2.2.提公因式法(2)

合集下载

2.2 提公因式法(含答案)-

2.2 提公因式法(含答案)-

2.2提公因式法一、选择题:1.多项式-4a2b2+12a2b2-8a3b2c的公因式是()A.-4a2b2c B.-a2b2 C.-4a2b2D.-4a3b2c2.若多项式-6mn+18mnx+24mny的一个因式是-6mn,那么另一个因式是()A.-1-3x-4y B.1-3x-4y C.-1-3x+4y D.1+3x-4y3.分解-3a2bc2+12a3b2c2+9a2bc3的结果是()A.-a2bc2(3-12ab-9c) B.a2bc2(-3+12ab+9c)C.-3(a2bc2-4a3b2c2-3a2bc3) D.-3a2bc2(1-4ab-3c)4.下列提公因式法分解因式正确的是()A.12abc-9a2b2=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy-y=y(x2+5x)5.下列多项式中的公因式与多项式8x3+24x2+4x的公因式相同的有()①8y3+24y2+4y;②32x3y+16xy2+28x3;③4x4-12x3+16x2+20x;④-8x3+4x2-24x A.1个B.2个C.3个D.4个6.下列各组多项式中,提取公因式后的剩余因式相同的是( )A.3m2n+6mn2与2m2n+4mn2+mn B.a3+a2+a与b3+b2+bC.6x3+4x2+2x与6x2y+4xy+2y D.a(m-n)3-b(n-m)3与a(m-n)3-b(m-n)3二、填空题:1.单项式4a3,8a2b2,-30a2bc的公因式是_________;单项式8x m y n-1与–4x m+1y n的公因式是_________。

2.在下列各式右边的括号前填写“+”号或“-”号,使等式成立:(1)(b-a)2=_________(a-b)2; (2)(x-y)3=________(y-x)3(3)-a-b=___________(a+b); (4)(-x-y)2=________(x+y)23.-6m3n2+12m2n3-3m2n2的公因式是_________;5a(x-y)-10b(y-x)的公因式是________.4.在下列括号内填写适当的多项式,使等式成立:(1)14abx-8ab2x=2abx( ); (2)-7ab-14abx+49aby=-7ab( ) 5.分解因式:3a(m+n)-6(m+n)=___________.6.利用分解因式计算:(-2)2003+(-2)2004-22003=__________。

2 提公因式法

2 提公因式法

A.5ab(b-a)
B.5a2b2(b-a)源自C.5a2b(b-a)D.以上均不正确
新课讲解
知识点2
提公因式法
(1)多项式2x2+6x3中各项的公因式是什么? (2)你能尝试将多项式2x2+6x3因式分解吗?与同
伴交流.
新课讲解
确定一个多项式的公因式时,要从__数__字__系__数____ 和___字__母__及__其__指__数_____分别进行考虑 . 数字系数
母最低次幂;
新课讲解
典例分析
例 指出下列多项式各项的公因式:
(1)3a2y-3ya+6y; (42) 8xy3-
9
27
(3)a(x-y)3+b(x-y)2+(x-y)3;
(4)-27a2b3+36a3b2+9a2b.
x3y2;
新课讲解
解:(1)3,6的最大公约数是3,所以公因式的系数是3;
有相同字母y,并且y的最低次数是1,所以公因 式是3y.
新课讲解
添括号法则: (1)添上括号和“+”号,括到括号里的各项都不
变. (2)添上括号和“-”号,括到括号里的各项都改
变符号.
新课讲解
典例分析
例 把a(x-y)-b(y-x)提公因式后,所得的另一个
因式是( B )
A.a-b
B.a+b
C.x+y
D.x-y
分析:因为y-x=-(x-y),所以若将-b(y-x)转化为 +b(x-y),则多项式出现公因式x-y,由此可确
5
5
因式1 是-
5
ab,那么另一个A因式是( )
A.c-b+5ac
B.c+b-5ac
C.c-b+ 1 ac
5
ac
1D.c+b-

2.2提公因式法2

2.2提公因式法2
2n n x(a b)2n y (b a) 2 (b a) x(a b)2n y(a b)2n (b a)
1.解:x(a b)2n y(b a)2n1
(a b)2n [ x y(b a)]
(a b)2n ( x by ay)
试证明: 81 27 9 能被45整除.
7 9 13
证明: 81 27 9 (9 ) (9 3) 9
7 9 13 2 7 9
13
914 99 39 913 914 99 (32 ) 4 3 913
9 3 9 9
14 13 13
分解下列因式 (1)a( x y) b( y x); (2)6(m n)3 12(n m)2 ;
(x x y y) y x x)) 解: (1)a( ) b((y a( x y) b( x y)
( x y)(a b)
开 阔 视 野
(2)6(m n)3 12(n m)2
展 示 自 我
912 (9 2 3 9 9)
9 45
12
817 279 913能被45整除.
这节课你学到些什么?
1.用到哪些数学思想?
2.知道哪些解决的方法?
构 建 网 络
3.学到哪些数学知识?

