正方形的性质与判定(配套讲义的作业题)
正方形的性质与判定【十大题型】(举一反三)(浙教版)(原卷版)
专题5.3 正方形的性质与判定【十大题型】【浙教版】【题型1 正方形的性质(求角的度数)】 (1)【题型2 正方形的性质(求线段的长度)】 (3)【题型3 正方形的性质(求面积、周长)】 (4)【题型4 正方形的性质(探究数量关系)】 (6)【题型5 判定正方形成立的条件】 (10)【题型6 正方形判定的证明】 (12)【题型7 正方形的判定与性质综合】 (16)【题型8 探究正方形中的最值问题】 (19)【题型9 正方形在坐标系中的运用】 (20)【题型10 正方形中的多结论问题】 (23)【题型1 正方形的性质(求角的度数)】【例1】(2022春•建阳区期中)如图,在正方形ABCD中有一个点E,使三角形BCE是正三角形,求:(1)∠BAE的大小(2)∠AED的大小.【变式1-1】如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由.【变式1-2】(2022•武威模拟)如图,在正方形ABCD中,点E是对角线AC上的一点,点F在BC的延长线上,且BE=EF,EF交CD于点G.(1)求证:DE=EF;(2)求∠DEF的度数.【变式1-3】(2022春•新市区校级期末)如图,在给定的正方形ABCD中,点E从点B出发,沿边BC方向向终点C运动,DF⊥AE交AB于点F,以FD,FE为邻边构造平行四边形DFEP,连接CP,则∠DFE+∠EPC的度数的变化情况是()A.一直减小B.一直减小后增大C.一直不变D.先增大后减小【题型2 正方形的性质(求线段的长度)】【例2】(2022春•牡丹江期末)如图,正方形ABCD的边长为10,点E,F在正方形内部,AE=CF=8,BE=DF=6,则线段EF的长为()A.2√2B.4C.4−√2D.4+√2【变式2-1】(2022春•巴南区期末)如图,四边形ABCD是边长为4的正方形,点E在边CD上,且DE =1,作EF∥BC分别交AC、AB于点G、F,P、H分别是AG,BE的中点,则PH的长是()A.2B.2.5C.3D.4【变式2-2】(2022•越秀区一模)将正方形ABCD与正方形BEFG按如图方式放置,点F、B、C在同一直线上,已知BG=√2,BC=3,连接DF,M是DF的中点,连接AM,则AM的长是()A.√102B.√3C.√132D.32【变式2-3】(2022春•吴中区校级期末)如图,在正方形ABCD中,AB=4√5.E、F分别为边AB、BC的中点,连接AF、DE,点N、M分别为AF、DE的中点,连接MN,则MN的长度为.【题型3 正方形的性质(求面积、周长)】【例3】(2022春•鄞州区期末)有两个正方形A,B.现将B放在A的内部得图甲,将A,B构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B得图丙,则阴影部分的面积为()A.28B.29C.30D.31【变式3-1】(2022春•工业园区校级期中)如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE 为Rt△,∠CED=90°,OE=2√2,若CE•DE=3,则正方形ABCD的面积为()A.5B.6C.8D.10【变式3-2】(2022•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.【变式3-3】(2022•江北区一模)如图,以Rt△ABC的各边为边分别向外作正方形,∠BAC=90°,连结DG,点H为DG的中点,连结HB,HN,若要求出△HBN的面积,只需知道()A.△ABC的面积B.正方形ADEB的面积C.正方形ACFG的面积D.正方形BNMC的面积【题型4 正方形的性质(探究数量关系)】【例4】(2022秋•中原区校级月考)如图,线段AB=4,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE 与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)请直接写出△AEF的周长.【变式4-1】(2022春•雁塔区校级期末)在正方形ABCD中,∠MAN=45°,该角可以绕点A转动,∠MAN的两边分别交射线CB,DC于点M,N.(1)当点M,N分别在正方形的边CB和DC上时(如图1),线段BM,DN,MN之间有怎样的数量关系?你的猜想是:,并加以证明.(2)当点M,N分别在正方形的边CB和DC的延长线上时(如图2),线段BM,DN,MN之间的数量关系会发生变化吗?证明你的结论.【变式4-2】(2022春•莆田期末)如图,已知正方形ABCD中,E为CB延长线上一点,且BE=AB,M、N分别为AE、BC的中点,连DE交AB于O,MN交,ED于H点.(1)求证:AO=BO;(2)求证:∠HEB=∠HNB;(3)过A作AP⊥ED于P点,连BP,则PE−PA的值.PB【变式4-3】(2022春•鼓楼区校级期中)如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点G.点H是线段CE上一点,且CO=CH.(1)若OF=5,求FH的长;(2)求证:BF=OH+CF.【题型5 判定正方形成立的条件】【例5】(2022春•海淀区校级期中)已知四边形ABCD为凸四边形,点M、N、P、Q分别为AB、BC、CD、DA上的点(不与端点重合),下列说法正确的是(填序号).①对于任意凸四边形ABCD,一定存在无数个四边形MNPQ是平行四边形;②如果四边形ABCD为任意平行四边形,那么一定存在无数个四边形MNPQ是矩形;③如果四边形ABCD为任意矩形,那么一定存在一个四边形为正方形;④如果四边形ABCD为任意菱形,那么一定存在一个四边形为正方形.【变式5-1】(2022春•岳麓区校级月考)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH是正方形,BD、AC应满足的条件是.【变式5-2】(2022春•汉寿县期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F在AC 上,且OE=OF,连接DE并延长至点M,使DE=ME,连接MF,DF,BE.(1)当DF=MF时,证明:四边形EMBF是矩形;(2)当△DMF满足什么条件时,四边形EMBF是正方形?请说明理由.【变式5-3】(2022春•沛县期中)已知在△ABC中,D为边BC延长线上一点,点O是边AC上的一个动点,过O作直线MN∥BC,设MN与∠BCA的平分线相交于点E,与∠ACD的平分线相交于点F.(1)求证:OE=OF;(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.(3)在(2)的条件下,且△ABC满足条件时,矩形AECF是正方形?.【题型6 正方形判定的证明】【例6】(2022春•虹口区期末)如图,在四边形ABCD中,AB∥CD,AD=CD,E是对角线BD上的一点,且AE=CE.(1)求证:四边形ABCD是菱形;(2)如果AB=BE,且∠ABE=2∠DCE,求证:四边形ABCD是正方形.【变式6-1】(2022春•宜城市期末)如图,四边形ABCD是平行四边形,连接对角线AC,过点D作DE ∥AC与BC的延长线交于点E,连接AE交DC于F.(1)求证:BC=CE;(2)连接BF,若∠DAF=∠FBE,且AD=2CF,求证:四边形ABCD是正方形.【变式6-2】(2022秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH 是正方形?【变式6-3】(2022•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【题型7 正方形的判定与性质综合】【例7】(2022•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.【变式7-1】(2022•萧山区模拟)如图,P为正方形ABCD内的一点,画▱P AHD,▱PBEA,▱PCFB,▱PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.【变式7-2】(2022•萧山区模拟)已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【变式7-3】(2022春•潜山市期末)如图,已知四边形ABCD为正方形,AB=3√2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【题型8 探究正方形中的最值问题】【例8】(2022春•沙坪坝区校级月考)如图,在正方形ABCD中,M,N是边AB上的动点,且AM=BN,连接MD交对角线AC于点E,连接BE交CN于点F,若AB=3,则AF长度的最小值为.【变式8-1】(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是()A.2B.1C.√5−1D.√5−2【变式8-2】(2022•青山区模拟)已知矩形ABCD,AB=2,AD=4AB=8,E为线段AD上一动点,以CE 为边向上构造正方形CEFG,连接BF,则BF的最小值是.【变式8-3】(2022•郧阳区模拟)如图,P A=2√2,PB=4√2,以AB为边作正方形ABCD,使得P、D两点落在直线AB的两侧,当∠APB变化时,则PD的最大值为.【题型9 正方形在坐标系中的运用】【例9】(2022春•市中区期末)在平面直角坐标系中,对于两个点P、Q和图形W,如果在图形W上存在点M、N(M、N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.已知正方形的边长为2,一边平行于x轴,对角线的交点为点O,点D的坐标为(2,0).若点E(x,2)与点D是正方形的一对平衡点,则x的取值范围为()A.﹣3≤x≤3B.﹣4≤x≤4C.﹣2≤x≤2D.﹣5≤x≤5【变式9-1】(2022秋•永新县期末)如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣2,0)、B(0,﹣2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.【变式9-2】(2022春•顺城区期末)如图,在平面直角坐标系xOy中,直线OC:yOC=3x与直线AC:yAC=﹣x+8相交于点C(2,6).(1)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.分别过点M,N作x轴的垂线,分别交直线OC,AC于点P,Q,请你在图1中画出图形,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(2)在(1)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).【变式9-3】(2022•河南模拟)如图,正方形OABC 中,点A (4,0),点D 为AB 上一点,且BD =1,连接OD ,过点C 作CE ⊥OD 交OA 于点E ,过点D 作MN ∥CE ,交x 轴于点M ,交BC 于点N ,则点M 的坐标为( )A .(5,0)B .(6,0)C .(254,0)D .(274,0) 【题型10 正方形中的多结论问题】【例10】(2022春•慈溪市期末)如图,正方形ABCD 中,点P 为BD 延长线上任一点,连结P A ,过点P 作PE ⊥P A ,交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F .下列结论:(1)P A =PE ; (2)BD =2PF ;(3)CE =√2PD ; (4)若BP =BE ,则PF =(√2+1)DF .其中正确的个数为( )A .1B .2C .3D .4【变式10-1】(2022春•渝中区校级期中)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G .连接EC 、EF 、EG .下列结论:①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④当G 是线段AD的中点时,BE =13a .正确的个数是( )A.1个B.2个C.3个D.4个【变式10-2】(2022秋•三水区月考)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【变式10-3】(2022春•玉林期末)如图,正方形ABCD中,点E在边CD上,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC、EF于点G、H,连接EG、DH.则下列结论中:①BF=DE;②∠EGC=2∠BAG;③AD+DE=√3DH;④DE+BG=EH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有.。
1.3 正方形的 性质与判定 同步练习(课课练)附答案
1.3正方形的性质与判定1、四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A. OA=OB=OC=OD,AC⊥BDB. AB∥CD,AC=BDC. AD∥BC,∠A=∠CD. OA=OC,OB=OD,AB=BC2、在正方形ABCD中,AB=12cm,对角线AC、BD相交于O,则△ABO的周长是()A. 12+122B. 12+62C. 12+2D. 24+623、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连结AE交CD•于点F,•则∠AFC的度数是().(A)150°(B)125°(C)135°(D)112.5°4、已知正方形的面积为4,则正方形的边长为________,对角线长为________.5、如左下图,四边形ABCD是正方形,△CDE是等边三角形,则∠AED=______,∠AEB=______.6、如右上图,四边形ABCD是正方形,△CDE是等边三角形,求∠AEB的度数.7、已知:如左下图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,•BF与AD交于点F,求证:AE=BF.8、如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?9、如左下图,在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么特殊的四边形,你是如何判断的?10、如右上图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G .试说明AE =FG .11、以锐角△ABC 的边AC 、AB 为边向外作正方形ACDE 和正方形ABGF ,连结BE 、CF.(1)试探索BE 和CF 的关系?并说明理由。
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角。
正方形性质及判定练习题
正方形性质及判定练习题正方形是一种特殊的四边形,具有一些独特的性质。
在本文档中,我们将介绍关于正方形的性质以及如何判定一个形状是否为正方形的练题。
1. 正方形的定义- 正方形是一个四边形,具有四条相等的边和四个相等的角。
- 每个角都是直角,即90度。
2. 正方形的性质- 边长:正方形的四条边长度相等。
- 角度:正方形的每个角都是直角,即90度。
- 对角线:正方形的对角线相等且垂直相交于中点。
3. 正方形的判定练题1. 练题1:给出一个形状的四条边长A、B、C、D,如何确定它是否为正方形?- 答案:如果A = B = C = D,并且角ABC和角BCD均为直角(90度),则该形状为正方形。
2. 练题2:给出一个形状的四个顶点坐标(Ax, Ay),(Bx, By),(Cx, Cy),(Dx, Dy),如何确定它是否为正方形?- 答案:计算四条边的长度AB、BC、CD、DA,并检查是否满足A = B = C = D的条件。
同时,计算角ABC、BCD、CDA、DAB是否均为90度。
3. 练题3:给出一个形状的四个顶点坐标(Ax, Ay),(Bx, By),(Cx, Cy),(Dx, Dy),如何确定它是否为正方形?如果无法使用角度判定,请给出其他方法。
- 答案:计算四条边的长度AB、BC、CD、DA,并检查是否满足A = B = C = D的条件。
同时,计算AB和CD的斜率,如果斜率为相反数且BC和DA的斜率为相反数,那么该形状为正方形。
通过掌握正方形的定义、性质以及判定练题,我们能够更好地理解和识别正方形。
练题的完成也有助于加深对正方形性质的掌握。
希望这份文档对您有所帮助!。
2023学年九年级上学期数学同步精讲精练(北师大版)1-3 正方形的性质与判定(讲义)(含详解)
1.3正方形的性质与判定同步教材划重点知识点01正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.【点石成金】既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点02正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心. 【点石成金】正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点03正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点04特殊平行四边形之间的关系或者可表示为:知识点04顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.【点石成金】新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典例分析】【典例1】已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【变式1】如图四边形ABCD是正方形,点E、K分别在BC,AB上,点G 在BA的延长线上,且CE=BK=AG.以线段DE、DG为边作DEFG.(1)求证:DE=DG,且DE⊥DG.(2)连接KF,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想.【变式1-2】已知:如图,E为正方形ABCD的边BC延长线上的点,F 是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.【典例2】如图,四边形ABCD是边长为2的正方形,点G是BC 延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【变式2-1】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF和正方形BCMN连接FN,EC.求证:FN=EC.【变式2-2】如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是_______.【典例3】如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE 的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.【变式3-1】如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【变式3-2】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.【变式3-3】如图,矩形ABCD中,AD=6,DC=8,菱形EFGH 的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【典例4】E、F分别是正方形ABCD的边AD和CD上的点,若∠EBF=45°.(1)求证:AE+CF=EF.(2)若E点、F点分别是边DA、CD的延长线上的点,结论(1)仍成立吗?若成立,请证明,若不成立,写出正确结论并加以证明.【变式4】如图,在平面直角坐标系xoy中,边长为a(a为大于0的常数)的正方形ABCD 的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x 轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;【跟踪训练】1. 正方形具有而菱形不一定具有的性质是()A. 四条边相等B. 对角线互相垂直平分C. 对角线平分一组对角D. 对角线相等cm.2. 如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为( )2A.6B.8C.16D.不能确定3. 顺次连结对角线互相垂直的四边形各边的中点,所得的四边形是 ( )A. 矩形B. 菱形C. 正方形D. 梯形4.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A .31- B.35- C.51+ D. 51-5.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰三角形有( )A .4个B .6个C .8个D .10个6. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC边上的点E 处,折痕为GH .若BE :EC=2:1,则线段CH 的长是( ) A .3 B .4 C .5 D .67. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则12S S +的值为( )A.16B.17C.18D.198.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置。
