信息论课堂习题及答案

合集下载

信息论课后习题

信息论课后习题
(3)若信道通频带减为0.5MHz时,要保持相
同的信道容量,信道上的信号与噪声的平均功 率比值应等于多大?
解:(1)由信道容量公式C = B log(1 + S,) 得:
N
C = 1 * log(1 + 10) = log11 (bit/ s)
(2)由信道容量公式得:
B=
C
log(1 + S )
N
所以: B = log11 (Hz) log 6
i=1
H (S )
h=
= 0.8113
L1
4.6(续)
②N=2时,编码过程如下:
所以:
S2
概率
霍夫曼编码
s1s1
0.5625
0
s1s2
0.1875
11
s2s1
0.1875
100
s2s2
0.0625
101
L2 = 1? 0.5625 2? 0.1875 3? (0.1875 0.0625) = 1.6875 (码元/ 二符号)
L = 2.35
s3
0.2
11
s4
0.2
000
s5
0.15
001
4.8(续)
信源熵为:
5
å H (S ) = - P(si ) log P(si ) = 2.3037 bit / sign
i=1
编码效率为:
H (S )
h=
= 0.98
L
5.11 已知一个平均功率受限的连续编号,通过 带宽B=1MHz的高斯白噪声信道,问 (1)若信噪比为10,信道容量为多少? (2)若信道容量不变,信噪比将为5,信道带 宽应为多少?
1

信息论部分习题及解答

信息论部分习题及解答

2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“3和5同时出现” 这事件的自信息量。

(2)“两个1同时出现” 这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:(1)设X 为‘3和5同时出现’这一事件,则P (X )=1/18,因此 17.418log)(log)(22==-=x p X I (比特)(2)设‘两个1同时出现’这一事件为X ,则P (X )=1/36,因此 17.536log)(log)(22==-=x p X I (比特)(3 ) “两个相同点数出现”这一事件的概率为1/36,其他事件的概率为1/18,则 337.418log181536log366)(22=+=X H (比特/组合)(4)222222111111()[log 36log 18()log 12()log 936181836181811136111()log ]2()log 6 3.44(/)1818365181818H X =++++++++⨯+++=比特两个点数之和(5)两个点数至少有一个为1的概率为P (X )= 11/36 71.13611log)(2=-=X I (比特)2-6设有一离散无记忆信源,其概率空间为⎪⎪⎭⎫⎝⎛=====⎪⎪⎭⎫⎝⎛8/134/124/118/304321x x x x PX该信源发出的信息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求:(1) 此信息的自信息量是多少?(2) 在此信息中平均每个符号携带的信息量是多少? 解:(1)由无记忆性,可得序列)(比特/18.87)3(6)2(12)1(13)0(14=+++=I I I I(2)符号)(比特/91.145/==I H 2-9在一个袋中放有5个黑球、10个白球,以摸一个球为一次实验,摸出的球不再放进去。

信息论习题

信息论习题

前三章习题选择题1、离散有记忆信源],[21x x X =,12()()0.5P x P x ==,其极限熵H ∞ 。

A 、1bit >B 、1bit <C 、1bit =D 、不能确定2、任意离散随机变量X 、Y 、Z , 必定成立A 、)|()|(XZ Y H YZ X H =B 、)()()()(Z H Y H X H XYZ H ++=C 、)|()|(Y X H YZ X H ≤D 、0)|;(=Z Y X I3、|Y X P 给定时,(;)I X Y 是X P 的 函数。

A 、上凸B 、下凸C 、上升D 、下降4、使(;)I X Y 达到最大的 称为最佳分布。

A 、联合分布B 、后验分布C 、输出分布D 、输入分布5、离散平稳无记忆信源],[21x x X =,且bit X H 1)(=,则=)(1x P 。

A 、41B 、2C 、1D 、21 6、=);(Y X I 。

A 、)|()(X Y H X H -B 、)|()(Y X H Y H +C 、)|()(X Y H Y H -D 、)()(X H XY H -7、通常所说的“连续信源”是指 信源。