作业:书上第47页习题2.3
补充作业:
1.分解因式: x( x y )(a b) y ( y x)(b a );
课 后 韵 味
2.解关于x的方程: 5 x( x 2) 4( x 2) 0.
结束寄语
• 要珍惜时间,思考一下一天之中做

2.2提公因式法(2)

2.2提公因式法(2)

化归、 转化 整体方法 《2.2提公因式法(2)》导学案一、教学目标知识与技能:1.掌握用提公因式法分解因式的方法;2.通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点。

过程与方法:采用化归的数学思想,在上一节课所提取的公因式是单项式的分解因式的基 础上,解决所提取的公因式是多项式的分解因式。

情感态度与价值观:通过观察,合作交流解决公因式为多项式的分解因式问题,培养学生的化归、转化能力。

二、教学重点: 含有公因式是多项式的分解因式三、教学难点: 整体思想的运用以及代数式的法号变换处理四、教学过程:(一)导入新课检查学生完成课前导读-评价单1、2,导入,公因式不仅可以是单项式,还可以是多项式。

导入语:这节课我们继续学习提公因式法分解因式。

(二)自主探索 探究新知A.基础训练问题1:把多项式(3)-x 看做一个整体,让学生感知公因式可以是多项式。

问题2:在问题1的基础上进一步解决符号问题。

教学时要引导学生正确理解()-x y 与()-y x ,2()-m n 与2()-n m 的关系。

B.能力训练问题1:解题的关键是确定公因式:(1)22()()-=-x y y x ;(2)把+mx ny 提公因式;(3)()--=-y x x y 。

问题4:提取公因式5535+x ,分解因式再解方程。

(三)课堂反思1.本节课你学习了哪些方法?2.本节课应用了转化的数学思想:公因式为多项式的分解因式问题 公因式为单项式的分解因式问题(四)布置作业《课外巩固—评价单》《2.2提公因式法(2)》课前导读—评价单班级 姓名 组别(一)学习目标:1.掌握公因式是多项式时的分解因式;2.掌握用提公因式法分解因式的方法。

(二)学习流程:1.做一做:请在下列等号右边的括号前填入“+”或“-”,使等式成立。

(1)2-=a (2)-a (2)-=y x ()-x y(3)+=b a ()+a b (4)2()-=b a 2()-a b(5)--=m n ()+m n (6)22-+=s t (22-s t )2.你能找出下列多项式的公因式吗?公因式是单项式还是多项式?(1)()()+++x a b y a b (2)3()()---a x y x y(3)236()12()+-+p q q p (4)2()()()+--+x y x y x y3.把下列各式分解因式:(1)()()+++x a b y a b (2)3()()---a x y x y(3)236()12()+-+p q q p (4)2()()()+--+x y x y x y(5)22()3()-+-y x x y (6)2()()---mn m n m n m由2、3题可以看出,提公因式法分解因式时,公因式不仅可以是单项式,还可以是 项式。

