2011-Antioxidant, cytotoxic, antitumor, and protective DNA=FX=抗氧化细胞毒等
海虹虾青素对D-半乳糖致衰老小鼠氧化应激的影响_朱旭辉_12144105029_食品质量与安全
本科生毕业设计(论文)海虹虾青素对D-半乳糖致衰老小鼠氧化应激的影响院(系):公共卫生学院专业:食品质量与安全年级:2012级姓名:朱旭辉指导教师:年月日诚信声明我声明,所呈交的毕业设计说明书或毕业论文是本人在指导教师指导下进行的研究工作及取得的研究成果。
据我查证,除了文中特别加以标注和致谢的地方外,毕业设计说明书或毕业论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得其他教育机构的学位或证书而使用过的材料。
我承诺,本人的毕业设计说明书或论文中的所有内容均真实、可信。
作者:日期:学位论文版权使用授权书本人完全了解吉林医药学院有关保留、使用学位论文的规定,同意学校保留或向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅;本人授权吉林医药学院可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复制手段保存论文和汇编本学位论文。
本人离校后发表或使用学位论文或与该论文直接相关的学术论文或成果时,署名单位仍然为吉林医药学院。
(保密论文在解密后应遵守此规定)论文作者:日期:年月日指导教师:日期:年月日(本声明的版权归吉林医药学院所有,未经许可,任何单位及任何个人不得擅自使用)目录摘要 (I)Abstract (II)1前言 (1)1.1 虾青素简介 (1)1.2 虾青素的结构和理化性质 (1)1.2.1 虾青素的化学结构 (1)1.2.2 虾青素的理化性质 (3)1.3 虾青素的主要来源 (3)1.4 虾青素的生理功能 (3)1.4.1 抗氧化作用 (3)1.4.2 预防心血管系统疾病 (4)1.4.3 增强机体免疫力 (5)1.4.4 抗癌作用 (5)1.5 虾青素的安全性和应用 (6)1.5.1 虾青素的安全性 (6)1.5.2 虾青素的应用 (7)1.6 本文研究的目的及内容 (7)2、材料与方法 (7)2.1 实验动物 (7)2.2 仪器 (7)2.3 受试物与试剂 (7)2.4 实验方法 (8)2.4.1 D-半乳糖致衰老动物模型 (8)2.4.2 实验动物分组 (8)2.4.3 受试物及剂量 (8)2.4.4 指标测定 (8)2.5 统计处理 (8)3、结果与分析 (8)3.1 海虹虾青素对小鼠血浆中MDA含量的影响 (8)3.2 海虹虾青素对小鼠肝脏中MDA含量的影响 (9)3.3 海虹虾青素对小鼠血浆中抗氧化酶活性的影响 (9)3.4 海虹虾青素对小鼠肝脏中抗氧化酶活性的影响 (10)4、讨论 (11)5、结论 (12)参考文献 (13)海虹虾青素对D-半乳糖致衰老小鼠血浆、肝脏氧化应激的影响摘要目的:研究海虹虾青素对D-半乳糖致衰老模型小鼠血浆、肝脏抗氧化酶活性及MDA的影响。
玫瑰花发酵型饮料的研制
30on available lysine loss of casein by moderate heat treatment [J]. Food Chemistry, 1998, 62: 309–313.[5] Francisco J,Morales, Salvio Jimenez-Perez. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence [J]. Food Chemistry, 2001, 72: 119–125.[6] Chawla S P, Chander R, Sharma A. Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins [J]. Food Chemistry, 2009, 116: 122–128.[7] Hwang I G,Kim H Y,Woo K S,et al. Biological activities of Maillard reaction products (MRPs) in a sugaramino acidmodel system [J]. Food Chemistry, 2011, 126: 221–227.[8] Wagner K H,Reichhold S,Koschutnig K,et al. The potential antimutagenic and antioxidant effects of Maillard reaction products used as “natural antibrowning” agents [J]. Molecular Nutrition and Food Research, 2007, 51: 496–504.[9] Ru fia ´n-Henares J A, Morales. Effect of in Vitro Enzymatic Digestion on Antioxidant Activity of Coffee Melanoidins and Fractions [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 1480–1485.[10] Somoza V. Five years of research on health risks and benefits of Maillard reaction products: An update [J]. MolecularNutrition and Food Research, 2005, 49: 663–672.[11] Kim Y M,Wang M H, Rhee H I. A novel a-glucosidase inhibitor from pine bark [J]. Carbohydrate Research, 2004, 339: 715–717.[12] Aeschbacher H U. The Maillard reaction In: Finot PA, Aeschbacher HU, Hurrell RF, Liardon R (eds) Food processing, human nutrition and pHysiology. Birkhauser, Basel, 1900: 335–347.[13] Wijewickreme A N,Kitts D D, Durance T D. Reaction conditions inuence the elementary composition and metalchelating affinity of nondialyzable model Maillard reaction products [J]. Journal of Agricultural and Food Chemistry, 1997, 45: 4577–4583.[14] Borrelli R C, Fogliano V. Bread crust melanoidins as potential prebiotic ingredients [J]. Molecular Nutrition and food research, 2005, 49: 673–678.[15] Yen G,Hsieh P. Antioxidative activity and scavenging effects on active oxygen of xyloselysine Maillard reaction products[J]. J Sci Food Agric, 1995, 67: 415–420.[16] 潘丽军,章银良. 试验设计与数据处理[M]. 南京: 东南大学出版社, 2008.玫瑰花发酵型饮料的研制汪姝,李彪,熊智,刘惠民*西南林业大学,西南山地森林资源保育与利用省部共建教育部重点实验室(昆明 650224)摘要以玫瑰花为原料,通过正交试验选择最佳玫瑰发酵方案,确定柠檬酸、白砂糖的配比,以期得到玫瑰花发酵型饮料。
薄荷不同溶剂提取物抗氧化活性研究--------
网络出版时间:2012-11-08 10:55网络出版地址:/kcms/detail/11.1759.TS.20121108.1055.013.html薄荷不同溶剂提取物抗氧化活性研究陈智坤,梁呈元,李维林 ,任冰如,马丽(江苏省中国科学院植物研究所,江苏南京210014)摘要:采用1,1-二苯基-2-三硝基苯肼(DPPH)、2, 2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)、Fe+还原法(FRAP)三种抗氧化模型对薄荷的水、甲醇、70%乙醇、正丁醇、乙酸乙酯五种提取物进行抗氧化活性评价,同时分析抗氧化活性与总酚和总黄酮含量的关系。
结果表明,薄荷不同提取物均表现出良好的抗氧化活性,其抗氧化活性与多酚含量呈极显著相关,与黄酮含量相关性较小。
其中,水提物对DPPH自由基清除率最高,EC50值为(0.53±0.04)mg/mL;甲醇提取物对ABTS自由基清除率最高,EC50值为(1.57±0.03)mg/mL;乙酸乙酯提取物的FRAP值最高为(4.73±0.03)mmol/g;水提物中总酚含量最高为(58.81±3.10)mg/g,甲醇提取物中总黄酮含量较高为(162.95±1.91)mg/g。
关键词:薄荷,抗氧化活性,多酚,黄酮Evaluation to the antioxidant activity of different extracts from Mentha canadensis L.CHEN Zhi-kun, LIANG Cheng-yuan, LI Wei-lin*, REN Bing-ru, Ma Li(Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing210014, China)Abstract: Five different extracts of Mentha canadensis L. through water,methanol,70% ethanol, butanol and ethyl acetate were evaluated by tree models of antioxidantactivity: 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzthiazolne-6-sulfonic acid (ABTS) and ferric reducing antioxidant potential assay (FRAP). Therelationship between the antioxidant activity and the content of total phenolics andtotal flavonoids.The result show that,All the extracts showed great antioxidantactivity and the content of total phenolics showed a highly significant correlation withthe activity, however, low correlation with the content of total flavonoids. The waterextract showed the highest radical scavenging rate on DPPH and the EC50 value was收稿日期:*通讯联系人作者简介:陈智坤(1987-),硕士研究生,研究方向:天然产物资源与开发。