A 、时间连续且取值连续的B 、取值连续C 、时间离散且取值连续的D 、时间连续8、已知信道,意味着已知 。

A 、 先验分布B 、转移概率分布C 、 输入输出联合概率分布D 、输出概率分布9、已知X Y P |,可求出A 、)(XY HB 、 )|(X Y HC 、);(Y X ID 、)|(i j x y I10、连续信源的输出可用 来描述A 、常量B 、变量C 、离散随机变量D 、连续随机变量11、101)(=i x P ,则=)(i x I 。

A 、bit 10lnB 、dit 10lnC 、dit 1D 、dit 10log12、信道容量表征信道的 。

A 、最大通过能力B 、最大尺寸C 、最小通过能力D 、最小尺寸13、DMS 的信息含量效率等于信源的实际熵 信源的最大熵。

信息论课后习题答案

信息论课后习题答案

第六章 有噪信道编码6.1 R 为信息传输率,根据香农第二定理,当码长n->无穷大时,满足什么关系式,可使错误概率Pe->0。

答:Pe<exp{-nE(R)}->0,其中E(R)为可靠性函数,且在9<R<C 的范围为正。

信道容量C 是保证无差错传输时,信息传输率R 的权限值。

6.2 写出费诺不等式,其中哪一项表示是否判对的疑义度,log(k-1)又表示什么?答:H(X|Y)<=H2(Pe)+Pelog(k-1) ,H2(pe)是否判对的疑义度。

表示如果判决出错,错在k-1个符号中的一个,疑义度不会超过log(k-1)。

6.3 根据香农定理说明,(信息容量)是保证无差错传输时信息传输率R 的上限值,(平均错误概率)是信源可压缩信息的最低极限。

6.4 最大后验概率译码准则就是最小错误译码准则,对吗?错误。

()∑≠-==≠=k i k i k k e y x y xy x x y p )|(1)|()|(φφφ 这个公式可知最大后验概率与最小错误译码准则所得的最终结果是相等的。

但并非概念定义一致。

6.5 在信源等该分布时,则极大似然函数译码准则就是最小错误译码准则,对吗? Proof: if ())|(|k k x y p x y p > m=1,2,……,MThen 信道等概率输入时,有),()(m k x q x q = 代入上式得)()|()()|(m m k k x q x y p x q x y p >So,it comes to )()(y x p y x p m k >所以说明全概率最大,对应最大联合概率译码准则。

1/2 1/6 1/36.6 离散无记忆信道DMC ,转移概率矩阵为 P= 1/3 1/2 1/61/6 1/3 1/2(1 )q(x1)=1/2 q(x2)=1/4 q(x3)=1/4. 求最佳判决译码及错误概率。

(2)若信源等概分布,求最佳判决译码及错误概率。

信息论习题解答

信息论习题解答

第二章 信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此每个码字的信息量为 2⨯8log =2⨯3=6 bit 因此,信息速率为 6⨯1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61 得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6} )(b p =361 得到的信息量=)(1logb p =36log =5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521 信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13.208 bit2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H =2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6 =3.2744 bit)|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。

(信息论)第二、三章习题参考答案

(信息论)第二、三章习题参考答案

第二章习题参考答案2-1解:同时掷两个正常的骰子,这两个事件是相互独立的,所以两骰子面朝上点数的状态共有6×6=36种,其中任一状态的分布都是等概的,出现的概率为1/36。

(1)设“3和5同时出现”为事件A ,则A 的发生有两种情况:甲3乙5,甲5乙3。

因此事件A 发生的概率为p(A)=(1/36)*2=1/18 故事件A 的自信息量为I(A)=-log 2p(A)=log 218=4.17 bit(2)设“两个1同时出现”为事件B ,则B 的发生只有一种情况:甲1乙1。

