人教A版高中数学必修五高二数列单元测试
人教A版高中数学必修五高二第2章《数列》单元测试题.docx
高中数学学习材料唐玲出品一、 选择题(每小题5分,共40分)1. 在等差数列{}n a 中,已知1234520a a a a a ++++=,则3a 等于 ( ) A. 4 B. 5 C. 6 D. 72. 在等比数列{}n a 中,已知378,2a a ==,则5a 的值为 ( ) A. 4± B. 4- C. 4 D. 56.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S = ( )A .12n -B .132n -⎛⎫ ⎪⎝⎭C .123n -⎛⎫ ⎪⎝⎭D .112n - 7.数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2013S 等于 ( ) A .1006B .2012C .503D .08.定义在(,0)(0,)-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}{},()n n a f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在(,0)(0,)-∞⋃+∞上的如下函数:①2()f x x =;②()2x f x =;③()||f x x =;④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为 ( )A .①②B .③④C .②④D .①③二、填空题(每小题5分,共35分)9.已知等差数列{}n a 中, 110,a a 是方程23610x x ++=的两根,则47a a + 的值是_____________.10. 若等比数列{}n a 满足2412a a =,则2135a a a =______________.11. 设数列{}{},n n a b 都是等差数列,若11337,21a b a b +=+=, 则55a b +=______________.14.已知方程()()22220x x m x x n -+-+=的四个根组成一个首项为14的等差数列,则m n -的值为_____________.15.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3, 6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b ,可以推测:(1)2012b 是数列{}n a 中的第______项; (2)21k b -=______.(用k 表示)三、解答题(共6小题,共75分)16.(12分) 已知等差数列{}n a 的前n 项和2225n S n n =-, (1)求123,,a a a 的值;(2)该数列所有负数项的和是多少?17.(12分)设()f x 是一次函数,已知()815f =,且()()()2,5,4f f f 成等比数列, (1)求()f x 的解析式;(2)求()()()()2462f f f f n +++⋅⋅⋅+.第15题图·18.(12分)已知{}n a 为等差数列,且13248,12,a a a a +=+= (1)求数列{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.19.(13分)已知数列{a n }的前n 项和为n S ,且2*2,n S n n n N =+∈,数列{}n b 满足*24log 3,n b n a n N =+∈(1)求,n n a b ;(2)求数列{}n n a b ⋅的前n 项和T n .21.(13分) 某企业进行技术改造,有两种方案.甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比上一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比上一年增加5千元.两种方案的使用期都是10年,到期一次性归还本息.若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种使该企业获利更多?用数据说明理由.(注:计算过程中可取665.575.1,786.133.1,629.105.1101010===)高二第二章数列单元测试卷参考答案一、选择题:1—4 ACCB 5—8 ABAD二、填空题:9. 2- 10. 14 11. 35 12. 8 13. 2-14.1215. (1) 5030 (2) ()5512k k -三、解答题:16.解:(1) 12323,19,15a a a =-=-=-; (2)等差数列 {}n a 的通项公式为: 427n a n =-由100n n a a +≤⎧⎨≥⎩即42704(1)270n n -≤⎧⎨+-≥⎩得232744n ≤≤.又*n N ∈∴6n =.所以数列 {}n a 的前6项均为负数,从第7项开始为正数. 所以该数列的所有负数项的和为:6652364782S ⨯=-⨯+⨯=-.17.解:(1)设()()0f x ax b a =+≠,则由已知得()()()()2815245f f f f =⎧⎪⎨⋅=⎪⎩, 所以()()()2815245a b a b f a b a b +=⎧⎪⎨+⋅+=+⎪⎩.解得417a b =⎧⎨=-⎩. 所以()f x 的解析式为()417f x x =-.(2) ()()()()()()()2462917817f f f f n n +++⋅⋅⋅+=-+-++⋅⋅⋅+-()298174132n n n n -+-==-.18.解: (1)设数列{}n a 的公差为d,由题意知112282412a d a d +=⎧⎨+=⎩ 解得12,2a d ==所以1(1)22(1)2n a a n d n n =+-=+-= (2)由(1)可得1()(22)(1)22n n a a n n nS n n ++===+ 因12,,k k a a S + 成等比数列,所以212k k a a S += 从而2(2)2(2)(3)k k k =++ ,即 2560k k --= 解得6k = 或1k =-(舍去),因此6k = .19.解:(1)由S n =22n n +,得当n=1时,113a S ==;当n ≥2时,1n n n a S S -=-=2222(1)(1)41n n n n n ⎡⎤+--+-=-⎣⎦, *n N ∈. 由a n =4log 2b n +3,得21n b n =-,*n N ∈.(2)由(1)知1(41)2n n n a b n -=-⋅, *n N ∈ 所以()21372112...412n n T n -=+⨯+⨯++-⋅,()2323272112...412n n T n =⨯+⨯+⨯++-⋅, ()212412[34(22...2)]n n n n T T n --=-⋅-++++(45)25n n =-+(45)25n n T n =-+, *n N ∈.。
2020年高中数学 人教A版 必修5 单元检测卷 数列(含答案解析)
2020年高中数学 人教A 版 必修5 单元检测卷数列一、选择题1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( )A .667B .668C .669D .6722.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .13.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( )A .1B .2C .4D .84.数列{a n }的通项公式是a n =(n +2)⎝ ⎛⎭⎪⎫910n ,那么在此数列中( ) A .a 7=a 8最大 B .a 8=a 9最大C .有唯一项a 8最大D .有唯一项a 7最大5.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n≥1),则a 6=( )A .3×44B .3×44+1C .44D .44+16.数列{(-1)n·n}的前2 013项的和S 2 013为( )A .-2 013B .-1 017C .2 013D .1 0077.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( )A .1或2B .1或-2C .-1或2D .-1或-28.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值9.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158和5B.3116和5C.3116D.15810.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( )A .(-∞,6)B .(-∞,4]C .(-∞,5)D .(-∞,3]11.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.3812.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A .qB .12qC .(1+q)12D .(1+q)12-1二、填空题13.设{a n }是递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是________.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.15.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =______________.16.设数列{a n }的前n 项和为S n (n∈N *),有下列三个命题:①若{a n }既是等差数列又是等比数列,则a n =a n +1;②若S n =a n(a 为非零常数),则{a n }是等比数列;③若S n =1-(-1)n,则{a n }是等比数列. 其中真命题的序号是________.三、解答题17.已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等?18.已知等差数列{a n}的首项a1=1,公差d=1,前n项和为S n,b n=1S n.(1)求数列{b n}的通项公式;(2)设数列{b n}前n项和为T n,求T n.19.求数列1,3a,5a2,7a3,…,(2n-1)a n-1的前n项和.20.等差数列{a n}前n项和为S n,已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项公式.21.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.22.已知等差数列{a n }的公差d≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 2成等比数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.答案解析1.答案为:D ;解析:由2 014=1+3(n -1)解得n=672.2.答案为:B ;解析:等差数列前n 项和S n 的形式为S n =an 2+n ,所以λ=-1.3.答案为:A ;解析:因为a 3·a 11=a 27=16,所以a 7=4,所以a 5=a 7q 2=422=1.4.答案为:A ;解析:a n =(n +2)⎝ ⎛⎭⎪⎫910n ,a n +1=(n +3)·⎝ ⎛⎭⎪⎫910n +1,所以a n +1a n =n +3n +2·910,令a n +1a n ≥1,即n +3n +2·910≥1,解得n≤7, 即n≤7时递增,n >7递减,所以a 1<a 2<a 3<…<a 7=a 8>a 9>….所以a 7=a 8最大.5.答案为:A ;解析:由a n +1=3S n ⇒S n +1-S n =3S n ⇒S n +1=4S n ,故数列{S n }是首项为1,公比为4的等比数列,故S n =4n -1,所以a 6=S 6-S 5=45-44=3×44.6.答案为:D ;解析:S 2 013=-1+2-3+4-5+…+2 012-2 013=(-1)+(2-3)+(4-5)+…+(2 012-2 013)=(-1)+(-1)×1 006=-1 007.7.答案为:C ;解析:依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0,所以q 2-q -2=0,(q -2)(q +1)=0.所以q=-1或q=2.8.答案为:C ;解析:由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0,即S 9<S 5.9.答案为:C ;解析:由9S 3=S 6=S 3+q 3S 3,又S 3≠0,所以q 3=8,q=2.故a n =q·q n -1=2n -1,所以1a n =12n -1,所以⎩⎨⎧⎭⎬⎫1a n 的前5项和S 5=1-⎝ ⎛⎭⎪⎫1251-12=3116.10.答案为:B ;解析:数列{a n }的通项公式是关于n(n∈N *)的二次函数,若数列是递减数列,则-λ2·(-2)≤1,即λ≤4.11.答案为:C ;解析:由已知得a 2=1+(-1)2=2,所以a 3·a 2=a 2+(-1)3,所以a 3=12,所以12a 4=12+(-1)4,所以a 4=3,所以3a 5=3+(-1)5,所以a 5=23,所以a 3a 5=12×32=34.12.答案为:D ;解析:设第一年第1个月的生产总值为1,公比为(1+q),该厂一年的生产总值为S 1=1+(1+q)+(1+q)2+…+(1+q)11.则第2年第1个月的生产总值为(1+q)12,第2年全年生产总值S 2=(1+q)12+(1+q)13+…+(1+q)23=(1+q)12S 1,所以该厂生产总值的年平均增长率为S 2-S 1S 1=S 2S 1-1=(1+q)12-1.13.答案为:2;解析:设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d=12且a(a -d)(a +d)=48, 解得a=4且d=±2,又{a n }递增,所以d >0,即d=2,所以a 1=2.14.答案为:63;解析:由题意知a 1+a 3=5,a 1a 3=4,又{a n }是递增数列,所以a 1=1,a 3=4,所以q 2=a 3a 1=4,q=2代入等比求和公式得S 6=63.15.答案为:2n -1(n∈N *);解析:当n=1时,S 1=2a 1-1,所以a 1=2a 1-1,所以a 1=1.当n≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1);所以a n =2a n -1,经检验n=1也符合.所以{a n }是等比数列.所以a n =2n -1,n ∈N *.16.答案为:①③;解析:易知①是真命题,由等比数列前n 项和S n =a 1(1-q n)1-q =a 11-q -a 11-q·q n知②不正确,③正确.17.解:(1)设等差数列{a n }的公差为d.因为a 4-a 3=2,所以d=2.又因为a 1+a 2=10,所以2a 1+d=10,故a 1=4. 所以a n =4+2(n -1)=2n +2 (n=1,2,…). (2)设等比数列{b n }的公比为q. 因为b 2=a 3=8,b 3=a 7=16, 所以q=2,b =4.所以b 6=4×26-1=128. 由128=2n +2得n=63,所以b 6与数列{a n }的第63项相等.18.解:因为等差数列{a n }中a 1=1,公差d=1.