提公因式法

提公因式法

提公因式法(一)●课题§2.2.1 提公因式法(一)●教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.(三)情感与价值观要求在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点让学生识别多项式的公因式.●教学方法独立思考——合作交流法.●教学过程Ⅰ.创设问题情境,引入新课一块场地由三个矩形组成,这些矩形的长分别为,,,宽都是,求这块场地的面积.解法一:S=× + × + × =++=2解法二:S=× + × + × = ( ++)=×4=2[师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.Ⅱ.新课讲解1.公因式与提公因式法分解因式的概念.[师]若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.ma+mb+mc=m(a+b+c)从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?[生]等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.[师]由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解3.议一议[师]通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.[生]首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.4.想一想[师]大家总结得非常棒.从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?[生]提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.Ⅲ.课堂练习(一)随堂练习1.写出下列多项式各项的公因式.(1)ma+mb (m)(2)4kx-8ky (4k)(3)5y3+20y2 (5y2)(4)a2b-2ab2+ab (ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)(3)4m3-6m2=2m2(2m-3)(4)a2b-5ab+9b=b(a2-5a+9)(5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)(6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)(二)补充练习1.把3x2-6xy+x分解因式[生]解:3x2-6xy+x=x(3x-6y)[师]大家同意他的做法吗?[生]不同意.改正:3x2-6xy+x=x(3x-6y+1)[师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?将x写成x·1,这样可知提出一个因式x后,另一个因式是1.2.Ⅳ.课时小结1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题.Ⅴ.课后作业习题2.2(7)-2x2-12xy2+8xy3=-(2x2+12xy2-8xy3)=-2x(x+6y2-4y3);(8)-3ma3+6ma2-12ma=-(3ma3-6ma2+12ma)=-3ma(a2-2a+4);2.利用因式分解进行计算(1)121×0.13+12.1×0.9-12×1.21=12.1×1.3+12.1×0.9-1.2×12.1=12.1×(1.3+0.9-1.2)=12.1×1=12.1(2)2.34×13.2+0.66×13.2-26.4=13.2×(2.34+0.66-2)=13.2×1=13.2(3)Ⅳ.活动与探究利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.解:(1)32004-32003=32003×(3-1)=32003×2=2×32003(2)(-2)101+(-2)100=(-2)100×(-2+1)=(-2)100×(-1)=-(-2)100=-2100●板书设计§2.2.1 提公因式法(一)一、1.公因式与提公因式法分解因式的概念2.例题讲解(例1)3.议一议(找公因式的一般步骤)4.想一想二、课堂练习1.随堂练习2.补充练习三、课时小结四、课后作业●备课资料参考练习一、把下列各式分解因式:1.2a-4b;2.ax2+ax-4a;3.3ab2-3a2b;4.2x3+2x2-6x;5.7x2+7x+14;6.-12a2b+24ab2;7.xy-x2y2-x3y3;8.27x3+9x2y.参考答案:1.2(a-2b);2.a(x2+x-4);3.3ab(b-a);4.2x(x2+x-3);5.7(x2+x+2);6.-12ab(a-2b);7.xy(1-xy-x2y2);8.9x2(3x+y).提公因式法(二)●课题§2.2.2 提公因式法(二)●教学目标(一)教学知识点进一步让学生掌握用提公因式法分解因式的方法.(二)能力训练要求进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.●教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式.●教学难点准确找出公因式,并能正确进行分解因式.●教学方法类比学习法●教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解一、例题讲解[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x -3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢?[生]不是,是两个多项式的乘积.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.解:(1)a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)(2)6(m-n)3-12(n-m)2=6(m-n)3-12[-(m-n)]2=6(m-n)3-12(m-n)2=6(m-n)2(m-n-2).二、做一做请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).解:(1)2-a=-(a-2);(2)y-x=-(x-y);(3)b+a=+(a+b);(4)(b-a)2=+(a-b)2;(5)-m-n=-(m+n);(6)-s2+t2=-(s2-t2).Ⅲ.课堂练习把下列各式分解因式:解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2=mn(m-n)-m(m-n)2=m(m-n)[n-(m-n)]=m(m-n)(2n-m).补充练习把下列各式分解因式解:1.5(x-y)3+10(y-x)2=5(x-y)3+10(x-y)2=5(x-y)2[(x-y)+2]=5(x-y)2(x-y+2);2. m(a-b)-n(b-a)=m(a-b)+n(a-b)=(a-b)(m+n);3. m(m-n)+n(n-m)=m(m-n)-n(m-n)=(m-n)(m-n)=(m-n)2;4. m(m-n)(p-q)-n(n-m)(p-q)= m(m-n)(p-q)+n(m-n)(p-q)=(m-n)(p-q)(m +n);5.(b-a)2+a(a-b)+b(b-a)=(b-a)2-a(b-a)+b(b-a)=(b-a)[(b-a)-a+b]=(b-a)(b-a-a+b)=(b-a)(2b-2a)=2(b-a)(b-a)=2(b-a)2Ⅳ.课时小结本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题2.3Ⅵ.活动与探究把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式. 解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)]=(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)●板书设计§2.2.2 提公因式法(二)一、1.例题讲解2.做一做二、课堂练习三、课时小结四、课后作业●备课资料参考练习把下列各式分解因式:1.a(x-y)-b(y-x)+c(x-y);2.x2y-3xy2+y3;3.2(x-y)2+3(y-x);4.5(m-n)2+2(n-m)3.参考答案:解:1.a(x-y)-b(y-x)+c(x-y)=a(x-y)+b(x-y)+c(x-y)=(x-y)(a+b+c);2.x2y-3xy2+y3=y(x2-3xy+y2);3.2(x-y)2+3(y-x)=2(x-y)2-3(x-y)=(x-y)[2(x-y)-3]=(x-y)(2x-2y-3);4.5(m-n)2+2(n-m)3=5(m-n)2+2[-(m-n)]3=5(m-n)2-2(m-n)3=(m-n)2[5-2(m-n)]=(m-n)2(5-2m+2n).典型例题例题1 找出下列式子中的公因式:(1);(2);分析多项式中各项都含有的因式是公因式,公因式中的系数是各项系数的最小公倍数,各项中共同含有的字母的公因式是各项中这个字母次数最低的幂.解答(1)公因式是.(2)公因式是.说明字母的指数中含有字母时,要判断哪个指数是最小的.例题2.分解因式:解答说明观察到第一项的系数是负数,我们先把“-”号提出来,便于继续分解因式.例题3.分解因式: .分析观察题目结构特征:第一项系数是负数,且有因式,第二、三项有因式,这就启发我们只要把前面添上负号,就变成,这样三项中均有公因式了.解答说明对于与的符号有下面的关系:感兴趣的同学可以寻找其中的规律.例题4.解方程: .分析方程左边的第一项有因式,第二项有因式 . 所以我们应先提取公因式,再化简求解.解答原方程依次变形为:例题5.不解方程组求:的值.分析把所求的式子利用因式分解法转化为关于与的因式,再代入求解.解答∵∴原式 .说明在解题过程中,巧妙地运用了转化思想,用提公因式法分解因式作为桥梁,把题给方程组和所求多项式结合起来,体现了思维的广阔性.探究活动关灯问题一条长廊里依次装有100盏电灯,从头到尾编号为1,2,3…99,100.每盏灯由一个拉线开关控制.开始,电灯全部关着.有100个同学列队从长廊走过来.第一个同学把号码凡是1的倍数的电灯的开关拉一下;接着第二个同学把凡是2的倍数的电灯开关拉一下;接着第三个同学把凡是3的倍数的电灯的开关拉一下;如此继续下去,最后第一百个同学把号码凡是100的倍数的电灯的开关拉一下.当100个同学按此规定穿过长廊之后,长廊里还有几盏灯亮着?参考答案还有10盏灯亮着.即:编号为1,4,9,16,25,36,49,64,81,100的灯.思考·探索1.解方程.参考答案1.原方程可化为,即.解得.习题精选练习题一1.选择题(1)分解的结果是()A. B.C. D.(2)若多项式的一个因式是,那么另一个因式是()A. B. C. D.(3)多项式的公因式是()A. B. C. D.(4)下列用提公因式法因式分解正确的是()A. B.C. D.2.分解因式(1);(2);(3);(4);(5);(6)3.分解因式(1);(2);(3);(4);(5);(6);(7);(8);(9);(10).参考答案1.(1)D (2)D (3)C (4)C2.(1)(2)(3)(4)(5)(6)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)练习题二1.把下列各式分解因式(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11);(12).2.求满足下列等式的x的值(1);(2).3.若,求代数式的值.参考答案1.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)2.(1)(2)3.,∴,当时,上式.古老的代数在古希腊时代,代数还不是一门独立的学科,许多代数公式是通过几何方法来推导的.如①式就可通过下图推导出来:现在,请你用纸片剪一个边长为的正方形,在它的右上角挖去一个边长为的小正方形(下图中有阴影的正方形),剩下的图形.我们来计算它的面积.为此,请你沿虚线把图形剪开,把小长方形按箭头所指的方向搬到的位置(不动),拼成一个长方形.请你量一量、算一算,然后回答问题:(1)正方形的面积是_________,(2)正方形的面积是_________,(3)因此,图形的面积是__________.(4)剪开HF后拼成的新矩形与图形的面积是________的.(5)矩形的边长为_______,JC边长为________,所以,矩形IJCE的面积为___________.(6)将(3)(5)的结果加以比较,就得到我们熟知的代数公式____________.电费催收单C城居民的生活用电每度收费1.5元,小英家一季度用电的数据如下:元月85度,2月73度,3月90度.奶奶要小英计算一下,一季度家里应交多少电费.小英很快就列出了算式:可是,供电所发来的收费单却是按月份别计算的.他们的算式是:现在我们来思考几个问题:(1)小英的算法与供电所的算法,结果是相同的吗?(口答)(2)根据回答可以写出等式:(3)一般地,如果电价每度为m元,某用户一季度用电的数字分别为:1月a度,2月b度,3月c度.那么,根据刚才写出的答案,就可以得出收费的一个一般公式:①①式就是分解因式的提公因式法.利用提公因式的方法分解因式的具体方法是:(1)先确定多项式中各项的公因式,再把公因式提到括号外,把原多项式除以公因式所得的商式写在括号内.确定公因式的方法是:先取各项数字系数的最大公的数,再取各项相同字母的最低次幕,合起来就是这个多项式的公因式.(2)在提取公因式时,要特别注意出现下列情况的时候:如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的,并且注意括号内其它各项要变号.如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出.有时要对多项式的项进行适当的恒等变形之后(如将变成才能提公因式,这时要特别注意各项的符号.。