因此事件B 发生的概率为p(B)=1/36 故事件B 的自信息量为I(B)=-log 2p(B)=log 236=5.17 bit (3) 两个点数的排列如下:因为各种组合无序,所以共有21种组合: 其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)“两个点数中至少有一个是1”的组合数共有11种。

bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2解:(1)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121)(21x x x p X i 比特 12log *21*2)(log )()(2212==-=∑=i i i x p x p X H(2)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡100110099)(21x x x p X i 比特 08.0100log *100199100log *10099)(log )()(22212=+=-=∑=i i i x p x p X H (3)四种球的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡41414141)(4321x x x x x p X i ,42211()()log ()4**log 4 2 4i i i H X p x p x ==-==∑比特2-5解:骰子一共有六面,某一骰子扔得某一点数面朝上的概率是相等的,均为1/6。

《信息论》试题及答案

《信息论》试题及答案

期终练习一、某地区的人群中,10%就是胖子,80%不胖不瘦,10%就是瘦子。

已知胖子得高血压的概率就是15%,不胖不瘦者得高血压的概率就是10%,瘦子得高血压的概率就是5%,则“该地区的某一位高血压者就是胖子”这句话包含了多少信息量。

解:设事件A:某人就是胖子; B:某人就是不胖不瘦 C:某人就是瘦子 D:某人就是高血压者根据题意,可知:P(A)=0、1 P(B)=0、8 P(C)=0、1 P(D|A)=0、15 P(D|B)=0、1 P(D|C)=0、05 而“该地区的某一位高血压者就是胖子” 这一消息表明在D 事件发生的条件下,A 事件的发生,故其概率为P(A|D)根据贝叶斯定律,可得:P(D)=P(A)* P(D|A)+P(B)* P(D|B)+P(C)* P(D|C)=0、1P(A|D)=P(AD)/P(D)=P(D|A)*P(A)/ P(D)=0、15*0、1/0、1=0、15故得知“该地区的某一位高血压者就是胖子”这一消息获得的多少信息量为: I(A|D) = - logP(A|D)=log(0、15)≈2、73 (bit)二、设有一个马尔可夫信源,它的状态集为{S 1,S 2,S 3},符号集为{a 1,a 2,a 3},以及在某状态下发出符号集的概率就是(|)k i p a s (i,k=1,2,3),如图所示(1)求图中马尔可夫信源的状态极限概率并找出符号的极限概率(2)计算信源处在某一状态下输出符号的条件熵H(X|S=j) (j=s 1,s 2,s 3) (3)求出马尔可夫信源熵H ∞解:(1)该信源达到平稳后,有以下关系成立:13212312123()()31()()()4211()()()42()()()1Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E =⎧⎪⎪=+⎪⎨⎪=+⎪⎪++=⎩可得1232()73()72()7Q E Q E Q E ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩3111322133313()()(|)72()()(|)73()()(|)7i i i i i i i i i p a Q E p a E p a Q E p a E p a Q E p a E =========∑∑∑(2)311113222133331(|)(|)log (|) 1.5bit/(|)(|)log (|)1bit/(|)(|)log (|)0bit/k k k kk k k k k H X S p a S p a S H X S p aS p a S H X S p a S p a S ====-==-==-=∑∑∑(符号)(符号)(符号)(3)31()(|)2/7*3/23/7*12/7*06/7iii H Q E H X E ∞==⨯=++=∑(比特/符号)三、二元对称信道的传递矩阵为0.60.40.40.6⎡⎤⎢⎥⎣⎦(1)若P(0)=3/4,P(1)=1/4,求H(X),H(X|Y)与I(X;Y)(2)求该信道的信道容量及其最大信道容量对应的最佳输入分布 解:⑴()H X =21()log ()iii p x p x ==-∑=0.75log 750.25log 25--≈0、811(比特/符号)1111212()()(|)()(|)p y p x p y x p x p y x =+=0、75*0、6+0、25*0、4=0、55 2121222()()(|)()(|)p y p x p y x p x p y x =+=0、75*0、4+0、25*0、6=0、45()0.55log0.550.45log0.45H Y =--=≈0、992(比特/符号)122(|)()(|)()(|)0.75(0.6,0.4)0.25(0.4,0.6)(0.6log 0.60.4log 0.4)0.971/H Y X p x H Y x p x H Y x H H =+=⨯+⨯=-+≈(比特符号)(|)()()()(|)()H X Y H XY H Y H X H Y X H Y =-=+-≈0、811+0、971-0、992=0、79 (比特/符号)I(X;Y)=H(X)-H(X|Y)=0、811-0、79=0、021(比特/符号) (2)此信道为二元对称信道,所以信道容量为C=1-H(p)=1-H(0、6)=1-0、971=0、029(比特/符号) 当输入等概分布时达到信道容量四、求信道22042240 p pp pεεεεεε⎡⎤--⎢⎥--⎢⎥⎣⎦的信道容量,其中1p p=-。