所以S n =na 1+n (n -1)2d=n 2+n 2.所以b n =2n 2+n.(2)b n =2n 2+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,所以T n =b 1+b 2+b 3+…+b n =2⎝ ⎛1-12+12-13+13-14+…+⎭⎪⎫1n +1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.19.解:当a=1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2.当a≠1时,S n =1+3a +5a 2+…+(2n -3)a n -2+(2n -1)a n -1,aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n, 两式相减,有:(1-a)S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a-(2n -1)a n,此时S n =2a (1-a n -1)(1-a )2+a n +1-2nan1-a . 综上,S n =⎩⎪⎨⎪⎧n 2,a =1,2a (1-a n -1)(1-a )2+a n +1-2na n 1-a ,a ≠1.20.解:设{a n }的公差为d.由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4. 又S 1=a 1-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d)2=(a 2-d)(4a 2+2d).若a 2=0,则d 2=-2d 2,所以d=0, 此时S n =0,不合题意;若a 2=3,则(6-d)2=(3-d)(12+2d), 解得d=0或d=2.因此{a n }的通项公式为a n =3或a n =2n -1(n∈N *).21.证明:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12,所以a n +1+12a n +12=3,所以⎩⎨⎧⎭⎬⎫a n +12是等比数列,首项为a 1+12=32,公比为3,所以a n +12=32·3n -1,因此{a n }的通项公式为a n =3n-12(n∈N *).(2)由(1)知:a n =3n-12,所以1a n =23n -1,因为当n≥1时,3n -1≥2·3n -1,所以13n -1≤12·3n -1,于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32,所以1a 1+1a 2+…+1a n <32.22. (1)解:因为数列{a n }是等差数列,所以a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d.依题意,有⎩⎪⎨⎪⎧S 5=70,a 27=a 2a 22.即⎩⎪⎨⎪⎧5a 1+10d =70,(a 1+6d )2=(a 1+d )(a 1+21d ). 解得a 1=6,d=4.所以数列{a n }的通项公式为a n =4n +2(n∈N *).(2)证明:由(1)可得S n =2n 2+4n.所以1S n =12n 2+4n =12n (n +2)=14(1n -1n +2).所以T n =1S 1+1S 2+1S 3+…+1S n -1+1S n =14⎝ ⎛⎭⎪⎫1-13+14⎝ ⎛⎭⎪⎫12-14+14⎝ ⎛⎭⎪⎫13-15+…+14·⎝ ⎛⎭⎪⎫1n -1-1n +1+14⎝ ⎛⎭⎪⎫1n -1n +2=14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 因为T n -38=-14⎝ ⎛⎭⎪⎫1n +1+1n +2<0,所以T n <38. 因为T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0,所以数列{T n }是递增数列, 所以T n ≥T 1=16.所以16≤T n <38.。
第二章数列单元综合测试(人教A版必修5)
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
人教A版高中数学必修五必修5数列测试题
高一数学《数列》单元检测题及参考答案一、选择题:1.已知数列a n的首项a i 1 ,且a n 2a01 1 n 2 ,则a§为(D)A. 7B. 15C.30D. 312.等比数列a n中,a1、a99为方程x2 10x 16 0的两根,则a20 a50 a80的值为(D)A. 32B. 64C. 256D. ±643.若{a n}是等差数列,且a[ + a4+ a7=45, a2+&+ a8=39,则a3 + a e+ a9 的值是(D)A. 39B. 20C. 19.5D. 334.非常数数列{a。
}是等差数列,且{a n}的第5、10、20项成等比数列,则此等比数列的公比为(C)A. % 5C. 2D.-5 25.在等比数歹U {a n}中,a n>0,且a2 a4+2a3 a5+ a4 a6=25,刃B么a3+a5= (A)A5B10C15D206. S为等差数列{a n}的前n项之和,若a3=10, a10=—4,则S10—S等于(A)A. 14 B, 6 C. 12 D. 217 .正项等比数列{ a n }满足:a 2 • 34 = 1, &=13, b n = log 3a n,则数列{ b n }的 前10项的和是(D )8 .在等差数列{a n }中,33、38是方程x 23x 50的两个根,则S [。
是(B )A.30B.15C.50D.259 .若某等差数列中,前7项和为48,前14项和为72,则前21项和为(B ) A.96B.72C.60D.48 10 .已知等差数列{a n }的通项公式为a n 2n 1,其前n 项和为S,则数列{殳}的11 .等比数列的公比为2,且前4项之和等于1,那么前8项之和等于17 . 12 .已知数列的通项公式3n 2n 37 ,则S n 取最小俏时n = 18 , 此时S n = 324 .15 .数列{3n }为等差数列,32与36的等差中项为5, 33与37的等差中项为7,则数列的通项3n 等于2n-3.116 .数列{3n }为等差数列, S°0=145, d=—,则 31 + 33 + 35 + • • • + 399 的值为60:、解答题15.(14分)在等比数列{3n }中,$为其前n 项的和。
人教A数学必修5_高中同步测试卷(五)单元检测 数列的概念及表示方法和等差数列
高中同步测试卷(五)单元检测 数列的概念及表示方法和等差数列(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34 D.582.在数列-1,0,19,18,…,n -2n2,…中,0.08是它的( )A .第100项B .第12项C .第10项D .第8项3.已知等差数列{a n }中各项都不相等,a 1=2,且a 4+a 8=a 23,则d =( ) A .0 B.12 C .2 D .0或124.已知等差数列{a n }的前n 项和为S n ,若2a 6=a 8+6,则S 7=( )A .49B .42C .35D .285.在等差数列{a n }中,若a 1,a 2017为方程x 2-10x +16=0的两根,则a 2+a 1 009+a 2 016=( )A .10B .15C .20D .406.把70个面包分五份给5个人,使每人所得的面包个数成等差数列,且使较大的三份之和的16是较小的两份之和,则最小的一份面包的个数为( )A .2B .8C .14D .207.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .658.已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .219.设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3(x ≤7),a x -6(x >7),数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( )A.⎝⎛⎭⎫94,3B.⎣⎡⎭⎫94,3 C .(1,3) D .(2,3) 10.已知数列{a n }的通项公式是a n =n 2+kn +2,若对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是( )A .(0,+∞)B .(-1,+∞)C .(-2,+∞)D .(-3,+∞)11.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.10110012.已知数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =-a n +a m +m ,则1a 1+1a 2+1a 3+…+1a 2 017=( ) A .2 017 B.12 017 C .-2 017 D .-12 017二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.在数列1,1,2,3,5,8,x ,21,34,55中,x =________.14.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=________. 15.已知等差数列的前三项依次是m ,6m ,m +10,则这个等差数列的第10项是________. 16.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)数列{a n }满足a 1=1,a n +1+2a n a n +1-a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项?18.(本小题满分12分)已知数列{a n }是等差数列,c n =a 2n -a 2n +1(n ∈N *).(1)判断数列{c n }是否为等差数列,并说明理由;(2)如果a 1+a 3+…+a 25=130,a 2+a 4+…+a 26=117,试求数列{a n }的公差d 及通项公式.19.(本小题满分12分)已知数列{a n }满足a 1=2,a n +1=2a na n +2. (1)数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由;(2)求数列{a n }的通项公式;(3)若数列{b n }的前n 项和S n =8a 2n-n +1,求数列{b n }的通项公式.20.(本小题满分12分)设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.21.(本小题满分12分)已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出.(1)写出此数列的前5项;(2)通过公式b n =a na n +1构造一个新的数列{b n },写出数列{b n }的前4项.22.(本小题满分12分)已知数列{a n }满足a 1=a ,a n +1=1+1a n,我们知道当a 取不同的值时,得到不同的数列,如当a =1时,得到无穷数列:1,2,32,53,…;当a =-12时,得到有穷数列:-12,-1,0.(1)当a 为何值时,a 4=0?(2)设数列{b n }满足b 1=-1,b n +1=1b n -1,求证:a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }.参考答案与解析1.【解析】选B.因为a 1=1,a n +1=12a n +12n ,所以a 2=12a 1+12=1,a 3=12a 2+14=34,a 4=12a 3+18=12. 2.【解析】选C.因为a n =n -2n 2,令n -2n 2=0.08,解得n =10或n =52(舍去).3.【解析】选B.由已知得a 1+3d +a 1+7d =(a 1+2d )2,即2a 1+10d =a 21+4a 1d +4d 2.又a 1=2,所以4d 2-2d =0,所以2d (2d -1)=0,所以d =0或d =12.又因为{a n }中各项都不相等,所以d =12.4.【解析】选B.因为数列{a n }是等差数列, 所以2a 6=a 4+a 8=a 8+6,所以a 4=6,所以S 7=7(a 1+a 7)2=7×2a 42=7×a 4=7×6=42.5. 【解析】选B.由题意知a 1+a 2 017=a 2+a 2 016=2a 1 009=10,解得a 1 009=5,所以a 2+a 1 009+a 2 016=3a 1 009=15,故选B.6.【解析】选A.设等差数列为{a n },首项为a 1,公差为d >0,则有⎩⎨⎧16(a 3+a 4+a 5)=a 1+a 2,5a 1+5×42×d =70,解得⎩⎪⎨⎪⎧a 1=2,d =6.7.【解析】选C.因为a n =2n -1,b 1=2,b n =ab n -1=2b n -1-1,所以b 2=2b 1-1=3,b 3=2b 2-1=5,b 4=2b 3-1=9,b 5=2b 4-1=17,b 6=2b 5-1=33.8.【解析】选C.由a 1+a 3+a 5=105,a 2+a 4+a 6=99,两式相减得3d =-6,即d =-2.又a 1+a 3+a 5=105,所以a 1=39,所以S n =39n -n (n -1)=-(n -20)2+400,所以当n =20时,S n 有最大值400,故选C.9.【解析】选D.因为数列{a n }是递增数列, 又a n =f (n )(n ∈N *),所以⎩⎪⎨⎪⎧3-a >0,a >1,f (8)>f (7)⇒2<a <3.10.【解析】选D.由a n +1>a n , 得(n +1)2+k (n +1)+2>n 2+kn +2, 所以k >-(2n +1).因为当n =1时,-(2n +1)取得最大值-3, 只要k >-3,则都有a n +1>a n .11. 【解析】选A.由a 5=5,S 5=15,得a 1=1,d =1,所以a n =1+(n -1)=n ,所以1a n a n +1=1n (n +1)=1n -1n +1, 1a 1a 2+…+1a 100a 101=1-12+12-13+…+1100-1101=1-1101=100101. 12.【解析】选A.令m =1,得a n +1=-a n +a 1+1,即a n +1=-a n +1+1,于是a n +1=2-a n ,因此a 2=2-a 1=1,a 3=2-a 2=1,a 4=2-a 3=1,…,即a n =1,所以1a 1+1a 2+1a 3+…+1a 2 017=2 017,故选A. 13.【解析】因为数列从第三项开始每一项都等于它前面两项的和. 所以x =5+8=13. 【答案】1314. 【解析】由a 1=0,a n +1=a n -33a n +1(n ∈N *)知:a 2=a 1-33a 1+1=-3,a 3=a 2-33a 2+1=3,a 4=a 3-33a 3+1=0,…,每3项一循环,故a 20=a 6×3+2=a 2=- 3. 【答案】- 315.【解析】由已知得12m =2m +10,所以m =1, 故a 1=1,a 2=6,a 3=11, 所以d =5,所以a n =a 1+(n -1)d =1+5(n -1)=5n -4, 所以a 10=5×10-4=46. 【答案】4616.【解析】log 2(2 a 1·2 a 2·…·2 a 10)=log 22a 1+a 2+…+a 10=a 1+a 2+…+a 10=10(a 1+a 10)2=10×(a 5+a 6)2=10×42=20.