七年级下册数学提公因式法(2)

七年级下册数学提公因式法(2)
解: (1) a
2
a( x y) b( y x) (2) 6(m n) 3 12(n m) 2
( 1)
2 6 m n m n 2 6 m n m n 2
• •
例题4:把下列多项式因式分解 (1)x x 2 3 x 2 (2) x x 2 3 2 x
做一做:
请在下列各式等号右边填入“+”或“-” 号,使等式成立, — a 2) (1)2 a ___(
— x y) (2) y x ___(
(3)b a ___( + a b) 2 2 + a b) (4)(b a) ___(
— m n) (5) m n ___( 2 2 2 2 — s t ) (6) s t __ a c a b
2
2
2
a b
a b a c a c
2
2
a c a c
2
a b 2c 2 c a b
过关练习题:
依据:乘法对加法的分配律
ma mb mc m a b c
复习练习:用提公因式法分解
1 3x 6 x 2 2 bc ab b 3 2 3 ma 3ma 5ma 3 3 2 3 2 4 4a b 6a b 2ab
2
( 1)
解:(1)原式=
x 2 x 3
(2)原式=
x x 2 3 x 2
x x 2 3 x 2
x 2 x 3
例题5、把下列多项式因式分解 2 2 1 a c a b a c b a 2 2 2 12 xy x y 18x y x y

2.2 提公因式法因式分解(北师大版)

2.2 提公因式法因式分解(北师大版)

做一做
分解因式: 分解因式: (1)a(x+y)-2b(x+y) )
(2)5m(x-y)2-10n(y-x)2 )
想一想
提公因式法分解因式与单项式 乘多项式有什么关系? 乘多项式有什么关系?
作业 P 44 习题2.2 T1(1)(3)(5)(7) T2(1)(3)
注意:当多项式的第一项的系数为负数时, 注意:当多项式的第一项的系数为负数时, 通常先提出“ 号 通常先提出“-”号,使括号内第一项的系数 为正。 同时多项式的各项都要变号。 为正。 同时多项式的各项都要变号。
做一做
将下列各式分解因式: 将下列各式分解因式: (1)63ab-14ab2 (2) 3a2y-3ay+6y (3)-24m2n+16mn2-28m
下列多项式的各项是否有公因式? 下列多项式的各项是否有公因式? 如果有,是什么? 如果有,是什么? (1)3x2+x (2)2b2+4b-6b x
2b
思考:如何提取多项式的公因式 思考 如何提取多项式的公因式? 如何提取多项式的公因式
1.公因式系数应取各项系数的最大公约数 公因式系数应取各项系数的最大公约数 2.字母取各项相同的字母 且相同字母的指 字母取各项相同的字母,且相同字母的指 字母取各项相同的字母 数取次数最低的
议一议
多项式2x 多项式 2+6x3中各项的公因式是什 么? 2x2
如果一个多项式的各项含有公因式, 如果一个多项式的各项含有公因式,那么就 可以把这个公因式提出来, 可以把这个公因式提出来,从而将多项式化成 两个因式乘积的形式。 两个因式乘积的形式。 这种分解因式的方法叫做提公因式法。
分解因式: 例1.分解因式: 分解因式 (1)3x+6 ) (2)7x2-21x (3)8a3-12ab3c+ab (4)-24x3-12x2+28x