董酒中萜烯类物质的研究
董酒中萜烯类物质的研究胡光源;范文来;徐岩;贾翘彦;冉晓鸿【摘要】应用正相色谱技术串联气相色谱-质谱法(GC-MS)检测董酒中萜烯类化合物.通过液液萃取(LLE)分离得到董酒中性/碱性组分.中性/碱性组分过硅胶柱,并分别用戊烷-乙醚混合液(体积比分别为100:0、95:5、90:10、80:20、70:30和50:50)和甲醇洗脱后得到7个组分,应用GC-MS对各个组分进行分析.通过质谱谱库检索、标准品的保留指数(RI)比对以及参考文献的保留指数(RIL)比对分析,共鉴定出52种萜烯类化合物.通过峰面积百分比分析,发现P-茴香醛浓度最高(27.21%),其次是白菖油萜(11.31%),δ-杜松烯(7.38%),卡拉烯(5.11%),樟脑(4.13%),(-)-龙脑(3.65%),α-雪松烯(3.29%)等.这些萜烯类化合物很少在白酒中检测到,推测其来源于制曲过程中添加的中草药.【期刊名称】《酿酒科技》【年(卷),期】2011(000)007【总页数】5页(P29-33)【关键词】萜烯类化合物;董酒;正相色谱;气相色谱-质谱【作者】胡光源;范文来;徐岩;贾翘彦;冉晓鸿【作者单位】教育部工业生物技术重点实验室,江南大学酿酒科学与酶技术研究中心,酿造微生物与应用酶学研究室,江苏无锡214122;教育部工业生物技术重点实验室,江南大学酿酒科学与酶技术研究中心,酿造微生物与应用酶学研究室,江苏无锡214122;教育部工业生物技术重点实验室,江南大学酿酒科学与酶技术研究中心,酿造微生物与应用酶学研究室,江苏无锡214122;董酒股份有限公司,贵州,遵义,563003;董酒股份有限公司,贵州,遵义,563003【正文语种】中文【中图分类】TS262.3;O657.63董酒是中国老八大名(白)酒,属于药香型(董香型)白酒。
其生产工艺独特[1]:采用大曲和小曲两种工艺,制曲时添加中药材,特殊的窖泥材料,以及特殊的串香工艺。
抗菌肽鲎素的研究进展
抗菌肽鲎素的研究进展李寒梅;唐勇军;王顺启;代建国【摘要】已报道的抗菌肽鲎素 (tachyplesins, TPs) 共分5种, 均由鲎血细胞分离产生, 是鲎先天免疫系统的重要功能物质, 为鲎机体抵抗病原物入侵提供天然防御屏障.近30年的研究表明, TPs抗菌肽显示出广谱生物活性、较低正常细胞毒性、不易产生微生物抗性等特点, 作为一种全新型的肽类药物备受关注.文中主要从TPs 的分子结构, 对微生物、藻类细胞、肿瘤细胞及一些病毒的抑杀活性, 作用机制, 以及工程表达情况等方面进行介绍, 综述TPs的应用前景, 并对当前研究瓶颈进行评述.%Antibacterial peptides tachyplesins (TPs), isolated from the hemocytes of horseshoe crabs and divid-ed into five kinds, play an important role in immunological function in the limulus immune system and pro-vide a natural defense barrier for the invasion of pathogens. Nearly 30 years of research shows that TPs ex-hibit broad-spectrum bioactivities, low cytotoxicity toward normal cells, and low levels of acquired resistance in microbes. As an entirely new type of peptide drug, TPs have become an intensely studied topic. Herein, the molecular structure of TPs, bioactivity against all kinds of microorganisms and tumor cells, action mech-anisms and engineering expression are introduced. The application and the bottleneck of current research of TPs are also described.【期刊名称】《生命科学研究》【年(卷),期】2018(022)004【总页数】7页(P338-344)【关键词】抗菌肽鲎素(TPs);生物活性;作用机制;基因工程;应用;瓶颈【作者】李寒梅;唐勇军;王顺启;代建国【作者单位】南昌大学生命科学学院, 中国江西南昌 330031;深圳职业技术学院应用化学与生物技术学院,中国广东深圳 518000;深圳职业技术学院应用化学与生物技术学院,中国广东深圳 518000;南昌大学生命科学学院, 中国江西南昌330031;深圳职业技术学院应用化学与生物技术学院,中国广东深圳 518000【正文语种】中文【中图分类】Q74鲎又称马蹄鲎(horseshoe crab),是一种非常古老的海洋动物,其血液为蓝色,出现在古生代寒武纪,且近4亿年来形态未发生变化,具有“生物活化石”的称号[1]。
制马钱子的功效与作用
制马钱子的功效与作用制马钱子的功效与作用马钱子,又称大戟、大马钱子,是一种多年生草本植物,属于大戟科马钱子属。
马钱子的药用价值在我国早有记载,并广泛应用于中医药领域。
在此篇文章中,我们将详细介绍马钱子的功效与作用,既包括其药用方面的作用,也包括其其他应用领域的作用。
一、马钱子的药用功效1. 治疗风湿病:马钱子具有散寒除湿、行气活血的作用,可用于治疗风湿病引起的关节疼痛、肢体酸痛等症状。
马钱子内含有丰富的生物碱和黄酮类化合物,这些活性物质可以促进血液循环,减轻炎症反应,从而起到缓解风湿病的作用。
2. 治疗湿疹和皮肤病:马钱子具有清热解毒、消肿止痒的特点,可用于治疗湿疹、皮肤病等症状。
马钱子中的黄酮类化合物具有抗炎、抗过敏的作用,可以减少过敏原对皮肤的刺激,提高皮肤的抵抗力,从而减轻或消除湿疹和皮肤病的症状。
3. 抗肿瘤作用:近年来的研究表明,马钱子中的一些活性成分具有抗肿瘤的作用。
其中,所含的倍半萜类化合物可以干扰肿瘤细胞的生理活动,抑制肿瘤细胞的生长和扩散。
此外,马钱子中的黄酮类化合物还可以调节免疫系统,增强机体的抵抗力,抑制肿瘤的发展。
4. 清热解毒:马钱子具有清热解毒的功效,可以用于治疗热病、急性感冒、喉咙肿痛等症状。
马钱子中的生物碱类物质可以中和体内的自由基,减轻炎症反应,降低体温,从而起到清热解毒的作用。
5. 改善消化功能:马钱子含有大量的黄酮类成分,可以促进胃肠蠕动,增加胃液的分泌,改善消化功能。
马钱子还可以刺激胃黏膜的分泌,增加食欲,缓解消化不良、胃胀等不适症状。
二、马钱子的其他应用领域1. 植物保护剂:由于马钱子具有一定的杀菌、杀虫作用,可用于制作植物保护剂。
将马钱子的叶子、茎、根煮沸后,过滤提取液,制成植物保护剂,可用于预防和治疗农作物常见的病虫害,如炭疽病、白粉病等。
2. 纺织染料:马钱子的根茎可用于提取纺织染料,这种染料色泽鲜艳、牢度高,可用于染色棉、麻、丝等天然纤维和合成纤维。
石莼提取物抗氧化及抗菌活性研究
药物研究The medicine study基金项目:浙江省大学生科技创新项目。
作者简介:吴淳涛(1987-),男,浙江海洋学院药学专业本科生,e -mail :Chuntao007@126.com 。
通讯作者:童国忠(1956-),男,高级实验师,从事海洋药物研究,E -mail :xkouyang@zjou.edu.cn 。
石莼提取物抗氧化及抗菌活性研究吴淳涛童国忠章卢超浙江海洋学院食品与药学学院,浙江舟山316004【摘要】本文研究了石莼提取物的抗氧化及抗菌活性,研究比较了乙醇、氯仿、乙酸乙酯的石莼粗提物抗氧化、抗菌活性。
结果显示三种提取物的DPPH 清除率,羟自由基清除率及还原力均随浓度的增加呈递增趋势;且石莼多酚对金黄色葡萄球菌、副溶血性弧菌、创伤弧菌和麦氏弧菌有较好的抗菌作用。
【关键词】石莼多酚;抗氧化活性;抗菌活性【中图分类号】R961.1【文献标识码】A【文章编号】1007-8517(2011)06-0033-03Study of antioxidant and antibacterial activities of Ulva lactuca extractWu Chun -tao ,Tong Guo -zhong ,Zhang Lu -chaoSchool of Food and Pharmacy ,Zhejiang Ocean University ,Zhoushan ,Zhejiang 316004Abstract :Antioxidant and antibacterial activities of Ulva lactuca were investigated.The antioxidant activities and antibacterial of total methanol extract and two different solvent fractions (ethyl acetate ,chloroform )were evaluated.Reducing power ,DPPH and hy-droxyl radical scavenging activity of these extract ,increased with increasing concentration of the extract.Methanol extract ,ethyl acetate extract and chloroform extract were found to be antibacterial activity to staphylococcus aureus ,Vibrio parahaemolyticus ,Vibrio vulnifi-cus and Vibrio metschnikovii.Key words :Ulva ;Antioxidation activity ;Antibacterial activity 海洋是天然药物的重要来源,由于生长在特殊生态环境下,海藻普遍含有特殊作用的生物活性物质。
Antioxidants – an overview
Not all natural plant antioxidants are phenolics...