信息论答案(傅祖芸)

信息论答案(傅祖芸)

第二章课后习题【2.1】设有12 枚同值硬币,其中有一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1 ;12“假币的重量比真的轻,或重”该事件发生的概率为P 1 ;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12 log 2 log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为I log 3 比特因此,必须称的次数为I1 log 242.9 次I 2 log 3因此,至少需称3 次。

【延伸】如何测量?分3 堆,每堆4 枚,经过3 次测量能否测出哪一枚为假币。

【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“两骰子面朝上点数是3 和4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为2”有一种可能,即两骰子的点数各为1,由于二者是独立的,因此该种情况发生的概率为P 1 1 1 ,该事件的信息量为:6 6 36I log 36 5.17 比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和 2,概率为 P 1 1 5 5,因此该事件的信息量为:6 6 36I log 362.85 比特5“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为 P 1 1 2 1,因此该事件的信息量为:6 6 18I log18 4.17 比特【2.3】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有 多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多 少信息量(假设已知星期一至星期日的顺序)? 解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1,因此此时从答案中获得的信息量为7I log 7 2.807 比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为 1,此时获得的信息量为 0 比特。

信息论课后题答案

信息论课后题答案

2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 解:设随机变量X 代表女孩子学历 X x 1(是大学生) x 2(不是大学)P(X) 0.250.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.50.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量即:b i ty p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-= 2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为( 02120130213001203210110321010021032011223210),求(1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少? 解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p 此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:b i t n I 951.145/811.87/==2.9 设有一个信源,它产生0,1序列的信息。

它在任意时间而且不论以前发生过什么符号,均按P(0) = 0.4,P(1) = 0.6的概率发出符号。

(1) 试问这个信源是否是平稳的? (2) 试计算H(X 2), H(X 3/X 1X 2)及H ∞;(3) 试计算H(X 4)并写出X 4信源中可能有的所有符号。

信息论习题集+答案(完版整)

信息论习题集+答案(完版整)

信息论习题集一、名词解释(每词2分)(25道)1、“本体论”的信息(P3)2、“认识论”信息(P3)3、离散信源(11)4、自信息量(12)5、离散平稳无记忆信源(49)6、马尔可夫信源(58)7、信源冗余度 (66)8、连续信源 (68)9、信道容量 (95)10、强对称信道 (99) 11、对称信道 (101-102)12、多符号离散信道(109)13、连续信道 (124) 14、平均失真度 (136) 15、实验信道 (138) 16、率失真函数 (139) 17、信息价值率 (163) 18、游程序列 (181) 19、游程变换 (181) 20、L-D 编码(184)、 21、冗余变换 (184) 22、BSC 信道 (189) 23、码的最小距离 (193)24、线性分组码 (195) 25、循环码 (213) 二、填空(每空1分)(100道)1、 在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用 三个方面的因素。

2、 1948年,美国数学家 香农 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

3、 按照信息的性质,可以把信息分成语法信息、语义信息和语用信息 。

4、 按照信息的地位,可以把信息分成 客观信息和主观信息 。

5、 人们研究信息论的目的是为了高效、可靠、安全 地交换和利用各种各样的信息。

6、 信息的可度量性 是建立信息论的基础。

7、 统计度量 是信息度量最常用的方法。

8、 熵是香农信息论最基本最重要的概念。

9、 事物的不确定度是用时间统计发生 概率的对数 来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

信息论习题

信息论习题

信息论部分:1. 已经两个离散信源X 和Y ,其联合概率P(X,Y)为:P(0,0)=1/8,P(0,1)=3/8,P(1,0)=3/8,P(1,1)=1/8,现定义另一个随机变量:Z=XY(一般乘积),试求H(X),H(Y),H(Z)及H(X,Y)。