【答案】2017. 【解】(1)由已知可得a 1=1,a 2=13,a 3=15,a 4=17,a 5=19.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为a n =12n -1.(3)令199=12n -1, 解得n =50,故199是这个数列的第50项.18.【解】(1)设数列{a n }的公差为d ,则c n +1-c n =(a 2n +1-a 2n +2)-(a 2n -a 2n +1) =2a 2n +1-(a n +1-d )2-(a n +1+d )2=-2d 2,所以数列{c n }是以-2d 2为公差的等差数列.(2)因为a 1+a 3+…+a 25=130,a 2+a 4+…+a 26=117, 两式相减得13d =-13,所以d =-1, 因为a 1+a 3+…+a 25=130,所以13a 13=130, 所以a 13=10=a 1+12d =a 1-12, 所以a 1=22,所以a n =22+(n -1)×(-1)=23-n .19.【解】(1)数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a n a n +2,所以1a n +1=a n +22a n =12+1a n ,所以1a n +1-1a n =12,即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12,公差为d =12的等差数列.(2)由(1)知1a n =1a 1+(n -1)d =12+n -12=n2,所以数列{a n }的通项公式为a n =2n .(3)因为a n =2n,所以S n =8a 2n -n +1=8⎝⎛⎭⎫n 22-n +1=2n 2-n +1.当n =1时,b 1=S 1=2×12-1+1=2;当n ≥2时,b n =S n -S n -1=2n 2-n +1-[2(n -1)2-(n -1)+1]=4n -3,所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧2,n =14n -3,n ≥2.20.【解】(1)依题意⎩⎨⎧S12=12a 1+12×112d >0,S13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧2a 1+11d >0,①a 1+6d <0.② 由a 3=12,得a 1+2d =12.③把③分别代入①②,得⎩⎪⎨⎪⎧24+7d >0,3+d <0,解得-247<d <-3,即公差d 的取值范围是⎝⎛⎭⎫-247,-3. (2)法一:由d <0可知{a n }是递减数列, 因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 可得a 6>-a 7>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 法二:S n =na 1+n (n -1)2d=n (12-2d )+n (n -1)2d=d 2⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2- d 2⎣⎡⎦⎤12⎝⎛⎭⎫5-24d 2,因为d <0, 所以⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2最小时,S n 最大. 因为-247<d <-3,6<12⎝⎛⎭⎫5-24d <132, 所以当n =6时,⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2最小,S 6最大. 21.【解】(1)因为a n =a n -1+a n -2(n ≥3), 且a 1=1,a 2=2, 所以a 3=a 2+a 1=3, a 4=a 3+a 2=3+2=5, a 5=a 4+a 3=5+3=8. 故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)因为b n =a na n +1,且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,所以b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.故b 1=12,b 2=23,b 3=35,b 4=58.22.【解】(1)法一:因为a 1=a ,a n +1=1+1a n,所以a 2=1+1a 1=1+1a =a +1a ,a 3=1+1a 2=2a +1a +1,a 4=1+1a 3=3a +22a +1.故当a =-23时,a 4=0.法二:因为a 4=0,所以1+1a 3=0,得a 3=-1.因为a 3=1+1a 2,所以a 2=-12.因为a 2=1+1a ,所以a =-23.故当a =-23时,a 4=0.(2)证明:因为b 1=-1,b n +1=1b n -1, 所以b n =1b n +1+1.a 取数列{b n }中的任一个数,不妨设a =b n . 因为a 1=a =b n ,所以a 2=1+1a 1=1+1b n =b n -1,所以a 3=1+1a 2=1+1b n -1=b n -2,…,所以a n =1+1a n -1=1+1b 2=b 1=-1.所以a n +1=0.故a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }.。
人教A版高中数学必修五第二章 数列测试题 (1).docx
高中数学学习材料唐玲出品姓名______ 学号_______ 班级______ 第二章 数列测试题 (1)命题 洞口三中 方锦昌一、选择题 1、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( )A.128B.80C.64D.562、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7 3、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A .2B .4C .215 D .217 4、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .275、在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6、若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )(A )12 (B )13 (C )14 (D )15 7、已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( ) (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21)8、非常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为 ( ) A .51 B .5 C .2 D .219、已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .23 10、在单位正方体ABCD-A 1B 1C 1D 1中,黑、白两只蚂蚁均从点A 出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,白蚂蚁的爬行路线是AA 1⇒A 1D 1⇒D 1C 1⇒…;黑蚂蚁的爬行路线是AB ⇒BB 1⇒B 1C 1⇒…,它们都遵循以下的爬行规则:所爬行的第i+2段与第i 段所在的直线必为异面直线(其中i 为自然数),设黑、白蚂蚁都爬完2008段后各自停止在正方体的某个顶点处,则此时两者的距离为 ( )A 1B 2C 3D 0二、填空题 11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 12.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________。
人教A版高中数学必修五高二《第二章数列》单元测试题
高中数学学习材料金戈铁骑整理制作班级 ____________ 姓名 _____________ 得分 _____________一、选择题(每题4分,共48分)1.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列2.已知数列满足: >0, , ,则数列{ }是( )A. 递增数列B. 递减数列C. 摆动数列D. 不确定3. 在正整数100至500之间能被11整除的个数为( )A .34B .35C .36D .374.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )A.130B.170C.210D. 2605. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )A .-90B .-180C .90D . 1806.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A 15B 16C 49 D647.已知{}n a ,{}n b 都是等比数列,那么( )A.{}n n b a +,{}n n b a ⋅都一定是等比数列B. {}n n b a +一定是等比数列,但{}n n b a ⋅不一定是等比数C. {}n n b a +不一定是等比数列,但{}n n b a ⋅一定是等比数列D.{}n n b a +,{}n n b a ⋅都不一定是等比数列8.已知数列{}n a 的前n 项和1-=n n a S (a 是不为0的实数),那么{}n a ( )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D. 既不可能是等差数列,也不可能是等比数列9.若c b a ,,成等比数列,则函数c bx ax y ++=2的图像与x 轴交点个数是( )A.0B.1C.2D. 20或10.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为 ( )A.9B. 10C.19D. 2911. 设函数f (x )满足f (n +1)=2)(2n n f +(n ∈N *)且f (1)=2,则f (20)为( ) A .95 B .97 C .105 D .19212.数列{a n }中,a 1=1,a n +1=22+n n a a (n ∈N *),则1012是这个数列的第几项( ) A.100项 B.101项 C.102项 D.103项二、填空题(每题4分,共16分)13.数列{}n a 中,5,511+==+n n a a a ,那么这个数列的通项公式是______________14.设等比数列{a n }中, 3a 是21,a a 的等差中项,则数列的公比为______________15.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =16.已知数列1,,则其前n 项的和等于 三、解答题 17.(6分)求数列11111,2,3,424816…的前n 项和。
最新人教版高中数学必修5第二章数列测评(a卷)(附答案)
第二章 数列测评(A 卷)(总分:120分 时间:90分钟)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分) 1.等差数列-2,0,2,…的第15项为A .11 2B .12 2C .13 2D .142 答案:C ∵a 1=-2,d =2,∴a n =-2+(n -1)×2=2n -2 2. ∴a 15=152-22=13 2.2.等比数列{a n }的首项a 1=1002,公比q =12,记p n =a 1·a 2·a 3·…·a n ,则p n 达到最大值时,n 的值为A .8B .9C .10D .11答案:C a n =1002×(12)n -1<1⇒n>10,即等比数列{a n }前10项大于1,从第11项起小于1,故p 10最大.3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于 A .64 B .81 C .128 D .243答案:A 公比q =a 2+a 3a 1+a 2=63=2.由a 1+a 2=a 1+2a 1=3a 1=3,得a 1=1,a 7=26=64.4.设{a n }是等差数列,a 1+a 3+a 5=9,a 6=9,则这个数列的前6项和等于 A .12 B .24 C .36 D .48答案:B {a n }是等差数列,a 1+a 3+a 5=3a 3=9,a 3=3,a 6=9.∴d =2,a 1=-1,则这个数列的前6项和等于6(a 1+a 6)2=24.5.数列{a n }的通项公式为a n =(-1)n -1(4n -3),则它的前100项之和S 100等于 A .200 B .-200 C .400 D .-400答案:B 设数列可记为1,-5,9,-13,…,393,-397.其奇数项与偶数项分别是公差为8,-8的等差数列.于是,S 100=(1+9+13+…+393)-(5+13+…+397)=50×(1+393)2-50×(5+397)2=-200.6.各项都是正数的等比数列{a n }的公比q ≠1,且2a 2,a 3,a 1成等差数列,则a 5+a 6a 3+a 4的值为A .1+32B .1-32 C.1-52 D.5+12答案:A 由2a 2,a 3,a 1成等差数列得2a 3=2a 2+a 1,∴2a 1q 2=2a 1q +a 1,整理得2q 2-2q -1=0,解得q =1+32或q =1-32<0(因等比数列各项都是正数,故舍去).∴a 5+a 6a 3+a 4=a 3q 2+a 4q 2a 3+a 4=q 2=(1+32)2=1+32.7.(2009广东高考,理4)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于A .n(2n -1)B .(n +1)2C .n 2D .(n -1)2 答案:C 由{a n }为等比数列,则a 5·a 2n -5=a 1·a 2n -1=22n , 则(a 1·a 3·a 5·…·a 2n -1)2=(22n )n ⇒a 1·a 3·…·a 2n -1=2n 2, 故log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1·a 3·…·a 2n -1)=n 2.8.在各项均不为零的等差数列{a n }中,若a n +1-a n 2+a n -1=0(n ≥2),则S 2n -1-4n 等于 A .-2 B .0 C .1 D .2 答案:A 由a n +1-a n 2+a n -1=0(n ≥2),2a n =a n +1+a n -1,得a n 2=2a n ,即a n =2或a n =0(舍去),所以S 2n -1-4n =(2n -1)×2-4n =-2.9.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是A .i<4?B .i<5?C .i ≥5?D .i<6? 答案:D 该程序的功能是求和∑i =1n1i(i +1),由输出结果56=11×2+12×3+…+1n ×(n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,得n =5. 10.