• Derived from 40 carbon isoprenoid chain precursor (phytoene) through the mevalonate pathway • Conjugation gives the molecule high antioxidant capacity and ability to absorb harmful UV light • Role in plant: carotenoids act as light-harvesting pigments, protect against photo-damage by scavenging peroxyl and singlet oxygen • In humans, carotenoids are carried in the LDL along with tocopherol • Lutein and zeaxanthin are present in the human eye (macula) and are thought to protect the retina from oxidative stress • Other observed beneficial bioactivities may or may not be linked to the antioxidant properties
Coenzyme Q10 comes from 4-hydroxybenzoic acid precursor. After attachment of the isoprene chain, the ring is 1)decarboxylated 2)oxidized to quinone 3)methylated 4)hydroxylated 5)O-methylated
细胞毒类抗肿瘤药物在生产过程中的安全防护
细胞毒类抗肿瘤药物在生产过程中的安全防护摘要细胞毒类抗肿瘤药物具有一定的毒性,对接触细胞毒药物的人员和环境有可能造成潜在的危害,故在其生产过程中,应科学有效地进行防护,提高个人安全意识,将其危害降至最低。
ABSTRACT The potential harm may happen in the person and environment contacted with cytotoxic antineoplastic drugs because they have a certain toxicity. So we should scientifically and effectively protect ourselves in the production process of cytotoxic antitumor drugs,improve personal security awareness and minimize their harm.KEY WORDS cytotoxic antineoplastic drugs;protection;safeguard细胞毒类抗肿瘤药物是指一种能够抑制肿瘤细胞生长或增殖的化疗药物,作用机制包括抑制肿瘤细胞核酸或蛋白质的合成、干扰大分子物质代谢、干扰微管系统、抑制拓扑异构酶等。
细胞毒药物对肿瘤细胞和正常细胞均有杀伤作用,因此,接触细胞毒药物的人员和环境有可能发生潜在的不良反应,故如何提高防护意识,保护人员健康和环境安全非常重要。
而人员对药物的接触贯穿于药品的生命周期,从药品的生产、运输、分配,到各个医院病房或家庭护理,至最终的废物处理。
随着我国抗肿瘤药物的研究及生产产业化[1],此类药物在生产过程中的防护应引起重视,本文将着重描述该类药物在生产过程中的安全防护。
1 细胞毒类抗肿瘤药物的危害及危害途径1.1 细胞毒类药物的危害细胞毒性药物的主要不良反应有:骨髓抑制反应、胃肠道反应、神经毒性反应、肾毒性反应、心脏毒性反应、肺毒性反应、肝毒性反应及药物过敏反应,对正常人体易产生伤害[2]。
概述Anti-Oxidant——抗氧化
概述Anti-Oxidant——抗氧化氧化是肌肤衰老的最大威胁,日晒、压力、环境污染等都能让肌肤自由基泛滥,从而产生面色黯淡、缺水等氧化现象。
都是身体产生氧化的“罪魁祸首”。
所以无论从健康层面还是从护肤层面,我们都需要在日常生活中注意抗氧化。
产生氧化的原因抗氧化抗氧化不仅仅是身体内的环保,现在连脸部肌肤也要开始进行抗氧化工作。
简单的说,脸部的抗氧化就是将青春留在脸上,并且屏除外在环境,比如紫外线、脏污空气等对皮肤的伤害,再加上年龄的自然老化,让岁月不会在脸上留下明显的痕迹。
每天的生活中,有太多会加速肌肤细胞氧化的可怕杀手,手机、电磁波、紫外线、空气污染、油炸食物及压力等。
真正健康的保养观念,必须加入修复因素,也就是抗氧化的因素;在日常的肌肤保养品中,加入抗氧化效果的产品,会使肌肤的保养更向上提升。
一般来说,除了藉由饮食之外,保养品也有助于脸部抗氧化工作的进行,除了定期的清洁之外,运用加强保湿的产品,或是在重点部位如眼部周围等进行保养,防止肌肤松弛、老化,进而达到抗氧化的人体的抗氧化物质有自身合成的,也有由食物供给的。
酶和非酶抗氧化物质在保护由于运动引起的过氧化损伤中起至关重要的作用。
补充抗氧化物质有利于运动机体减少自由基的产生或加速其清除,以对抗自由基的副作用,因而对一般人和运动员的健康都有益,可能延缓运动性疲劳发生和加快体能恢复。
年龄大的体力活动者比年轻者服用抗氧化剂效果更好。
抗氧化物质SOD是Super Oxide Dimutese 缩写,中文名称超氧化物歧化酶,是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。
SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。
SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。
它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。
由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD的地位越来越重要!维生素E维生素e是细胞膜内重要的抗氧化物和膜稳定剂。
【doc】迷迭香的研究及其应用——抗氧化剂
迷迭香的研究及其应用——抗氧化剂《中国食品添加剂》ChinaFoodAdditives2002No.5迷迭香的研究及其应用——抗氧化剂王文中王颖(中国科学院植物研究所,北京)摘要:迷迭香植物于1981年由中国科学院植物研究所北京植物园引入我国.经过多项载培试验,有效成分分析(鼠尾草酚,迷迭香酚,迷迭香双醛,乌孛酸和黄酮等),新工艺,抗氧化效能及应用试验等,取得引种驯化的成功,得到精油和天然抗氧化剂两种产品.并在我国推广生产.关键词:迷迭香,抗氧化剂ResearchandApplicationofRosemary——AntiOxidantWangWenzhong,WangYingAbstract:Rosemary,oneofthemosteffectivenaturalantioxidantisintroducedintoChinabyo urgroupinthe1981. Thecultivationsandantioxidaneeeffectivenessaresuperiortothatofthesyntheticoxidant.T hen1ajneffectiveingredi—entsincludeCarc~t,Rasmanot,Rosmadial,andSOon.FineofroNnl03"ymaterialgrowingar eahavebeensetupsince1981.WeLiSathenewtwostepextractionmethodtoobtaintwoproducts:essentialoilandanti oxidant.Keywords:Roserany,Antioxidant抗氧化剂是动植物油脂,含油食品,方便面,肉类制品.饮料和化妆品等产品制造过程中阻止氧化,并延长贮存期,达到保鲜目的.实验证明:人工合成抗氧化剂有较多的副作用,即是低活性取代酚在抗氧化过程中也伴随着不良的反应.例如丁基羟基茴香醚(BHA)和二丁基羟基甲苯(BHT)等.对肝,脾和肺的酶均有不利的影响,高摄入量易引起肺癌和肝肿大等.另外人工和成抗氧化剂在高温下使用易挥发分解,失去抗氧化的效能.因此,从植物中筛选和获得对人体无毒,多功能天然抗氧化剂是有效的途径之一.Chipaulfefal(1952).Rac和Osric(1955),Jameefal(1982—1985).Reiko—znofvnchi—TangHo(1983—1985),王文中,李延华,孙法春,丁洪美,王颖,孙尚贤和白红彤(1981—2ooo)等人先后研究了32种香辛料植物中的抗氧化成分,并进行了筛选.采用"两部法"制备工艺(王文中,孙法春和王颖)从迷迭香叶和嫩枝得到精油(另见"迷迭香精油的研究")和抗氧化剂.并分离出迷迭香酚(srna一∞1)?鼠尾苯酚60()?迷迭香双醛(R唧adia1)?乌孛酸(UrsolicAcid)和黄酮等化合物.实验证明:它具有高效无毒,结构稳定,耐高温,并含有多种有效抗氧化成分. 同时,还进行了多项栽培和抗氧化效能试验.从理论研究显示:迷迭香抗氧化作用的机理有猝灭单重态氧,捕捉自由基,切断类脂物自动氧化的连锁反应,螯合金属离子和有机酸的协同增效等多种机制. 因此,它对多种复杂的类脂物的氧化有着广泛和很强的抗氧化效果.※注,本文试验结果选自:①重要香辛料植物种质资源及其化学成分的研究.②迷迭香引种,有效成分分析及抗氧化机理的研究.③迷迭香天然抗氧化剂新工艺的研究等专题.1.迷迭香的引种,不同生态环境和发育阶段抗氧化成分变化1.1迷迭香产於地中海,自然分布窄狭是典型的地中海生态型代表种.1981年由中国科学院植物研究所北京植物园引入我国.众所周知,超过固有的自然生态范围,必然引起新陈代谢.导致生《中国食品添加剂》ChinaFoodAdditives2002NO.5 物量和某些有效成分的改变.引种驯化试验先后在北纬24.一40.之间选择北京,云南,江苏,浙江,贵州,山东,河南,陕西和河北等省18个生态区域和不同栽培试验点(注:18个试验地区划分为工~V不同生态区),应用植物引种驯化原理,有效成分分析和抗氧化效能等项试验之后,综合评价,筛选出迷迭香在我国最佳适宜的生长区域.实验证明: 工号地较为成功,该地区属于丘陵坡地,海拔800—1100米,冬季温暖,夏季日温差大,日照时数长,不受涝害,生长健壮,无病害.定植后两年生苗可采收400—500公斤原料.采用"两步法"制备工艺.精油提取率为0.4—0.6%,抗氧化剂为12—18%,从表工迷迭香提取物添加试验结果显示,在添加量0.02%一0.04%其有很强的抗氧化效果.表I迷迭香提取物抗氧化效能试验(I号试验地)\POV\原油添加添加间\(猪板油)0.02%0.04%(天)\02.091.791.7934.863.673.85630.804.013.88968.254.264.0112124.46.025.26151576.525.35过氧化值POV(meq/kg)POV(meq/kg)5.04.03.02.01.0区域试验显示:不仅生物量有效成分(精油,抗氧化)均有差异,个别试验区常年2/3气候处于阴雨,日照时数少,出现立枯丝核菌引起植株凋萎.在此地区建立大量的原料生产基地,显然是不适宜的, 何况迷迭香抗氧化成分都是二萜类化合物与精油成分中单萜及倍半类化合物,在生物合成上有着同原性,作为体内代谢产物必然受到生长发育阶段和生态环境的影响.由此可以表明正确选择适宜地区显得尤为重要.1.2不同发育阶段对抗氧化成分的影响实验证明:迷迭香抗氧化成分极性分布较宽,单一极性溶剂提取不够完全,例如,在不同发育阶段提取抗氧化成分,以正己烷和丙酮为例.从图工显示,随着生长发育时间的增加,两者提取物表现的抗氧化效能都有所增强,但以11月初采收原料提取的抗氧化效果最好,说明体内的抗氧化成分在生长发育期间是不断积累和增加的.7月份(生长发育初期)易受到高温,阴雨,日照时数少等因素影响,此时采收原料应注意一周前宜选择天气晴朗,无降水和大风条件时进行.另外,不同株苓提取物和抗氧化效能也有显着的差异.0661《中国食品添加剂》ChinaFoodAdditives2002No.5图I迷迭香不同发育阶段正己烷和丙酮提取物抗氧化效能(AOM法)—月,一…一?一8月,一×一×一9月——10月一△一△一11月.1:3:不同引种地迷迭香抗氧化效能比较提取物抗氧化效能强弱表现为工号地样品<Ⅳ号实验显示:不同引种地区迷迭香正己烷和丙酮地样品<Ⅲ号地样品见表2)表2不同引种地迷迭香正己烷和丙酮提取物抗氧化效能(AOM法)正己烷提取物丙酮提取物\\36912153691215引种地区—,,~Ⅳ3.053.113.674.665.012.483.363.554.744.98Ⅲ2.643.554.114.965.372.533.423.924.815.20I2.462.833.304.184.762.432.753.333.833.96迷迭香含有多种抗氧化成分和增效剂,极性分布各异.正己烷和丙酮提取物抗氧化效能的差异是与所含抗氧化成分和增效剂的多少和比例有关. 2迷迭香抗氧化成分的提取,分离和鉴定2.1方法和步骤:"两步法"得到迷迭香叶和嫩枝残渣,粉碎,不同溶剂(正己烷,乙醇,石油醚,甲醇等)依次回流提62取,经柱层分离,得到膏状物,溶解在乙醚中,用饱和碳酸氢纳水溶液萃取得到弱酸性,再用石油醚, 乙醚的不同比例梯度洗涤,即得到鼠尾草酚,迷迭香酚和迷迭香双醛(见图2).实验显示:正己烷提取物弱酸性,强酸性,碱性和中性组分,仅有弱酸性组分具有较强的抗氧化作用,并优于人工合成抗氧化剂BHT.(图3)们如f1e《中国食品添加剂》ChinaFoodAdditives2002NO.5 正己烷提取物弱酸性组分(1.20g)石油醚,己醚物甲醇重结晶无色针状晶体迷迭香双酚(9rag)P0V(meq/kg)5.04.03.02.01.0图2从正己烷提取物弱酸组分分离三种抗氧成分6图3正己烷提取物各组分抗氧化效果10%63●●●●●◆●●●●●◆晶醣媚物,上袍编Ⅲ皿无物甲嘤晶,●●●上..上丫晶.., (v)《中国食品添加剂》ChinaFoodAdditives2002No.5 1弱酸性2强酸性3碱性4BHT5对照2.2迷迭香抗氧化成分分离与鉴定迷迭香提取物经柱层析分离得到三种成分:迷迭香双醛(Rosemadia1),鼠尾草(Camoso1),迷迭香酚(Rosmoso1),其结构鉴定通过熔点测定(mp),H一核磁共振(H—NMR)和质谱(MS)波谱测定,得到以下数据:i.迷迭香双醛mp.225.0—226.4℃分子式C2oH24O5其结构式为:nHCasnosoe2.3主要抗氧化成分抗氧化效能的比较迷迭香酚,鼠尾草酚和迷迭香双醛对三种不饱和脂肪酸(油酸,亚油酸,亚麻酸)都显示出较强的抗氧化作用.在油酸中抗氧化效果顺序是鼠尾草酚>迷迭香酚>迷迭香双醛,而在亚油酸和亚麻酸中则为迷迭香酚>鼠尾草酚>迷迭香双醛.