2. 有一个一阶马尔柯夫信源X={A,B,C},已知:p(A)=1/2,p(B)=p(C)=1/4,信源状态之间的转移概率p(j/i)分别为:p(A/A)=1/2, p(B/A)=1/4, p(C/A)=1/4, p(A/B)=2/3, p(B/B)=0, p(C/B)=1/3, p(A/C)=2/3, p(B/C)=1/3, p(C/C)=0。

求:信源的熵和剩余度?3. 设一个连续随机变量X 的概率密度函数为p x bx x ()=≤⎧⎨⎪⎩⎪202 π其它 求信源X 的熵H(X)。

4. 设一个连续随机变量X 的概率密度函数为 p x e ()=-12λλX -∞<X <∞ 求信源X 的熵H(X)。

5.掷一枚均匀的硬币,直到出现“正面”为止。

令X 表示所需掷出的次数,求熵H(X)。

6.设有噪声二元对称信道(BSC)的信道误码率为p e =1/8,码速率为n=1000/s,(1)若p(0)=1/3, p(1)=2/3, 求信道熵速率, (2)求信道容量。

7.某无线电厂可生产A ,B ,C ,D 四种产品,其中,A 占10%,B 占20% ,C 占30% ,D 占40%。

有两种消息:“现完成一台B 种产品”,“现完成一台C 种产品”,试问哪一种消息提供的信息量大? 8.设每帧电视图象是由3×105个象素组成,所有象素是相互独立的,且每个象素可取128个不同的亮度电平,并假设各种亮度电平是等概出现的。

问每帧电视图象含有多少信息量?9.设电话信号的信息速率为5.6×104bit/s ,在一个噪声功率谱密度为N 0=5×10-6mW/Hz ,频带为F ,限输入功率为P 的高斯信道中传送,若F=4KHz ,问无差错传输所需的最小功率是多少?若F 趋于无穷,则P 是多少瓦。

信息论——习题解答

信息论——习题解答

(2)
1 3 p ( xi ) 4 4
m
100 m

3
100 m 100
4
3
100 m 100
I ( xi ) log p ( x i ) log
4
41.5 1.585 m bit
(3)
H (X
100
) 100 H ( X ) 100 0 .811 81 .1 bit / symbol
i 2
x 忙 x 2闲 1 63 40 P( X ) 103 103 63 40 40 63 p ( xi ) log p ( x i ) log log 0.964 bit / symbol 103 103 103 103 X
2
P
(2) H p ( ei ) H ( X / ei )
i
3

1 3
H ( p, p)
1 3
H ( p, p)
1 3
H ( p, p)
H ( p, p)
p log p p log p


bit / symbol
2.18每帧电视图像可以认为是由3105个像素组成的,所有像素均是独立变化, 且每像素又取128个不同的亮度电平,并设亮度电平是等概出现,问每帧图 像含有多少信息量?若有一个广播员,在约10000个汉字中选出1000个汉字 来口述此电视图像,试问广播员描述此图像所广播的信息量是多少(假设汉 字字汇是等概率分布,并彼此无依赖)?若要恰当的描述此图像,广播员在 口述中至少需要多少汉字? 解:(1)
(2) 设忙闲为随机变量X,天气状态为随机变量Y,气温状态为随机变量Z

信息论-习题答案

信息论-习题答案

· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生)x 2(不是大学生)P(X)0.250.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm )P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log)()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x pbit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:· 2 ·bitCx p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x XP X,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是: 62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p 此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士: symbolbit x p x p X H bitx p x I x p bit x p x I x p ii i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。