正方形的性质与判定例题精讲和练习题及答案---侯老师
第三讲正方形的性质与判定、知识要点1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质:1 边的性质:对边平行,四条边都相等.2 角的性质:四个角都是直角.3 对角线性质:两条对角线互相垂直平分且相等,? 每条对角线平分一组对角.4 对称性:正方形是中心对称图形,也是轴对称图形.平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定1:对角线相等的菱形是正方形2:对角线互相垂直的矩形是正方形, 正方形是一种特殊的矩形3:四边相等, 有一个角是直角的四边形是正方形4:一组邻边相等的矩形是正方形5:一组邻边相等且有一个角是直角的平行四边形是正方形典型例题例 1 如图12-2-14 ,已知过正方形ABCD对角线BD上一点P,作PE⊥ BC于E,作PF⊥CD于F.试说明AP=EF.分析:由PE⊥BC,PF⊥CD知,四边形PECF为矩形,故有EF=PC,这时只需证AP=CP,由正方形对角线互相垂直平分知AP=CP.解:连结AC、PC,∵四边形ABCD为正方形,∴ BD垂直平分AC,∴ AP=CP.∵ PE⊥BC,PF⊥CD,∠ BCD=90°,∴四边形PECF为矩形,∴ PC=EF,∴ AP=EF.注意:①在正方形中,常利用对角线互相垂直平分证明线段相等.②无论是正方形还是矩形经常通过连结对角线证题,这样可以使分散条件集中.思考:由上述条件是否可以得到AP⊥ EF.提示:可以,延长AP交EF于N,由PE∥AB,有∠ NPE=∠ BAN.又∠ BAN=∠ BCP,而∠ BCP=∠ PFE,故∠ NPE=∠ PFE,而∠ PFE+∠ PEF=90°,所以∠ NPE+∠ PEF=90°,则AP⊥ EF.例 2 如图12-2-15 ,△ ABC中,∠ ABC=90°,BD平分∠ ABC,DE⊥ BC,DF⊥ AB,试说明四边形BEDF是正方形.解:∵∠ ABC=90°,DE⊥BC,∴ DE∥AB,同理,DF∥BC,∴BEDF是平行四边形.∵ BD平分∠ ABC,DE⊥BC,DF⊥AB,∴ DE=DF.又∵∠ ABC=90°,BEDF是平行四边形,∴四边形BEDF是正方形.思考:还有没有其他方法?提示:(有一种方法可以证四边形DFBE为矩形,然后证BE=DE,可得.另一种方法,可证四边形DFBE为菱形,后证一个角为90°可得)注意:灵活选择正方形的识别方法.例 3 如图12-2-16 所示,四边形ABCD是正方形,△ ADE是等边三角形,求∠ BEC的大小.分析:等边三角形和正方形都能提供大量的线段相等和角相等,常能产生一些等腰三角形,十分便于计算.在本题中,必须注意等边三角形与正方形不同的位置关系.在(1) 图中,△ABE 和△ DCE都是等腰三角形,顶角都是150°,可得底角∠ AEB与∠ DEC都是15°,则∠ BEC 为30°.而在(2) 图中,等边三角形在正方形内部,△ ABE和△ DCE是等腰三角形,顶角是30°,可得底角∠ AEB和∠ DEC为75°,再利用周角可求得∠ BEC=150 °.解:(1) 当等边△ ADE在正方形ABCD外部时,AB=AE,∠BAE=90°+60°=150°,所以∠ AEB=15°.同理可得∠ DEC=15°,则∠ BEC=60°-15°-15°=30°.(2) 当等边△ ADE在正方形ABCD内部时,AB=AE,∠ BAE=90°-60°=30°,所以∠ AEB=75°.同理可得∠ DEC=75°,则∠ BEC=360°-75°-75°-60°=150°.【中考考点】会用正方形的性质来解决有关问题,并能用正方形的定义来判断四边形是否为正方形.命题方向】本节出题比较灵活,填空题、选择题、证明题均可出现.正方形是特殊的平行四边形,考查正方形的内容,实质上是对平行四边形知识的综合,涉及正方形知识的题型较多,多以证明题形式出现.【常见错误分析】已知如图12-2-18 ,△ ABC中,∠C=90°,分别以AC 和BC为边向外作正方形ACFH 和正方形BCED,HM⊥BA的延长线于M,DK⊥AB的延长线于K.试说明AB=DK+HM.错解:延长DK到S,使KS=HM,连结SB.∵∠ 2=∠ 3,∠ 2+∠ 4=90°,∴∠ 3+∠ 4=90°.在△ ABC和△ SDB中,∵∠ ACB=∠ SBD=90°,BC=BD,∠2=90°-∠ 4=∠ 5∴△ ABC与△ SDB重合,∴ AB=SD=SK+DK,即AB=HM+DK.分析指导:由于S、B、C三点共线未经证明,所以∠ 2=∠3 的理由是不充足的,因此又犯了思维不严密的错误.正解:如图12-2-18 ,延长DK交CB延长线于S,下面证KS=MH.在△ ACB和△ SBD中,∵ BD=BC,∠ SBD=∠ ACB=90°,又∠ 2=∠ 3=∠ 5,∴△ ACB与△ SBD重合,∴AB=DS,BS=AC=AH.在△ BKS和△ AMH中,∵∠1=∠ 2=∠ 3,∠ AMH=∠ SKB=90°,BS=AH,∴△ BKS与△ AMH重合,∴ KS=HM,∴ AB=DK+HM.【学习方法指导】正方形是最特殊的平行四边形,它既是一组邻边相等的矩形,又是有一个角为直角的菱形,所以它的性质最多,易混淆.故最好把平行四边形、矩形、菱形、正方形列表写出它们的定义、性质、判定,这样更容易记忆和区分.三、作业正方形的判定.选择题(共8 小题)1.已知四边形ABCD是平行四边形,再从① AB=BC,②∠ ABC=90°,③ AC=BD,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①② B .选②③ C .选①③ D .选②④2.下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直3.下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ ABC=90°时,它是矩形;④ 当AC=BD时,它是正方形.A. 1 组 B . 2 组 C .3 组 D . 4 组5.四边形ABCD的对角线AC=BD,AC⊥BD,分别过A、B、C、 D 作对角线的平行线,所成的 四边形 EFMN 是( )A .正方形B .菱形C .矩形D .任意四边形6.如果要证明平行四边形 ABCD 为正方形,那么我们需要在四边形 ABCD 是平行四边形的基 础上,进一步证明( )A .AB=AD 且 AC ⊥BDB . AB=AD 且 AC=BDC .∠A=∠B 且 AC=BD D .AC 和 BD 互相垂直 平分7.下列命题中,真命题是()A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形8.如图,在△ ABC 中,∠ACB=90°,BC 的垂直平分线 EF 交 BC 于点 D ,交 AB 于点 E ,且 BE=BF , 添加一个条件,仍不能证明四边形 BECF 为正方形的是( )A . BC=ACB .CF ⊥BFC . BD=DFD . AC=BF二.填空题(共 6 小题)9.能使平行四边形 ABCD 为正方形的条件是 __________ (填上一个符合题目要求的条件 即可).10.如图,在 Rt △ABC 中,∠C=90°,DE 垂直平分 AC ,DF ⊥BC ,当△ ABC 满足条件 ____ 时,四边形 DECF是正方形.要求:①不再添加任何辅助线,②只需填一个符合要求的条件)11.如图,菱形 ABCD 的对角线相交于点 O ,请你添加一个条件: __________ ,使得该菱 形为正方形.12.如图,在四边形 ABCD 中, AB=BC=CD=D ,A 对角线 AC 与 BD 相交于点 O ,若不增加任何字 母与辅助线,要使四边形 ABCD 是正方形,则还需增加一个条件是 ____ .13.已知四边形 ABCD 中,∠A=∠B=∠C=90°, 若添加一个条件即可判定该四边形是正方形, 那么这个条件可以是 __________ .14.要使一个菱形成为正方形,需添加一个条件为 ____________ .三.解答题(共 8 小题)15.已知:如图,△ ABC 中,∠ ABC=90°, BD 是∠ABC 的平分线, DE ⊥AB 于点 E ,DF ⊥BC 于点 F .求证:四边形 DEBF 是正方形.16.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ ADB=∠ CDB;(2)若∠ ADC=9°0 ,求证:四边形MPND是正方形.17.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A 的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.18.如图,在△ ABC中,点D、E分别是边AB、AC的中点,将△ ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形.2)当△ ABC满足什么条件时,四边形ADCF是正方形?请说明理由.19.如图,分别以线段AB的两个端点为圆心,大于AB的长为半径作弧,两弧交于M、N 两点,连接MN,交AB于点D、C是直线MN上任意一点,连接CA、CB,过点D作DE⊥AC于点E,DF⊥BC 于点F.(1)求证:△ AED≌△ BFD;(2)若AB=2,当CD的值为 ________ 时,四边形DECF是正方形.20.如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥A C,MF⊥AD,垂足分别为E、F.1)求证:∠ CAB=∠ DAB;2)若∠ CAD=9°0 ,求证:四边形AEMF是正方形.21.如图,△ ABC 中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ ACB的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O 运动到何处时,且△ ABC 满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE ________ 是菱形吗?(填“可能”或“不可能”)22.已知:如图,△ ABC 中,点O是AC上的一动点,过点O作直线MN∥AC,设MN交∠ BCA 的平分线于点E,交∠ BCA的外角∠ ACG的平分线于点F,连接AE、AF.1)求证:∠ ECF=90°;2)当点O 运动到何处时,四边形AECF是矩形?请说明理由;(3)在(2)的条件下,△ ABC 应该满足条件:_________ ,就能使矩形AECF变为正方形.(直接添加条件,无需证明)参考答案与试题解析一.选择题(共8 小题)1.已知四边形ABCD是平行四边形,再从① AB=BC,②∠ ABC=90°,③ AC=BD,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1 或 2 进行判定.2.下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直考点:正方形的判定;对顶角、邻补角;平行四边形的性质;矩形的性质.分析:根据对顶角的定义,正方形的判定,平行四边形的性质,矩形的性质对各选项分析判断利用排除法求解.解答:解:A、相等的角一定是对顶角错误,例如,角平分线分成的两个角相等,但不是对顶角,故本选项错误;B、四个角都相等的四边形一定是矩形,不一定是正方形,故本选项错误;C、平行四边形的对角线互相平分正确,故本选项正确;D、矩形的对角线一定相等,但不一定垂直,故本选项错误.故选:C.点评:本题考查了正方形的判定,平行四边形的性质,矩形的性质,对顶角的定义,熟记各性质与判定方法是解题的关键.3.下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.专题:证明题.分析:做题时首先熟悉各种四边形的判定方法,然后作答.解答:解:A、一组对边平行且相等的四边形是平行四边形,(平行四边形判定定理);正确.B、一组对边相等且有一个角是直角的四边形是矩形,不一定是矩形,还可能是不规则四边形,错误.C、一组邻边相等的平行四边形是菱形,正确;D、一组邻边相等的矩形是正方形,正确.故选B.点评:本题主要考查各种四边形的判定,基础题要细心.4.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ ABC=90°时,它是矩形;④ 当AC=BD时,它是正方形.A. 1 组B.2 组C.3组D.4 组考点:正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.分析:根据邻边相等的平行四边形是菱形可判断①正确;根据所给条件可以证出邻边相等,可判断②正确;根据有一个角是直角的平行四边形是矩形可判断③正确;根据对角线相等的平行四边形是矩形可以判断出④错误.解答:解:①根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形正确;②∵四边形ABCD是平行四边形,∴BO=O,D∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故②正确;③根据有一个角是直角的平行四边形是矩形可知③正确;故不正确的有 1 个.故选: A .点评: 此题主要考查了菱形的判定、矩形的判定、正方形的判定,关键是熟练掌握 三种特殊平行四边形的判定定理.5.四边形 ABCD 的对角线 AC=BD ,AC ⊥BD ,分别过 A 、B 、C 、 D 作对角线的平行线,所成的 四边形 EFMN 是( ) A. 正方形 B .菱形 C .矩形 D . 任意四边形考点:正方形的判定. 分析:根据平行线的性质和判定得出∠ NAO ∠= AOD ∠= N=90°, EN=NM=FM=E ,F 进而 判断即可.解答: 证明:如图所示:∵分别过 A 、B 、 C 、D 作对角线的平行线,∴AC ∥MN ∥EF ,EN ∥BD ∥MF ,∵对角线 AC=BD ,AC ⊥BD ,∴∠ NAO ∠= AOD ∠= N=90°, EN=NM=FM=,EF∴四边形 EFMN 是正方形.故选: A .④ 根据对角线相等的平行四边形是矩形可知当 AC=BD 时,它是矩形, 不是正方形, 故④错误;点评:此题主要考查了正方形的判定以及平行线的性质和判定等知识,熟练掌握正方形的判定定理是解题关键.6.如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C .∠A=∠B且AC=BD D.AC 和BD互相垂直平分考点:正方形的判定.分析:根据正方形的判定对各个选项进行分析从而得到最后的答案.解答:解:A、根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;B、根据对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形;C、一组邻角相等的平行四边形是矩形,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;D、对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形.故选B.点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.7.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.解答:解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.点评:本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.8.如图,在△ ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()考点:正方形的判定;线段垂直平分线的性质. 分析: 根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有 BE=EC , BF=FC 进而得出四边形 BECF 是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分 别分析得出即可.解答: 解:∵EF 垂直平分 BC ,∴BE=EC , BF=CF ,∵BF=BE ,∴BE=EC=CF=B ,F∴四边形 BECF 是菱形;当 BC=AC 时,∵∠ACB=90°,则∠ A=45°时,菱形 BECF 是正方形.∵∠A=45°,∠ ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形 BECF 是正方形.故选项 A 正确,但不符合题意; 当 CF ⊥BF 时,利用正方形的判定得出, 菱形 BECF 是正方形, 故选项 B正确,但不符合题意;B .CF ⊥BFC . BD=DFD . AC=BFA . BC=AC当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项 D 错误,符合题意.故选:D.点评:本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.二.填空题(共 6 小题)9.能使平行四边形ABCD为正方形的条件是AC=BD且AC⊥BD (填上一个符合题目要求的条件即可).考点:正方形的判定;平行四边形的性质.专题:开放型.分析:对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,矩形和菱形的结合体是正方形.解答:解:可添加对角线相等且对角线垂直或对角线相等,且一组邻边相等;或对角线垂直,有一个内角是90°.答案不唯一,此处填:AC=BD且AC⊥BD.点评:本题考查正方形的判定,需注意它是菱形和矩形的结合.10.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ ABC 满足条件AC=BC 时,四边形DECF是正方形.要求:①不再添加任何辅助线,②只需填一个符合要求的条件)考点:正方形的判定.专题:计算题;开放型.分析:由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF是正方形推出.解答:解:设AC=BC,即△ ABC为等腰直角三角形,∵∠ C=90°,DE垂直平分AC,DF⊥BC,∴∠C=∠CED=∠EDF=∠DFC=90°,DF= AC=CE,DE= BC=CF,∴DF=CE=DE=C,F∴四边形DECF是正方形,故答案为:AC=BC.点评:此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ ABC满足的条件.11.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:AC=BD或AB⊥BC ,使得该菱形为正方形.考点:正方形的判定;菱形的性质.专题:压轴题.分析:根据正方形判定定理进行分析.解答:解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.点评:本题答案不唯一,根据菱形与正方形的关系求解.12.如图,在四边形ABCD中,AB=BC=CD=D,A对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是AC=BD或AB⊥BC .考点:正方形的判定;菱形的判定.专题:开放型.分析:根据菱形的判定定理及正方形的判定定理即可解答.解答:解:∵在四边形ABCD中,AB=BC=CD=DA∴四边形ABCD是菱形∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.点评:解答此题的关键是熟练掌握正方形的判定定理,即有一个角是直角的菱形是正方形.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD 等.考点:正方形的判定;矩形的判定与性质.专题:开放型.分析:由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.解答:解:由∠ A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD 等.故答案为:AB=AD或AC⊥BD 等.点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.14.要使一个菱形成为正方形,需添加一个条件为有一个角是直角或对角线相等.考点:正方形的判定;菱形的性质.专题:开放型.分析:根据菱形的性质及正方形的判定进行分析,从而得到最后答案.解答:解:要使一个菱形成为正方形,需添加一个条件为:有一个角是直角或对角线相等.点评:解答此题的关键是熟练掌握正方形的判定定理:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形.三.解答题(共8 小题)15.已知:如图,△ ABC 中,∠ ABC=90°,BD是∠ABC的平分线,DE⊥AB 于点E,DF⊥BC 于点F.求证:四边形DEBF是正方形.考点:正方形的判定.专题:证明题.分析:由DE⊥AB,DF⊥BC,∠ ABC=90°,先证明四边形DEBF是矩形,再由BD是∠ABC的平分线,DE⊥AB 于点E,DF⊥BC 于点F得出DE=DF判定四边形DEBF是正方形.解答:解:∵ DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,又∵∠ ABC=90°,∴四边形BEDF为矩形,∵BD是∠ ABC的平分线,且DE⊥AB,DF⊥BC,∴DE=D,F∴矩形BEDF为正方形.