三者的抗氧化效能的差异,显然是与它们捕获自由基的多少有关.迷迭香酚含有三个酚羟基,捕获自由基的能力最强.鼠尾草酚含有两个酚羟基,捕获自由基的能力不如迷迭香酚.迷迭香双醛只含有一个酚羟基,虽然两个醛基也能够提供H.但它的抗氧化效能还是最差.三者之间存在的羟基数量多少,决定了它们的抗氧化效解强或弱.单一成分的应用在药物开发上更有意义.3迷迭香抗氧化物质和提取工艺采用"两步法"制备工艺,即得到迷迭香两种产品;精油和不同等级的抗氧化剂.众所周知,迷迭香提取工艺具有专利性,在本文中不作介绍,仅将常规工艺和超临界co2萃取工艺结果及抗氧化特性显示如下:提取率12—18%,耐高温200℃,常温下可保存180—200天,无毒,高效(比人工合成抗氧化剂BHA和BHT高2—4倍,优于茶多酚.该工艺克服了美国3952066和4012531专利提供制备迷迭香抗氧化剂方法的缺点.从迷迭香得到精油(另见"迷迭香精油的研究")主要特征:精油提取率0.4—1.7%(干物质),主要成分:龙脑,a一蒎烯,樟脑,按叶(油素),乙酸龙脑酯等,广泛用于日用化工等行业.4脱色工艺脱色是一关键,从不同溶济和超I临界co2萃取得到抗氧化物质,颜色均为深绿色(或墨绿色)的粗品.分别用70%乙醇和石油醚萃取,静置分液,得到水和醚层,水层浓缩真空干燥,成为深绿色粉末,再经第二步脱色,即可得到黄色粉末.5迷迭香抗氧化剂的应用5.1迷迭香抗氧化剂在动,植物油的应用正由于鼠尾草酚,迷迭香酚和迷迭香双醛等成分具有较强抗氧化的功能,延缓其氧化.实验证明:在大豆油,花生油,棕榈油,菜籽油和猪油中,具《中国食品添加剂》ChinaFoodAdditives2002NO.5 有很强的能力,特别在大豆油,猪油(见图4),其抗氧化能力是人工合成抗氧化剂BHA的2—4倍.在猪油中添加,迷迭香比茶多酚其有明显的优势(1 —2倍),60℃条件下,在花生油,棕榈油中,迷迭香迷迭香抗氧化剂抗氧化剂与茶多酚的抗氧化效能相等,但在120~C 高温条件时,迷迭香则表出更强的抗氧化能力,并具有很好的可溶性及稳定性.……对照81012141618202224262830POV产生20meq/kg过氧化值所需时间(天)图4:迷迭香抗氧化剂与苯多酚BHA在猪油添加中抗氧化效能的比较(AOM法) 5.2迷迭香抗氧化剂在方便面和袋装食品,肉类制品上的应用.从所周知,方便面中含有20%左右的油脂,货架期间极易引起酸败变质.本项试验采用可降解包装材料,喷涂0.04%迷迭香抗氧化剂和对照(未喷涂抗氧化剂,按正常生产原料取样)两组.同时放置40℃高温条件下,进行储藏试验,90天后测定结果显示:喷涂组方便面中的油脂POV值为27meq/kg,对照组油脂POV值为104meg/kg,几乎是前者的四倍.可以认为迷迭香抗氧化剂,在阻止方便面中的油质酸败延长保鲜期,具有良好的应用前景.肉类制品以猪肉为例,添加0.04%和对照两组,放置18—20℃室内(按国家标准(AOM法)测定POV值),实验显示:对照组第三天过氧化值已超过国家食品标准(20meq/kg),试验组第八天开始超标.一些袋装食品为了杀灭细菌和微生物例如:沙门氏杆菌,金黄色葡萄球菌等常用钴60处理,实验显示:添加0.04%迷迭香抗氧化剂,再经钴60处理第五天POV值为1.6,对照组POV值则为25.这不仅有效地抑制了导致内原酶的活性,起到抗氧化的作用.在肠类制品中切片物理特征试验中也优于茶多酚和人工合成抗氧化剂.6迷迭香中"Casnc~l"和"CasnosalAcid"等应用的新领域."Casnosal"和槲皮素试验中显示出在清除自由基,预防心血管疾病有明显的作用.另外,《大量文献报导迷迭香的提取物,对Hiv—I蛋白酶及Hiv 病毒复制有抑制作用,有望成为治疗皮肤病,抗肿瘤和艾滋病的新药源.此外,迷迭香提取物已制成商品例如具有较强杀菌,消炎的"抗菌片","驱蚊剂",预防脱发的洗发水,治疗静脉曲张,牛皮癣等. 迷迭香精油在日化工业使用上更加广泛.65。
抗氧化剂对精液冷冻保存效果的影响
畜牧兽医杂志第40卷第2期2021年43抗氧化剂对精液冷冻保存效果的影响任李俊】,韩帅琪2,胡建宏2(1.白水县同羊原种场,陕西白水715600+.西北农林科技大学)摘要:随着人工授精技术在畜牧业的广泛应用,家畜精液冷冻保存技术研究也成为了各方关注的焦'。
在精液冷冻保存时精子极易受到氧化损伤,而向稀释液中添加抗氧化剂可以有效地提高精子品质。
本文主要对精子冷冻保存时氧化性损伤的机制及常用抗氧化剂进行综述,以期为进一步提高家畜精液冷冻保存时的品质,为人工授精提供优质精液提供理论参考。
关键词:抗氧化剂;冷冻保存;精液[中图分类号%S814.3[文献标识码%A[文章编号%1004-6704(2021)02-0043-02Effects of Antioxidants on Semen CryopreservationREN Li-jun1,HAN Shua-qi2,HU Jian-hon g z(1.Tong Sheep Original Breeding Fam of Biishui County,Baishui Shaanxi715600,China+2.Northwest A PFUnVersty"Abstract:With the wide application of artificial insemination in the modern animal industry,the study of animal semen cryopreservation has become the focus of a t ention.It is easy to be damaged by oxidation when semen is cryopreserved,and adding antioxidants to it can e f ectively improve sperm quality.In this paper,the mechanism of oxidative damage and common antioxidantsduringspermcryopreservationarereviewedinordertofurtherimprovethequalityoflivestocksemencryopreserva-tionandprovidetheoreticalbasisandreferenceforartificialinsemination.Keywords)antioxidants+cryopreservation+semen随着我国社会经济的不断向前发展、人民的生活质量也在逐步提升,这使得人们对于优质肉、奶、蛋产品的需求也越来越高。
下学期分期末考试卷高二英语试卷
量风市然必阳光实验学校2007—2021度下学期期末试卷高二英语试卷考试时间:2008年6月27日上7:30―9:30 试卷总分值:150分第一:听力〔共两节,总分值30分〕做题时,先将答案划在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节〔共5小题;每题分,总分值分〕听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最正确选项,并标在试卷的相位置。
听完每段对话后,你都有10秒钟的时间来答复有关小题和阅读下一小题。
每段对话仅读一遍。
1. What are the two speakers talking about?A. A training school.B. A film.C. A famous woman.2. Where does the conversation take place?A. On the phone.B. At a party.C. At a train station.3. What was the secret of the oldest woman’s long life?A. She did some farm work..B. She kept doing exercise.C. She drank whisky and ate onions.4. What do we know about Miki? A. She is successful in her job. B. She is very clever. C. She is young.5. What does the woman think of money?A. It is everything.B. It is not important to her.C. It should be got through hard work.第一节〔共15小题;每题分,总分值2分〕听下面5段对话或对白。
抗氧化剂antioxidants(植酸Ftic acid 徐江 242)
抗氧化剂antioxidants名称Name 植酸Fytic acid结构structure物理性质Physical properties 性状淡黄色至淡褐色浆状液体。
溶解性易溶于水、乙醇和丙酮,几乎不溶于乙醚、苯和氯仿。
密度1.285折射率1.391Characters flaxen to hazel pulpous state liquid. Solubility soluble in water, alcohol and acetone, hardly soluble in ether, benzene and chloroform. Density 1.285 refractive index 1.391化学性质Chemical properties 植酸对绝大多数金属离子有极强络合能力,络合力与EDTA相似,但比EDTA 的值应有和范围更广。
植酸二价以上金属盐均可定性沉淀。
Phytic acid for the vast majority of metal ion binding ability strong, complexometric force and EDTA similar, but than EDTA values due and a wider range. Phytic acid divalent metal salt above all can qualitative precipitation.生化性质Biochemical properties 每个植酸分子可提供六对氢原子使自由基的电子形成稳定结构,从而代替被保鲜物分子作为供氧分子,避免被保鲜物氧化变质。
Each phytic acid molecules can provide for hydrogen atoms make six of free radicals formed stable electronic structure, so as to replace the preservation thing for oxygen molecules, avoid being fresh content oxidative radcidity.生理反应Physiology reaction1、植酸以植酸钙镁钾盐的形式广泛存在于植物种子内,也存在于动物有核红细胞内,可促进氧合血红蛋白中氧的释放,改善血红细胞功能,延长血红细胞的生存期。
中药多糖与多酚抗氧化的活性强弱对比-李熙灿-XICANLI
中药多糖与多酚抗氧化的活性强弱对比-李熙灿-XICANLI中药多糖与多酚抗氧化的活性强弱对比广州中医药大学药学院熙灿中药的多酚和多糖都具有氧化性过药多酚体外抗氧化活性比药多更强以果中药作为整体挥抗氧化作用的多酚不是多以黄芪为黄芪外抗氧化活性与黄芪多酚相关为=0.762;而芪外抗氧化活性与黄芪多酚相关为=-0.0386(表1)。
这说明黄芪外抗氧化活性要是由多酚不是糖引起的数据还显示黄芪外抗氧化活性其内含的黄酮一的相关性=0.638),而与苷=-0.132)则无关表1黄芪外抗氧化活性各化学成分的相关系数多酚黄酮糖糖苷ABTS·+清除0.99 0.81 -0.033 -0.28 DPPH·清除 0.79 0.98 -0.57 0.32 原能力0.81 0.34 0.50 -0.76 氧自由基·O2-)清除0.49 0.71 -0.47 0.43 基自由基·OH)清除0.73 0.35 0.38 -0.55 值0.762 0.638 -0.0386 -0.132[参考文献一LiX?,?ChenD?,?MaiY?,?WenB?,?WangX?.Concordancebetweenan tioxidantactivitiesin?vitroandchemicalcomponentsofRadixAstrag ali(Huangqi).NatProdRes?2012;26(11):1050-1053.格式二:XicanLi,DongfengChen,YingMai,BiWen,XiaozhenWang.(2012)Co ncordancebetweenantioxidantactivitiesinvitroandchemicalcomp onentsofRadixAstragali(Huangqi),NaturalProductResearch.26(11 ),1050-1053.