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

八年级下数学资源与评价答案

八年级下数学资源与评价答案

第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ; 10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ;(5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+;(8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.4运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b); (5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++;(9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n m n +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1; 单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ;19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a m b a m --,⑶ba bn am ++,⑷p n m -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x 32,②x x --112,③x x x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③y x y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1.3.2分式的乘除法 1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.ba x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55b a -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴ab c -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1. 3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b +=……① 同理可得114b c +=……②,115a c+=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc ++=,∴abc ab bc ca ++=16 3.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n . 3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x 200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x x x ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=x x ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1. 4.2黄金分割1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2.4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BFDF CF GF =,BF DF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PBPD PR PA =,可得: 22PB PD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23.22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: ADBD BD DF =,即BD 2=AD·DF . 14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BC AC AC AD =,解得:AD= 4,所以中位线的长= 6.5.15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CF BF ACAB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC =2S .23. ⑴略. ⑵△ABP ∽△DPQ ,DQ PD AP AB =,x y x -+=522,得y =-21x 2+25x -2.(1<x <4).24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200.17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到. 21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m .10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-. 25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38.30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴ 1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略. 27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm . 单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm . 26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724. 27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=a a +66≤3,解得a ≤6,所以3<a ≤6.⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去).28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性.9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略 9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a < 0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克 7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平 行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B 6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:16.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC. 11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12. ∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠o Q 又180BDA B BAD ∠=-∠-∠o Q 180CDA C CAD ∠=-∠-∠o 360(180)BDC B BAD ∴∠=--∠-∠-o o (180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠o 即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略 16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.100o22.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB , ∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°. ∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=o (2) 当ABC ∆为钝角三角形时,20B ∠=o25.略 33.FD EC ⊥Q 90EFD FEC ∴∠=-∠o 而FEC B BAE ∴∠=∠+∠又AE Q 平分BAC ∠ 11(180)22BAE BAC B C ∴∠=∠=-∠-∠o =190()2B C -∠+∠o 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦o o =1()2C B ∠-∠ (2)成立。

因式分解的七种常见方法

因式分解的七种常见方法

因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。

在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。

1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。

公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。

它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。

例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。

它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。

例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。

它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。

例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。

这样我们就把原始式子分解成了两个因子的乘积。

3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。

该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。

例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。

§2.2.2 提公因式法(二)

§2.2.2  提公因式法(二)
咸阳道北铁中(八)年级(数学)学科导学案
课题:§2.2.2提公因式法(二)主备:刘晓东备课组长审核:高宏伟教务处审核:李诚
一、展示目标:
教 学重点:能观察出公因式是多项式的情况,并能合 理地进行 分解因式.
学习难点:准确找出公因式,并能正确进行分解因式
二、自主学习:
1.请在下列各式等号右边的括号前填入“+”或“―”,使等式成立:
将 分解因式,总结用提公因式法分解因式应注意什么?
四、当堂检测:
1.把下列各式分解因式:
(1)x2y-3xy2+y3;(2)a(x-y)-b(y-x) .
(5)(a+b-c) (a-b+c)+(b-a+c)·(b-a-c)
(6) ;(7) .
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) .
(7)m-n-p=(n-m+p);(8)(1-x)(x-2)=(x-1)(x-2)
(9) (10)
2.根据1题情况进行归纳总结:
一般地,关于幂的指数与底数的符号有如下规律(填“+”或“―”号):
.
3.指出下列各式中的公因式:
(1)
(2)
(3)
4.自主学习教材p47,特别注意例2、3中用数学的什么思想?例3提公因式前做了什么样的变化?
5.及时反馈:㈠完成教材第51的随堂练习题
㈡把下列各式分解因式
(1)5(x-y)3+10(y -x)(2)(b-a)2+a(a-b)+b(b-a)
(3)
(4)m(m-n)(p-q)-n(n-m)(p-q)
三、合作探究:
2.不解方程组 求 的值.
五、总结升华:

八下 第二章2.2.1提取公因式法 教学设计(于海峰)

八下 第二章2.2.1提取公因式法 教学设计(于海峰)

第二章 分解因式§2.2提取公因式法【有效学习】学习目标1、了解因式分解的概念,以及因式分解与整式乘法的关系.2、了解公因式概念和提取公因式的方法.3、会用提取公因式法分解因式.学习重点:会用提公因式法分解因式; 学习难点:如何确定公因式以及提出公因式后的另外一个因式.【复习检测】把一个多项式化成 的形式,叫做因式分解。