点评:本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.16.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.1)求证:∠ ADB=∠ CDB;2)若∠ ADC=9°0 ,求证:四边形MPND是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△ CBD,由全等三角形的性质即可得到:∠ ADB=∠ CDB;(2)若∠ ADC=9°0 ,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.解答:证明:(1)∵对角线BD平分∠ ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,∴△ABD≌△ CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠ PMD∠= PND=9°0 ,∵∠ ADC=9°0 ,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45° ∴PM=M,D∴四边形MPND是正方形.点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.17.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A 的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠ CDB=9°0 ,再根据正方形的判定推出即可.解答:(1)证明:∵ DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D 为AB中点,∴AD=BD,∵CE=AD,∴BD=C,E∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°, D 为AB中点,∴CD=B,D∴四边形BECD是菱形;(3)当∠ A=45°时,四边形BECD是正方形,理由是:解:∵∠ ACB=90°,∠ A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠ CDB=9°0 ,∵四边形BECD是菱形,∴四边形BECD是正方形,即当∠ A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.18.如图,在△ ABC中,点D、E分别是边AB、AC的中点,将△ ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形.(2)当△ ABC满足什么条件时,四边形ADCF是正方形?请说明理由.考点:正方形的判定;平行四边形的判定.分析:(1)利用旋转的性质得出点A、E、C三点共线,点D、E、F 三点共线,且AE=CD,DE=FE,即可得出答案;(2)首先得出CD⊥AB,即∠ ADC=9°0 ,由(1)知,四边形ADCF是平行四边形,故四边形ADCF是矩形.进而求出CD=AD即可得出答案.解答:(1)证明:∵△ CFE 是由△ ADE绕点E旋转180°得到,∴点A、E、C三点共线,点D、E、F 三点共线,且AE=CE,DE=FE,故四边形ADCF是平行四边形.(2)解:当∠ ACB=90°,AC=BC时,四边形ADCF是正方形.理由如下:在△ABC中,∵ AC=BC,AD=BD,∴CD⊥AB,即∠ ADC=9°0 .而由(1)知,四边形ADCF是平行四边形,∴四边形ADCF是矩形.又∵∠ ACB=90°,∴,故四边形ADCF是正方形.点评:此题主要考查了平行四边形的判定以及正方形的判定等知识,得出四边形ADCF是矩形是解题关键.19.如图,分别以线段AB的两个端点为圆心,大于AB的长为半径作弧,两弧交于M、N。
正方形的性质与判定 第3课时 正方形的性质与判定的综合应用 同步练习(含答案)
第六章特殊平行四边形3 正方形的性质与判定第3课时正方形的性质与判定的综合应用基础闯关知识点一:在正方形中解决问题的一般思路思路1:寻找相等的边,利用等腰三角形的性质解决问题1.如图,以正方形ABCD的对角线AC为边作菱形AEFC,点F在DC的延长线上,连接AF交BC 于点G,则∠FGC=( )A.67.5°B.45°C.60°D.75°2.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE=.思路2:先确定或构造正方形中的垂直关系,再解决问题3.如图,正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为( )4.如图,边长分别为4和2的两个正方形ABCD和CEFG 并排放在一起,连接EG并延长交BD于点N,交AD于点M,则线段MN的长是.知识点二:正方形性质的综合应用应用1:利用正方形的性质证明线段相等5.如图,正方形ABCD的对角线AC,BD相交于点O,E是OC上一点,连接EB,过点A作AM⊥BE,垂足为点M,AM与BD相交于点F.求证:OE=OF.应用2:利用正方形的性质判定线段的数量与位置关系6.如图,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE 的垂直平分线上,PE交CD于点F.猜测PC和PE的数量及位置关系,并给出证明.能力提升素养提升【构造法在正方形中的应用】方法1:构造直角三角形斜边上的中线7.如图,四边形ABCD是边长为8的正方形,点E在边CD上,DE=2,作EF∥BC,分别交AC,AB于点G,F,M,N分别是AG,BE的中点,则MN的长是( )A.4B.5C.6D.7方法2:构造三角形的中位线8.如图,边长为1的正方形EFGH在边长为4的正方形ABCD所在平面上移动,始终保持EF∥AB,CK=1.线段KG的中点为M,DH的中点为N,则线段MN的长为( )【辅助线在正方形中的应用】方法1:连接法9.如图,把正方形ABCD绕点A按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H.求证:HG=HB.方法2:作垂线法10.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C,D不重合),BE⊥EF,且∠ABE+∠CEF=45°.求证:四边形ABCD是正方形.方法3:已知线段的和,用延长法11.如图,在正方形ABCD中,E,F分别是BC,CD上的点,连接AE,EF,AF,若DF+BE=EF,求∠EAF 的度数.方法4:求证线段的和,用截取法12.如图,正方形ABCD中,点F在CD的延长线上,点E在BC的延长线上,∠EAF=45°.求证:BE=EF+DF.培优创新【模型观念——正方形中的“对角互补”模型】13.(1)如图,在正方形ABCD中,点O是对角线AC,BD的交点,过点O作射线OM,ON分别交BC,CD 于点E,F,且∠EOF=90°,OC,EF交于点G.有下列结论:①△COE≌△DOF;②CF=BE;③四边形CEOF的面积为正方形ABCD面积的④OF²+OE²=EF².其中正确的是( )A.①②③④B.①②③C.①②④D.③④(2)如图,正方形ABCD的对角线相交于点O,直角∠MON的两边分别交AD,CD于点M,N.①若AM=5,CN=2,则正方形ABCD的面积为.②若四边形MOND的面积是1,则AB的长为.(3)如图,将n个边长都为2的正方形按如图所示摆放,点分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.nB.n-1(4)如图,正方形ABCD的边长为4,对角线AC,BD相交于点O,点E,F分别在BC,CD的延长线上,且CE=2,DF=1,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为.参考答案1.A2.120°3.B[解析]∵BD和EG分别为正方形ABCD和CEFG的对角线,∴∠DGN=∠CGE=∠NDG=45°,∴∠DNG=90°,即DN⊥MG.又∵BD平分∠ADC,∴N为MG的中点.∵CD=4,CG=2,∴DG=2,∴DM=2,∴MG=5.证明:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO,∴△BOE≌△AOF(AAS),∴OE=OF.6.解:PC=PE,PC⊥PE.证明:由正方形的轴对称性质可得∠PAD=∠PCD,PA=PC.∵点P位于AE的垂直平分线上,∴PA=PE,∴PC=PE.∵PA=PE,∴∠PAD=∠E,∴∠PCD=∠E.∵∠PFC=∠DFE,∴∠CPF=∠FDE.∵∠ADC=90°,∴∠FDE=90°,∴∠CPF=90°,∴PC⊥PE.7.B [解析]如图,连接FM,FC.∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°.∵EF∥BC,∴∠BFE+∠ABC=180°,∴∠BFE=90°,∴四边形BCEF为矩形.∵N是BE的中点,四边形BCEF为矩形,∴点N为FC的中点,BE=FC.∵四边形ABCD是正方形,∴∠BAC=45°.又∵∠AFG=90°,∴△AFG为等腰直角三角形.∵M是AG的中点,∴AM=MG,∴FM⊥AG,∴△FMC为直角三角形.∵点N为FC的中点,∵四边形ABCD是边长为8的正方形,DE=2,∴BC=CD=8,CE=6.在Rt△BCE中,由勾股定理得BE=10,∴FC=10,8.D [解析]如图,连接GN并延长,交CD的延长线于点P,连接KP.∵四边形ABCD、四边形EFGH都是正方形,EF∥AB,∴∠C=90°,EF∥GH∥CD∥AB,∴∠HGN=∠DPN,且DN=NH,∠DNP=∠GNH,∴△DNP≌△HNG(AAS),∴DP=GH=1,PN=GN,∴CP=5.∴在Rt△CPK中,9.证明:如图,连接AH.由题意知∠B=∠G=90°,AG=AB.在Rt△AGH和Rt△ABH中,∴Rt△AGH≌Rt△ABH(HL),∴HG=HB.10.证明:如图,作EM⊥BC于点M.∵四边形ABCD是矩形,∴AB⊥BC,∴EM∥AB,∴∠ABE=∠BEM,∠BAC=∠CEM.∵∠ABE+∠CEF=45°,∴∠BEM+∠CEF=45°.∵BE⊥EF,∴∠CEM=45°=∠BAC,∴∠BAC=∠ACB=45°,∴AB=BC,∴四边形ABCD是正方形.11.解:如图,延长CB到点G,使BG=DF.∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABE=90°,∴∠ABG=∠D=90°.在△ADF与△ABG中,∴△ADF≌△ABG(SAS),∴AG=AF,∠GAB=∠DAF.∵DF+BE=EF,EG=BG+BE=DF+BE,∴EG=EF.在△AGE与△AFE中,∴△AGE≌△AFE(SSS),∴∠GAE=∠EAF,∴∠GAE=∠GAB+∠BAE=∠DAF+∠BAE=∠EAF.∵∠BAD=90°,∴∠EAF=45°.12.证明:如图,在BE上取一点G,使BG=DF.∵四边形ABCD是正方形,∴AD=AB,∠B=∠ADC=∠ADF=90°.在△ADF和△ABG中≌△ABG(SAS),∴∠BAG=∠DAF,AG=AF.∵∠BAG+∠DAG=90°,∴∠DAF+∠DAG=90°,即∠FAG=90°.∵∠EAF=45°,∴∠GAE=45°,∴∠GAE=∠FAE.在△AFE和△AGE 中,∴EF=EG,∴EF+DF=EG+BG=BE,∴BE=EF+DF.13.(1)A (2)①49 ②2(3)B。
正方形的性质与判定练习题
(1)正方形的一条对角线把正方形分成两个全等的
等腰直角三角形(
√
) )
(3)如果一个菱形的对角线相等,那么它一定 是正方形 (
√
)
(4)如果一个矩形的对角线互相垂直,那么它 一定是正方形 ( 是正方形(
√
)
(5)四条边相等,且有一个角是直角的四边形
√
)
×
(2)对角线互相垂直且相等的四边形是正方形(
A
D
G B
BE=CF,探索图中AE与BF的关系。
F
E
C
10、如图,点E、F在正方形ABCD的边BC、CD上,
11、如图,在正方形ABCD中,E在BC的延长线上,
且CE=AC,AE交CD于F,则求∠AFC的度数。
A
D
F
B
C
E
12、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,
DF⊥AC,垂足分别是E,F. 1)试说明:DE=DF 2)只添加一个条件,使四边形EDFA是正方形.
A
G B C
D
F E
A
D G
F
B C E
10、如图,M为正方形ABCD边AB的中 点,E是AB延长线上一点,MN⊥DM, 且交∠CBE的平分线于点N。 (1)求证:MD=MN (2)若将上述条件中的“M是AB的中点” 改为“M为AB上任意一点”,其它条件不 变,问结论MD=MN是否仍然成立。
D F
●
C N M B
D P
●
C N
A
E A
M B
E
11、探究三: 若正方形OEFG继续旋转时AM与
BN之间的关系是否还成立? 探究四: 如图,有两个大小不等的两个正 方形,其中小正方形的面积是大正方形面 积的一半,若阴影部分的面积为8,则小正 方形的边长为腰直角三角形OAB的两条直 角边AO和BO,使AO=OC,BO=OD 求证:四边形ABCD是正方形。 A O B C D
6、正方形的判定和性质 - 答案
正方形的判定和性质探索活动1、思考:你能类比矩形、菱形的概念给正方形下个定义吗?正方形的概念:____________并且____________的_________是正方形。
2、探究:(1)比较平行四边形、矩形、菱形、正方形之间的关系(2)探索正方形的性质请大家思考正方形有哪些性质?正方形是一个特殊的平行四边形,正方形形具有平行四边形的所有性质;正方形还是特殊的矩形,也是特殊的菱形,所以正方形具有矩形、菱形的所有性质正方形的性质:从对称性看:正方形既是轴对称图形,又是中心对称图形从边看:正方形的四边相等,对边平行从角看:正方形4个角都是直角从对角线看:正方形的两条对角线相等且互相垂直平分;每一条对角线平分一组对角思考:正方形具有而一般矩形不具备的性质:正方形具有而一般菱形不具备的性质:探索正方形的判定方法:问题:有一个角是直角的是正方形;有一组邻边相等的是正方形;对角线相等的是正方形;对角线垂直的是正方形;对角线的四边形是正方形。
思路:(1)先说明这个平行四边形是,再说明这个矩形也是;(2)先说明这个平行四边形是,再说明这个菱形也是。
归纳总结例1.如图,四边形ABCD 和四边形CEFG 都是正方形,试探索BG 与DE 的关系.例2.在正方形ABCD 中,点E、F、G、H 分别在各边上,且AE=BF=CG=DH.四边形EFGH 是正方形吗?为什么?题型一:正方形的性质-求角度1.如图,正方形ABCD O,则AOB ∠的度数是()A.30︒B.45︒C.60︒D.90︒【答案】D 【详解】解:∵四边形ABCD 是正方形,∴AC BD ⊥,∴90AOB ∠=︒,故选:D.2.如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 交对角线AC 于点F,连接DF ,若35ABE ∠=︒,则CFD ∠的度数为()A.80°B.70°C.75°D.45°【答案】A 【详解】解:∵四边形ABCD 是正方形,∴,45BC CD BAC ACB ACD =∠=∠=∠=︒,∵35ABE ∠=︒,∴80BFC ABE BAC ∠=∠+∠=︒,在BCF △和DCF 中,BC CD ACB ACD CF CF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BCF DCF ≌△△,∴80CFD CFB ∠=∠=︒,故选:A.3.如图,在正方形ABCD 的外侧,作等边ADE V ,则AEB ∠=.【答案】15︒【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90BAD ∠=︒,∵ADE 是等边三角形,,∴AD AE =,60DAE ∠=︒,∴AB AE =,150BAE ∠=︒,∴()1180150152AEB ∠=︒-︒=︒,故答案为:15︒.4.如图,正方形ABCD 中,E 在BC 延长线上,AE,BD 交于点F,连接FC,若32E ∠= ,那么BCF ∠的度数是.【答案】58°【详解】解:∵在正方形ABCD,AD=CD,∠ADF=∠CDF=45°,DF=DF,∴△ADF≌△CDF(SAS),∴∠DAF=∠DCF,又∵AD∥BC,∠E=32°,∴∠DAF=32°,∴∠DCF=32°,∴∠BCF=∠DCB-∠DCF=90°-32°=58°.故答案为:58°.5.如图,在正方形ABCD 中,M 是正方形内一点,且MC MD AD ==.求BAM ∠的度数.【答案】15︒【详解】解:在正方形ABCD 中,90ADC BAD ∠=∠=︒,AD DC =,MC MD AD ==,AD DC MD MC ∴===,在DMC 中,DM DC MC ==,则DMC 是等边三角形,60MDC ∴∠=︒,30MDA ∴∠=︒,在ADM △中,30ADM ∠=︒,MD AD =,则()118030752DAM ∠=︒-︒=︒;90907515BAM DAM ∴∠=︒-∠=︒-︒=︒.6.如图,BF 平行于正方形ADCD 的对角线AC,点E 在BF 上,且AE=AC,CF∥AE,求∠BCF.【答案】105°【详解】作AO⊥FB 的延长线,BQ⊥AC∵BF∥AC,∴AO∥BQ 且∠QAB=∠QBA=45°∴AO=BQ=AQ=12AC ∵AE=AC ∴AO=12AE∴∠AEO=30°∵BF∥AC∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE∴∠CFE∠CAE=30°∵BF∥AC∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°题型二:正方形的性质-求长度1.正方形的一条对角线长为8,则正方形的边长为()A.2B.4C.D.【答案】C【详解】解:设正方形的边长为a,∵正方形的一条对角线之长为8,a a+=,∴2228∴a=,故选C.2.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和3,则正方形的边长是..【详解】试题分析:∵四边形ABCD是正方形,∴AB=CD,∠ABM+∠CBN=90°.∵AM⊥MN,CN⊥BN,∴∠BAM=∠CBN,∠AMB=∠CNB=90°.∴△AMB≌△BCN(AAS).∴BM=CN.∵点A、C到直线L的距离分别是1和3,即AM=1,CN=3,∴BM=3.∴AB ==3.如图,在边长为ABCD 中,30∠=︒CDE ,DE CF ⊥则AF 的长为()A.4-B.4C.4-D.4-【答案】D 【详解】解∶∵四边形ABCD 是正方形,∴90FBC DCE CD BC ∠=∠=︒==,Rt DCE V 中,30∠=︒CDE ,∴12CE DE =,设CE x =,则2DE x =,根据勾股定理得∶222DC CE DE +=,即(()2222x x +=,解得∶4x =±(负值舍去),∴4CE =,∵DE CF ⊥,∴90DOC ∠=︒,∴60DCO ∠=︒,∴906030BCF CDE ∠=︒-︒=︒=∠,∵DCE CBF CD BC ∠=∠=,,∴()ASA DCE CBF ≌,∴4BF CE ==,∴4AF AB BF =-=-.故选∶D.4.如图,边长为6的正方形ABCD 中,M 为对角线BD 上的一点,连接AM 并延长交CD 于点P.若PM PC =,则AM 的长为()A.)31B.)32C.)61D.)62【答案】C【详解】∵边长为6的正方形ABCD ,∴,,90BA BC ABM CBM DAB ADC BCD =∠=∠∠=∠=∠=︒,∵BA BC ABM CBM BM BM =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABM CBM ≌,∴BAM BCM ∠=∠,∴9090BAM BCM ︒-∠=︒-∠,∴DAM DCM ∠=∠,∵PM PC =,∴PMC DCM ∠=∠,∴22APD PMC DCM DCM DAM ∠=∠+∠=∠=∠,∴390APD DAM DAM ∠+=∠=︒,∴30DAP ∠=︒,∴2AP DP =,∵222AP DP AD =+∴()22226DP DP =+,解得DP =∴262AP DP PM PC CD DP ====-=-∴)661AM AP PM =-==,故选C.5.如图,在正方形ABCD 中,将边BC 绕点B 逆时针旋转至BC ',连接CC ',DC ',若90CC D '∠=︒,5AB =,则线段C D '的长度为.【详解】解:过点B 作BE CC '⊥于点E ,四边形ABCD 是正方形,BC CD ∴=,90BCD ∠=︒,90BCE C CD '∴∠+∠=︒,90BCE CBE ∠+∠=︒ ,C CD CBE '∴∠=∠,又BEC CC D '∠=∠ ,在BCE 和'CDC △中,CBE C CD BEC CC D BC CD ∠=∠⎧⎪∠=∠='⎨'⎪⎩,()AAS BCE CDC '∴≌ ,CE C D '∴=,将边BC 绕点B 逆时针旋转至BC ',5BC BC CD '∴===,又BE CC '⊥ ,CE C E C D ''∴==,222C D C C CD ''+= ,2525C D '∴=,C D '∴=,6.如图,正方形ABCD 的对角线交于点O ,点E 是线段OD 上一点,连接EC ,若BF CE ⊥于点F ,BF 是DBC ∠的角平分线,6AB =,则OE 的长为.