信息论基础 课后习题答案

信息论基础 课后习题答案

信息论基础课后习题答案问题1问题:信息论的基本目标是什么?答案:信息论的基本目标是研究信息的传递、存储和处理的基本原理和方法。

主要关注如何量化信息的量和质,并通过定义信息熵、条件熵、互信息等概念来描述信息的特性和性质。

问题2问题:列举一些常见的信息论应用领域。

答案:一些常见的信息论应用领域包括:•通信领域:信息论为通信系统的性能分析和设计提供了基础方法,例如信道编码和调制调制等。

•数据压缩领域:信息论为数据压缩算法的研究和实现提供了理论依据,例如无损压缩和有损压缩等。

•隐私保护领域:信息论用于度量隐私保护方案的安全性和隐私泄露的程度,在隐私保护和数据共享中起着重要作用。

•机器学习领域:信息论被应用于机器学习中的特征选择、集成学习和模型评估等任务中,提供了许多有用的数学工具和概念。

•生物信息学领域:信息论被应用于分析DNA序列、蛋白质序列和生物网络等生物数据,发现其中的模式和规律。

问题3问题:信息熵是什么?如何计算信息熵?答案:信息熵是衡量一个随机变量的不确定性或信息量的度量值。

信息熵越大,表示随机变量的不确定性越高,每个可能的取值都相对等可能发生;反之,信息熵越小,表示随机变量的不确定性越低,某些取值较为集中或者出现的概率较大。

信息熵的计算公式如下所示:H(X) = -Σ P(x) * log2(P(x))其中,H(X) 表示随机变量 X 的信息熵,P(x) 表示随机变量X 取值为 x 的概率。

问题4问题:条件熵是什么?如何计算条件熵?答案:条件熵是在给定其他随机变量的条件下,一个随机变量的不确定性或信息量的度量。

条件熵基于条件概率定义,用于描述一个随机变量在给定其他相关随机变量的条件下的信息量。

条件熵的计算公式如下所示:H(Y|X) = -Σ P(x, y) * log2(P(y|x))其中,H(Y|X) 表示随机变量 Y 在给定随机变量 X 的条件下的条件熵,P(x, y) 表示随机变量 X 取值为 x 且随机变量 Y 取值为 y 的概率,P(y|x) 表示随机变量 Y 在给定随机变量 X 取值为x 的条件下取值为 y 的概率。

信息论基础(含习题与解答)

信息论基础(含习题与解答)

信息论基础(含习题与解答)
1.习题
(1)解码的定义是什么?
解码是指从消息中分离出编码信息,并将其转换为原始消息的过程。

(2)什么是哈夫曼编码?
哈夫曼编码是一种熵编码方案,它把出现频率最高的信息单位用最短的码字表示,从而有效地压缩了信息。

(3)请解释索引信息论。

索引信息论是一种认知科学,它研究了使用多个索引信息对信息资源进行管理和协作的方法。

它重点研究的是如何将信息可视化,以便用户可以快速找到需要的信息,同时有效地利用多个索引信息。

2.答案
(1)解码的定义是什么?
解码是指从消息中分离出编码信息,并将其转换为原始消息的过程。

(2)什么是哈夫曼编码?
哈夫曼编码是一种熵编码方案,它把出现频率最高的信息单位用最短的码字表示,从而有效地压缩了信息。

(3)请解释索引信息论。

索引信息论是一种认知科学,它研究了使用多个索引信息对信息资源进行管理和协作的方法。

它主要专注于通过设计有效的用户界面来提高信
息的有用性,实现信息的检索和可视化,以实现快速了解和分析信息资源。

它强调以用户为中心,基于支持知识管理和协作的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-= (2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少? 解: 男士:symbolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑3.2 设二元对称信道的传递矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32313132 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.1 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4.06.0)(21x x X P X 通过一干扰信道,接收符号为Y = { y1, y2 },信道转移矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡43416165,求: (1) 信源X 中事件x 1和事件x 2分别包含的自信息量;(2) 收到消息y j (j=1,2)后,获得的关于x i (i=1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度H(X/Y)和噪声熵H(Y/X); (5) 接收到信息Y 后获得的平均互信息量。