情境应用:看谁算得又准又快(1)20×(-3)2+60×(-3) (2)1012-992 (3)572+2×57×43+432【预习检测】叫做公因式。

情境应用:1、2x 2y +6x 3y 2中各项的公因式是什么?学习反思——自我总结:运用提公因式法分解因式的关键是确定多项式各项的公因式,•公因式是指各项系数的最大公约数、各项共有字母的最低次幂的乘积.公因式可以是单项式也可以是多项式.2、找出下列各式的公因式,运用提公因式法分解因式(1)=+bc ab (2)=+x x 23 (3)=-+b nb mb 2 (4)=+3262x x(5)3x +6= (6)7x 2–21x = (7)8a 3b 2–12ab 3c +ab =(8)–24x 3–12x 2+28x =学习反思——分解因式步骤:(1)找公因式; (2)提公因式.学习反思——易错点总结:1、第(7)题中的最后一项提出ab 后,注意: ;2、如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式; 第(8)题提出“–”时,注意: .技巧的点拨:怎么才能保证做的题不会错呢?将分解因式后的式子再进行单项式与多项式相乘,检验其积是否与原式相等.学以致用:1、找出下列各多项式的公因式:(1)4x +8y (2)am+an (3)48mn –24m 2n 3 (4)a 2b –2ab 2+ab2、将下列多项式进行分解因式:(1)8x–72 (2)a2b–5ab (3)4m3–8m2(4)a2b–2ab2+ab(5)–48mn–24m2n3(6)–2x2y+4xy2–2xy3、分解因式下列各题:(1)8m2n+2mn (2)12xyz-9x2y2(4)12a2b3-8a3b2-16ab4 (3)-4a3+16a2-18a4、简便计算(1)14.3×9.6+14.3×10.4 (2)5.8×4.7+5.8×12.1-5.8×6.8(3)5×109-1010 (4)6.2×7.8+6.2×2.1+3.8×4.5+3.8×5.4提取公因式法口诀:各项有“公”先提“公”;首项有负常提负;某项提出莫漏1;括号里面分到“底”.思考:下面两个式子如何用提取公因式法分解因式(1)4a2(x+7)-3(x+7) (2)2a(y-z)-3b(z-y)。

专训1 因式分解的六种常见方法(2)

专训1 因式分解的六种常见方法(2)

专训1 因式分解的六种常见方法名师点金:因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.提公因式法公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2分解因式,其中一个因式是-4x2y2,则另一个因式是( )A.3y+4x-1 B.3y-4x-1 C.3y-4x+1 D.3y-4x2.【2015·广州】分解因式:2-6=.3.把下列各式分解因式:(1)2x2-;(2)-4m4n+16m3n-28m2n.公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.公式法直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.先提公因式再用公式法6.把下列各式分解因式:(1)(x-1)+b2(1-x);(2)-3x7+24x5-48x3.先局部再整体法7.分解因式:(x+3)(x+4)+(x2-9).先展开再分解法8.把下列各式分解因式:(1)x(x+4)+4;(2)4x(y-x)-y2.分组分解法9.观察“探究性学习”小组的甲、乙两名同学的因式分解:甲:x2-+4x-4y=(x2-)+(4x-4y) (分成两组)=x(x-y)+4(x-y) (分别提公因式)=(x-y)(x+4). (再提公因式)乙:a2-b2-c2+2=a2-(b2+c2-2) (分成两组)=a2-(b-c)2(运用完全平方公式)=(a+b-c)(a-b+c). (再用平方差公式)请你在他们的解法的启发下,把下列各式分解因式:(1)m2-+-;(2)x2-2+y2-9.拆、添项法10.分解因式:x4+.11.先阅读下面的材料:我们已经学过将一个多项式分解因式的方法有提公因式法、运用公式法、分组分解法,其实分解因式的方法还有拆项法等.拆项法:将一个多项式的某一项拆成两项后可提公因式或运用公式继续分解的方法.如:x2+2x-3=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).请你仿照以上方法,分解因式:(1)x2-6x-7;(2)a2+4-5b2.整体法“提”整体12.分解因式:a(x+y-z)-b(z-x-y)-c(x-z+y).“当”整体13.分解因式:(x+y)2-4(x+y-1).“拆”整体14.分解因式:(c2+d2)+(a2+b2).“凑”整体15.分解因式:x2-y2-4x+6y-5.换元法16.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.答案1.B 2.2m(x-3y)3.解:(1)2x2-=x(2x-y).(2)-4m4n+16m3n-28m2n=-4m2n(m2-4m+7).点拨:如果一个多项式第一项含有“-”号,一般要将“-”号一并提出,但要注意括号里面的各项要改变符号.4.解:(1)原式=a(b-c)-(b-c)=(b-c)(a-1).(2)原式=15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5).点拨:将多项式中的某些项变形时,要注意符号的变化.5.解:(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(+2)(-2).(2)原式=(x2+y2+2)(x2+y2-2)=(x+y)2(x-y)2.(3)原式=(x2+6x+9)2=[(x+3)2]2=(x+3)4.点拨:因式分解必须分解到不能再分解为止,如第(2)题不能分解到(x2+y2+2)(x2+y2-2)就结束了.6.解:(1)原式=(x-1)-b2(x-1)=(x-1)(1-b2)=(x-1)(1+b)(1-b).(2)原式=-3x3(x4-8x2+16)=-3x3(x2-4)2=-3x3(x+2)2(x-2)2.7.解:原式=(x+3)(x+4)+(x+3)·(x-3)=(x+3)[(x+4)+(x-3)]=(x+3)(2x+1).点拨:解此题时,表面上看不能分解因式,但通过局部分解后,发现有公因式可以提取,从而将原多项式因式分解.8.解:(1)原式=x2+4x+4=(x+2)2.(2)原式=4-4x2-y2=-(4x2-4+y2)=-(2x-y)2.点拨:通过观察发现此题不能直接分解因式,但运用整式乘法法则展开后,便可以运用公式法分解.9.解:(1)m2-+-=(m2-)+(-)=m(m-n)+x(m-n)=(m-n)(m+x).(2)x2-2+y2-9=(x2-2+y2)-9=(x-y)2-9=(x-y+3)(x-y-3).10.解:原式=x4+x2+-x2=-x2=(x2-x+).点拨:此题直接分解因式很困难,考虑到添加辅助项使其符合公式特征,因此将原式添上x2与-x 2两项后,便可通过分组使其符合平方差公式的结构特征,从而将原多项式进行因式分解.11.解:(1)x2-6x-7=x2-6x+9-16=(x-3)2-42=(x-3+4)(x-3-4)=(x+1)(x-7).(2)a2+4-5b2=a2+4+4b2-9b2=(a+2b)2-(3b)2=(a+2b+3b)(a+2b-3b)=(a+5b)(a-b).12.解:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z)(a+b-c).13.解:原式=(x+y)2-4(x+y)+4=(x+y-2)2.点拨:本题把x+y这一整体“当”作完全平方公式中的字母a.14.解:原式=2+2+2+2=(2+2)+(2+2)=(+)+(+)=(+)(+).点拨:本题“拆”开原式中的两个整体,重新分组,可谓“柳暗花明”,出现转机.15.解:原式=(x2-4x+4)-(y2-6y+9)=(x-2)2-(y-3)2=(x+y-5)(x-y+1).点拨:这里巧妙地把-5拆成4-9.“凑”成(x2-4x+4)和(y2-6y+9)两个整体,从而运用公式法分解因式.16.解:(1)设a2+2a=m,则原式=(m-2)(m+4)+9=m2+4m-2m-8+9=m2+2m+1=(m+1)2=(a2+2a+1)2=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1=n2+3n+n+3+1=n2+4n+4=(n+2)2=(b2-b+2)2.。

