个发展阶段:第一阶段:手动控制、温度仪表显示处于发展初期的电加热锅炉控制采用温度仪表显示温度,由人工手动投切,以达到逐级投切和温度调节的目的。
还有一种形式是无论功率多大,均分三个投切组,二组为手动,一组用温控表控制。
第一阶段手动控制方式自动化程度极低,控制效果较差。
第二阶段:顺序控制器或PLC程控器,温度仪表参与控制人们把人工手动投切改为用顺序控制器或PLC程控器来完成逐级投切,使锅炉控制基本能够自动化。
为了解决逐级投切的自动化,厂家在采用PLC作程控器,或开发了电子顺序控制器后,不但可以实现逐级投切自动化,还能定时启停锅炉。