(2009山东潍坊高三第二次质检,11)已知函数f(x)=log 2x 的反函数为f -1(x),等比数列{a n }的公比为2,若f -1(a 2)·f -1(a 4)=210,则2f(a 1)+f(a 2)+…+f(a 2009)等于A .21004×2008B .21005×2009C .21005×2008D .21004×2009答案:D 由题意,得f -1(x)=2x ,故f -1(a 2)·f -1(a 4)=4222aa ⋅=210, ∴a 2+a 4=10,即2a 1+8a 1=10. ∴a 1=1.则f(a 1)+f(a 2)+…+f(a 2009)=log 2(a 1·a 2·…·a 2009)=log 220+1+2+…+2008=1+20082×2008=1004×2009.第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上) 11.若等差数列{a n }中,a 1+4a 7+a 13=96,则2a 2+a 17的值是__________. 答案:48 ∵a 1+4a 7+a 13=96,a 1+a 13=2a 7, ∴a 7=16.∴2a 2+a 17=a 1+a 3+a 17=a 7+a 11+a 3=a 7+2a 7=3a 7=48.12.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k(k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④等差比数列中可以有无数项为0,其中正确判断的序号是__________.答案:①④ 从定义可知,数列{a n }若构成“等差比数列”,则相邻两项不可能相等,所以①正确;而等差数列与等比数列均可能为常数列,就有可能不能构成“等差比数列”,所以②③错误;如数列为{2,0,2,0,2,0,…},则能构成“等差比数列”,所以④正确.综上所述,正确的判断是①④.13.在等比数列{a n }中,若a 5+a 6=a(a ≠0),a 15+a 16=b ,则a 25+a 26等于__________.答案:b 2a 由a 15+a 16a 5+a 6=(a 5+a 6)q 10a 5+a 6=b a ,则q 10=ba ,则a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)(q 10)2=a ×(b a )2=b 2a.14.对于一切实数x ,令[x]为不大于x 的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若a n =f(n3),n ∈N *,S n 为数列{a n }的前n 项和,则S 3n =__________.答案:3n 2-n 2 ∵f(x)=[x],∴a n =f(n 3)=[n3],n ∈N *.于是,S 3n =(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3n -2+a 3n -1+a 3n ) =(0+0+1)+(1+1+2)+…+[(n -1)+(n -1)+n]=1+4+…+(3n -2)=n[1+(3n -2)]2=3n 2-n 2.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、解题步骤或证明过程)15.(本小题满分10分)(2009福建高考,文17)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .答案:解:(1)设{a n }的公比为q. 由已知得16=2q 3,解得q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. ∴数列{b n }的前n 项和S n =n(-16+12n -28)2=6n 2-22n.16.(本小题满分10分)已知数列{a n }的前n 项和S n =n(2n -1)(n ∈N *). (1)证明数列{a n }为等差数列;(2)设数列{b n }满足b n =S 1+S 22+S 33+…+S nn(n ∈N *),试判定:是否存在自然数n ,使得b n =900,若存在,求出n 的值;若不存在,请说明理由.答案:(1)证明:当n ≥2时,a n =S n -S n -1=n(2n -1)-(n -1)(2n -3)=4n -3, 当n =1时,a 1=S 1=1,适合. ∴a n =4n -3.∵a n -a n -1=4(n ≥2),∴{a n }为等差数列.(2)解:由(1)知,S n =2n 2-n ,∴S nn=2n -1.∴b n =S 1+S 22+S 33+…+S nn=1+3+5+7+…+(2n -1)=n 2.由n 2=900,得n =30,即存在满足条件的自然数,且n =30.17.(本小题满分10分)在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n}是等比数列;(2)求数列{a n }的前n 项和S n .答案:(1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n),n ∈N *. 又a 1-1=1,所以数列{a n -n}是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n ,所以数列{a n }的前n 项和S n =(1+4+…+4n -1)+(1+2+…+n)=4n -13+n(n +1)2.18.(本小题满分12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求和:1S 1+1S 2+…+1S n.答案:解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧S 3b 3=(9+3d)q 2=960,S 2b 2=(6+d)q =64.解得⎩⎪⎨⎪⎧d =2,q =8或⎩⎨⎧d =-65,q =403(舍去).故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n(n +2), ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n(n +2) =12(1-13+12-14+13-15+…+1n -1n +2) =12(1+12-1n +1-1n +2) =34-2n +32(n +1)(n +2). 19.(本小题满分12分)在数列{a n }中,a 1=2,a 4=8,且满足a n +2=2a n +1-a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2n -1·a n ,求数列{b n }的前n 项和S n .答案:解:(1)∵a n +2=2a n +1-a n (n ∈N *), ∴a n +2-a n +1=a n +1-a n . ∴{a n }为等差数列.设公差为d ,则由题意,得8=2+3d ,∴d =2. ∴a n =2+2(n -1)=2n.(2)∵b n =2n -1·2n =n·2n ,∴S n =b 1+b 2+b 3+…+b n =1×21+2×22+3×23+…+n ×2n .①∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =21+22+23+…+2n -n ×2n +1=2×(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n)×2n +1-2.∴S n =(n -1)·2n +1+2.。
高中数学人教A版必修5第二章 数列本章复习与测试(有答案)
10. 已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D. 18 11. 已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=10a ( )A.1B.9C.10D.55 12. 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n - 二、填空题13. 设等差数列{}n a 的前n 项和为n S .若972S =,则249a a a ++=_______________. 14. 在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式=n a _____________.15. 设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________.16. 设{}n a 为公比1>q 的等比数列,若ɑ2019和ɑ2020是方程03842=+-x x 的两根,则 ɑ2020+ɑ2021 =_____________. 三、解答题17. 已知{}n a 为等比数列,320,2423=+=a a a ,求{}n a 的通项公式.18. 已知{}n a 为等差数列,且36a =-,60a =. (Ⅰ)求{}n a 的通项公式;(Ⅰ)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.19. 已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S .(Ⅰ)求na 及n S ;(Ⅰ)求q 的值;(Ⅱ)若1a 与5a 的等差中项为18,n b 满足n n b a 2log 2=,求数列{}n b 的前n 项和.21. 成等差数列的三个正数之和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 中的543,,b b b .(Ⅰ)求数列{}n b 的通项公式;(Ⅰ)数列{}n b 的前n 项和为n S ,求证:数列⎭⎬⎫⎩⎨⎧+45n S 是等比数列.参考答案:二、填空题13. ___24____. 14. )(4*1N n n ∈-. 15. )(22*2N n n n ∈++. 16.______18______.三、解答题17.解:设等比数列{}n a 的公比为q ,则.2,23432q q a a qq a a ====.32022,32042=+∴=+q q a a 即.3131+=+q q解之得3=q 或.31=q当3=q 时,)(32*333N n q a a n n n ∈⨯==--;当31=q 时,)(32)31(2*3333N n q a a n n n n ∈=⨯==---. 18.解:(Ⅰ)设等差数列{}n a 的公差d .因为366,0a a =-=,所以.102,2,633136-=-===-=d a a d a a d 从而所以10(1)2212n a n n =-+-⋅=-.(Ⅱ)设等比数列{}n b 的公比为q .因为24,832121-=++=-=a a a b b ,所以824q -=-.即q =3.所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--. 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d..13,2626756=∴=+=a a a a由⎩⎨⎧=+==+=135721613d a a d a a 解得.231==d a ,12)1(1+=-+=∴n d n a a n ,.22)(21n n a a n S n n +=+=(Ⅱ)12+=n a n ,)1(412+=-∴n n a n ,⎪⎭⎫⎝⎛+-=+=11141)1(41n n n n b n .n n b b b T +++=∴ 21=)1113121211(41+-++-+-n n =)111(41+-n =4(1)nn +.所以数列{}n b 的前n 项和n T =4(1)nn + .20. 解:(Ⅰ)q p S a +-==211,23)2()44(122-=+--+-=-=p q p q p S S a , 25)44()69(233-=+--+-=-=p q p q p S S a ,由3122a a a +=得,25246-++-=-p q p p.0=∴q(Ⅱ)根据题意,5132a a a +=所以1a 与5a 的等差中项为183=a .由(Ⅰ)知.4,1825=∴=-p p 从而.8,10,221===d a a.68)1(1-=-+=∴n d n a a n.34log ,68log 222-=-==∴n b n b a n n n故.16216812)2(213434---⨯=⨯=⋅==n n n n n b因此,数列}{n b 是等比数列,首项21=b ,公比.16=q所以数列{}n b 的前n 项和qq b T n n --=1)1(121. 解:(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+, 依题意,得15, 5.a d a a d a -+++==解得 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的10,5743==-=b d b ,公比2=q . 由22311152,52,.4b b b b =⋅=⋅=即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --=⋅=⋅. (Ⅱ)数列{}n b 的前n 项和25(12)5452124n n n S --==⋅--,即22545-⋅=+n n S所以1112555524, 2.542524n n n n S S S -+-+⋅+===⋅+因此55{}42n S +是以为首项,公比为2的等比数列.22.解: (Ⅰ)因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图象上.所以得n n S b r =+,11a S b r ==+,b b r b r b S S a -=+-+=-=22122)()(,2323233)()(b b r b r b S S a -=+-+=-=,{}n a 为等比数列,3122a a a =∴.从而).1()()1(222-⋅+=-b b r b b b.1,10r b b b b +=-∴≠>且又 解得1r =-.(Ⅱ)当2=b 时,由(Ⅰ)知,12-=n n S .当2≥n 时,.22)12(22)12()12(11111-----=-=-=---=-=n n n n n n n n n S S a111=-=b a 满足上式,所以其通项公式为)(2*1N n a n n ∈=-.所以111114422n n n n n n n b a -++++===⨯ 234123412222n n n T ++=++++,………………(1) 3451212341222222n n n n n T +++=+++++……(2) )()(21-,得: 23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-+=+--12311422n n n +++=--. 所以113113322222n n n n n n T ++++=--=-.。
(完整版)高二数学必修5数列单元质量检测题及答案