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pharmacognosy Res. 2011 Jul-Sep; 3(3): 160–165.PMCID: PMC3193615 doi: 10.4103/0974-8490.85000Copyright : © Pharmacognosy ResearchAntioxidant, cytotoxic, antitumor, and protective DNA damage metabolites from the red sea brown alga Sargassum spSeif-Eldin N. Ayyad, Saleh T. Ezmirly, Salim A. Basaif, Walied M. Alarif,1 Adel F. Badria,2 and Farid A. Badria3Department of Chemistry, Faculty of Science, King Abdul Aziz University, P. O. 80203, Jeddah 21589, KSA1Department of Marine Chemsitry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, P. O. 80207, KSA2Tissue Engineering Lab., Faculty of Dentistry, Alexandria University, Alexandria, Egypt3Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt Address for correspondence: Dr. Seif-Eldin N Ayyad, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. E-mail: snayyad2@Received February 1, 2011; Revised April 6, 2011; Accepted September 16, 2011.This is an open-access article distributed under the terms of the Creative CommonsAttribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.AbstractBackground:Macroalgae can be viewed as a potential antioxidant and anti-inflammatory sources owing to their capability of producing compounds for its protection from environmental factors such as heat, pollution, stress, oxygen concentration, and UV radiations.Objective:To isolate major compounds which are mainly responsible for the pharmacological activity of brown alga under investigation, Sargassum sp.Materials and Methods:Algal material was air dried, extracted with a mixture of organic solvents, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques, and two pure materialswere tested for protection of DNA from damage, antioxidant, antitumor, and cytotoxicity.Results:Four pure compounds were obtained, of which fucosterol (1) and fucoxanthin (4) were tested; it was found that fucoxanthin has strong antioxidant and cytotoxicity against breast cancer (MCF-7) with IC50 = 11.5 μg/ml.Conclusion:The naturally highly conjugated safe compound fucoxanthin could be used as antioxidant and as an antitumor compound.Keywords: Antioxidant, cytotoxicity, fucoxanthin, Sargassum spOther Sections▼AbstractINTRODUCTIONMATERIALS AND METHODSRESULTS AND DISCUSSIONREFERENCESThe genus Sargassum belongs to brown algae of class Phaeophyceae in the order Fucales. Numerous species are distributed throughout the tropical and subtropical oceans of the world, where they generally inhabit shallow water and coral reefs. However, the genus may be well known for its planktonic (free-floating) species.[1] It was clear from the literatures that more than 62 species of the genus Sargassum has been investigated,[2] and indicated its productivity with impressive diversity of natural compounds. For instances, the secondary metabolites contain different structural classes such as plastoquinones,[3–5] chromanols,[6] chromenes,[7,8] steroids,[9] and glycerides.[10] The publications showed that, Sargassum metabolites have wide range of biological activities, which include antibiotic,anti-HIV, anticoagulant, anticonvulsant, anti-inflammatory, antineoplastic, and antitumor.[11–14]In continuation of our search program, which interested in the isolation of secondary metabolites from marine sources, especially macroalgae collected from Red Sea,[15–17] a marine macroalgae, identified as Sargassum sp., collected from El- Shuaiba lagoon 80 km south of Jeddah, was investigated. The total extract (Pet. ether: Chloroform: Methanol [1 : 1 : 1]) had been fractionated using differentchromatographic techniques and afforded four metabolites; fucosterol (1), saringosterone (2), saringosterol (3), and fucoxanthin (4). 1 and 4 had been tested toward the Bleomycin-dependent DNA damage, cytotoxicity against HepG2 (human hepatocellular liver carcinoma cell line), WI 38 (Skin carcinoma cell line), Vero (cell line was initiated from the kidney of a normal adult African green monkey), MCF-7 (breast cancer cell lines), antitumor, and antioxidant using2,2‘-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS).Other Sections▼AbstractINTRODUCTIONMATERIALS AND METHODSRESULTS AND DISCUSSIONREFERENCESApparatus and materialChromatographic material: Aluminum oxide type 60-120 mesh was used for column chromatography. Thin-layer chromatography (TLC) silica gel GF 254 was used for TLC. Preparative thin-layer chromatography (PTLC) was performed on aluminum oxide plates (20 × 20 cm) of 250-mm thickness. Electron impact mass spectra were determined at 70 eV on a Kratos MS-25 instrument. 1D and 2D NMR (Nuclear Magnetic Resonance) spectra were recorded on Bruker AVANCE III WM 600 MHz spectrometers and 13C NMR at 150 MHz Chemical shift s are given in δ (ppm) relative to TMS (Tetramethyl silane) as internal standard. The Infra Red (IR) spectra were recorded on a Perkin Elmer spectrometer model 100. The spray reagent used is 50%-sulfuric acid in methanol as spraying reagent. The chromatoplate was heated after spraying at 100 to 105°C until the spots attained maximum color intensity. The alga was described as Sargassum (Family Sargassaceae) and was collected by hand from El- Shuaiba lagoon 80 km south of Jeddah, Saudi Arabia, in the Red Sea, in June 2010.Extraction of Sargassum spThe air-dried algal material (350 g) was extracted by equal volume of mixture of Pet. ether, chloroform, and methanol (2 × 6 l, 24 hours for each batch) at room temperature. The extract was concentrated under reduced pressure to obtain 10 g residue. This material was chromatographed on a column of Silica gel.Column chromatographySilica gel column (500 g, 80 × 2.5 cm) was used for resolution. The residue (10 g) was homogenized with small amount of silica gel (50 g) and poured on to the top of the column which was packed in Pet. ether (40: 60). The eluent were used successively (Pet. ether- Ether, Pet. ether- Ethyl acetate). Fractions were collected (50 ml); Pet. ether- Ether mixture of increasing polarity by diethyl ether and then ethyl acetate and followed by TLC using silica-gel chromatoplates, appropriate solvent system and 50% sulfuric acid in methanol as spraying reagent. If the material was not pure, preparative TLC was applied using the appropriate solvent system and the adsorbent aluminum oxide for purification.Isolated compoundsThe fraction A eluted by Pet. ether-Ether (6 : 4) was collected and rechromatographed over PTLC of silica gel using Pet. Ether-ethyl acetate (8 : 2) to give three compounds: 1 , 2, and 3. The fraction B eluted by Pet. ether-Ethyl acetate (6 : 4) was collected and rechromatographed on Sephadex LH-20 using a mixture of MeOH-CHCl3 (9 : 1) and then finally purified by preparative TLC of silica gel using chloroform methanol (9.5 : 0.5) to afford a pure compound 4.Fucosterol (1), (24E)-Stigmasta-5, 24(28)-diene-3β-ol: white solid (30 mg, 0.008% dry wt) m.p. 133-135°C. IR (cm-1): 3480 (OH), 1945 (C = C-H), 1640 (C = C), 1370 (gem. Di-Me); EI-MS m/z: 412 [M, C29H48O] + , 397 [M-CH3]+, 379[M-CH3-H2O]+, 314 (100) [M-C6H10O]+. 1H NMR (CDCl3) δ (ppm) 0.86- 0.88 (d, J = 6.6 Hz, 6H, Me-26 and Me-27), 0.91 (d, J = 6.6 Hz, 3H, Me-21), 0.68 (s, 3H,Me-18), 1.00 (s, 3H, Me-19), 1.59 (d, J = 6.6 Hz, 3H, Me-29), 3.53 (m, H, H-3), 5.35 (m, H, H-6), 5.11 (q, H, H-28), 2.22 (sep, J = 6.6 Hz, H, H-25). 