【答案】6-【详解】解: 四边形ABCD 是正方形,6BC AB ∴==,90ABC ∠=︒,在Rt ABC △中,AC === 正方形ABCD 的对角线AC ,BD 交于点O,1122BO BD AC ∴===BF CE ⊥ 于点F ,90BFE BFC ∴∠=∠=︒,BF 是DBC ∠的角平分线,EBF CBF ∴∠=∠,在BFE △和BFC △中,90EBF CBF BF BF BFE BFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴(ASA)BFE BFC ≌ ,6BE BC ∴==,6OE BE BO ∴=-=-故答案为:6-.题型三:正方形的性质-求周长和面积1.正方形一条对角线为2,则正方形的面积为.【答案】2【详解】解: 正方形的一条对角线的长为2,∴这个正方形的面积21222=⨯=.故答案为:2.2.如图,边长为2的正方形ABCD 的对角线相交于点O,过点O 的直线分别交AD 、BC 于E、F,则阴影部分的面积是.【答案】1【详解】解:在正方形ABCD 中,AD BC ∥,OD OB =,∴ODE OBF ∠=∠,又DOE BOF ∠=∠,∴()ASA DEO BFO ≌△△,DEO BFO S S ∴=△△,阴影面积=BOC S 12112=⨯⨯=.故答案为:1.3.如图,正方形ABCD 中,AB=1,点P 是对角线AC 上的一点,分别以AP、PC 为对角线作正方形,则两个小正方形的周长的和是.【答案】4cm.【详解】解:设小正方形的边长为x,则较大的正方形的边长为1-x,故两个小正方形的周长和=4x+4(1-x)=4cm.4.如图,正方形ABCD 和正方形EFGO 的边长都是2,正方形EFGO 绕点O 旋转时,两个正方形重叠部分的面积是()A.1B.2C.3D.4【答案】A 【详解】解:如图,设AB 与OE 交点N,BC 与OG 交点M,∵四边形ABCD 和四边形EFGO 都是正方形,∴,45,90OB OC OBA OCB BOC EOG =∠=∠=︒∠=∠=︒,∴BON MOC ∠=∠.在OBN △与OCM 中,OBN OCM OB OC BON COM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA OBN OCM ∴≌ ,OBN OCM S S ∴= ,1122144OBC ABCD OMBN S S S ∴===⨯⨯=正方形四边形 .故选:A.5.正方形ABCD 的边长为2,将该正方形绕顶点A 在平面内旋转45︒,则旋转后的图形与原图形重叠部分的面积为()A.4B.4-C.10-D.8-【答案】A 【详解】解:设C D ''交BC 于点M ,连AM ,四边形ABCD 是边长为2的正方形,2AD AB ∴==,90D B BAD ∠=∠=∠=︒,由旋转得AD AD '=,D D '∠=∠,45DAD '∠=︒,AD AB '∴=,90D B '∠=∠=︒,45BAD BAD DAD ''∠=∠-∠=︒,在Rt AD M '△和Rt ABM 中,AM AM AD AB=⎧⎨'=⎩,∴Rt Rt (HL)AD M ABM '△≌△,122.52MAD MAB BAD ''∴∠=∠=∠=︒,在AB 上截取BE BM =,连接EM ,则45BEM BME ∠=∠=︒,22.5EMA BEM MAB ∴∠=∠-∠=︒,EMA MAB ∴∠=∠,AE ME ∴=,∴2BE +=,2BM BE ∴==,1122)222AD M ABM S S AB BM '∴==⋅=⨯⨯=-△△,224AD M ABM S S S '∴=+=-+-=-△△阴影,故选:A.6.如图,已知正方形,ABCD G 为CD 边上一点(不与端点重合),以CG 为一边作正方形CGFE ,连接,,BD BF DF ,若4AB =,则BDF V 的面积为.【答案】8【详解】解:连接CF ,∵四边形ABCD 和四边形CGFE 是正方形,∴45DBC FCE ∠=∠=︒,∴BD CF ∥,∴1144822BDF BDC ABCD S S S ===⨯⨯= 正方形,故答案为:8.7.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S +的值为.【答案】68【详解】解:如图所示,连接BQ FH EG ,,,过点F 作FR AD ⊥于点R ,过点G 作GK CD ⊥于点K ,∵四边形ABCD ,四边形EFGH ,四边形BPQS 是正方形,AC 是对角线,BQ 是对角线,∴90SQP CSQ QPA ∠=∠=∠=︒,45BCA BAC CQS PQA SQB PQB SBQ PBQ ∠=∠=∠=∠=∠=∠=∠=∠=︒,∴,,,APQ QPB BQS CSQ △△△△是等腰直角三角形,且APQ QPB BQS CSQ ≌≌≌△△△△,同理,,,,,,,,,ARF ERF EOF EOH EDH HOG HKG GKC GOF △△△△△△△△△是等腰直角三角形,且ARF ERF EOF EOH EDH HOG HKG GKC GOF ≌≌≌≌≌≌≌≌△△△△△△△△△,∴149ADC S S =△,212ABC S S =△,12ADC ABC ABCD S S S +=正方形△△,∴124111121212123236689222S S +=⨯⨯⨯+⨯⨯⨯=+=,故答案为:68.题型四:正方形的性质运用1.菱形、矩形、正方形都具有的特点是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角线平分对角【答案】C【详解】解:A.矩形的对角线不一定互相垂直,故不符合题意;B.菱形的对角线不一定相等,故不符合题意;C.菱形、矩形、正方形的对角线互相平分,故符合题意;D.矩形的对角线不一定平分对角,故不符合题意;故选:C.2.下列性质中,平行四边形,矩形,菱形,正方形共有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分内角【答案】C【详解】解:∵平行四边形的对角线互相平分,∴矩形,菱形,正方形的对角线也必然互相平分.故选:C.3.在学习了“中心对称图形——平行四边形”之后,平行四边形、矩形、菱形、正方形的关系可以用下面的关系图表示,则②处所填图形的名称应为.【答案】正方形【详解】解:由题意可知,④是平行四边形,①和③分别是矩形和菱形,②是正方形.故答案为:正方形.4.如图,以ABC 的边AB 、AC 为边分别向外作正方形ADEB 、ACGF ,连接DC 、BF 相交于M ,DC 、AB 相交于N .(1)从旋转的角度看,ADC △是绕点逆时针旋转度,可以得到ABF △;(2)CD 与BF 有何关系,请说明理由.【答案】(1)A ,90(2)CD BF =,DC BF ⊥,理由见解析【详解】(1)解:由题意知,从旋转的角度看,ADC △是绕点A 逆时针旋转90度,可以得到ABF △;故答案为:A ,90;(2)解:CD BF =,CD BF ⊥,理由如下:∵四边形ADEB 、四边形ACGF 均为正方形,∴90AD AB AC AF DAB CAF ==∠=︒=∠,,,∴DAB BAC CAF BAC ∠+∠=∠+∠,即DAC BAF ∠=∠,∵AD AB DAC BAF AC AF =∠=∠=,,,∴()SAS DAC BAF ≌,∴CD BF =,CDA FBA ∠=∠,∵180CDA DAN DNA FBA BMN BNM ∠+∠+∠=︒=∠+∠+∠,DNA BNM ∠=∠,∴90BMN DAN ∠=∠=︒,∴DC BF ⊥.题型五:最值问题1.如图,四边形ABCD 为正方形,M ,N 分别是AB ,BC 边的中点,请在对角线AC 上找一点P ,使PM PN +的值最小(不写作法,保留作图痕迹).【答案】见解析【详解】解:如图所示,点P 即为所求.连接BD 交AC 于O,连接NP 并延长交AD 于T,由正方形的对称性可知M T 、关于AC 对称,∴PM PT =,∴PM PN PT PN +=+,∴当P T M 、、三点共线时,PT PN +最小,即PM PN +最小,此时点P 与点O 重合.2.如图所示,正方形ABCD 的面积为9,ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD PE +的和最小,则这个最小值为()A.4.5B.9C.2.5D.3【答案】D 【详解】解:设BE 与AC 交于点P',连接BD ,DP ',∵点B 与D 关于AC 对称,∴''P D P B =,∴''''P D P E P B P E BE +=+=∵正方形ABCD 的面积为9,∴3AB =,又∵ABE 是等边三角形,∴3BE AB ==.故选:D3.正方形ABCD 中,点E 在AB 上,3AE =,1BE =,点P 在AC 上,EP BP +的最小值.【答案】5【详解】如图,连接BD 交AC 于点O ,连接ED 与AC 交于点P,连接PB ,∵四边形ABCD 是正方形,∴BD AC ⊥,且OB OD =,∴BP PD =,则BP EP ED +=,此时最短,∵3AE =,134AD =+=,∴根据勾股定理得22222234255ED AE AD =+=+==,∴5ED BP EP =+=,即BP EP +的最小值为:5,故答案为:5.4.如图,正方形ABCD 的边长为2,E 是CD 的中点,在对角线AC 上有一点P,则PD PE +的最小值是.【详解】连接BP ,BE ,因为正方形ABCD 关于对角线AC 对称,点B 与点D 是对称点,∴PB PD =,PD PE PB PE+=+当点P 在线段BE 上时,PD PE PB PE BE +=+=,为最小值.∵正方形ABCD 的边长为2,∴2BC CD ==,∵点E 是CD 的中点,∴112CE CD ==,∵在正方形ABCD 中,90BCD ∠=︒,∴在Rt BCE 中,BE ==∴PD PE +5.如图,在正方形ABCD 中,点E AB 上一点,且2AE =,4BE =,点P 是边AD 上的动点(P 与A ,D 不重合),则PE PC +的最小值是.【答案】10【详解】解:作点E 关于AD 的对称点E ',连接CE '交AD 于点P ,∴PE PE '=,AE AE '=,∴PE PC PE PC CE ''+=+≥,即PE PC +的最小值为CE ',∵四边形ABCD 是正方形,∴AB BC =,90CBA ∠=︒,∵2AE =,4BE =,∴4228BE BE AE AE ''=++=++=,642B E C AB BE A +=+===,在Rt BCE '△中,10CE '===,∴PE PC +的最小值是10.故答案为:10.题型六:正方形的判定定理1.如图,四边形ABCD 的对角线AC ,BD 交于点O,且OA OC =,OB OD =,下列说法错误的是()A.若AC BD ⊥,则ABCD 是菱形B.若AC BD =,则ABCD 是矩形C.若AC BD ⊥且AC BD =,则ABCD 是正方形D.若90ABC ∠=︒,则ABCD 是正方形【答案】D【详解】解:∵OA OC =,OB OD =,∴四边形ABCD 是平行四边形,若AC BD ⊥,则四边形ABCD 是菱形,故A 选项不符合题意;若AC BD =,则四边形ABCD 是矩形,故B 选项不符合题意;若AC BD ⊥且AC BD =,则四边形ABCD 是正方形,故C 选项不符合题意;若90ABC ∠=︒,则四边形ABCD 是矩形,故D 选项符合题意;故选:D.2.如图所示,在ABC 中,在90ACB ∠=︒,CD 平分ACB ∠,DE AC ⊥于E,DF BC ⊥于F,求证:四边形CEDF 是正方形.【答案】∵CD 平分ACB ∠,,DE AC DF BC ⊥⊥,∴DE DF =,90DFC DEC ∠=∠=︒,又∵90ACB ∠=︒,∴四边形CEDF 是矩形,∵DE DF =,∴矩形CEDF 是正方形.3.矩形ABCD 四个内角平分线组成四边形MFNE ,求证:四边形MFNE 是正方形.【答案】 四边形ABCD 是矩形,90BAD ADC BCD ABC ∴∠=∠=∠=∠=︒,AD BC =,AM ,DM ,CN ,BN 分别是四个内角平分线,45BAE EAD ADM CDM DCN BCN CBN ABN ∴∠=∠=∠=∠=∠=∠=∠=∠=︒,AE BE ∴=,90AEB N DFC AMD ∴∠=∠=∠=∠=︒,∴四边形MFNE 是矩形,在ADM △和BCN △中,MAD CBN AD BC ADM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ADM BCN ∴ ≌,AM BN ∴=,AM AE BN BE ∴-=-,EN EM ∴=,∴矩形MFNE 是正方形.4.如图,已知Rt△ABC 中,∠ACB=90°,先把△ABC 绕点C 顺时针旋转90°至△EDC 后,再把△ABC 沿射线BC 平移至△GFE,DE、FG 相交于点H.(1)判断线段DE、FG 的位置关系,并说明理由;(2)连接AG,求证:四边形ACEG 【答案】(1)DE⊥FG,理由见解析(2)见解析【详解】(1)解:DE⊥FG,理由如下:∵把△ABC 绕点C 顺时针旋转90°至△EDC,∴∠BAC=∠CED,∵把△ABC 沿射线BC 平移至△GFE,∴∠ABC=∠GFE,∵∠BAC+∠ABC=90°,∴∠CED+∠GFE=90°,∴∠FHE=90°,∴DE⊥GF;(2)解:∵把△ABC 沿射线BC 平移至△GFE,∴AC=GE,AC∥GE,∴四边形ACEG 是平行四边形,∵把△ABC 绕点C 顺时针旋转90°至△EDC,∴AC=CE,∠ACE=90°,∴四边形ACEG 是正方形.5.如图:已知:AD 是ABC 的角平分线,DE AC ∥交AB 于E ,DF AB ∥交AC 于F .(1)求证:四边形AEDF 是菱形;(2)当ABC 满足什么条件时,四边形AEDF 是正方形?【答案】(1)见解析(2)90BAC ∠=︒【详解】(1)解:证明://DE AC ,//DF AB ,//DE AF ∴,//DF AE ,∴四边形AEDF 是平行四边形(有两组对边相互平行的四边形是平行四边形),EAF EDF ∴∠=∠(平行四边形的对角相等);又AD 是ABC ∆的角平分线,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,EAD EDA ∴∠=∠,AE DE ∴=(等角对等边),∴四边形AEDF 是菱形(邻边相等的平行四边形是菱形);(2)解:由(1)知,四边形AEDF 是菱形,当四边形AEDF 是正方形时,90EAF ∠=︒,即90BAC ∠=︒,ABC ∴∆的90BAC ∠=︒时,四边形AEDF 是正方形.课后练习1.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD,下列说法错误的是()A.若AC⊥BD,四边形ABCD是菱形B.若AB=BC,AC=BD,四边形ABCD是正方形C.若AC=BD,四边形ABCD是矩形D.若∠ABC=90°,四边形ABCD是正方形【答案】D【详解】解:∵四边形ABCD的对角线AC,BD相交于点O,且OA=OC,OB=OD,∴四边形ABCD为平行四边形.A.∵AC⊥BD,∴平行四边形ABCD是菱形,故该选项不符合题意;B.∵AB=BC,∴平行四边形ABCD是菱形,∵AC=BD,∴菱形ABCD是正方形;故该选项不符合题意;C.∵AC=BD,∴平行四边形ABCD是矩形,故该选项不符合题意;D.∵∠ABC=90°,∴平行四边形ABCD是矩形,故该选项符合题意;故选:D.2.如图,在正方形ABCD外作等边ADE∠=︒.,则BED【答案】45【详解】解: 四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,又ADE 是等边三角形,AE AD ∴=,60AED DAE ∠=∠=︒,AB AE ∴=,9060150BAE ∠=︒+︒=︒,15ABE AEB ∴∠=∠=︒.BED AED ABE ∴∠=∠-∠45=︒,故答案为45∶.3.如图,在正方形ABCD 中,E,F 是对角线BD 上的点,且AB BF DE ==,求EAF ∠的度数.【答案】45︒【详解】解:在正方形ABCD 中,AB AD =,90BAD ∠=︒,45ABD ADB ∠=∠=︒.又∵AB BF DE ==,∴AD DE =,AB BF =,∴18(27)06.5DAE DEA ADB ∠=∠=︒-∠÷=︒,18(27)06.5BAF BFA ABD ∠=∠=︒-∠÷=︒,∴180180267.545EAF BFA DEA ∠=︒-∠-∠=︒-⨯︒=︒.4.如图,在正方形ABCD 中,延长BC 至E ,使CE CA =.求CAE ∠的度数.【答案】22.5︒【详解】解: 在正方形ABCD 中,90BCD ∠=︒,对角线AC 平分BCD ∠,∴90DCE BCD ∠=∠=︒,45ACB ∠=︒,CE CA =,ACE ∴ 是等腰三角形,ACB ∠ 是ACE △的一个外角,2ACB CAE E CAE ∴∠=∠+∠=∠,即245CAE ∠=︒,解得22.5CAE ∠=︒,故答案为:22.5︒.5.在正方形ABCD中,两条对角线相交于O,∠ACD的平分线交BD于P,若正方形ABCD的周长是16cm,则PB=___________cm.【答案】46.如图,正方形ABCD 的面积为2,菱形AMCN 的面积为1,则,M N 两点间的距离为()A.1B.2【答案】A【详解】解:如图,连接AC ,∵正方形ABCD 的面积为2,∴2122AC =,解得:2AC =,∵菱形AMCN 的面积为1,∴⋅=112AC MN ,即⨯⨯=1212MN ,解得:1MN =.故选:A.7.如图,已知正方形ABCD ,E 是AD 上一点,过BE 上一点O 作BE 的垂线,交AB 于点G ,交CD 于点H .6BE =,则GH =.【答案】6【详解】解:过点A 作GH 的平行线,交DC 于点F,如图所示:∵ABCD 是正方形,∴AG FH ∥,BA AD =,90BAE D ∠=∠=︒,∴90FAD AFD ∠+∠=︒,∵GH BE ⊥,AF GH ∥,∴AF BE ⊥,四边形AFHG 是平行四边形,∴90FAD BEA ∠+∠=︒,∴BEA AFD ∠=∠,∴()AAS BAE ADF ≌,∴BE AF =,∴GH AF =,∴6GH BE ==,故答案为:6.8.如图,直线1l ,2l ,3l 分别过正方形ABCD 的三个顶点A ,D ,C ,且相互平行,若1l ,2l 的距离为1,2l ,3l 的距离为2,则正方形的边长为.【详解】解∶如图,过点D 作1EF l ⊥交1l 于点E,交3l 于点F,∵123l l l ∥∥,∴32,EF l EF l ⊥⊥,∴90AED ADC CFD ∠=∠=∠=︒,1,2DE DF ==,∴90,90ADE DAE ADE CDF ∠+∠=︒∠+∠=︒,∴DAE CDF ∠=∠,∵四边形ABCD 是正方形,∴AD CD =,∴ ≌ADE DCF ,∴2,1AE DF DE CF ====,AD ==9.如图,有三个正方形ABCD ,DEFG ,FHMN ,点B ,C ,G ,H ,M 都在同一直线l 上,若正方形ABCD ,DEFG 的面积分别为3和8,则正方形FHMN 的面积为()A.4B.5C.6D.11【答案】B 【详解】解:∵四边形ABCD ,DEFG ,FHMN 都是正方形,∴DG FG =,90DCG GHF DGF ∠∠∠===︒;∴90CDG CGD CGD HGF ∠∠∠∠+=+=︒,∴CDG HGF ∠∠=,∴CDG HGF ≌(AAS ),∴CD GH =,CG FH =,∵正方形ABCD ,DEFG 的面积分别为3和8,∴2238CD DG ==,,∴正方形FHMN 的面积22835FH CG ===-=.故选∶B.10.若正方形的边长为a ,M 是BC 的中点,则图中阴影部分的面积是多少?【答案】213a 【详解】解:设ABE S S =△,M 是BC 中点,又因为ABE 和△同高,∴12BME S S =△,2311244AMB ABCD S S S a ===△正方形,则216S a =,∴阴影部分的面积2211263a a =⨯=.11.如图,正方形ABCD 的边长为2,H 在CD 的延长线上,四边形CEFH 也为正方形,则△DBF 的面积为()A.4C.D.2【答案】D 【详解】解:设正方形CEFH 的边长为a,根据题意得:21114422222()()BDF S a a a a a ∆=+-⨯---+22211222a a a a a =+-+--=2.故选:D.12.如图,在矩形ABCD 中,BE 平分ABC ∠,CE 平分DCB ∠,//,//BF CE CF BE .求证:四边形BFCE 是正方形.【答案】∵//,//BF CE CF BE ,∴四边形BECF 是平行四边形.∵四边形ABCD 是矩形,∴90ABC ∠=︒,90DCB ∠=︒.又∵BE 平分ABC ∠,CE 平分DCB ∠,∴1145,4522EBC ABC ECB DCB ∠=∠=︒∠=∠=︒.∴EBC ECB ∠=∠.∴EB EC =.∴BECF 是菱形(菱形的定义).在EBC 中,∵45,45EBC ECB ∠=︒∠=︒,∴90BEC ∠=︒.∴菱形BECF 是正方形(有一个角是直角的菱形是正方形).13.如图,ABC 中,AB AC =,AD 是BAC ∠的角平分线,点O 为AB 的中点,连接DO 并延长到点E,使OE OD =.连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当90BAC ∠=︒时,猜想四边形AEBD 是什么图形?说明理由.【答案】(1)证明:∵点O 为AB 的中点,OE OD =,∴四边形AEBD 是平行四边形,AB AC = ,AD 是BAC ∠的角平分线,AD BC ∴⊥,90ADB ∴∠=︒,∴平行四边形AEBD 是矩形;(2)解:当90BAC ∠=︒时,四边形AEBD 是正方形,理由如下:AB AC = ,AD 是BAC ∠的角平分线,BD CD ∴=,90BAC ∠=︒ ,12AD BC BD \==,由(1)可知,四边形AEBD 是矩形,∴矩形AEBD 是正方形.14.