高二数学必修5《数列》单元质量检测题(时间120分钟,满分150分)一、选择题(每小题5分,共计60分)1.数列252211L ,,,,的一个通项公式是( )A. 33n a n =-B. 31n a n =-C. 31n a n =+D. 33n a n =+2. 已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-3. 2005是数列7,13,19,25,31,,L 中的第( )项.A. 332B. 333C. 334D. 3354. 在等差数列{}n a 中,若45076543=++++a a a a a ,则=+82a a ( )A.45B.75C. 180D.3005. 一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A.-2B.-3C.-4D.-56. 在等差数列{a n }中,设公差为d ,若S 10=4S 5,则da 1等于( ) A. 21 B.2 C. 41D.4 7. 设数列{a n }和{b n }都是等差数列,其中a 1=25,b 1=75,且a 100+b 100=100,则数列{a n +b n }的前100项之和是( )A.1000B.10000C.1100D.110008.已知等差数列{a n }的公差d =1,且a 1+a 2+a 3+…+a 98=137,那么a 2+a 4+a 6+…+a 98的值等于( )A.97B.95C.93D.919.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( )A.9B.10C.11D.1210. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( )A. 21B. 31C.2D.311. 若数列{a n }的前n 项和为S n =a n -1(a ≠0),则这个数列的特征是( )A.等比数列B.等差数列C.等比或等差数列D.非等差数列12. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( ) A.32 B. 149 C. 3120 D. 1711 二、填空题(每小题4分,共计16分)13. 数列{a n }的前n 项和为S n =n 2+3n +1,则它的通项公式为 .14. 已知{na 1}是等差数列,且a 2=2-1,a 4=2+1,则a 10= . 15. 在等比数列中,若S 10=10,S 20=30,则S 30= .16. 数列121,241,341,4161,…的前n 项和为 . 三、解答题:17.(本小题满分12分)已知等差数列{a n }中,S n =m ,S m =n (m ≠n ),求S m +n .18.(本题满分12分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.求公差d 的取值范围.19. (本题满分12分)已知等差数列{a n }中,a 1=29,S 10=S 20,问这个数列的前多少项和最大?并求此最大值.20.(本题满分12分)设a 1=5,a n +1=2a n +3(n ≥1),求{a n }的通项公式.21.(本题满分12分)求和:1+54+257+…+1523--n n22.(本题满分14分)已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…)求证{b n }是等比数列;(2)设c n =n n a 2(n =1,2…)求证{c n }是等差数列;(3)求数列{a n }的通项公式及前n 项和公式.。
人教A版高中数学必修五高二理科数列单元检测练习.doc
高二理科数学数列单元检测练习命题: 苏永鹏 09.09.16一、选择题:每题5分1. 已知等差数列}{n a 的前n 项和为S n ,若854,18S a a 则-=等于 ( ) A .18 B .36 C .54 D .722. 已知{}n a 为等差数列,{}n b 为等比数列,其公比1≠q ,且),,3,2,1(0n i b i =>,若11b a =,1111b a =,则 ( )A .66b a =B .66b a >C .66b a <D .66b a >或66b a <3. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列的前13项之和为 ( ) A .156 B .13 C .12 D .264. 已知正项等比数列数列{a n },b n =log a a n , 则数列{b n }是 ( ) A 、等比数列 B 、等差数列 C 、既是等差数列又是等比数列 D 、以上都不对5. 数列{}n a 是公差不为零的等差数列,并且1385,,a a a 是等比数列{}n b 的相邻三项,若52=b ,则n b 等于 ( )A. 1)35(5-⋅nB. 1)35(3-⋅nC.1)53(3-⋅nD. 1)53(5-⋅n6. 数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项的值是 ( ) A. 42 B.45 C. 48 D. 517. 一懂n 层大楼,各层均可召集n 个人开会,现每层指定一人到第k 层开会,为使n 位开会人员上下楼梯所走路程总和最短,则k 应取 ( )A.21n B.21(n—1) C.21(n+1) D.n为奇数时,k=21(n—1)或k=21(n+1),n为偶数时k=21n8. 设数列{}n a 是等差数列,26,a =- 86a =,S n 是数列{}n a 的前n 项和,则( )A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 59. 等比数列{}n a 的首项11a =-,前n 项和为,n S 若3231510=S S ,则公比q 等于 ( ) 11A. B.22- C.2 D.-210. 已知S n 是等差数列{a n }的前n 项和,若S 6=36,S n =324,S n -6=144(n >6),则n 等于 ( )A .15B .16C .17D .18 11. 已知8079--=n n a n ,(+∈N n ),则在数列{n a }的前50项中最小项和最大项分别是( )A.501,a aB.81,a aC. 98,a aD.509,a a12. 已知:)()2(log *)1(Z n n a n n ∈+=+,若称使乘积n a a a a 321⋅⋅为整数的数n 为劣数,则在区间(1,2002)内所有的劣数的和为 ( ) A .2026 B .2046 C .1024 D .1022 二、填空题:每题5分13. 在等差数列{}n a 中,已知18531=++a a a ,10824=++--n n n a a a S n =420,则n = .14. 在等差数列}{n a 中,公差21=d ,且6058741=++++a a a a ,则k k a a -+61(k ∈N +, k ≤60)的值为 . 15. 已知*)(2142N n a S n n n ∈--=- 则 通项公式n a = .16. 已知n n n S a a 2311+==-且,则n a = ; n S = .三、解答题:每题12分17. 若数列{}n a 前n 项和可表示为a s n n +=2,则{}n a 是否可能成为等比数列?若可能,求出a 值;若不可能,说明理由.18.设{a n }为等差数列,{b n }为等比数列,34234211,,1a b b b a a b a =⨯=+==分别求出{a n }及{b n }的前10项和S 10及T 10.19.已知数列{a n }是公比为q 的等比数列,S n 是其前n 项和,且S 3,S 9,S 6成等差数列(1)求证:a 2 , a 8, a 5也成等差数列(2)判断以a 2, a 8, a 5为前三项的等差数列的第四项是否也是数列{a n }中的一项,若是求出这一项,若不是请说明理由.20.等比数列}{n a 的首项为1a ,公比为)(1-≠q q ,用m n S →表示这个数列的第n 项到第m 项共1+-n m 项的和.(Ⅰ)计算31→S ,64→S ,97→S ,并证明它们仍成等比数列;(Ⅱ)受上面(Ⅰ)的启发,你能发现更一般的规律吗?写出你发现的一般规律,并证明.高二理科数学数列单元检测练习答案1.D;2.B;3.D;4.A;5.B;6.B;7.D;8.B;9.B; 10.D;11.C;12.A;13. 20; 14. 7;15. 12-=n nna ;16. ⎩⎨⎧⋅+=-22)32(3n nn a)2()1(≥=n n 12)12(-+=n nn S.17. 【 解】 因{}n a 的前n 项和as n n +=2,故1a =a s +=21,)2(1≥-=-n s s a n n n ,a n =2n +a -2n -1-a =2n -1(2≥n ).要使1a 适合2≥n 时通项公式,则必有1,220-==+a a ,此时)(21*-∈=N n a n n, 22211==-+n nn n a a ,故当a=-1时,数列{}n a 成等比数列,首项为1,公比为2,1-≠a 时,{}n a 不是等比数列.18. 【 解】 ∵{a n }为等差数列,{b n }为等比数列,∴a 2+a 4=2a 3,b 2·b 4=b 32,已知a 2+a 4=b 3,b 2·b 4=a 3,∴b 3=2a 3,a 3=b 32,得b 3=2b 32,∵b 3≠0,∴b 3=21,a 3=41.由a 1=1,a 3=41,知{a n }的公差d =-83, ∴S 10=10a 1+2910⨯d =-855. 由b 1=1,b 3=21,知{b n }的公比q =22或q =-22,1010111010(1)(1)231231,(22);,(22).21322132b q b q q T q T q q --===+=-==---当时当时19. 【 解】 (1)当q=1时 S 3=3a 1, S 9=9a 1, S 6=6a 1, 而a 1≠0,所以S 3,S 9,S 6不可能成等差数列……2分 所以q ≠1,则由公式qq a q q a q q a q q a S n n --+--=----=1)1(1)1(1)1(2,1)1(6131911得即2q 6=1+q 3∴2q 6a 1q=a 1q+q 3a 1q , ∴2a 8=a 2+a 5 所以a 2, a 8, a 5成等差数列(2)由2q 6=1+q 3=-21要以a 2, a 8, a 5为前三项的等差数列的第四项是数列{a n }中的第k 项, 必有a k -a 5=a 8-a 2,所以1632-=-q q a a k所以,45)21(,45,453222-=--=-=--k k k q a a 所以所以由k 是整数,所以45)21(32-=--k 不可能成立,所以a 2, a 8, a 5 为前三项的等差数列的第四项不可能也是数列{a n }中的一项. 20. 【 解】 (Ⅰ))1(2131q q a S ++=→,)1(23164q q q a S ++=→, )1(26197q q q a S ++=→因为331646497q S S S S ==→→→→, 所以976431S →→→、、S S 成等比数列. (Ⅱ)一般地m r r m p p S S +→+→+→、、mn n S、n r p +=2(且m 、n 、p 、r 均为正整数)也成等比数列,)q 1(m 211++++=-+→ q q q a Sn mn n , )q 1(m 211++++=-+→ q q q a S p m p p ,)q 1(m 211++++=-+→ q q q a S r m r r ,n p mn n m p p m p p mr r q S S S S -+→+→+→+→==)(n r p +=2 所以m r r m p p S S +→+→+→、、mn n S成等比数列.。
人教A版高中数学必修五高二复习:数列单元测试题
高中数学学习材料 (灿若寒星 精心整理制作)2013.9一:选择题(每题5分,共50分)1.等差数列}{n a 中,已知前15项的和9015=S ,则8a 等于………( )A .245B .12C .445D .62.等比数列{a n }中,如果817643=⋅⋅⋅a a a a ,则91a a ⋅的值为……( )A .3B .9C .±3D .±93.{}n a 为等差数列,2-=d ,5031741=++++a a a a ,则=++++421062a a a a ( ) (A). 60 (B). 82- (C). 182 ( D). 96-4、已知等比数列{a n } 的前n 项和为n S , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ) A .7 B .16 C .27 D .645.数列}{n a 的前n 项和为n S ,若)(23*N n a S n n ∈+=,则这个数列一定是( ) A .等比数列B .等差数列C .从第二项起是等比数列D .从第二项起是等差数列6.等差数列{a n }中,4,84111073=-=-+a a a a a .记n n a a a S +++= 21,S 13等于( )A .168B .156C .152D .787.在等比数列{a n }中,100992019109,),0(a a b a a a a a a +=+≠=+则等于( )A .89abB .9)(abC .910abD .10)(ab8.{}n a 是等差数列,S 10>0,S 11<0,则使n a <0的最小的n 值是 ( )A .5B .6C .7D .89.已知等差数列{a n }的前m 项和为100,前3 m 项的和为-150,则它的前2m 项的和为 ( )A .25B .—25C .50D .7510..已知数列{}n a 的前n 项和)(3为常数k k S n n +=,那么下述结论正确的是( ) A .k 为任意实数时,{}n a 是等比数列 B .k = -1时,{}n a 是等比数列C .k =0时,{}n a 是等比数列D .{}n a 不可能是等比数列设二、填空题(本大题共5小题,每小题5分,共25分) 11.43,)1(112161211=⋅+++++=+n n n S S n n S 且 ,则n 的值为 12.夏季某高山上的温度从山脚起,每升高100米降低0.7C ︒,已知山顶处的温度是14.8C ︒,山脚温度是26C ︒,则这山的山顶相对于山脚处的高度是13.设数列{a n }的前n 项和为=++++-=||||||,1410212a a a n n S n 则 14.等差数列{a n }、{b n }的前n 项和分别为n S 、n T ,若77,322b a n n T S nn 则++==15.等比数列}{n a 公比为q ,前n 项和为n S ,若S n+1,S n ,S n+2成等差数列,则q 为 数列单元过关答题纸一、选择题 1 2 3 4 5 6 7 8 9 10二、填空题11、 12、 13、 14、 15、 三、解答题(共75分)16.等比数列{a n }的前n 项和n S ,且a 3=23, S 3= 29,求n a 的表达式.17.数列{a n }的前n 项和为n S ,且11=a ,113n n a S +=,)2(≥n求:(I )432,,a a a 的值及数列{a n }的通项公式; (II )2462n a a a a ++++的值.18.数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足n n a S =2 .(n S -21)(1)求n S 的表达式; (2)设n b = 12+n S n ,求数列{}n b 的前n 项和n T19. 已知}{n a 是等差数列,其前n 项和为n S ,已知,153,1193==S a(1)求n a ; (2)设n n b a 2log =,证明}{n b 是等比数列,并求其前n 项和T n .20.设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
人教A版高中数学必修五高二《数列》单元检测题