《提公因式法》分解因式4 最新小学精品公开课件

《提公因式法》分解因式4 最新小学精品公开课件

3.试计算: (1) 3a(a-2b+c) (2) (a+3)(a-3) (3) (a+2b)2 (4) (a-3b)2
解: (1) 3a(a-2b+c)
=3a2-6ab+3ac
(2) (a+3)(a-3)=a2-9 (3) (a+2b)2=a2+4ab+4b2 (4) (a-3b)2= a2-6ab+9b2
1.已知1+x+x2+x3=0.
求x+x2+x3+x4+……+x2000的值.
解:原式=x(1+x+x2+x3) +x5(1+x+x2+x3) +……+ x1997(1+x+x2+x3)
=0
3.试说明:817-279-913能被45整除. 解:∵原式=(34)7- (33)9- (32)13
=328-327-326 =326(32-3-1) =326×5 =325×45 ∴817-279-913能被45整除.
应提取的公因式的是:各项系数的最大公约数与各项 都含有的相同字母的最低次数幂的积。
你知道吗?
正确找出多项式各项公因式的关键是:
1、定系数:公因式的系数是多项式各项系数
的最大公约数。
2、定字母: 字母取多项式各项中都含有的相
同的字母。
3、定指数: 相同字母的指数取各项中最小的
一个,即字母最低次幂
找一找: 下列各多项式的公因式是什么?
(5) a3-a=______
议一议
由a(a+1)(a-1)得到a3-a的变形是什 么运算? 由a3-a得到a(a+1)(a-1)的变形与它 有什么不同?
答:由a(a+1)(a-1)得到a3-a的变形 是整式乘法,由a3-a得到a(a+1)(a1)的变形与上面的变形互为逆过 程.

提公因式法(二)

提公因式法(二)

第三课时●课题§2.2.2 提公因式法(二)●教学目标(一)教学知识点进一步让学生掌握用提公因式法分解因式的方法.(二)能力训练要求进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.●教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式.●教学难点准确找出公因式,并能正确进行分解因式.●教学方法类比学习法●教具准备无●教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解一、例题讲解[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢?[生]不是,是两个多项式的乘积.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y -x=-(x-y).(m-n)3与(n-m)2也是如此.解:(1)a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)(2)6(m-n)3-12(n-m)2=6(m-n)3-12[-(m-n)]2=6(m-n)3-12(m-n)2=6(m-n)2(m-n-2).二、做一做请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).解:(1)2-a=-(a-2);(2)y-x=-(x-y);(3)b+a=+(a+b);(4)(b-a)2=+(a-b)2;(5)-m-n=-(m+n);(6)-s2+t2=-(s2-t2).Ⅲ.课堂练习把下列各式分解因式:解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2=mn(m-n)-m(m-n)2=m(m-n)[n-(m-n)]=m(m-n)(2n-m).补充练习把下列各式分解因式解:1.5(x-y)3+10(y-x)2=5(x-y)3+10(x-y)2=5(x-y)2[(x-y)+2]=5(x-y)2(x-y+2);2. m(a-b)-n(b-a)=m(a-b)+n(a-b)=(a-b)(m+n);3. m(m-n)+n(n-m)=m(m-n)-n(m-n)=(m-n)(m-n)=(m-n)2;4. m(m-n)(p-q)-n(n-m)(p-q)= m(m-n)(p-q)+n(m-n)(p-q)=(m-n)(p-q)(m +n);5.(b-a)2+a(a-b)+b(b-a)=(b-a)2-a(b-a)+b(b-a)=(b-a)[(b-a)-a+b]=(b-a)(b-a-a+b)=(b-a)(2b-2a)=2(b-a)(b-a)=2(b-a)2Ⅳ.课时小结本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题2.3Ⅵ.活动与探究把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)]=(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)参考练习把下列各式分解因式:1.a(x-y)-b(y-x)+c(x-y);2.x2y-3xy2+y3;3.2(x-y)2+3(y-x);4.5(m-n)2+2(n-m)3.参考答案:解:1.a(x-y)-b(y-x)+c(x-y)=a(x-y)+b(x-y)+c(x-y)=(x-y)(a+b+c);2.x2y-3xy2+y3=y(x2-3xy+y2);3.2(x-y)2+3(y-x)=2(x-y)2-3(x-y)=(x-y)[2(x-y)-3]=(x-y)(2x-2y-3);4.5(m-n)2+2(n-m)3=5(m-n)2+2[-(m-n)]3=5(m-n)2-2(m-n)3=(m-n)2[5-2(m-n)]=(m-n)2(5-2m+2n).。