13C NMR (CDCl3) δ (ppm) (39.75, C-1), (35.20, C-2), (71.80, C-3), (42.33, C-4), (140.74,C-5), (121.70, C-6), (36.14, C-7), (35.78, C-8), (50.10, C-9), (39.72, C-10), (28.23, C-11), (42.28, C-12), (42.30, C-13), (56.74, C-14), (31.64, C-15), (34.78, C-16), (56.72, C-17), (11.85, C-18), (19.40, C-19), (39.50, C-20), (24.32, C-21), (37.23,C-22), (31.90, C-23), (146.00, C-24), (33.90, C-25), (22.50, C-26), (22.23, C-27),(115.94, C-28), (18.90, C-29).Saringosterone (2), 24-vinyl cholest -4-ene -3-one: a colorless oil (10 mg, 0.003% dry wt). IR (cm-1): 3420 (OH), 1675 (C = O), 1630 (C = C); EIMS m/z (rel. int.): 426 (12) [M, C29H46O2]+, 383 (21) [M+-C3H7], 313 (30), 271(35), 269 (100). HREIMS: m/z 426.3413 (calcd. 426.3349) C29H46O2; 1H-NMR (CDCl3) δ 5.76 (dd, J = 17, 12 Hz, H, H-28), 5.73 (br s, H, H-4), 5.27 (d, J = 12 Hz, H, H-29), 5.15 (d, J = 17 Hz, H, H-29), 1.16 (s, 3H, Me-19), 0.95 (d, J = 6.5 Hz, 3H, Me-21), 0.86 (d, J = 7.0 Hz, 3H, Me-26), 0.84 (d, J = 7.0 Hz, 3H, Me-27), 0.72 (s, 3H, Me-18).13C-NMR δ (36.54, C-1), (34.65, C-2), (200.35, C-3), (124.43, C-4), (172.35, C-5), (33.64, C-6), (32.65, C-7), (36.32, C-8), (54.41, C-9), (39.25, C-10), (21.65, C-11), (40.22, C-12), (43.08, C-13), (56.26, C-14), (24.85, C-15), (28.86, C-16), (56.55, C-17), (12.63, C-18), (17.34, C-19), (36.84, C-20), (18.35, C-21), (32.54, C-22), (28.95, C-23), (89.76, C-24), (29.05, C-25), (19.46, C-26), (18.07, C-27), (137.78, C-28), (117.12, C-29).Saringosterol (3), 24-vinyl cholest-5-ene-3β, 24-diol, saringosterol: colorless oil (5 mg, 0.001% dry wt.). IR(cm-1): 3445 (OH), 1644 (C=C); EIMS m/z (rel. int.): 428 (12) [M, C29H48O2]+, 410 (6) [M+-H 2O], 314 (40), 273(20), 271 (100), 255 (28), 228 (22), 213 (40), 145 (64). 1H NMR (CDCl3) d 5.73 (dd, J=17, 12 Hz, H, H-28), 5.34 (br s, H, H-6), 5.28 (d, J = 12 Hz, H, H-29), 5.17 (d, J = 17 Hz, H, H-29), 3.53 (m, H, H-3), 1.02 (s, 3H, Me-19), 0.97 (d, J = 6.6 Hz, 3H, Me-21), 0.88 (d, J = 6.6 Hz, 3H, Me-26], 0.86 (d, J = 6.6 Hz, 3H, Me-27), 0.67 (s, 3H, Me-18], 13C-NMR d (37.17,C-1), (32.54, C-2), (72.43, C-3), (37.94, C-4), (141.43, C-5), (122.31, C-6), (32.35, C-7), (36.84, C-8), (50.74, C-9), (37.93, C-10), (21.75, C-11), (40.41,C-12), (42.97, C-13), (57.43, C-14), (24.95, C-15), (29.06, C-16), (56.55, C-17), (12.54, C-18), (17.32, C-19), (36.54, C-20), (18.35, C-21), (32.33, C-22), (28.95, C-23), (89.85, C-24), (29.19, C-25), (20.06, C-26), (19.53, C-27), (137.82, C-28), (117.04, C-29).Fucoxanthin (4): red residue (60 mg, 0.017% dry wt.). IR (cm-1): 3439 (OH), 2361 and 2332 (sp-hybrid carbon [allenic]), 1721 and 1253 (ester), and 1654 and 1605(polyene); HRFAB: 658.4224 (calcd. 658.4233) [C42H58O6], 460(5), 391(5),307(50), 154(100), 1H-NMR (CDCl3) d 7.15(d, J = 11.0 Hz, H, H-10), 6.75 (m, H, H-15), 6.66 (d, J = 15.0 Hz, H, H-12), 6.63 (m, H, H-15’), 6.60 (m, H, H-11’), 6.57 (m, H, H-11), 6.41 (d, J = 11.5 Hz, H, H-14), 6.35 (d, J = 15.0 Hz, H, H-12’), 6.27 (d, J = 11.5 Hz, H, H-14’), 6.13 (d, J = 11.0 Hz, H, H-10’), 6.05(br s, H, H-8’), 5.38 (m, H, H-3’), 3.81(m, H, H-3), 3.65 and 2.60 (qAB, J = 18.5 Hz, 2H, H-7), 2.33 and 1.78 (m, 2H, H-4), 2.27 and 1.51 (m, 2H, H-4’), 2.04 (s, 3H, Ac), 2.01 and 1.41(m, 2H, H-2’), 1.99 (s, 6H, H-20, H-20’), 1.95 (s, 3H, H-19), 1.81 (s, 3H, H-19’), 1.47 and 1.37 (m, 2H, H-2), 1.38 (3H, s, H-18’), 1.35 (s, 3H, H-17’), 1.22(s, 3H, H-18), 1.07 (s, 3H, H-16’), 1.03 (s, 3H, H-17), 0.96 (s, 3H, H-16). 13C-NMR (CDCl 3) δ (35.18, C-1), (47.11, C-2), (64.34, C-3), (41.68, C-4), (66.19, C-5), (67.11, C-6), (40.83, C-7), (197.87, C-8), (134.54, C-9), (139.14, C-10), (123.39, C-11), (145.05, C-12), (136.67, C-13), (135.44, C-14), (132.19, C-15), (28.16, C-16), (25.06, C-17), (21.46, C-18), (11.85, C-19), (12.80, C-20), (35.79, C-1’), (45.45, C-2’), (68.03,C-3’), (45.25, C-4’), (72.71, C-5’), (117.52, C-6’), 202.36, C-7’), (103.39, C-8’), (132.19, C-9’), (128.54, C-10’), (125.71, C-11’), (138.09, C-12’), (137.11, C-13’), (132.52, C-14’), (129.44, C-15’), (31.31, C-16’), (32.14, C-17’), (29.22, C-18’), (14.04, C-19’), (12.94, C-20’), (170.45, Ac-1), (21.18, Ac-2).Biological evaluation of the isolated compoundsDNA (Calf Thymus type1), bleomycin sulfate, butylated hydroxyanisole, thiobarbituric acid (TBA), ethylenediaminetetraacetic acid (EDTA), and ascorbic acid were obtained from sigma. 2,2’-azo-bis-(2-amidinopropane) dihydrochloride and ABTS were purchased from Wako Co., USA.Cell viability and Bleomycin-dependent DNA damage assay in negative control (Fucoxanthin on MCF-7)The reaction mixture contained DNA (0.5 mg/ml), bleomycin sulfate (0.05 mg/ml), MgCl2 (5 mM), FeCl3 (50 mM), and samples to be tested in a conc. of 0.1 mg/ml.L-ascorbic acid was used as positive control. The mixture was incubated at 37°C for 1 hour. The reaction was terminated by addition of 0.05 ml EDTA (0.1 M). Thecolor was developed by adding 0.5 ml TBA (1% w/v) and 0.5 ml HCl (25% v/v), followed by heating at 80°C for 10 minutes. After centrifugation, the extent of DNA damage was measured by increase in absorbance at 532 nm.[18,19] The viability of the cells was determined by the microscopical examination[20] using a hemocytometer and using trypan blue stain (stains only the dead cells). Antioxidant activity screening assay2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid methodFor each of the investigated compounds, 2 ml of ABTS solution (60 μM) was added to 3 ml MnO2 solution (25 mg/ml), all prepared in 5 ml aqueous phosphate buffer solution (pH, 7; 0.1 M). The mixture was shaken, centrifuged, filtered, and the absorbance of the resulting green-blue solution (ABTS radical solution) at λ 734 nm was adjusted to approximately ca. 0.5. Then, 50μl of (2 mM) solution of the tested compound in spectroscopic grade MeOH/phosphate buffer (1: 1) was added. The absorbance was measured and the reduction in color intensity was expressed as inhibition percentage. L-ascorbic acid was used as standard antioxidant (positive control). Blank sample was run without ABTS and using MeOH/phosphate buffer (1: 1) instead of tested compounds. Negative control was run with ABTS and MeOH/phosphate buffer (1: 1) only.