高二数学《数列》单元检测题班级:_________姓名:__________座号:_______成绩:_________一、选择题:1.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a 为()A .7B .15 C.30 D .312.等比数列{}n a 中,991a a 、为方程016102=+-x x 的两根,则805020a a a ⋅⋅的值为()A .32B .64C .256D .±643.若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是()A .39B .20C .19.5D .33 4.非常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为()A .51B .5C .2D .21 5.在等比数列}{n a 中,n a >0,且2a 4a +23a 5a +4a 6a =25,那么3a +5a =()A5B10C15D206.S n 为等差数列{a n }的前n 项之和,若a 3=10,a 10=-4,则S 10-S 3等于()A .14B .6C .12D .217.正项等比数列{a n }满足:a 2·a 4=1,S 3=13,b n =log 3a n ,则数列{b n }的前10项的和是()A .65B .-65C .25D .-25 8.在等差数列}{n a 中,3a 、8a 是方程0532=--x x 的两个根,则10S 是()A.30B.15C.50D.259.若某等差数列中,前7项和为48,前14项和为72,则前21项和为()A.96B.72C.60D.4810.已知等差数列}{n a 的通项公式为,12+=n a n 其前n 项和为S n ,则数列}{nS n 的前10项的和为 () A.120 B.70 C.75 D.100二、填空题:11.等比数列的公比为2,且前4项之和等于1,那么前8项之和等于 ___.12.已知数列的通项公式372-=n a n ,则n S 取最小值时n = __ ,此时n S = __ .13.数列{a n }为等差数列,a 2与a 6的等差中项为5,a 3与a 7的等差中项为7,则数列的通项a n 等于 ____ .14.数列{a n }为等差数列,S 100=145,d =21,则a 1+a 3+a 5+…+a 99的值为___ . 15.已知数列}{n a 是非零等差数列,又a 1,a 3,a 9组成一个等比数列的前三项,则1042931a a a a a a ++++的值是 。
人教A版高中数学必修五高二实验组数列单元测试卷(2)
高中数学学习材料 (灿若寒星 精心整理制作)汤阴一中高二实验组《数列》单元测试卷命题人:苏永鹏 满分100分 时间90分钟 2012.10.31一、选择题(每小题5分,共40分,请将答案填在下面的答题栏中)题号 1 2 3 4 5 6 7 8 答案1、已知数列5,11,17,23,29,,则55是它的第( )项A 、 19B 、20C 、21D 、22 2.若数列{}n a 中,n a =43-3n ,则n S 最大值n=( )A .13B .14C .15D .14或15 3.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是A .130B .170C .210D .260 4.记等差数列的前n 项和为nS ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7 5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )A .64B .81C .128D .2436.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )A. 2B. 4C.152D. 1727.等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么d 等于A .2B .-2C .2±D . 3 8.设由正数组成的等比数列,公比q=2,且3030212=a a a ……·,则30963a a a a ……··等于A .102 B .152 C .162 D .202 二、填空题:(每小题5分,共20分) 9.等差数列{}n a 中5S =25,45S =405。
则50S =______________。
10.小于200的自然数中被7除余3的所有的数的和是______________。
11. 在数列{}n a 在中,542n a n =-,212n a a a an bn ++=+,*n N ∈,其中,a b 为常数,则ab =12.等比数列的公比为2,前4项之和等于10,则前8项之和等于______________。
人教A版高中数学必修五高二第二章数列单元试题.doc
高中数学学习材料马鸣风萧萧*整理制作鄂旗二中新课标高二数学必修5第二章数列单元试题姓名 班级 号数一.选择题(每题5分,共60分) 1. 已知数列满足:>0, ,,则数列{}是( )A. 递增数列B. 递减数列C. 摆动数列D. 不确定2. 由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为3d 的等差数列 D .非等差数列3.数列 ,,,,,0000( )A. 既不是等差数列又不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 是等差数列但不是等比数列 4.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( ) A.130 B.170 C.210 D. 2605. 在正整数100至500之间能被11整除的个数为( )A .34B .35C .36D .376. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( ) A .180 B .-180 C .90 D .-907.已知{}n a ,{}n b 都是等比数列,那么( ) A.{}n n b a +,{}n n b a ⋅都一定是等比数列B. {}n n b a +一定是等比数列,但{}n n b a ⋅不一定是等比数列C. {}n n b a +不一定是等比数列,但{}n n b a ⋅一定是等比数列D. {}n n b a +,{}n n b a ⋅都不一定是等比数列8.已知数列{}n a 的前n 项和1-=nn a S (a 是不为0的实数),那么{}n a ( )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D. 既不可能是等差数列,也不可能是等比数列9.若c b a ,,成等比数列,则函数c bx ax y ++=2的图像与x 轴交点个数是( )A.0B.1C.2D. 20或10. 现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为 ( ) A.9 B. 10 C.19 D. 29 11. 设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)为( ) A .95B .97C .105D .19212. 数列{a n }中,a 1=1,a n +1=22+n na a (n ∈N *),则1012是这个数列的第几项( ) A.100项 B.101项 C.102项 D.103项二.填空题(每题4分,共16分)13.数列{}n a 中,5,511+==+n n a a a ,那么这个数列的通项公式是______________14. 设等比数列{a n }中, 3a 是21,a a 的等差中项,则数列的公比为______________15.已知数列1,,则其前n 项的和等于16.已知++∈+=N n n a n n ),2(log )1(,我们把使乘积n a a a .21 ⋅⋅为整数的n ,叫“类数”,则在区间()2009,1内所有类数的和为_______三.解答题(10+12+12+12+14+14=74分)17. 三个互不相等的数成等差数列,如果适当排列这三个数,也可成等比数列,已知这三个数的和等于6,求此三个数。
高二数学人教A必修5练习:第二章 数列 过关检测 Word版含解析
第二章过关检测(时间:90分钟满分:100分)知识点分布表一、选择题(本大题共10小题,每小题4分,共40分)1.在等差数列{a n}中,S10=120,则a1+a10的值是()A.12B.24C.36D.48答案:B解析:S10==120解得,a1+a10=24.2.等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4=()A.8B.-8C.±8D.以上都不对答案:A解析:由已知得a2+a6=34,a2·a6=64,所以a2>0,a6>0,则a4>0.又=a2·a6=64,∴a4=8.3.如果f(n+1)=(n=1,2,3,…)且f(1)=2,则f(101)等于()A.49B.50C.51D.52答案:D解析:∵f(n+1)==f(n)+,∴f(n+1)-f(n)=,即数列{f(n)}是首项为2,公差为的等差数列.∴通项公式为f(n)=2+(n-1)×n+.∴f(101)=×101+=52.4.已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=()A.5B.7C.6D.4答案:A解析:(a1a2a3)·(a7a8a9)=(a1a9)·(a2a8)·(a3a7)==50,∴=5.又a4a5a6=(a4a6)·a5=,故选A.5.若数列{a n}满足a1=15,且3a n+1=3a n-2,则使a k·a k+1<0的k值为()A.22B.21C.24D.23答案:D解析:因为3a n+1=3a n-2,所以a n+1-a n=-,所以数列{a n}是首项为15,公差为-的等差数列,所以a n=15-(n-1)=-n+,由a n=-n+>0,得n<23.5,所以使a k·a k+1<0的k值为23.6.若数列{a n}满足a n+1=1-,且a1=2,则a2 012等于()A.-1B.2C.D.答案:D解析:∵a n+1=1-,a1=2,∴a2=1-,a3=1-2=-1,a4=1-=2.-由此可见,数列{a n}的项是以3为周期重复出现的,∴a2 012=a670×3+2=a2=.7.数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8=()A.0B.3C.8D.11答案:B解析:{b n}为等差数列,公差d=-=2,-∴b n=b3+2(n-3)=2n-8.∴a n+1-a n=2n-8.∴a8=a1+(a2-a1)+(a3-a2)+…+(a8-a7)=3+(-6)+(-4)+…+6=3+-=3.8.设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6答案:C解析:∵S m-1=-2,S m=0,S m+1=3,∴a m=S m-S m-1=0-(-2)=2,a m+1=S m+1-S m=3-0=3.∴d=a m+1-a m=3-2=1.∵S m=ma1+-×1=0,∴a1=--.又∵a m+1=a1+m×1=3,∴--+m=3.∴m=5.故选C.9.等差数列{a n}中,已知3a5=7a10,且a1<0,则数列{a n}前n项和S n(n∈N*)中最小的是()A.S7或S8B.S12C.S13D.S14答案:C解析:由3a5=7a10得3(a1+4d)=7(a1+9d),解得d=-a1>0.所以a n=a1+(n-1)d=a1-(n-1)×a1,由a n=a1-(n-1)×a1≤0,即1--≥0,解得n≤=13,即当n≤13时,a n<0.当n>13时,a n>0,所以前13项和最小,所以选C.10.(2015河南南阳高二期中,12)数列{a n}的前n项和S n=n2+n+1;b n=(-1)n a n(n∈N*);则数列{b n}的前50项和为()A.49B.50C.99D.100答案:A解析:∵数列{a n}的前n项和S n=n2+n+1,∴a1=S1=3,当n≥2时,a n=S n-S n-1=n2+n+1-[(n-1)2+(n-1)+1]=2n,故a n=∴b n=(-1)n a n=--∴数列{b n}的前50项和为(-3+4)+(-6+8)+(-10+12)+…+(-98+100)=1+24×2=49,故选A.二、填空题(本大题共4小题,每小题4分,共16分)11.已知数列{a n}中,a n=2×3n-1,则由它的偶数项所组成的新数列的前n项和S n=.答案:-解析:∵数列{a n}是等比数列,∴它的偶数项也构成等比数列,且首项为6,公比为9.∴其前n项和S n=---.12.正项数列{a n}满足:a1=1,a2=2,2-(n∈N*,n≥2),则a7=.答案:解析:因为2-(n∈N*,n≥2),所以数列{}是以=1为首项,以d==4-1=3为公差的等差数列.所以=1+3(n-1)=3n-2.所以a n=-,n≥1.所以a7=-.13.(2015江西吉安联考,13)已知数列{a n}满足a n a n+1a n+2a n+3=24,且a1=1,a2=2,a3=3,则a1+a2+a3+…+a2 013+a2 014=.答案:5 033解析:∵数列{a n}满足a n a n+1a n+2a n+3=24,∴a1a2a3a4=24,a4==4,∵a n a n+1a n+2a n+3=24,∴a n+1a n+2a n+3a n+4=24,∴a n+4=a n,∴数列{a n}是以4为周期的周期数列,2 014=503×4+2,∴a1+a2+a3+…+a2 013+a2 014=503×(1+2+3+4)+1+2=5 033.14.(2015山东省潍坊四县联考,14)已知数列{a n}满足a1+3·a2+32·a3+…+3n-1·a n=,则a n=.答案:-解析:∵a1+3·a2+32·a3+…+3n-1·a n=,∴当n≥2时,a1+3·a2+32·a3+…+3n-2·a n-1=-,两式相减得3n-1·a n=-,即a n=,n≥2,-,当n=1时,a1=,满足a n=-.故a n=-三、解答题(本大题共4小题,15、16小题每小题10分,17、18小题每小题12分,共44分)15.(2015河南郑州高二期末,17)设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最大值.解:(1)由a n=a1+(n-1)d及a3=5,a10=-9得,解得-数列{a n}的通项公式为a n=11-2n.(2)由(1)知S n=na1+-d=10n-n2.因为S n=-(n-5)2+25.所以n=5时,S n取得最大值25.16.在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n;(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.解:(1)由题意得5a3·a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以a n=-n+11,n∈N*或a n=4n+6,n∈N*.(2)设数列{a n}的前n项和为S n,因为d<0,由(1)得d=-1,a n=-n+11.则当1≤n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-n2+n.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|=17.(2015福建省宁德市五校联考,21)已知数列{a n}中,a1=3,a n+1=4a n+3.(1)试写出数列{a n}的前三项;(2)求证:数列{a n+1}是等比数列,并求数列{a n}的通项公式a n;(3)设b n=log2(a n+1),记数列的前n项和为T n,求T n的取值范围.解:(1)∵a1=3,a n+1=4a n+3,∴a1=3,a2=15,a3=63.(2)∵=4,∴数列{a n+1}是公比为4的等比数列.∴a n+1=(a1+1)·4n-1=4n,∴a n=4n-1.(3)∵b n=log2(a n+1)=log24n=2n,∴-,∴T n=---…=-,∵T n=-是关于n(n∈N*)的单调递增函数,∴n=1时,(T n)min=,n→+∞时,T n→.∴T n的取值范围是.18.(2015山东高考,理18)设数列{a n}的前n项和为S n.已知2S n=3n+3.(1)求{a n}的通项公式;(2)若数列{b n}满足a n b n=log3a n,求{b n}的前n项和T n.解:(1)因为2S n=3n+3,所以2a1=3+3,故a1=3,当n>1时,2S n-1=3n-1+3,此时2a n=2S n-2S n-1=3n-3n-1=2×3n-1,即a n=3n-1,所以a n=-(2)因为a n b n=log3a n,所以b1=,当n>1时,b n=31-n log33n-1=(n-1)·31-n.所以T1=b1=;当n>1时,T n=b1+b2+b3+…+b n=+(1×3-1+2×3-2+…+(n-1)×31-n), 所以3T n=1+(1×30+2×3-1+…+(n-1)×32-n),两式相减,得2T n=+(30+3-1+3-2+…+32-n)-(n-1)×31-n=-----(n-1)×31-n =,所以T n=.经检验,n=1时也适合.综上可得T n=.。