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.【答案】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.15.已知:如图,在ABC中.(1)分别以AB 、AC 为边向形外作正方形ABDE 、ACFG .求证:①CE BG =;②CE BG ⊥;(2)分别以AB 、AC 为边向形外作正三角形ABD △、ACE △.求证:①CD BE =;②求CD 和BE 所成的锐角的度数.【答案】证明:①在正方形ABDE ACFG 中,AE AB =,AC AG =,90EAB GAC ∠=∠=︒,∴EAC BAG ∠=∠,在EAC 和BAG △中,EA BA EAC BAG AC AG =⎧⎪∠=∠⎨⎪=⎩,∴()SAS EAC BAG ≌,∴CE BG =,②如图,记BG ,CE 的交点为H ,BG ,AC 的交点为T ,∵EAC BAG △≌△,∴ACE AGB ∠=∠,∵90AGT ATG ∠+∠=︒,ATG CTH ∠=∠,∴90ACE CTH ∠+∠=︒,∴1809090GHC ∠=︒-︒=︒,∴CE BG ⊥.(2)①如图,记CD ,BE 的交点为O ,∵等边ABD △和等边ACE△∴AE AC =,AD AB =,60CAE BAD ADB ABD ∠==∠=∠=︒,∵BAE BAC CAE ∠=∠+∠,CAD BAC BAD ∠=∠+∠,∴BAE CAD ∠=∠,∴ABE ADC △≌△,∴CD BE =;②∵ABE ADC△≌△∴ABE ADC ∠=∠,∴60BDO ABE BDO ADC ADB ∠+∠=∠+∠=∠=︒∴()18018060DOB DBO BDO ABD ABE BDO ∠=︒-∠-∠=︒-∠-∠+∠=︒∴CD 和BE 所成的锐角的度数为60︒.16.在学习对称的知识点时,我们认识了如下图所示的“将军饮马”模型求最短距离.问题提出:(1)如图1所示,已知A,B 是直线l 同旁的两个定点.在直线l 上确定一点P,并连接AP 与BP ,使PA PB +的值最小.问题探究:(2)如图2所示,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连接EP 和BP ,则PB PE +的最小值是___________;问题解决:(3)某地有一如图3AOB ,已知45AOB ∠=︒,P 是AOB 内一点,连接PO 后测得10PO =米,现当地政府欲在三角形空地AOB 中修一个三角形花坛PQR ,点Q R ,分别是OA OB ,边上的任意一点(不与各边顶点重合),求PQR 周长的最小值.【详解】(1)解:如图所示,当P 点在如图所示的位置时,PA PB +的值最小;(2)解:如下图所示,∵四边形ABCD 是正方形,∴AC 垂直平分BD ,∴PB PD =,由题意易得:PB PE PD PE DE +=+≥,当D、P、E 共线时,在ADE V 中,根据勾股定理得,DE =(3)解:如下图所示,分别作点P 关于OA ,OB 的对称点M N ,,连接OM ON MN ,,,MN 交OA ,OB 于点Q R ,,连接PR PQ ,,此时PQR 周长的最小值等于MN .由轴对称性质可得,10OM ON OP MOA POA NOB POB ===∠=∠∠=∠,,,∴224590MON AOB ∠=∠=⨯︒=︒,在Rt MON △中,MN =即PQR 周长的最小值等于。
北师大版九年级上册 1.3正方形的性质和判定课堂讲义及练习(含答案)
1.3正方形的性质和判定【正方形的性质】1.正方形的定义一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.温馨提示:①正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形②既是矩形又是菱形的四边形是正方形③正方形不仅是特殊的平行四边形,而且是特殊的矩形,还是特殊的菱形2.正方形的性质(1)具有平行四边形的一切性质:两组对边平行且相等;两组对角相等;对角线相互平分.(2)具有矩形的一切性质:四个角都是直角;对角线相等.(3)具有菱形的一切性质:四条边相等;对角线互相垂直,并且每条对角线平分一组对角.(4)边:对边平行,四条边相等;角:四个角都是直角;对角线:对角线互相垂直平分且相等,并且每一条对角线平分一组对角;对称性:是轴对称图形,有4条对称轴 . 又是中心对称图形,对角线的交点为对称中心.正方形中相等的线段:AB = CD = AD = BC.OA = OC = OB = OD.正方形中相等的角:∠AOB = ∠DOC = ∠AOD = ∠BOC = 90°.∠OAB = ∠OBA = ∠OBC = ∠OCB=∠OCD = ∠ODC = ∠OAD= ∠ODA=45°.正方形中的全等三角形:全等的等腰直角三角形有:点拨:有关正方形问题可转化为等腰直角三角形的问题来解决 (转化思想).温馨提示:①正方形的性质=矩形的性质+菱形的性质;②正方形具有四边形、平行四边形、矩形、菱形的所有基本性质;③一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°。
两条对角线把正方形分成四个全等的等腰直角三角形。
【练习】1.如图,正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,F为垂足,那么FC=________.第1题第3题第5题第7题2.如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.3.如图,在正方形ABCD的外侧作等边三角形ADE,则∠AEB的度数为( )A.10° B.12.5° C.15° D.20°4.如图,四边形ABCD是正方形,△EBC是等边三角形.(1)求证:△ABE≌△DCE;(2)求∠AED的度数.5.如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是________.6.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.7.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.8.如图,正方形ABCD的边长为,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB的延长线于点F,则EF的长为________.8题9题第10题9.如图,将边长为8 cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是________.10.,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,11.如图1-3-15,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.【正方形的判定】1. 正方形的判定定理(1)平行四边形+一组邻边相等+一个角为直角(定义法); (2)矩形+一组邻边相等; (3)矩形+对角线互相垂直; (4)菱形+一个角为直角;(5)菱形+对角线相等。
正方形的性质与判定习题
授课老师:木子老师
01 正方形的定义及对称性
正方形的定义及其对称性 ·木子老师
正方形的定义及其对称性 ·木子老师
02 正方形的边角性质
正方形的边角性质·木子老师
正方形的边角性质·木子老师
正方形的边角性质·木子老师
不能运用正方形的轴对称性将两线 段和转化为一条线段而致错
不能运用正方形的轴对称性将两线段和转化为一条线段而致错·木子老师
04
利用正方形的边角性质证线段相等
利用正方形的边角性质证线段相等 ·木子老师
05
利用正方形的边角性质证线段的 和差关系
利用正方形的边角性质证线段的和差关系 ·木子老师
06
正方形对角线的性质
正方形对角线的性质 ·木子老师
正方形对角线的性质 ·木子老师
12
将特殊四边形的判定相混淆导致 出错
将特殊四边形的判定相混淆导致出错 ·木子老师
13
以菱形为基础判定正方形
以菱形为基础判定正方形 ·木子老师
14
以矩形为基础判定正方形
以矩形为基础判断正方形 ·木子老师
15
正方形的性质与判定
正方形的性质与判定 ·木子老师
正方形的性质与判定 ·木子老师
16
中点四边形
中点四边形 ·木子老师
中点四边形 ·木子老师
17
利用正方形的性质与判定判断中点 四边形的形状
利用正方形的性质与判定判断中点四边形的形状 ·木子老师
18
利用正方形的性质与判定求 线段的长
利用正方形的性质与判定求线段的长 ·木子老师
谢谢欣赏
正方形对角线的性质 ·木子老师
07
正方形的对称变换
专题18 正方形的判定与性质(含答案)
专题18 正方形的判定与性质知识解读一、正方形的性质1.从边看:正方形的四条边相等,对边平行,邻边垂直.2.从角看:正方形的四个角都是直角.3.从对角线看:对角线互相垂直平分且相等,每条对角线平分一组对角.4.对称性:正方形既是轴对称图形又是中心对称图形.由于矩形和菱形都既是轴对称图形又是中心对称图形,因此正方形作为一个特殊的菱形和矩形,它也既是轴对称图形又是中心对称图形.平行四边形、矩形、菱形、正方形之间关系如下:二、正方形的判定方法【典例示范】一、正方形常与全等知识综合在一起例1 如图4-18-1,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB,EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.【提示】(1)要证△ADE≌△BCE,由题意可如AD=BC,DE=CE,只需再找出∠ADE与∠BCE相等即可.由题设条件,两角易证得相等;(2)由∠ADE=30°,AD=DE,可求出∠DAE =75°,又因为AE=BE,从而可求∠ABF=15°,从而易求得∠AFB的度数.【技巧点评】正方形的四条边长都相等,四个角度都为90°,等边三角形也是三边相等,三个角都等于60°,因此当图形中出现具有公共顶点的两个等边三角形,两个正方形或一个正方形一个等边三角形的时候,应考虑寻找全等三角形。
跟踪训练》OE ,1.如图4-18-2,在正方形ABCD中,AC,BD交于点O,点E在OA上,点G在OB上,且OG CG的延长线交BE于点F,猜想并证明CG和BE的大小及位置关系.【解答】如图4-18-2例2、在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图4-18-3①,他连接AD ,CF ,经测量发现AD=CF.(1)小辉将正方形ODEF 绕O 点逆时针旋转一定的角度,如图4-18-3②,试判断AD 与CF F 还相等吗?说明你的理由;(2)小辉将正方形ODEF 绕O 点逆时针旋转,使点E 旋转至直线l 上,如图4-18-3③,请你求出CF 的长.【提示】对于(1)根据正方形的性质可得090=∠=∠COA DOF ,OF DO =,OA CO =,然后推出AOD COF =∠,再利用“边角边”证明AOD ∆和COF ∆全等,根据全等三角形对应边相等即可得证; 对于(2),同(1)求出AD CF =,连接DF 交OE 于点G ,根据正方形的对角线互相垂直平分可得OG DF ⊥,121===EO OG DG ,再求出AG ,然后利用勾股定理列式计算即可求出AD ,从而求出CF 的长。
第03讲 正方形的性质与判定(知识解读+真题演练+课后巩固)(原卷版)
第3讲正方形的性质与判定1. 理解正方形的概念;2. 探索并证明正方形的性质定理和判定定理,并能运用它们进行证明和计算;3. 通过经历正方形的性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养和发展学生的合情推理能力;4. 通过正方形的性质定理和判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力.知识点1:正方形的概念与性质正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)知识点2:正方形的判定※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
注意:正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):【题型1:正方形的概念和性质】【典例1】(2021秋•萧县期末)矩形,菱形,正方形不同时具有的性质是()A.对边平行且相等B.对角相等C.对角线互相平分D.每条对角线平分一组对角【变式1-1】(2022春•双台子区期末)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等【变式1-2】(2020秋•罗湖区校级期末)下列说法正确的是()A.矩形的对角线相等垂直B.菱形的对角线相等C.正方形的对角线相等D.菱形的四个角都是直角【典例2】(2022春•溆浦县期中)一个正方形的面积为8m²,则它的对角线长为()A.2cm B.2cm C.4cm D.3cm【变式2-1】(2022秋•临淄区期末)如图,小明用四根长度相同的木条制作能够活动的菱形学具,他先把活动学具做成图1所示的菱形,并测得∠B=60°,对角线AC=1cm,接着把活动学具做成图2所示的正方形,则图2中对角线AC的长为()A.cm B.2cm C.3cm D.4cm【变式2-2】(2022春•涿州市期末)如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【变式2-3】(2022春•乌拉特前旗期末)如图,四边形ABCD是边长为10的正方形,点E在正方形内,且AE⊥BE,又BE=8,则阴影部分的面积是()A.76B.24C.48D.88【题型2:正方形的判定】【典例3】(2022秋•莱西市期末)下列说法错误的是()A.对角线相等的菱形是正方形B.对角线垂互相平分且垂直的四边形是菱形C.对角线相等的平行四边形是矩形D.对角线垂直且相等的四边形是正方形【变式3-1】(2022秋•金水区校级期中)已知四边形ABCD是平行四边形,下列结论中错误的有()①当AB=DC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1个B.2个C.3个D.4个【变式3-2】(2022秋•济阳区期中)如图,在矩形ABCD中,对角线AC、BD 交于点O,添加下列一个条件,能使矩形ABCD成为正方形的是()A.BD=AC B.DC=AD C.∠AOB=60°D.OD=CD【变式3-3】(2022春•卫辉市期末)如图,在△ABC中,点D、E、F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列结论:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果∠BAC=90°,AD平分∠BAC,那么四边形AEDF是正方形,你认为正确的是()A.①②③④B.①②③C.①②④D.②③④【典例4】(2021秋•平远县期末)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)判断四边形MENF是什么特殊四边形,并证明你的结论;(2)当AD,AB满足什么条件时,四边形MENF是正方形.【变式4-1】(2022秋•郓城县期中)如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.求证:矩形ABCD为正方形.【变式4-2】(2022春•宽城区期末)如图,在矩形ABCD中,点E、F分别在边AB、BC上,DE=AF,DE⊥AF于点G.(1)求证:△ABF≌△DAE.(2)求证:四边形ABCD是正方形.【变式4-3】(2022秋•二七区校级月考)如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当∠BAC=°时,四边形ADCE是一个正方形,并说明理由.【题型3:正方形的性质与判定综合】【典例5】(2022春•临沭县期末)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF 为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,请直接写出正方形DEFG的面积.【变式5-1】(2022春•赣县区校级期末)如图,E、F、M、N分别是正方形ABCD 四条边上的点,且AE=BF=CM=DN(1)求证:四边形EFMN是正方形;(2)若AB=7,AE=3,求四边形EFMN的周长.【变式5-2】(2022春•覃塘区期末)如图,在矩形ABCD中,点E,F分别在BC,CD边上,且AE=AF,∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)若,BE=1,求四边形ABCD的面积.【变式5-3】(2022春•交口县期末)如图,已知四边形ABCD和CEFG均是正方形,点K在BC上,延长CD到点H,使DH=BK=CE,连接AK,KF,HF,AH.(1)求证:AK=AH;(2)求证:四边形AKFH是正方形;(3)若四边形AKFH的面积为10,CE=1,求点A,E之间的距离.1.(2021•娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE =DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形2.(2022秋•漳州期末)如图,在矩形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使矩形ABCD成为正方形的是()A.BD=AC B.DC=AD C.∠AOB=60°D.OD=CD 3.(2022春•东莞市期中)下列给出的条件中,不能判断▱ABCD是正方形的是()A.AC=BD,AD=AB B.AD=AB,∠A=90°C.AC=BD,AC⊥BD D.AC⊥BD,AD=AB 4.(2022•什邡市校级二模)如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BDD.当▱ABCD是菱形时,AB=AC5.(2022春•河西区期末)如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是()A.∠AFP=∠BPQB.EF∥QPC.四边形EFPQ是正方形D.四边形PQEF的面积是四边形ABCD面积的一半6.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③7.(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.8.(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.9.(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.10.(2022•雅安)如图,E,F是正方形ABCD的对角线BD上的两点,且BE =DF.(1)求证:△ABE≌△CDF;(2)若AB=3,BE=2,求四边形AECF的面积.1.(2022春•张家川县期末)如图,在矩形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使矩形ABCD成为正方形的是()A.BD=AB B.DC=AD C.∠AOB=60°D.OD=CD 2.(2022春•平南县期末)下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线相等且互相垂直的四边形是正方形C.对角线互相垂直的四边形是菱形D.菱形的面积为两条对角线长度乘积的一半3.(2022秋•铁西区期中)如图,已知正方形ABCD的面积为64平方厘米,DE =10厘米,则CE的长为()A.6B.12C.2D.2 4.(2022秋•朝阳区校级期末)如图,直线l过正方形ABCD的顶点A,BE⊥l 于点E,DF⊥l于点F.若BE=2,DF=4,则的EF长为.5.(2022秋•龙岗区校级期末)已知正方形ABCD的对角线长为6cm,则正方形ABCD的面积为cm2.6.(2022秋•茂南区期末)正方形的边长为5,则它的周长为.7.(2022秋•建邺区校级期中)如图,四边形ABCD是正方形,以CD为边向外作等边△CDE,则∠AEC=°.8.(2022秋•茂南区期末)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连接CE、DF.求证:CE=DF.9.(2022春•寻乌县期末)如图,△ABC中,AD是∠BAC的平分线,作DE∥AB交AC于点E,DF∥AC交AB于点F.(1)求证:四边形AEDF是菱形;(2)当△ABC满足条件时,四边形AEDF是正方形.10.(2022春•江宁区期末)如图,△ABC的中线AF与中位线DE相交于点O.(1)求证:AF与DE互相平分;(2)当△ABC满足时,四边形ADFE是正方形.11.(2022•龙岗区模拟)如图,在△ABC中,∠BAC=90°,∠BAC的平分线交BC于点D,DE∥AB,DF∥AC.(1)求证:四边形AFDE为正方形;(2)若AD=2,求四边形AFDE的面积.12.(2021春•海淀区校级期末)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?。
(完整版)正方形的性质与判定习题
(完整版)正方形的性质与判定习题
正方形是几何形状中的一种特殊情况,具有独特的性质和特点。
本文将为您提供关于正方形性质和判定的一些题,帮助您更好地理
解和应用正方形的相关知识。
题一:基本概念与性质
1. 正方形的定义是什么?它有哪些特点?