[21]Cytotoxicity and antitumor assaySamples were prepared for assay by dissolving in 50 μl of DMSO (Dimethyl Sulfoxide), and diluting aliquots into sterile culture medium at 0.4 mg/ml. These solutions were sub-diluted to 0.02 mg/ml in sterile medium and the two solutions were used as stocks to test samples at 100, 50, 20, 10, 5, 2, and 1 mg/ml in triplicate in the wells of microtiter plates. The compounds were assayed in triplicate on monolayers grown in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) calf serum (HyClone Laboratories, Ogden, UT), 60 mg/ml Penicillin G, and 100 mg/ml streptomycin sulfate maintained at 37°C in a humidified atmosphere containing about 15% (v/v) CO 2 in air. All medium components were obtained from Sigma Chemical Co., St. Louis, MO, unless otherwise indicated. Cell stockswere maintained at 34°C in culture flasks filled with medium supplemented with 1% (v/v) calf serum. Subcultures of cells for screening were grown in the wells of microtiter trays (Falcon Microtest III 96-wells trays, Becton Dickinson Labware, Lincolin Park, NJ) by suspending cells in medium following trypsin-EDTA treatment, counting the suspension with a hemocytometer, diluting in medium containing 10% calf serum to 2 × 104 cells per 200 ml culture, aliquoting into each well of a tray, and culturing until confluent. Microtiter trays with confluent monolayer cultures of cells were inverted, the medium shaken out, and replaced with serial dilutions of sterile compounds in triplicate in 100 l medium followed by titered virus in 100 ml medium containing 10% (v/v) calf serum in each well. In each tray, the last row of wells was reserved for controls that were not treated with compounds. Trays were cultured for 96 hours. Trays were inverted onto a paper towel pad, the remaining cells rinsed carefully with medium, and fixed with 3.7% (v/v) formaldehyde in saline for at least 20 minutes. The fixed cells were rinsed with water, and examined visually. The cytotoxic activity is identified as confluent, relatively unaltered monolayers of stained cells treated with the investigated compounds. Cytotoxicity was estimated as the concentration that caused approximately 50% loss of the monolayer. 5-fluorouracil was used as a positive control.[22]Other Sections▼AbstractINTRODUCTIONMATERIALS AND METHODSRESULTS AND DISCUSSIONREFERENCESCompound 1 showed in its EI MS a molecular ion at m/z 412,(Liebermann-burchard reaction gave the typical slow reacting green color of a Δ5 sterol) which[23] together with 13C NMR data suggested a molecular formula of C29 H48O. The loss of part of the side chain (C7H14) is characteristic of sterols[23] witha Δ24(28). 1H NMR spectroscopic data were typical of sterols, in which a sign al at δ0.88 (6H, d, J= 6.6 Hz) attributable to the two methyls of an isopropyl group, a signal at δ 0.91 (3H, d, J= 6.6 Hz) and two signals at δ 1.00 (3H, s) and at δ 0.68 (3H, s) assigned to two methyl groups attached to two quaternary carbons areassigned to C-26, C-27, C-21, C-19 and C-18, respectively. In addition, a doublet at δ 1.59 ppm (J= 6.6 Hz) for the proton at C-29 (δc18.70), a quartet δ 5.18 ppm (J = 6.6 Hz) at C-28 proton (δc115.54), a multiplet at δ 5.35 for C-6 proton (δc 121.70), and a multiplet at 3.53 for C-3 proton (δc 71.80) were observed. 13C NMR of compound 1 indicated 29 carbons, of which two double bonds and a secondary alcohol (cf exp.) were present. The DEPT spectra showed that compound 1 contains six methyl, ten methylene, nine methane, and four quaternary carbons. The stereochemistry at the side chain double bond can be explained by observing the1HNMR spectra at the C-25 proton which resonates at δ 2.32 ppm (δc 36.50) in case of (E) isomer (Frost, ward, 1968). The position of the ethylidene group was proved from HMQC, HMBC correlations, and COSY experiment. These data are in agreement with literature[24] which can allow us to assign compound 1 as fucosterol [Figure 1].Compound 2 showed in its EI MS a molecular ion at m/z 426, which together with 13C-NMR and HREI MS suggested a molecular formula of C29H46O2 (m/z426.3413; calcd. 426.3349). The double doublet at δ 5.75 (J = 18, 13 Hz), doublet at 5.29 (J = 13 Hz), and doublet at 5.17 (J = 18 Hz) in the 1H-NMR and signals at δc 137.79 and 117.10 in the 13C NMR were attributable to terminal vinyl protons, three methyl doublets at 0.96, 0.87, 0.85 in the 1H-NMR spectrum. These data, together with the presence of a fragment at m/z 271 in the mass spectrum due to the loss of the side-chain C10H19O, suggest a stigmastane skeleton with unsaturation at C-28. The IR spectrum showed strong bands at 3420 and 1675 cm-1. The above data, together with the presence of signals at δc 200.38, 172.38, 124.42, and 89.75 in the 13C NMR spectrum and a signal at δ 5.74 in the 1H NMR spectrum, suggested the presence of α,β -unsaturated carbonyl group and a tertiary hydroxyl function in the molecule. As the compound contains two double bonds and two oxygen atoms, one as carbonyl and the second as tertiary hydroxyl, also has seven degrees of unsaturation revealed by mass spectrometry, it must be a tetracyclic product. The structure of known compound 2 [Figure 1] was established by comparison of itsdata (cf exp.) with literature.[25]Compound 3, its structure was established by comparing their physical and spectral data (cf exp.) with those in the literature[25,26] as 24-vinyl cholest -5-ene -3β,24-diol.Compound 4 was isolated as a bright orange solid and the IR showed the presence of the hydroxyl (3439 cm-1), sp-hybrid carbon (allenic) (2361, 2332 cm-1), ester (1721, 1253 cm-1), and polyene (1654, 1605 cm-1) groups. Its molecular formula was deduced as C42H58O6 based on HRFAB-MS analysis [M+], m/z: 658.4224 (Calcd. for C42H58O6, 658. 4233), and NMR spectroscopic data (cf exp.). The 1H and 13C NMR spectra of active compound revealed signals assignable to polyene having acetyl, conjugated ketone, two quaternary geminal dimethyls, two quaternary geminal methyls of oxygen, four olefinic methyls, and allene functionalities. The physicochemical features outlined above suggested that the active compound was a carotenoid in which one of the hydroxyl groups was acetylated. This suggestion was further supported by the UV spectrum [448(ε560,000), 248 (24,000)]. From detailed comparison of the data for the active compound with those of fucoxanthin [Figure 1], the active compound was in agreement with an authentic fucoxanthin in all aspects.