人教A版高中数学必修五高二(理)单元测试
第Ⅰ卷为选择题,共60分;第Ⅱ卷为非选择题共90分。
满分150分,考试时间为90分钟。
一、选择题1.把编号为1、2、3、4、5的5位运动员排在编号为1、2、3、4、5的5条跑道中,要求有且只有两位运动员的编号与其所在跑道的编号相同,共有不同排法的种数是( ) A .10 B .20 C .40 D .60 2.在二项式251()x x-的展开式中,含4x 的项的系数是()A .10-B .10C .5-D .53.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为()A.0B.1C.2D.34.现有分别写有数字1,2,3,4,5的5张白色卡片、5张黄色卡片、5张红色卡片.每次试验抽一张卡片,并定义随机变量x ,y 如下:若是白色,则0=x ,若是黄色,则1=x ,若是红色,则2=x ,若卡片数字是)5,4,3,2,1(=n n ,则n y =.则)3(=+y x P 的概率是()A .151B .51 C .153 D .154 5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有 ( )A .6种B .12种C .30种D .36种6.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 ()A .12B .512C .14 D .167.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( ) A .10 B .11 C .12 D .158.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 () A .100 B .200 C .300 D .4009.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 ( )A .1220B .2755C .27220D .215510.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为 ( ) A .432 B .288 C .216 D .108二、填空题 13.61(2)2x x的展开式的常数项是 (用数字作答). 14.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有__________种(用数字作答).15.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。
人教A版高中数学必修五高二年级数列检试题.doc
高中数学学习材料唐玲出品临沭二中高二年级必修五数列检试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷,第II 卷全卷满分150分,考试时间110分钟。
一、选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.数列252211,,,,的一个通项公式是 ( )A. 33n a n =-B. 31n a n =-C. 31n a n =+D. 33n a n =+2.在数列中,,则的值为( )(A )49 (B )50 (C )51 (D)52 3.下列各组数能组成等比数列的是 ( )A. 111,,369B. lg3,lg9,lg 27C. 6,8,10D. 3,33,9- 4.若{}n a 是等差数列,则123a a a ++,456a a a ++,789a a a ++,,32313n n n a a a --++是( ) A.一定不是等差数列 B. 一定是递增数列C.一定是等差数列D. 一定是递减数列5.若{}n a 是等比数列,前n 项和21n n S =-,则2222123n a a a a ++++= ( )A.2(21)n -B.21(21)3n - C.41n - D.1(41)3n-6.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( ) (A)(B)(C)(D)7.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为 ( ) A. 0 B. 100 C. 1000 D. 100008.已知等比数列{}n a 的通项公式为123n n a -=⨯,则由此数列的偶数项所组成的新数列的前n 项和n S = ( ) A.31n- B.3(31)n- C.914n - D.3(91)4n -9.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为 ( ) (A)9 (B)10 (C)19 (D)2910.已知{}n a 是等比数列,n a >0,又知a 2 a 4+2a 3 a 5+a 4 a 6=25,那么35a a += ( ) A. 5 B. 10 C. 15 D. 20 11. 某种细菌在培养过程中,每20分钟分裂一次(1个分裂为2个),经过3小时,这种细菌由一个可以分裂成 ( ) A 、511个 B 、512个 C 、1023个 D 、1024个 12.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第( )项.A. 9B. 10C. 11D. 12二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于 . 14.若{}n a 是等比数列,下列数列中是等比数列的所有代号为 .① {}2n a ② {}2n a ③ 1n a ⎧⎫⎨⎬⎩⎭④ {}lg n a15. 若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8= .16.若三角形三边成等比数列,则公比q 的范围是 .临沭二中高二年级必修五数列检试题二.填空题答案:13 _________ 14 __________15___________16__________________ 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数, ①求{}n a 的通项公式,并求2005a ; ②若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.18.已知{}n a 满足13a =,121n n a a +=+,求这个数列的通项公式.19.求在小于200的正整数中所有被6除余2的正数和。
高中数学人教A版必修5《数列》综合测试卷(详解)
人教A 版必修5《数列》综合测试卷测试时间120分钟 测试分值150分本卷分为第Ⅰ卷(非选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等比数列{}n a 的公比31-=q ,则=++++++86427531a a a a a a a a ( )A . 31-B . -3C . 31D . 32.数列{}n a 、{}n b 都是等差数列,其中,75,2511==b a ,100100100=+b a 那么数列{}n n b a +的前100项和是( )A .0B . 100C .10000D .1024003.等差数列{}n a 中,01>a ,若其前n 项和为n S 时,有94S S =,那么当n S 取得最大值时,n 的值为( )A .4或5B .4或6C .5或6D .6或74.若数列{}n a 是等差数列,其前n 项和为n S ,且满足22n m S S n m =,其中n m N n m ≠∈*,,,则=nma a ( ) A .n m B . 11--n m C . 1212--n m D .12++n m5.等比数列{}n a 中,,6,214851152=++=++a a a a a a 则=++++1411852a a a a a ( )A . 8B . 大于8C . 31242D .412406.已知等差数列{}n a 的公差是2,且100100321=++++a a a a ,那么=++++1001284a a a a ( )A . 25B . 50C . 75D .100 7.已知*)(1562N n n na n ∈+=,则数列{}n a 的最大项是( ) A .第12项 B . 第13项 C . 第12或13项 D .不存在8.等差数列{}n a 的公差为21,145100=S ,则=++++99531a a a a ( ) A . 60 B .85 C .2145D .759.若数列{}n a 的通项公式为nn na 2=,则前n 项和是( ) A . n n S 211-= B . n n n n S 22121--=- C .)211(n n n S -= D .n n n n S 22121+-=-10. 数列1,2,2,3,3,3,4,4,4,4,…中,第100项是( ) A . 10 B . 13 C . 14 D .10011.已知等差数列中,,1,16497==+a a a 则=12a ( ) A . 15 B . 30 C . 31 D .6412.已知数列{}n a 中,)0(1>=b b a ,111+-=+n n a a (*N n ∈),能使b a n =成立的n 的数值是( )A . 14B . 15C .16D .17二、填空题:本大题共4小题,考生共需作答4小题,每小题5分,共20分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.13.已知等差数列{}n a 中,||||93a a =,公差0<d ,则使得前n 项和n S 取得最大值的n 的值是_____.14. 数列{}n a 的前n 项和为n S ,已知35-=n n S a (*N n ∈),则n a =__________.15. 已知数列}{n a 满足11=a ,1321)1(32--++++=n n a n a a a a (2≥n ),则}{n a 的通项公式=n a _____________.16.在各项都为正数的等比数列}{n a 中,首项31=a ,前3项和为21,则=++543a a a ________第Ⅱ卷三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17. (10分)已知等差数列{}n a 的前n 项和为n S ,令n n S b 1=,且5244=b a ,1536=-S S ,n n b b b S +++= 21'.(1) 求数列{}n b 的通项公式;(2)求'n S 的表达式.18. (12分)数列{}n a 的前n 项和为,322n n S n -=求{}||n a 的前n 项和n P .19. (12分)设数列{}n a 满足:1a =1,352=a ,n n n a a a 323512-=++,*)(N n ∈. (1) 令n n n a a b -=+1*)(N n ∈,求数列{}n b 的通项公式;(2) 求数列{}n na 的前n 项和n S .20. (12分)设数列{}n a 的前n 项和为n S ,已知1a =1且满足)13(32-=n n n S a S ,2≥n .(1) 求证:}1{Sn是等差数列; (2)设13+=n S b nn ,数列{}n b 的前n 项和为n T ,求n T .21. (12分)已知数列{}n a 满足)3(21)109()109()109(2221n n a a a n n +=+++ ; (1)证明:数列{}n a 不是等比数列; (2)求数列{}n a 的通项公式;(3)试分析数列{}n a 有没有最大项,若有,求出这个最大项;若没有,试说明理由.22.(12分)已知函数bx x x f +=2)(为偶函数,数列}{n a 满足1)1(21+-=+n n a f a ,且31=a ,1>n a ,令)1(log 2-=n n a b .(1)证明:数列}1{+n b 为等比数列;(2)设n n nb c =,求数列}{n c 的前n 项和.n S参考答案1.答案B2.解析 ∵数列{}n a 、{}n b 都是等差数列,∴{}n n b a +是等差数列,{}n n b a +的前100项和为100002)100100(100=+.答案C3.解析 等差数列前n 项和Bn An S n +=2是关于n 的二次函数,由94S S =可知,这个函数的图象关于5.6294=+=x 对称,又*N n ∈,当n=6或7时,n S 的值最大.答案D 4.解析 ∵2211])1(2[])1(2[n m d n a n d m a m S S n m =-+-+=,∴21da =,∴1212)1(2)1(2--=-+-+=n m d n d d m da a n m .答案C5.解析 由已知得,3311521485==++++q a a a a a a ∴3122=a ,∴312421411852=++++a a a a a .答案C6.解析 由已知得10022991001001=⨯⨯+a ,即981-=a , ∴424252752582242525141001284⨯⨯+⨯+=⨯⨯+=++++a a a a a a .1002550)98(25=+-⨯=答案D.7.解析 法1 由⎩⎨⎧≥≥--11n n n n a a a a ,即⎪⎪⎩⎪⎪⎨⎧+++≥++--≥+156)1(1156156)1(11562222n n n n n n n n,解得1312≤≤n . 法 2 394115611562≤+=+=nn n n a n ,当且仅当nn 156=即392=n 时取等号,又*N n ∈,∴12=n 或13. 答案C.8.解析 ∵)()(10064299531100a a a a a a a a S +++++++++=,又145100=S ,21=d ,∴=++++99531a a a a .6025.050145=⨯-答案D 9.解析 可用错位相减法或验证.,21S S 答案B10.解析 由1002)1(<+n n 得13≤n ,∴141=+n .