2. 正方形的边长和周长之间的关系是什么?
3. 正方形的对角线之间有什么关系?
4. 正方形的面积和边长之间的关系是什么?
题二:正方形的判定
1. 已知一个四边形的四个角都是直角,如何判定这个四边形是
正方形?
2. 已知一个四边形的两组对边相等且相邻边垂直,如何判定这
个四边形是正方形?
3. 已知一个四边形的一组对边相等且两组对边平行,如何判定
这个四边形是正方形?
4. 如何判定一个平行四边形是正方形?
题三:正方形的应用
1. 在平面坐标系中,如何表示一个正方形的顶点坐标?
2. 如何计算一个正方形的面积和周长?
3. 如果一个矩形的长度和宽度相等,能否判定该矩形为正方形?为什么?
以上是关于正方形性质与判定的一些题,希望能够帮助您巩固
对正方形的相关知识。
通过解答这些题,您将能更深入地理解正方
形的特点和应用,为解决相关问题提供有效的方法。
> 注意:本文所提供的内容仅供参考,请在参考后自行验证并
确认。
正方形的性质和判定典型试题综合训练(含解析)
正方形的性质和判定典型试题综合训练(含解析)一.选择题(共15小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC3.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A.AO=BO=CO=DO,AC⊥BD B.AC=BC=CD=DA C.AO=CO,BO=DO,AC⊥BD D.AB=BC,CD⊥DA 4.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+16.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.37.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?()A.50 B.55 C.70 D.758.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.710.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.1611.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.12.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或613.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF 的长为()A.1 B.4﹣2C.D.3﹣414.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个15.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014二.填空题(共10小题)16.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)17.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.18.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=.19.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.20.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.21.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.22.如图所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO于G,若AB=10厘米,则四边形EGOF的周长是厘米.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.24.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.25.如图,在正方形ABCD中,O是对角线的交点,过点O作OE⊥OF,分别交AD,CD于E,F,若AE=6,CF=4,则EF=.三.解答题(共10小题)26.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为4,AE=,求菱形BEDF的面积.27.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?28.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.29.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.30.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.31.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)32.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.33.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.34.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.35.已知O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请说明理由;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.正方形的性质和判定典型试题综合训练参考答案与试题解析一.选择题(共15小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【解答】解:∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形,选项A错误;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形,选项B错误;∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项C正确;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项D错误.故选:C.2.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.3.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A.AO=BO=CO=DO,AC⊥BD B.AC=BC=CD=DA C.AO=CO,BO=DO,AC⊥BD D.AB=BC,CD⊥DA 【分析】根据正方形的判定对角线互相垂直平分且相等的四边形是正方形,对各个选项进行分析从而得到最后的答案.【解答】解:A、正确,AC⊥BD且AC、BD互相平分可判定为菱形,再由AC=BD判定为正方形;B、错误,不能判定为正方形;C、错误,只能判定为菱形;D、错误,不能判定为正方形;故选A.4.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.【分析】利用勾股定理求出正方形的对角线为10≈14,由此即可判定A不正确.【解答】解:选项A不正确.理由正方形的边长为10,所以对角线=10≈14,因为15>14,所以这个图形不可能存在.故选A.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.6.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.3【分析】求出BE的长,再根据两组对边分别平行的四边形是平行四边形求出四边形EFCH平行四边形,根据平行四边形的对边相等可得EF=CH,再根据正方形的性质可得AB=BC,AE=EF,然后求出BH=BE即可得解.【解答】解:∵AB=4,AE=1,∴BE=AB﹣AE=4﹣1=3,∵四边形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四边形EFCH平行四边形,∴EF=CH,∵四边形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB﹣AE=BC﹣CH,∴BE=BH=3.故选:C.7.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?()A.50 B.55 C.70 D.75【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.8.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.【解答】解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.7【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.10.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16【分析】连DB,GE,FK,则DB∥GE∥FK,再根据等底等高的三角形面积相等,正方形BEFG的边长为4可求出S△DGE=S△GEB,S△GKE=S△GFE,再由S阴影=S正方形GBEF即可求出答案.【解答】解:连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△GDB=S△EDB(同底等高)∴S△GDB﹣公共三角形=S△EDB﹣公共三角形即∴S△DGE=S△GEB,S△GKE=S△GFE同理S△GKE=S△GFE∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=42=16 故选:D.11.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.【分析】根据旋转的性质及正方形的性质分别求得△ABC与△CD′E的面积,从而不难求得重叠部分的面积.【解答】解:∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∴CD′=D′E,∵ED′⊥AC,∴∠CD′E=90°,∵AC==,∴CD′=﹣1,∴正方形重叠部分的面积是×1×1﹣×(﹣1)(﹣1)=﹣1.故选:D.12.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(6+9+x)×9﹣6×3,解得x=3,或x=6,故选D.13.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF 的长为()A.1 B.4﹣2C.D.3﹣4【分析】在AF上取FG=EF,连接GE,可得△EFG是等腰直角三角形,根据等腰直角三角形的性质可得EG=EF,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF,设EF=x,最后根据AB=AG+FG+BF列方程求解即可.【解答】解:如图,在AF上取FG=EF,连接GE,∵EF⊥AB,∴△EFG是等腰直角三角形,∴EG=EF,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF,∵∠BAE=22.5°,∠EGF=45°,∴∠BAE=∠AEG=22.5°,∴AG=EG,在正方形ABCD中,∠ABD=45°,∴△BEF是等腰直角三角形,∴BF=EF,设EF=x,∵AB=AG+FG+BF,∴4=x+x+x,解得x=2(2﹣)=4﹣2.故选B.14.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个【分析】(1)(3)(4)正确.只要证明△BOE≌△COF,即可解决问题,(2)图中全等三角形不止两对,故(2)错误.【解答】解:∵四边形ABCD是正方形,∴AB=BC,ABC=90°,∠BAO=∠ABO=∠OBC=45°,AC⊥BD,∵∠EOF=90°,∴∠BOE+∠BOF=90°,∵∠BOF+∠COF=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴OE=OF,BE=CF,∴△EOF是等腰直角三角形,故(1)正确,∴BE+BF=CF+BF=BC=OA,故(3)正确,∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,∴S正方形ABCD=4S四边形OEBF故(4)正确;图中全等三角形有△BOE≌△COF,△AOB≌△AOD≌△DOC≌△BOC,故(2)错误.故选C.15.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2015B2015C2015D2015的边长是:()2014.故选:D.二.填空题(共10小题)16.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).17.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【分析】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【解答】解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.18.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=45°.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.19.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.20.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是(2+,1).【分析】过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,再由BC=2,∠D=60°可得出△BCD是等边三角形,由锐角三角函数的定义求出GD及CG的长即可得出结论.【解答】解:过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD.∵BC=2,∠D=60°,∴△BCD是等边三角形,∴BD=BC=CD=2,∴CG=1,GD=CD•sin60°=2×=,∴D(2+,1).故答案为:(2+,1).21.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有3条.【分析】能画3条:①与EF互相垂直且垂足为O,构建直角三角形,可以证明两直角三角形全等得EF=PQ;②在AD上截取AP=AD,连接PO延长得到PQ;③同理在AB了截取BQ=AB,连接QO并延长得到PQ.【解答】解:这样的直线PQ(不同于EF)有3条,①如图1,过O作PQ⊥EF,交AD于P,BC于Q,则PQ=EF;②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.22.如图所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO于G,若AB=10厘米,则四边形EGOF的周长是厘米.【分析】根据已知可得到△BFE,△CGE是等腰直角三角形,得到BF=EF,EG=GC,则四边形EGOF的周长OF+EF+OG+CG=OB+OC=BD【解答】解:∵EF⊥BO于F,EG⊥CO,∠BAC=∠ACB=45°∴△BFE,△CGE是等腰直角三角形∴BF=EF,EG=GC∴四边形EGOF的周长OF+EF+OG+CG=OB+OC=BD=10cm 故答案为10.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.【分析】首先连接BD交AC于O,由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.【解答】解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.24.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.25.如图,在正方形ABCD中,O是对角线的交点,过点O作OE⊥OF,分别交AD,CD于E,F,若AE=6,CF=4,则EF=2.【分析】由正方形的性质得出∠ADC=90°,∠OAE=∠ODE=∠ODF=∠OCF=45°,OA=OB=OC=OD,AC⊥BD,证出∠AOE=∠DOF,由ASA证明△AOE≌△DOF,得出AE=DF=6,同理:DE=CF=4,由勾股定理求出EF即可.【解答】解:∵四边形ABCD是正方形,∴∠ADC=90°,∠OAE=∠ODE=∠ODF=∠OCF=45°,OA=OB=OC=OD,AC⊥BD,∴∠AOD=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠DOF,在△AOE和△DOF中,,∴△AOE≌△DOF(ASA),∴AE=DF=6,同理:DE=CF=4,∴EF===2.故答案为:2.三.解答题(共10小题)26.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为4,AE=,求菱形BEDF的面积.【分析】(1)连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD ⊥EF,可证得四边形BEDF为菱形;(2)由正方形的边长可求得BD、AC的长,则可求得EF的长,利用菱形的面积公式可求得其面积.【解答】(1)证明:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形;(2)解:∵正方形边长为4,∴BD=AC=4,∵AE=CF=,∴EF=AC﹣2=2,∴S菱形BEDF=BD•EF=×4×2=8.27.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.28.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.29.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.30.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.31.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)【分析】(1)根据CE平分∠ACB,MN∥BC,可知∠ACE=∠BCE,∠PEC=∠BCE,PE=PC,同理:PF=PC,故PE=PF.(2)根据矩形的性质可知当P是AC中点时四边形AECF是矩形.(3)当∠ACB=90°时四边形AECF是正方形.【解答】证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.(2)当P是AC中点时四边形AECF是矩形,∵PA=PC,PF=PC,∴四边形AECF是平行四边形.∵PE=PC,∴AC=EF,四边形AECF是矩形.(3)当∠ACB=90°时,四边形AECF是正方形.32.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.33.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【解答】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形;(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=BC=2,AB=4,点E′为AC的中点,∴2≤DE<2(点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.34.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.【分析】(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.【解答】解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=OD=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.。
正方形的性质及判定典型题(精选)
一、正方形的性质【例1】 正方形有 条对称轴.【例2】 已知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形【例3】 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且20AE AF AF ⊥=,,则BE 的长为FE D CBA【例4】 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1AG =,2BF =,90GEF ∠=︒,则GF 的长为 .【例5】 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为A 5A 4A 3A 2A 1正方形的性质及判定【例6】 如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF =OFE DC BA【例7】 如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA【例8】 如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.EDCBA【例9】 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A【例10】 如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN ∥AB ,且分别与AO BO 、交于M N 、.试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.M N CDO B A【例11】 如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=PDCBA【例12】 已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使2ED AD FC AC =∶∶,求证:BEF ∆是等腰直角三角形.GEHDFCBA【例13】 如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠= .NMFEDCBA【例14】 如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=FEDCBA【例15】 如果点E 、F 是正方形ABCD 的对角线BD 上两点,且BE DF =,你能判断四边形AECF 的形状吗?并阐明理由.E CDFBA【例16】 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA【例17】 如图,过正方形顶点A 引AE BD ∥,且BE BD =.若BE 与AD 的延长线的交点为F ,求证DF DE =.GFEBDA【例18】 如图所示,在正方形ABCD 中,AK 、AN 是A ∠内的两条射线,BK AK ⊥,BL AN ⊥,DM AK ⊥,DN AN ⊥,求证KL MN =,KL MN ⊥.K NMLB A【例19】 如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:BE DG =.GC FEDBA【例20】 (2007年三帆中学期中考试)如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,CE CF =,30FDC ∠=︒,求BEF ∠的度数.BDCAEF【例21】 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE ∆∆≌;(2)将DCE △绕点D 顺时针旋转90︒得到DAE '∆,判断四边形E BGD '是什么特殊四边形?并说明理由.【例22】 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 . ABCDEF E 'G【例23】 如图1,在正方形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,HA EB FC GD ===,连接EG 、FH ,交点为O . ⑴ 如图2,连接EF FG GH HE ,,,,试判断四边形EFGH 的形状,并证明你的结论;⑵ 将正方形ABCD 沿线段EG 、HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,1cm HA EB FC GD ====,则图3中阴影部分的面积为_________2cm .图3图1图2H DGC FEBAOH GFEDC BA【例24】 如图,正方形ABCD 对角线相交于点O ,点P 、Q 分别是BC 、CD 上的点,AQ DP ⊥,求证:(1)OP OQ =;(2)OP OQ ⊥.BO D CAQP【例25】 如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.MFEDCBA【例26】 如图,正方形ABCD 中,E F ,是AB BC ,边上两点,且EF AE FC DG EF =+⊥,于G ,求证: DG DA =G FEC DBA【例27】 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMDCBA【例28】 如图,设EF ∥正方形ABCD 的对角线AC ,在DA 延长线上取一点G ,使AG AD =,EG 与DF交于H ,求证:AH =正方形的边长.HEGCDFBA【例29】 把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.GCHF EDB A【例30】 如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.lPM FE DC BA【例31】 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______. ABCDEF二、正方形的判定【例32】 四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形. ⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.HEFG DCBA【例33】 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA【例34】 已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E . ⑴ 求证:四边形ADCE 为矩形;⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.M ENCDBA【例35】 如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形.PMF EDC BA【例36】 如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,若23EFGH S =,则b a -=H GFEDCBA【例37】 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE∆ 的面积为GFEDCB A【例38】 如图,在正方形ABCD 中,点1P P ,为正方形内的两点,且11PB PD PB AB CBP PBP ==∠=∠,,,则1BPP ∠=P1PDCBA【例39】如图,若在平行四边形ABCD各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.P RQS NM FEDCBA【例40】已知:PA4PB=,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD 的最大值,及相应∠APB的大小.PDCBA。
正方形的性质与判定(随堂)
正方形的性质与判定
1、对角线___________的四边形是矩形; 对角线________的四边形是菱形;
对角线___________的四边形是正方形.