解: 1)bit x p x I bitx p x I 322.14.0log )(log )( 737.06.0log )(log )(22222121=-=-==-=-=2)bity p x y p y x I bity p x y p y x I bity p x y p y x I bity p x y p y x I x y p x p x y p x p y p x y p x p x y p x p y p 907.04.04/3log )()/(log );( 263.16.04/1log )()/(log );( 263.14.06/1log )()/(log );( 474.06.06/5log )()/(log );(4.0434.0616.0)/()()/()()(6.0414.0656.0)/()()/()()(222222221212122212221211121122212122121111===-===-=======⨯+⨯=+==⨯+⨯=+=3)symbolbit y p y p Y H symbol bit x p x p X H jj j ii i / 971.010log )4.0log 4.06.0log 6.0()(log )()(/ 971.010log )4.0log 4.06.0log 6.0()(log )()(22=+-=-==+-=-=∑∑4)symbolbit Y H X Y H X H Y X H Y X H Y H X Y H X H symbolbit x y p x y p x p X Y H iji j i j i / 715.0971.0715.0971.0 )()/()()/()/()()/()(/ 715.0 10log )43log 434.041log 414.061log 616.065log 656.0( )/(log )/()()/(2=-+=-+=∴+=+=⨯⨯+⨯+⨯+⨯-=-=∑∑5)symbol bit Y X H X H Y X I / 256.0715.0971.0)/()();(=-=-=3.3 设有一批电阻,按阻值分70%是2K Ω,30%是5 K Ω;按瓦分64%是0.125W ,其余是0.25W 。

现已知2 K Ω阻值的电阻中80%是0.125W ,问通过测量阻值可以得到的关于瓦数的平均信息量是多少?解:对本题建立数学模型如下:);(求:2.0)/(,8.0)/(36.064.04/18/1)(瓦数 3.07.052)(阻值12112121Y X I x y p x y p y y Y P Y x x X P X ==⎭⎬⎫⎩⎨⎧===⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧KΩ=KΩ==⎥⎦⎤⎢⎣⎡以下是求解过程:()()()symbolbit XY H Y H X H Y X I symbolbit y x p y x p XY H symbolbit y p Y H symbolbit x p X H y x p y p y x p y x p y x p y p y x p y p y x p y x p y x p y p x y p x p y x p x y p x p y x p ijj i j i jj ii / 186.0638.1943.0881.0)()()();(/ 638.1 22.0log 22.008.0log 08.014.0log 14.056.0log 56.0 )(log )()(/ 943.036.0log 36.064.0log 64.0)()(/ 881.03.0log 3.07.0log 7.0)()(22.014.036.0)()()()()()(08.056.064.0)()()()()()(14.02.07.0)/()()(56.08.07.0)/()()(22222222212222221211112121111212111111=-+=-+==⨯+⨯+⨯+⨯-=-==⨯+⨯-=-==⨯+⨯-=-==-=-=∴+==-=-=∴+==⨯===⨯==∑∑∑∑3.19 在图片传输中,每帧约有2.25 106个像素,为了能很好地重现图像,能分16个亮度电平,并假设亮度电平等概分布。

试计算每分钟传送一帧图片所需信道的带宽(信噪功率比为30dB )。

解:sbit t I C bit NH I symbol bit n H t / 101.5601091010941025.2/ 416log log 566622⨯=⨯===⨯=⨯⨯=====z15049)10001(log 105.11log 1log 25H P P C W P P W C N X tN X t =+⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+=1. 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解:1465 (1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 6566共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑ (5)bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2.对某城市进行交通忙闲的调查,并把天气分成晴雨两种状态,气温分成冷暖两个状态,调查结果得联合出现的相对频度如下:忙晴雨冷 12暖 8暖 16冷 27闲晴雨冷 8暖 15暖 12冷 5若把这些频度看作概率测度,求: (1) 忙闲的无条件熵;(2) 天气状态和气温状态已知时忙闲的条件熵; (3) 从天气状态和气温状态获得的关于忙闲的信息。

相关文档
最新文档