答案C 11.答案A12.解析 ∵,1b a =111+-=+n n a a , ∴112+-=b a ,,111,1111143b bb a b b b a =+-+-=-+=++-=∴b a a a a a a ======161310741.答案C.13.解析:法 1 由||||93a a =知|8||2|11d a d a +=+,又0<d ,∴051>-=d a ,∴65,00)1(00111≤≤∴⎩⎨⎧≤+≥-+⎩⎨⎧≤≥+n nd a d n a a a n n 即.又*N n ∈,∴5=n 或6. 法2 由已知可得093>-=a a ,则02936=+=a a a ,∴65S S =最大.答案5或6. 14.解析 由35-=n n S a 得53+=n n a S ,当2≥n 时,5311+=--n n a S , ∴41,511-=-=--n n n n n a a a a a 即,当1=n 时,,351-=n a a ∴.431=a 则.)41(431.--=n n a 答案15.解:由已知1321)1(32--++++=n n a n a a a a (2≥n )①得11=a ,22=a ,当3≥n 时,23211)2(32---++++=n n a n a a a a ②,d a a a a 50)(299531+++++= .)41(431.--n①-②得)(即3)1(111≥=-=----n na a a n a a n n n n n , ∴2!13)2)(1(3)2)(1(2n n n n a n n n a n =⨯⋅⋅--=⋅⋅--= (3≥n ), 又11=a 不适合上式,2a =1适合上式,∴⎪⎩⎪⎨⎧≥==.2,2!1,1n n n a n16.答案 8417.解:(1)由n n S b 1=得441S b =, 又,52643521144=++⇒=d a d a b a 1512315136=+⇒=-d a S S ,解得1,11==d a , ∴.2)1(21+=+++=n n n S n 则.)1(21+==n n S b n n (2))1(2322212'11+++⨯+⨯=+++=n n b b b S n n )]111()3121()211[(2+-++-+-=n n.12)111(2+=+-=n nn 18.解:∵,16)16(22+--=n S n 当16=n 时,n S 取得最大值216.∴016>a ,当17≥n 时,n a 0<.当16≤n 时,;322n n P n -=当16>n 时,.512322)(216181716+-=-=+++-=n n S S a a a S P n n n∴⎩⎨⎧>+-≤-=.16,51232;16,3222n n n n n n P n 19.解:(1)∵121+++-=n n n a a b n n n n n n b a a a a a 32)(323235111=-=--=+++, 故{}n b 是公比为32的等比数列,且32121=-=a a b ,nn b )32(=(n *N ∈). (2)nn b )32(=)()()(121111a a a a a a a a n n n n n -++-+-=-∴-++ ,又11=a ,可得1323--=n nn a (n *N ∈). 记数列}32{11--⋅n n n 的前n 项和为Tn ,则,)32(32211-++⋅+=n n n T∴,)32()32(232322n n n T ++⋅+= 两式相减得.32)3(9)32(3])32(1[91-+-=--=n n n n n n n T从而Tn n na a a S n n 2)21(3221-+++=+++= .1832)3()1(2311-+++=-+n n n n n20.(1)证明:当2≥n 时,)13(32-=n n n S a S ,1--=n n n S S a ,∴)13)((312--=-n n n n S S S S ,整理得1131--+=n n n S S S ,即3111=--n n S S , 因此}1{nS 是等差数列. ])32(1[232)32()32()32(21n n n -=++++=-(2)解:,231,233)1(111-=∴-=-+=n S n n S S n n )13)(23(113+-=+=n n n S b n n , )13)(23(11071741411+-++⨯+⨯+⨯=n n T n )]131231()10171()7141()411[(31+--++-+-+-=n n .13+=n n 21.(1)证明:当n=1时,,21091=a 则,9201=a当n=2时5)109()109(221=+a a ,则,271002=a 当n=3时9)109()109()109(33221=++a a a ,则,72940003=a ∴3122a a a ≠.因此数列{}n a 不是等比数列. (2)解:由)3(21)109()109()109(2221n n a a a n n +=+++ 得 当2≥n 时,)]1(3)1[(21)109()109()109(211221-+-=+++--n n a a a n n , 两式相减得1+=n ,∴n n n a )910)(1(+=,又9201=a , ∴n n n a )910)(1(+=,n *N ∈. (3)∵1)1(9)1(10)910)(1()910)(2(11>++=++=++n n n n a a nn n n , ∴n n a a >+1,即}{n a 为递增数列,因此数列}{n a 中没有最大项.22.解:(1)∵bx x x f +=2)(为偶函数,∴0=b ,2)(x x f =, 又1)1(21+-=+n n a f a ,∴21)1(21-=-+n n a a , n n a )109(∵1>n a ,∴)1(log 21)1(2log )1(log 22212-+=-=-+n n n a a a , 即]1)1([log 21)1(log 212+-=+-+n n a a , ∵)1(log 2-=n n a b ,∴)1(211+=++n n b b , 又31=a ,21)13(log 1)1(log 12121=+-=+-=+a b , ∴数列}1{+n b 是首项为2、公比为2的等比数列.(2)由(1)知,22211n n n b =⋅=+-∴,12-=n n b 又n n nb c =,∴n n c nn -⋅=2, 令n n n d 2⋅=,数列}{n d 的前n 项和为n T ,则 n n n T 223222132⨯++⨯+⨯+⨯= , ①143222322212+⨯++⨯+⨯+⨯=n n n T , ②①-②得22)1(212)12(22)2222(11132--=⨯---=⨯-++++=-+++n n n n n n n n n T , ∴22)1(1+-=+n n n T ,数列}{n c 的前n 项和2)1(22)1()21(1+-+-=+++-=+n n n n T S n n n .242)1(21-+--=+n n n n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料
金戈铁骑整理制作
高二数学必修5数列单元测试
时间120分钟 满分100分
一、选择题:(本大题共10小题,每小题3分,共30分.)
1.在数列-1,0,91,81,……,22
n
n -中,0.08是它的
A .第100项
B .第12项
C .第10项
D .第8项
2.在数列{}n a 中,12a =,1221n n a a +=+,则101a 的值为
A .49
B .50
C .51
D .52
3.等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 的前9项的和等于 A .66 B .99 C .144 D .297
4.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么a n +b n 所组成的数列的第37项的值是( )
A.0
B.37
C.100
D.-37 5.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则
2
1
2b a a -=
A .1
B .-1
C .2
D .±1
6.等比数列{a n }中,前n 项和S n =3n +r ,则r 等于( )
A.-1
B.0
C.1
D.3
7.已知数列}{n a 的前n 项和为)34()1(2117139511
--++-+-+-=+n S n n ,
则312215S S S -+的值是( )
A. -76
B. 76
C. 46
D. 13
8.6.已知等差数列{a n }的公差d≠0,若a 5、a 9、a 15成等比数列,那么公比为
A .
34 B .23 C .32 D .43
9.若数列{a n }是等比数列, 则数列{a n +a n+1}
A .一定是等比数列
B .可能是等比数列, 也可能是等差数列
班级___________
姓名___________
C .一定是等差数列
D .一定不是等比数列
10.等比数列{a n }中,a 1=512,公比q=1
2
-,用Ⅱn 表示它的前n 项之积:Ⅱn =a 1·a 2…a n 则Ⅱ1,Ⅱ2,…,中最大的是
A .Ⅱ11
B .Ⅱ10
C .Ⅱ9
D .Ⅱ8
题号 1 2 3 4 5 6 7 8 9 10 答案
二、填空题:(本大题共5小题,每小题4分,共20分。
)
11.在数{a n }中,其前n 项和S n =4n 2-n -8,则a 4= 。
12.设S n 是等差数列{}n a 的前n 项和,若
5359a a =,则95
S
S 的值为________. 13.在等差数列{a n }中,当a r =a s (r ≠s )时,{a n }必定是常数数列。
然而在等比数列{a n }中,
对某些正整数r 、s (r ≠s ),当a r =a s 时,非常数数列}{n a 的一个例子是____________. 14.已知数列1,
,则其前n 项的和等于 。
15.观察下列的图形中小正方形的个数,则第n 个图中有
个小正方形.
三、解答题:
(本大题共5小题,共50分。
解答应写出文字说明,或演算步骤)
16.(本小题满分8分)已知{}n
a 是等差数列,其中1425,16a a == (1)数列
{}n a 从哪一项开始小于0 (2)求13519a a a a ++++值。
17.(本小题满分8分)
已知}{n a 是等差数列,其前n 项和为S n ,已知,153,1193==S a (1)求数列}{n a 的通项公式;
(2)设n n b a 2log =,证明}{n b 是等比数列,并求其前n 项和T n .
18.(本小题满分10分)某城市1991年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从1992年起,每年平均需新增住房面积为多少万m 2,才能使2010年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).
19.(本小题满分12分)已知等比数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项, 等差数列{}n b 中,12b =,点1(,)n n P b b +在直线2y x =+上. ⑴求1a 和2a 的值;
⑵求数列{}{},n n a b 的通项n a 和n b ;
⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .
20.(本小题满分12分)
设数列{a n }的前n 项和为S n ,若对于任意的n ∈N *,都有S n =2a n -3n . ⑴求数列{a n }的首项a 1与递推关系式:a n+1=f (a n ); ⑵先阅读下面定理:“若数列{a n }有递推关系a n+1=A a n +B ,其中A 、B 为常数,且A ≠1,B ≠0,则数列}1{A
B
a n --
是以A 为公比的等比数列。
”请你在⑴的基础上应用本定理,求数列{a n }的通项公式;
⑶求数列{a n }的前n 项和S n .
四、选做题(满分10分)
21. 设关于x 的一元二次方程n a x 2
-1n a +x+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.
(1)试用n a 表示a 1n +;
参考答案
一.选择题 题号 1 2 3 4 5 6 7 8 9 10 答案
C
D
B
C
B
A
A
C
B
C
二.填空题
11. 27 12. 1 13. 1,-1,1,-1,…… 14.
12+n n 15. 2
)
2)(1(++n n 16.、解:(1)
4133a a d d =+∴=- 283n a n ∴=-
1
283093
n n -<∴> ……5分 数列{}n a 从第10项开始小于0 。
(2)13519a a a a +++
+是首项为25,公差为6-的等差数列,共有10项
其和109
1025(6)202
S ⨯=⨯+
⨯-=- 17.解:(1).23,5,315328
99112111+=∴==⎪⎩
⎪
⎨⎧=⨯+=+n a a d d a d a n 解得 (2)}{,8222
2,23111
n a a a a n n a n b b b b n n n n n
∴=====-+++ 是公比为8的等比数列.
又有).18(7
3281)81(3232
2
1
1-=--=∴==n
n n a T b
18.解 设从1992年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式
19500619500(10.01)24x ⨯+≥⨯+⨯
解得605x ≥.
答 设从1992年起,每年平均需新增住房面积为605万m 2.
19.解:(1)由22+=n n S a 得:2211+=S a ;2211+=a a ;21=a ; 由22+=n n S a 得:22221+=S a ;22211++=a a a ;42=a ;
(2)由22+=n n S a ┅①得2211+=--n n S a ┅②;(2≥n )
将两式相减得:1122---=-n n n n S S a a ;n n n a a a =--122;12-=n n a a (2≥n ) 所以:当2≥n 时: n n n n a a 22
42
2
2
2=⨯==--;故:n
n a 2=;
又由:等差数列{}n b 中,12b =,点1(,)n n P b b +在直线2y x =+上. 得:21+=+n n b b ,且12b =,所以:n n b n 2)1(22=-+=; (3)1
2
+==n n n n n b a c ;利用错位相减法得:42
)1(2
---=+n n n T ;
20.解:⑴令n=1,S 1=2a 1-3。
∴a 1 =3 ,又S n+1=2a n+1-3(n+1), S n =2a n -3n,两式相减得,
a n+1 =2a n+1-2a n -3,则a n+1 =2a n +3
⑵按照定理:A=2,B=3,∴{ a n +3}是公比为2的等比数列。
则a n +3=(a 1+3)·2n -1=6·2n -1,∴a n =6·2n -
1-3 。
⑶6(12)
3623612
n n n S n n -=
-=---。
21、解:(1)根据韦达定理,得α+β=
1n n a a +,α•β=1
n
a ,由6α-2αβ+6β=3 得 11211
63,23
n n n n n a a a a a ++⋅-
==+故 (2)证明:因为1122111213(),,23232323
n n n n n a a a a a ++-
-=-=-=-所以。