[27–29]The data obtained from Table 1 indicate that fucoxanthin (4) have some protective activity to DNA by certain mechanism . The isolated compounds were screened for their antitumor activity against MCF-7. The viability of the cells used in control experiments exceeded 95%; compound 4 proved to have cytotoxic activity sustained for 48 hours after adding the compound to MCF-7, as shown in Table 1. Compounds 1 and 4 were tested for antioxidant activity, where fucoxanthin (4) exhibited the highest antioxidant activity by 72% inhibition [Table 2]. On the other hand, compound 1 exhibited a weak to moderate activity.Compounds 1 and 4 displayed significant antioxidant and anticancer activities [Table 3] against HepG2 (human hepatocellular liver carcinoma cell line), WI 38 (Skin carcinoma cell line), Vero (cell line was initiated from the kidney of a normaladult African green monkey), and MCF-7 (breast cancer cell lines). Fucoxanthin reduced the viability of MCF-7 cells with IC50 (μg/ml) = 11.5.The authors would like to acknowledge SABIC, the Saudi Arabian Company for Basic Industries, for the financial support of this work (SP-11-2) through the collaboration with the Deanship of Scientific Research (DSR) at King Abdul-Aziz University.Source of Support: SABIC, the Saudi Arabian Company for Basic Industries, through the collaboration with the Deanship of Scientifi c Research (DSR) at King Abdul-Aziz UniversityConflict of Interest: None declared.Other Sections▼AbstractINTRODUCTIONMATERIALS AND METHODSRESULTS AND DISCUSSIONREFERENCES1. Blunt JW, Munro MH. Christchurch, New Zealand: Department of Chemistry, University of Canterbury; 2007. Marin Literature Database.2. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep. 2008;25:35–94. [PubMed: 18250897]3. Segawa M, Shirahama H. New Plastoquinones from the Brown Alga Sargassum sagamianum var. yezoense. Chemical Letters. 1987;1:1365–66.4. Mori J, Iwashima M, Wakasugi H, Saito H, Matsunaga T, Ogasawara M, et al. New plastoquinones isolated from the brown alga, Sargassum micracanthum. Chem Pharm Bull (Tokyo) 2005;53:1159–63. [PubMed: 16141587]5. Ishitsuka M, Kusumi T, Nomura Y, Konno T, Kakisawa H. New geranylgeranylbenzoquinone derivatives from Sargassum tortile. Chemical Letters. 1979;8:1269–72.6. Kato T, Kumanireng AS, Ichinose I, Kitahara Y, Kakinuma Y, Kato Y. Structure and synthesis of the active component from a marine alga, Sargassum tortile, which induces the settling of swimming larvae of Coryne uchidai. Chemical Letters. 1975;4:335–8.7. Jang KH, Lee BH, Choi BW, Lee HS, Shin J. Chromenes from the brown alga Sargassum siliquastrum. J Nat Prod. 2005;68:716–23. [PubMed: 15921416]8. Kikuchi T, Mori Y, Yokoi T, Nakazawa S, Kuroda H, Masada Y, et al. Structure of sargatriol, a new isoprenoid chromenol from a marine alga, Sargassum tortile. Chem Pharm Bull (Tokyo) 1975;23:690–2.9. Tang H, Yi Y, Yao X, Zhou D, Lu T, Jiang Y. Studies on bioactive steroid constituents from Sargassum carpophyllum. Chin Pham J. 2002;37:262–5.10. Tang H, Yi Y, Yao X, Zhang S, Zou Z, Li L. Glycerides from marine brown algae Sargassum carpophyllum. Chinese Journal of Marine Drugs. 2002;21:5–9.11. Ayyad S-EN, Abdel-Halim OB, Shier WT, Hoye TR. Cytotoxic hydroazulene diterpenes from brown alga Cystoseira myrica. Z Naturforsch C. 2003;58:33–8. [PubMed: 12622222]12. Lincolon RA, Strupinski K, Walker JM. Bioactive compounds from algae. Life Chem Rep.1991;8:97–183.13. Ayyad S-EN, Slama MO, Mokhtar AH, Anter AF. Cytotoxic bicyclic diterpene from the brown alga Sargassum crispum. Boll Chim Farm. 2001;140:155–9. [PubMed: 11486605]14. Banais B, Francisco C, Gonzalez E, Fenical W. Diterpenoid metabolites from the marine alga Cystoseira elegans. Tetrahedron. 1983;39:629–38.15. Alarif WM, Ayyad S-EN, Al-lihaibi SS. Acyclic Diterpenoid from the Red Alga Gracilaria Foliifera. Rev Latinoamer Quím. 2010;38:52–8.16. Alarif WM, Abou-Elnaga Z Sh, Ayyad S-EN, Al-lihaibi SS. Insecticidal Metabolites from the Green Alga Caulerpa racemosa. CLEAN – Soil, Air and Water. 2010;38:548–57.17. Ayyad S-EN, Makki MS, Al-kayal NS, Basaif SA, El-Foty KO, Asiri AM, et al. Cytotoxic and Protective DNA Damage of Three New Diterpenoids from the Brown Alga Dictoyota dichotoma. Eur J Med Chem. 2011;46:175–82. [PubMed: 21130542]18. Gutterdge J, Rowley D, Halliwell B. Superoxide dependent formation of hydroxyl radicals in the presence of iron salts.Detection of free ion in biological systems using bleomycin-dependent degradation of DNA. Biochem J. 1981;199:263–5. [PMCID: PMC1163361] [PubMed: 6175315]19. Abdel-Wahab BF, El-Ahl AA, Badria FA. Synthesis of new 2-naphthyl ethers and their protective activities against DNA damage induced by bleomycin-iron. Chem Pharm Bull (Tokyo) 2009;57:1348–51. [PubMed: 19952442]20. Badria F, Ameen M, Akl MR. Evaluation of Cytotoxic Compounds from Calligonum comosum L. growing in Egypt. Z. 2007;62:656–60.21. El-Gazzar AB, Youssef MM, Abu-Hashem AA, Badria FA. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as anti-oxidant, anti-inflammatory and analgesic activities. Eur J Med Chem. 2009;44:609–24. [PubMed: 18462840]22. El-Subbagh HI, Abu-Zaid SM, Mahran MA, Badria FA, Al-obaid AM. Synthesis and biological evaluation of certain alpha, beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem. 2000;43:2915–21. [PubMed: 10956199]23. Gibbons GF, Goad LJ, Goodwin TW. The identification of 28- isofucosterol in the marine green algae Enteromorpha intestinalis and Ulva lactuca. Phytochemistry. 1968;7:983–8.24. Goad JL, Akihisa T. 1st ed. London: Blackie Academic and Professional; 1977. Analysis of Sterols; pp. 382–3.25. Ayyad S-EN, Sowellim SZ, el-Hosini MS, Abo-Atia A. The structural determination of a new steroidal metabolite from the brown alga Sargassum asperifolium. Z Naturforsch C. 2003;58:333–6. [PubMed: 12872924]26. Tsuda K, Hayatsu R, Kashida Y, Akagi S. Steroid studies IV. Studies on the constitution of sargasterol. J Am Chem Soc. 1958;80:921–5.27. Haugan JA, Englert G, Glinz E, Liaaen-Jensen S. Algal carotenoids. 48. Structural assignments of geometrical isomers of fucoxanthin. Acta Chem Scand. 1992;46:389–95.28. Yan X, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in Hizikia fusiformis, acommon edible seaweed. Biosci Biotechnol Biochem. 1999;63:605–7. [PubMed: 10227153]29. Ayyad S-EN, Diab M. NMR Application of Mosher's Method: The absolute configurations of fucoxanthin from Turbinaria triquatra. Alex J Pharm Sci. 2002;16:27–30.Figures and TablesFigure 1Structure of compounds 1-4Table 1Cell viability and bleomycin-dependent DNA damage assay of fucoxanthin (4)Table 2Antioxidant activity of tested compounds by ABTS methodTable 3Cytotoxicity of tested compounds on different cancer cell linesArticles from Pharmacognosy Research are provided here courtesy ofMedknow Publications。