2、任意一个平行四边形,当它的一个锐角增大到___时,就变成了矩形;当它的一组相邻两边变到___时,就变成了菱形;当它的两条对角线变到___时,就变成了正方形.
3、菱形的两条对角线分别为10cm和24cm,则这个菱形的周长是____cm,面积是____2cm .
4、菱形ABCD中,∠A∶∠B=1∶2,且它的周长为8cm,则∠A=___,∠D=___,AB=__cm,AC=___cm,BD=___cm.
5、
根据图形所具有的性质,在下表中相应的空格里打"√":
6、正方形具有而菱形不一定具有的性质是( )
A.对角线互相平分 B.四边相等
C.对角线相等 D.对角线互相垂直
3、已知:如图,在正方形ABCD中,点E在AC上.求证:BE=DE
7、已知:如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,E,F是垂足. 求证:EF=PD.
8、已知:如图,在△ABC中,090=∠ACB ,∠BAC,∠ABC的平分线相交于点O,OD⊥AC,OE⊥BC,垂足分别为D,E. 求证:四边形CDOE是正方形.
9、已知:如图,在△ABC中,090=∠ACB ,CD平分∠ACB,DE⊥AC,DF⊥BC,E,F是垂足. 求证:四边形DECF是正方形.
10、已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点P在BD上,四边形AEPF为矩形. 求证:(1)OE=OF;(2)OE⊥OF.。
13 正方形的性质及判定(备作业)-2021-2022学年九年级数学上(北师大版)(解析版)
1.3正方形的性质及判定一、单选题1.四边形ABCD 的对角线AC BD ,相交于点O ,下列能判定四边形ABCD 是正方形的是( ) A .,AB BC CD AD AC BD ====B .,,AO CO BO DO AC BD ==⊥ C .,AO BO CO DO AC BD ====D .,AB BC AD CD == 【答案】A【解析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A 、∵AB BC CD AD ===,∴四边形ABCD 是菱形,又∵AC BD =∴ABCD 是正方形,故A 选项能判定;B 、∵,AO CO BO DO ==,∴四边形ABCD 是平行四边形,又∵AC BD ⊥,∴ABCD 是菱形,故B 选项不能判定;只能判定为菱形;C 、∵AO BO CO DO ===,∴四边形ABCD 是矩形,故C 选项不能判定;只能判定为矩形;D 、,AB BC AD CD ==,两组邻边相等,无法判定,故D 选项不能判定.故选A .【点睛】本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.2.如图,E 是正方形ABCD 的边BC 的延长线上一点,若CE=CA ,AE 交CD 于F ,则∠FAC 的度数是( )A .22.5°B .30°C .45°D .67.5°【答案】A【解析】解:∵四边形ABCD是正方形,∴∠ACB=45°,∴∠E+∠∠FAC=∠ACB=45°,∵CE=CA,∴∠E=∠FAC,∴∠FAC=12∠ACB=22.5°.故选A.3.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B【解析】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD 是正方形,故此选项正确,不合题意.故选B.4.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A B.C1D.1【答案】B【解析】由正方形的性质和已知条件得出BC=CD=,∠BCD=90°,CE=CF=12,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.解:∵正方形ABCD的面积为1,∴,∠BCD=90°.∵E、F分别是BC、CD的中点,∴CE=12BC=12,CF=12CD=12,∴CE=CF,∴△CEF是等腰直角三角形,∴∴正方形EFGH的周长=4EF=4×2=故选:B .【点睛】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF 的长是解决问题的关键.5.平行四边形、矩形、菱形、正方形共有的性质是( ).A .对角线互相平分B .对角线相等C .对角线互相垂直D .对角形互相垂直平分【答案】A【解析】根据平行四边形、矩形、菱形、正方形的性质,对各个选项逐个分析,即可得到答案.∵平行四边形、矩形、菱形、正方形的对角线互相平分∴选项A 正确;∵菱形的对角线不相等∴选项B 错误;∵矩形的对角线不相互垂直∴选项C 和D 错误;故选:A .【点睛】本题考查了平行四边形、矩形、菱形、正方形的知识;解题的关键是熟练掌握平行四边形、矩形、菱形、正方形的性质,从而完成求解.6.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且0BAE 22.5 =,EF ⊥AB ,垂足为F ,则EF 的长为A.1 B C.4-D.4【答案】C【解析】分析:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°.在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠ADE.∴AD=DE=4.∵正方形的边长为4,∴BD=∴BE=BD-DE=4.∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形.∴EF=22BE==422-.故选C.7.如图,点A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)构成正方形ABCD,以AB为边做等边△ABE,则∠ADE和点E的坐标分别为()A.15°和(2,B.75°和(2,1)C.15°和(2,75°和(21)D.15°和(2,1+75°和(2,1【答案】D【解析】分为两种情况:①当△ABE在正方形ABCD外时,过E作EM⊥AB于M,根据等边三角形性质求出AM、AE,根据勾股定理求出EM,即可得出E的坐标,求出∠EAD,根据三角形的内角和定理和等腰三角形性质即可求出∠ADE;②当等边△ABE在正方形ABCD内时,同法求出此时E的坐标,求出∠DAE,根据三角形的内角和定理和等腰三角形性质即可求出∠ADE.分为两种情况:①△ABE在正方形ABCD外时,如图,过E作EM⊥AB于M,∵等边三角形ABE,∴AE=AB=3﹣1=2,∴AM=1,由勾股定理得:AE2=AM2+EM2,∴22=12+EM2,∴EM∵A(1,1),∴E 的坐标是(21,,∵等边△ABE 和正方形ABCD ,∴∠DAB=90°,∠EAB=60°,AD=AE , ∴()11809060152ADE AED ∠=∠=︒-︒-︒=︒;②同理当△ABE 在正方形ABCD 内时,同法求出E 的坐标是()2,1,∵∠DAE=90°﹣60°=30°,AD=AE , ∴()118030752ADE AED ∠=∠=︒-︒=︒;∴∠ADE 和点E 的坐标分别为15°,(21,,或75°,()2,1,故选:D .【点睛】本题考查了等边三角形性质、勾股定理、等腰三角形性质、正方形性质、坐标与图形性质、三角形的内角和定理等知识点的运用,主要考查学生综合运用性质进行推理和计算的能力,本题综合性比较强,有一定的难度,但题型较好,注意要分类讨论.8.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是 ( )A .1B .1.5C .2D .2.5【答案】C【解析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.9.如图,在正方形ABCD 中,点E 在边BC 上,点F 在线段DE 上,若AB AF =,则BFE ∠=( )A .45°B .30°C .60°D .55°【答案】A【解析】 由正方形的性质再结合已知条件可证△ABF 和△ADF 是等腰三角形,再根据等腰三角形的性质,四边形内角和为360°和三角形内角和定理即可解答.∵四边形ABCD 是正方形,∴AB AD =,90BAD ︒∠=,∵AB AF =,∴AF AD =,∴ABF ∆和ADF ∆都是等腰三角形,∴12∠=∠,34∠=∠.∵1234360BAD ︒∠+∠+∠+∠+∠=,∴2223270︒∠+∠=,∴23135︒∠+∠=,∴18013545BFE ︒︒︒∠=-=. 故选A .【点睛】此题考查正方形的性质,等腰三角形的性质,三角形内角和定理,解题关键在于掌握各性质定理.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是()A B C D【答案】D【解析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,==,∵CH⊥AF,∴1122AC CF AF CH⋅=⋅,12CH=⨯,∴.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.11.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=14BC,③OD=12BF,④∠CHF=45°.正确结论的个数为( )A.4个B.3个C.2个D.1个【答案】B【解析】根据已知对各个结论进行分析,从而确定正确的个数.①作EN ⊥BD 于N ,连接EF ,由全等三角形的判定定理可得△DNE ≌等腰直角△ECF ,再由平行线的性质得出OH 是△DBF 的中位线即可得出结论;②根据OH 是△BFD 的中位线,得出GH=12CF ,由GH <14BC ,可得出结论;③由OH 是△BFD 的中位线,BE 平分∠DBC ,由三角形全等得出BD=BF,即可得出结论.④根据四边形ABCD 是正方形,BE 是∠DBC 的平分线可求出Rt △BCE ≌Rt △DCF ,再由∠EBC=22.5°即可求出结论;作EN ⊥BD 于N ,连接EF .①∵BE 平分∠DBC ∴EC=EN ∴等腰直角△DNE ≌等腰直角△ECF ,DE=FE ∴∠HEF=45°+22.5°=67.5°∴∠HFE= 22.5°,∴∠EHF=180°-67.5°-22.5°=90°∵DH=HF ∴OH 是△DBF的中位线∴OH ∥BF ,故①正确;②根据OH 是△BFD 的中位线,得出GH=12CF ,由GH <14BC ,故②错误;③由OH 是△BFD 的中位线,BE 平分∠DBC ,由三角形全等得出BD=BF,∵OD=12BD,∴OD=12BF ;④∠HCF=90°-22.5°=67.5°HFC=45°+22.5°=67.5°,∠CHF=45°故选B.【点睛】解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.12.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S =.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】 由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确; 设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确;根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF=⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG=GF=CG=3,∴②正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④不正确;正确的结论有3个,故选:C.二、填空题13.在四边形ABCD 中,90A ︒∠=,AB BC CD ==,试补充一个条件__________,使四边形ABCD 是正方形.【答案】//AB CD (答案不唯一)【解析】根据平行四边形的判定定理、菱形的判定定理及正方形的判定定理即可解答.解:补充条件://AB CD ; 证明:∵在四边形ABCD 中,AB =CD ,//AB CD ,∴四边形ABCD 是平行四边形,又∵AB =BC ,∴ABCD 是菱形,∵90A ︒∠=∴菱形ABCD 是正方形,故答案为//AB CD .【点睛】解答此题的关键是熟练掌握正方形的判定定理,即有一个角是直角的菱形是正方形.14.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.【答案】45︒【解析】先求出AED ∠的度数,即可求出AEC ∠.解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠=180150152AED DAE ︒︒︒-∴∠=∠== 45AEC CED AED ︒∴∠=∠-∠=故答案为45︒【点睛】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.15.如图,正方形ABCD 中,CE ⊥MN ,若∠MCE=35°,则∠ANM 的度数是_____.【答案】55°【解析】过N 作NP BC ⊥于P ,则NP DC =,易证BEC PMN ≅,即可得MCE PNM ∠=∠,根据直角三角形内角和为180︒即可求得90ANM MCE ∠=︒-∠.过N 作NP BC ⊥于P ,则NP DC =,90MCE NMC ∠+∠=︒,90MNP NMC ∠+∠=︒,∴MCE MNP ∠=∠,在MNP △和ECB 中,MNP MCE NP CB NPM CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BEC PMN ≅,∴MCE PNM ∠=∠,∴9055ANM MCE ∠=︒-∠=︒,故答案为:55︒.【点睛】本题考查了正方形各边长、各内角相等的性质,考查了全等三角形的判定和全等三角形对应角相等的性质,本题中证明BEC PMN ≅是解题的关键.16.如图,点E 为正方形ABCD 外一点,AE=AD ,∠ADE=75°,则∠AEB= _________°.,【答案】30【解析】根据等腰三角形的性质求出DAE ∠,然后求出BAE ∠的度数,再根据等腰三角形两底角相等列式计算即可得解.AE AD =,75ADE ∠=︒,∴180218027530DAE DAE ∠=︒-∠=︒-⨯︒=︒,∴9030120BAE BAD DAE ∠=∠+∠=︒+︒=︒,AB AD =,∴AB AE =,∴()()111801*********AEB BAE ∠=︒-∠=⨯︒-︒=︒. 故答案为:30.【点睛】本题考查了正方形的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.17.如图,正方形ABCD 的边长为4,H 在CD 的延长线上,四边形CEFH 也为正方形,则DBF 的面积为______.【答案】8【解析】设EC=a ,利用DBF 的面积为:BEF ABD HDF ABCD HCEF S S S S S 正方形正方形+---,进而得出答案.设EC a =, 则DBF 的面积为:BEF ABD HDF ABCD HCEF S S S S S 正方形正方形+---()()2221114a a 4a 4a a 48222=+-⨯⨯+-⨯-⨯⨯-=. 故答案为8.【点睛】此题主要考查了整式的混合运算,正确表示出三角形面积,利用数形结合是解题关键.18.如图,正方形ABCD 中,AB=2,点E 为BC 边上的一个动点,连接AE ,作∠EAF=45°,交CD 边于点F ,连接EF.若设BE=x ,则△CEF 的周长为______.【答案】4【解析】先根据正方形的性质得AB AD =,90BAD B ==︒∠∠,把ADF 绕点A 顺时针旋转90︒可得到ABG △,接着利用“SAS ”证明EAG EAF ≅,得到EG EF BE DF ==+,然后利用三角形周长的定义得到CEF △的周长CE CF BE DF CB CD =+++=+,由此即可解决问题. 四边形ABCD 为正方形,∴AB AD =,90BAD B ==︒∠∠,∴把ADF 绕点A 顺时针旋转90︒可得到ABG △,∴AG AF =,BG DF =,90GAF ∠=︒,90ABG B ∠=∠=︒,∴点G 在CB 的延长线上,45EAF ∠=︒,∴45EAG GAF EAF ∠=∠-∠=︒,∴EAG EAF ∠=∠,在EAG △和EAF 中,AE AE EAG EAF AG AF =⎧⎪∠=∠⎨⎪=⎩,∴EAG EAF ≅(SAS ),∴EG EF =,而EG BE BG BE DF =+=+,∴EF BE DF =+,∴CEF △的周长224CE CF BE DF CB CD =+++=+=+=.故答案为:4.【点睛】本题考查了全等三角形的判定与性质、正方形的性质等知识,解题的关键是利用旋转添加辅助线构造全等三角形解决问题,属于中考常考题型.19.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =2.其中正确的序号是_____(把你认为正确的都填上).【答案】①②④分析:∵四边形ABCD 是正方形,∴AB=AD .∵△AEF 是等边三角形,∴AE=AF .∵在Rt △ABE 和Rt △ADF 中,AB=AD ,AE=AF ,∴Rt △ABE ≌Rt △ADF (HL ).∴BE=DF .∵BC=DC ,∴BC ﹣BE=CD ﹣DF .∴CE=CF .∴①说法正确.∵CE=CF ,∴△ECF 是等腰直角三角形.∴∠CEF=45°.∵∠AEF=60°,∴∠AEB=75°.∴②说法正确.如图,连接AC ,交EF 于G 点,∴AC ⊥EF ,且AC 平分EF .∵∠CAD≠∠DAF ,∴DF≠FG .∴BE+DF≠EF .∴③说法错误.∵EF=2,∴设正方形的边长为a ,在Rt △ADF 中,(22a a 4+=,解得a =,∴2a 2=.∴ABCD S 2=正方形∴④说法正确.综上所述,正确的序号是①②④.20.如图,边长为a 的正方形ABCD 和边长为b 的正方形BEFG 排放在一起,O 1和O 2分别是两个正方形的中心,则阴影部分的面积为__,线段O 1O 2的长为__.【答案】14ab 如图,∵O 1和O 2分别是两个正方形的中心,正方形ABCD 的边长为a ,正方形BEFG 的边长为b ,∴BO 1=2a ,BO 2=2,∠CBO 1=∠CBO 2=45°,∴∠O1BO 2=90°,∴S 阴影=S △O1O2B =1124ab =,O 1O 2=故答案为:(1)14ab ;(2)21.四边形ABCD 、四边形AEFG 都是正方形,当正方形AEFG 绕点A 逆时针旋转45°(45BAE ∠=︒)时,如图,连接DG ,BE ,并延长BE 交DG 于点H ,且BH DG ⊥.若4AB =,AE =BH 的长是________.【答案】5【解析】如图(见解析),先根据正方形的性质可得1,3GN DN ==,再根据勾股定理可得DG =形全等的判定定理与性质可得BE DG ==最后利用等面积法求出5HE =,据此利用线段的和差即可得出答案.如图,连接GE 交AD 于点N ,连接DE ,∵正方形AEFG 绕点A 逆时针旋转45︒()45BAE ∠=︒,∴AF 与EG 互相垂直平分,且AF 在AD 上,∵四边形AEFG 是正方形,AE =,∴AG AE =,1AN GN ==,2EG =,45DAG ∠=︒,四边形ABCD 是正方形,4AB =,4AD AB ∴==,∴413DN AD AN =-=-=,在Rt DNG中,DG =,在ABE △和ADG 中,45AB AD BAE DAG AE AG =⎧⎪∠=∠=︒⎨⎪=⎩,()ABE ADG SAS ∴≅,∴BE DG == ∵1122DEG S EG DN DG HE =⋅=⋅,即112322⨯⨯=,∴HE =,∴55BH HE BE =+=+=,.【点睛】本题考查了正方形的旋转问题与性质、三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握正方形的性质是解题关键.22.如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若EF =2ABE S ∆=,则线段GH 长度的最小值是___.【解析】根据正方形的性质可得AB AD =,90BAD ∠=︒,然后利用同角的余角相等求出BAE ADF ∠=∠,再利用“角角边”证明ABE ∆和DAF ∆全等,根据全等三角形对应边相等可得BE AF =,设AE x =,BE y =,然后列出方程组求出x 、y 的值,再利用勾股定理列式求出正方形的边长AB ,根据正方形的对角线平分一组对角可得45OAG ODH ∠=∠=︒,根据同角的余角相等求出AOG DOH ∠=∠,然后利用“角边角”证明AOG ∆和DOH ∆全等,根据全等三角形对应边相等可得OG OH =,判断出OGH ∆是等腰直角三角形,再根据垂线段最短和等腰直角三角形的性质可得OH CD ⊥时GH 最短,然后求解即可.