分解公因式的常用方法

分解公因式的常用方法

分解公因式的常用方法
分解公因式的常用方法有以下几种:
1. 提取公因式法:将多项式中各项中的公因式提取出来,用括号括起来,保留多项式中去除公因式后的部分。

例如,对于多项式3x+6y,可以提取出公因式3,得到3(x+2y)。

2. 公式法:对于特定形式的多项式,可以利用相应的公式进行分解。

例如,对于二次三项式a²+2ab+b²,可以将其分解为(a+b)²。

3. 分组法:当多项式可以分为两组,每一组有公共的因式时,可以利用分组法进行分解。

例如,对于多项式3x+6y-2xy-4y²,可以先将其分为(3x-2xy)+(6y-4y ²),再对每一组提取公因式,得到3x(1-2y)+6y(1-2y)。

4. 因式分解法:对于二次以上的多项式,可以使用因式分解法进行分解。

这种方法一般较复杂,需要通过观察多项式的结构和运用一些数学原理来进行因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习二
判断下列各式是否正确?
(1) (y-x)2 = -(x-y)2
否 3 3 (2) (3+2x) = -(2x+3) 否 (3) a-2b = -(-2b+a) 否
(4) -a+b = -(a+b)

对 (5) (a-b)(x-2y) = (b-a)(2y-x)
例3 把下列多项式分解因式 (1) a(x-3)+2b(x-3)
1.做课本
(1) P52 知识技能 1(1、 3、5、7) (2) P52 知识技能 1(2、 4、6、8)
2.思考
(1)x(x+y)-y(x+y)
(2)am+an+bm+bn
1、确定公因式的方法: 1)定系数 2)定字母 3)定指数 2、用提公因式法分解因式的步骤: 找出公因式; 提公因式; 把多项式化成因式乘积的形式。 3、提公因式法分解因式应注意的问题: (1)公因式要提尽; (2)小心漏项;
(2) a(x-y)+b(y-x) 3 2 (3) 6(m-n) -12(n-m) 2 3 (4) 6(x+y)(y-x) -9(x-y)
分解因式:
(1)
3 2 6(m-n) -12(n-m) 2 2 5x(a-b) +10y(b-a)
(2) (3)
2 mn(m+n)-m(n+m)
(4)
2 a(a+b)(a-b)-a(a+b)
做一做p50 填空
由此可知规律:
(1)a-b与b-a互为相反数,则:
(a-b)n = (b-a)n (a-b)n = -(b-a)n
(-a-b)n = (a+b)n (-a-b)n = -(a+b)n
(n是偶数) (n是奇数)
(n是偶数) (n是奇数)
a+b与-a-b互为相反数,则:
(2)a+b与b+a相同,则:
(a+b)n = (b+a)n (n是整数)
练习一
在下列各式右边括号前添上适当 的符号,使左边与右边相等. (1) a+2 = ___(2+a) (2) -x+2y = ___(2y-x) +
2 (3) (m-a)2 = ___(a-m) +
3 (4) (a-b)3 = ___(-a+y)(x-2y)= ___(y+x)(2y-x) -
在下列各式等号右边的括号前 填入“+”或“-”号,使等式成立:
(1) (a-b) =___(b-a); -
3; - (3) (a-b)3 =___(b-a) 2; (2) (a-b)2 =___(b-a) +
4; (4) (a-b)4 =___(b-a) +
5; (6) (a+b)6 =___(b+a)6. (5) (a+b)5 =___(b+a) + + 2 =___(-a-b)2. (8) (a+b) (7) (a+b) =___(-b-a); - +
1.在课堂练习本做 课本P49 习题
技能 1
2.师友交流 (1)什么叫分解因式,分解因式 要注意哪些问题? (2)什么叫公因式?如何确定 公因式?
例2 把下列多项式分解因式 (1) x(x-2)-3(x-2)
(2) a(a+b-c)-b(a+b-c) +c(a+b-c)
试一试 (1) 2a(b+c)-3(b+c) (2) 2a(y-z)-3b(y-z) 2 2 2 2 (3) p(a +b )-q(a +b )
(3)首项为负与众不同。
新课堂本课时题
结束寄语 不知道并不可怕,任何 人都不可能什么都知道,可 怕的是不知道而伪装知道.
相关文档
最新文档