在正方形ABCD 中,AB AD =,90BAD ∠=︒, 90BAE DAF ∴∠+∠=︒,DF l ⊥,90DAF ADF ∴∠+∠=︒,BAE ADF ∴∠=∠,在ABE ∆和DAF ∆中,90AFD BEA AB AD ⎪∠=∠=︒⎨⎪=⎩,()ABE DAF AAS ∴∆≅∆,BE AF ∴=,设AE x =,BE y =,2EF =2ABE S ∆=,∴122x y xy ⎧+=⎪⎨=⎪⎩,消掉y并整理得,240x -+=,解得11x =,21x ,当11x =,11y ,当21x,21y ,∴由勾股定理得,AB ,在正方形ABCD 中,45OAG ODH ∠=∠=︒,OA OD =,90AOD ∠=︒,90AOG DOG ∴∠+∠=︒,OG OH ⊥,90DOH DOG ∴∠+∠=︒,AOG DOH ∴∠=∠,在AOG ∆和DOH ∆中,OA ODOAG ODH ⎪=⎨⎪∠=∠⎩, ()AOG DOH ASA ∴∆≅∆,OG OH ∴=,OGH ∴∆是等腰直角三角形,由垂线段最短可得,OH CD ⊥时OH 最短,GH 也最短,此时,GH=【点睛】考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,难点在于多次证明三角形全等并判断出GH 长度最小时的情况.三、解答题23.正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE DF EF +=,求EAF ∠的度数.【答案】45°【解析】延长EB 使得BG=DF ,易证△ABG ≌△ADF (SAS )可得AF=AG ,进而求证△AEG ≌△AEF 可得∠EAG=∠EAF ,再求出∠EAG+∠EAF=90°即可解题.解:如图,延长EB 到点G ,使得BG DF =,连接AG .在正方形ABCD 中,90D ABC ∠=∠=︒,AB AD =,90ABG ADF ∴∠=∠=︒.在ABG 和ADF 中,AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩,()ABG ADF SAS ∴≌,DAF BAG ∴∠=∠,AF AG =.又EF DF BE BG BE EG =+=+=,∴在AEG △和AEF 中,AE AE GE FE AG AF =⎧⎪=⎨⎪=⎩,()AEG AEF SSS ∴≌,EAG EAF ∴∠=∠.90DAF EAF BAE ∠+∠+∠=︒,90BAG EAF BAE ∴∠+∠+∠=︒,90EAG EAF ∴∠+∠=︒,45EAF ∴∠=︒.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解决此题的关键. 24.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为,AD BC 边上的点,若2,4,90AG BF GEF ==∠=︒,求GF 的长.【答案】6GF =【解析】延长GE 交CB 的延长线于M .只要证明△AEG ≌△BEM ,推出AG=CM=2,再根据线段的垂直平分线的性质,即可解决问题.如图,延长GE 交CB 的延长线于M .∵四边形ABCD 是正方形,∴//AD CM ,∴∠=∠AGE M .在AEG △和BEM △中,,,,AGE M AEG MEB AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ≌AEG BEM , ∴,2===GE EM AG BM .又∵EF MG ⊥,∴FG FM =.∵4BF =,∴426=+=+=MF BF BM ,∴6==GF FM .【点睛】本题考查了正方形的性质、全等三角形的判定和性质等知识,关键是添加辅助线,构造全等三角形解决问题. 25.如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE =CE .【答案】见解析【解析】先证明△ABE ≌△CBE ,再利用全等三角形的性质,可以得到AE =CE .证明:∵四边形ABCD 是正方形, ∴AB =CB ,∠ABE =∠CBE ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE (SAS ),∴AE=CE.【点睛】本题利用了全等三角形的判定和性质,以及正方形的性质.26.已知:如图,在菱形ABCD中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.当AB 与BC满足___________条件时,四边形AEOF正方形.【答案】垂直,证明见解析.【解析】由菱形的性质得出AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=12DC,OE=12BC,OE∥BC,可得AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.证明::当AB⊥BC 时,四边形AEOF正方形.理由如下:∵四边形ABCD是菱形,∴AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=12DC,OE=12BC,OE∥BC,AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB ⊥BC ,OE ∥BC ,∴OE ⊥AB ,∴∠AEO=90°,∴四边形AEOF 是正方形.故答案:垂直.【点睛】本题考查了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.27.如图,点P 是边长为4的正方形ABCD 对角线AC 上一点(P 不同A 、C 重合),点E 在线段BC 上,且PE PB =.(1)若1AP =,求CE 的长;(2)求证:PE PD ⊥.【答案】(1)CE=4(2)证明见解析.【解析】 (1)过点P 作GF AB ∥,得出FC 、BF 的长度以及BF FE =,=CE BC BE BF FC BE =-+- (2)证明()PGD EFP SAS ≌,得出132390∠+∠=∠+∠=°,得出90DPE ∠=︒,从而证明PE PD⊥(1)【解】过点P 作GF AB ∥,分别交AD BC ,于点G F ,,如图所示.∵四边形ABCD 是正方形,∴四边形ABFG 和四边形GFCD 都是矩形, AGP 和PFC △都是等腰直角三角形又∵14AP AD ==,,∴2GP AG BF ===,42GD FC FP ===-又∵PB PE PF BE =⊥,.∴BF FE =,∴4242CE =-⨯=(2)【证明】由(1)得在△PGD 和EFP △中,∴90GD FP PGD EFP PG EF =⎧⎪∠=∠=︒⎨⎪=⎩,∴()PGD EFP SAS ≌,∴12∠=∠.∴132390∠+∠=∠+∠=°,∴90DPE ∠=︒,∴PE PD ⊥.【点睛】本题考察了辅助线的应用、勾股定理的运用、全等三角形的证明以及垂直的概念,运用好辅助线是解题的关键28.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥E D,理由详见解析;(2)详见解析【解析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG ⊥ED ;(2)根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE ,∵CG ∥EB ,∴∠BCG =∠CBE =90°,∴∠BCG =90°,∴四边形BCGE 是矩形,∵CB =BE ,∴四边形CBEG 是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.29.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.【答案】(1)见解析;(2)见解析.【解析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG=∠C=90°,AD=DC ,∠DAG=∠CDE ,即可得出△ADG ≌△DCE ;(2)延长DE 交AB 的延长线于H ,根据△DCE ≌△HBE ,即可得出B 是AH 的中点,进而得到AB=FB .证明:(1)四边形ABCD 是正方形,90ADG C AD DC ︒∴∠∠==,=,又AG DE ⊥,90DAG ADF CDE ADF ︒∴∠+∠∠+∠==,DAG CDE ∴∠∠=,ADG DCE ASA ∴∆∆≌()(2)如图所示,延长DE 交AB 的延长线于H ,E 是BC 的中点,BE CE ∴=,又90C HBE DEC HEB ︒∠∠∠∠==,=,DCE HBE ASA ∴∆∆≌(), BH DC AB ∴==,即B 是AH 的中点,又90AFH ︒∠=,Rt AFH ∴∆中,12BF AH AB ==. 【点睛】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.30.如图,正方形ABCD 的对角线交于点O 点E ,F 分别在AB ,BC 上(AE BE <)且90EOF ∠=︒,OE ,DA 的延长线交于点M ,OF ,AB 的延长线交于点N ,连接MN .(1)求证:OM ON =.(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.【答案】(1)见解析(2)【解析】(1)证△OAM ≌△OBN 即可得;(2)作OH ⊥AD ,由正方形的边长为4且E 为OM 的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2由直角三角形性质知.(1)∵四边形ABCD 是正方形,∴OA=OB ,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON ,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则∴.【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.31.如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.【答案】(1)证明见解析;(2)成立,证明见解析.解:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE∴∠MEA=∠AFO,∴Rt△BOE≌ Rt△AOF∴OE=OF(2)OE=OF成立∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA又∵AM⊥BE,∴∠F+∠MBF=90°=∠E+∠OBE又∵∠MBF=∠OBE∴∠F=∠E∴Rt△BOE≌Rt△AOF∴OE=OF32.在正方形ABCD中,E是CD边上一点,(1)将ADE 绕点A 按顺时针方向旋转。
正方形的性质与判定讲义
正方形的性质与判定讲义(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除正方形的性质及判定一、知识点归纳 (一)正方形的概念:一组邻边相等的矩形叫做正方形。
(二)正方形的性质:1、因为ABCD 是正方形⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( 正方形是轴对称图形,对称轴有4条,也是中心对称二、例题讲解考点 ①正方形与等腰三角形(等边三角形)结合1. 如图,E 是正方形ABCD 的对角线BD 上一点,且BE =BC ,则∠ACE = °2.如图,四边形ABCD是正方形,延长CD到E ,使CE =CB ,则∠DBE = °. 3. 如图,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC ,则下列结论:(1)∠E =°; (2) ∠AFC =°; (3) ∠ACE =135°;(4)AC =CE ;(5) AD ∶CE =1∶ 2.其中正确的有 ( )A .5个 个 个 个4. 如图,等边△EDC 在正方形ABCD 内,连结EA 、EB ,则∠AEB = °;∠ACE = °.5. 已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 °.考点②正方形与旋转结合1. 如图1,四边形ABCD 是正方形,E 是边CD 上一点,若△AFB 经过逆时针旋转角θ后与△AED 重合,则θ的取值可能为 ( )° ° ° °2. 已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图2所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.3. 如图3,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.考点③正方形对角线的对称性1. 如图:正方形ABCD中,AC=10,P是AB上任意一点,PE⊥AC于E,PF⊥BD于F,则PE+PF= .可以用一句话概括:正方形边上的任意一点到两对角线的距离之和等于 .思考:如若P在AB的延长线时,上述结论是否成立?若不成立,请写出你的结论,并加以说明.2.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP =EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD= 2EC.其中正确结论的序号是.思考:当点P在DB的长延长线上时,请将备用图补充完整,并思考(1)正确结论是否依旧成立若成立,直接写出结论;若不成立,请写出相应的结论.考点④正方形的折叠1.如图1,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长是 .2.如图2,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B'处,点A对应点为A',且CB'=3,则AM的长是 .P3如图3,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是 .课后练习1、已知:如图,正方形ABCD 中,CM =CD ,MN ⊥AC ,连结CN ,则∠DCN =_____=____∠B ,∠MND =_______=_______∠B.2.在正方形ABCD 中,AB =12 cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( )+122 +62 +2 +623.正方形的面积是31,则其对角线长是________. 4. 如图,在正方形ABCD 中,△PBC 、△QCD 是两个等边三角形,PB 与DQ 交于M ,BP 与CQ 交于E ,CP 与DQ 交于F .求证:PM = QM .5. 如图4,正方形ABCD 的对角线AC 、BD 相交于点O ,正方形A ′B ′C ′D ′的顶点A ′与点O 重合,A ′B ′交BC 于点E ,A ′D ′交CD 于点F ,若正方形A ′B ′C ′D ′绕点O 旋转某个角度后,OE =OF 吗两正方形重合部分的面积怎样变化为什么6.如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB .试判断PE 与PB 的关系.7. 如图,正方形ABCD 的面积为12,△ADE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PB +PE 的和最小,则这个最小值为 .8.如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M处,点C 落在点N 处,MN 与CD 交于点P , 连接EP . (1)如图②,若M 为AD 边的中点, ①△AEM 的周长=_____cm ; ②求证:EP =AE +DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D重合),△PDM 的周长是否发生变化?请说明理由.(三)正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD 是正方形1、判断:(1)四条边都相等的四边形是正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形的性质及判定练习题
一、知识梳理:
1、定义:一组邻边相等的矩形是正方形.
2、正方形性质:
(1)边的性质:对边平行,四条边都相等.
(2)角的性质:四个角都是直角.
(3)对角线的性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.(4)对称性:既是轴对称图形,又是中心对称图形.
3、判定:(1)一组邻边相等的矩形是正方形
(2)对角线互相垂直的矩形是正方形
(3)有一个是直角的菱形是正方形
(4)对角线相等的菱形是正方形
总结:矩形+(或)=正方形
菱形+(或)=正方形
二、基础训练:
性质:1、如图,四边形ABCD是正方形,两条对角线相交于点O.
(1)一条对角线把它分成_______个全等的________ 三角形;
(2)两条对角线把它分成_______个全等的________三角形;
图中一共有________个等腰直角三角形;
(3)∠AOB=_____度,∠OAB=_____度.
(4)AB: AO: AC=________.
2、正方形具有而矩形不一定具有的性质是( )
A、四个角相等
B、对角线互相垂直平分
C、对角互补
D、对角线相等.
3、正方形具有而菱形不一定具有的性质()
A、四条边相等.
B、对角线互相垂直平分
C、对角线平分一组对角
D、对角线相等.
4、正方形对角线长6,则它的面积为_________ ,周长为________.
5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD
和EFGH都是正方形.求证:△ABF≌△DAE.
F A B C D 判定:
1. 下列说法错误的是( )
A.两条对角线相等的菱形是正方形 B.两条对角线相等且垂直平分的四边形是正方形
C.两条对角线垂直且相等的四边形是正方形 D. 两条对角线垂直的矩形是正方形
2.四个内角都相等的四边形一定是( )
A .正方形
B .菱形
C .矩形
D .平行四边形
3.已知在□ABCD 中,∠A=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A .∠D=90° B.AB=CD C. AD=BC D. BC=CD
4.四边形ABCD 中,AC 、BD 相交于点O ,能判别这个四边形是正方形的条件是( )
A. OA=OB=OC=OD ,AC ⊥BD
B. AB ∥CD ,AC=BD
C. AD ∥BC ,∠A=∠C
D. OA=OC ,OB=OD ,AB=BC
5.能使平行四边形ABCD 为正方形的两个条件是 ________ _________ ___________________________________________________________ .(最少填三组)
三、【聚焦“中考”】例:如图,在△ABC 中,AB=AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F . (1)求证:DE=DF .
(2)只添加一个条件,使四边形EDFA 是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)
自我检测:
1.如图,在ABC 中∠ACB=90°,CD 平分∠ACB,DE ⊥BC ,DF⊥AC,垂足分别为E 、F , 求证:四边形CFDE 为正方形
2. 如图所示,在Rt ΔABC 中,∠C =90°,∠A 、∠B 的平分线交于点D ,DE ⊥BC 于E ,DF ⊥AC 于F ,试说明四边形CEDF 为正方形。
四、反思考查: 1.正方形ABCD 的对角线相交于O ,若AB=2,那么△ABO 的周长是_______,•面积是________.
2.如图,已知E 点在正方形ABCD 的BC 边的延长线上,且CE=AC ,
AE 与CD 相交于点F ,•则∠AFC=________.
3.顺次连接正方形各边中点的小正方形的面积是原正方形面积的( ).
A .12
B .13
C .14
D .15
4.四条边都相等的四边形一定是( )A .正方形 B .菱形 C .矩形 D .以上结论都不对。