有限元分析的数学原理(精选)
第3有限元分析的数学求解原理
3.1 简单问题的解析求解
(5) 讨论2 根据计算能量的方法,得到: 应变能
外力功
势能
3.1 简单问题的解析求解
平面梁的弯曲问题 假设有一个受分布载荷作用的简支梁如图所示,由于 简支梁的厚度较小,外载沿厚度方向无变化,那么该问 题可以认为是一个oxy平面内的问题
3.1 简单问题的解析求解
1.基本方程 有两种方法来建立基本方程。 方法一:采用一般建模及分析方法,即从对象取出dxdy
y为距梁中性 层的坐标
然后是y方向的合力平衡
最后是弯矩平衡
3.1 简单问题的解析求解
② 几何方程 由变形后的几何关系,可得到
其中,y为距中性层的坐标,k为梁挠度的曲率,即:
③ 物理方程 由Hooke定律有:
3.1 简单问题的解析求解
对上述方程整理,就得到了平面简支梁弯曲问题的基本 方程:
式中,
为梁截面的惯性
第三章 有限元分析的数学求解原理
前一章针对任意形状变形体,基于物体内的微小体元 dxdydz定义了描述弹性变形体的所有基本力学信息(ui,εij ,σij)、基本方程(平衡、几何、物理)及边界条件。接 下来的任务就是对这些方程在具体的条件下进行求解,也 就是说在已知边界条件下,由基本方程求出相应的位移场 、应力场和应变场。
3.2 虚功原理
进一步分析。当杠杆处于平衡状态时,ΔA和ΔB这两个位移是不存在的 ,但是如果某种原因,例如人为地振一下让它倾斜,一定满足这种关系。
再由Hooke定律算出:
再计算右端的伸长量为:
3.1 简单问题的解析求解
通过比较可以看出,经验方法求解的结果和弹性力学的 解析结果完全一致。
比较以上解析方法和经验可以看出: ① 解析方法的求解过程严谨,可以得到物体内各点力学变 量的表达,是场变量。 ② 经验方法的求解过程比较简单,但需要事先进行假定, 往往只能得到一些特定位置的力学变量表达,而且只能应 用于一些简单情形。
有限元法的基本原理
第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。
经过半个过世纪的发展,它的数学基础已经比较完善。
从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。
它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。
通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。
在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。
尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。
通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。
2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。
3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。
4)有限元的收敛性和误差估计。
由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。
另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。
§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。
2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。
有限元分析及应用
有限元分析及应用介绍有限元分析,简称FEA(Finite Element Analysis),是一种数值计算方法,用于预测结构的力学行为。
它可以将结构离散为有限个小单元,在每个小单元内进行力学计算,并通过求解得到整个结构的应力和位移分布。
有限元分析常用于工程领域中,如结构分析、热传导分析、流体流动分析等。
原理有限元分析的基本原理可以概括为以下几个步骤:1.离散化:将结构或物体离散为有限个小单元。
常见的小单元形状有三角形、四边形等,在三维问题中可以使用四面体、六面体等。
2.建立数学模型:在每个小单元内,根据结构的物理特性和力学行为建立数学模型。
模型中包括了材料的弹性模量、泊松比等参数,以及加载条件、约束条件等。
3.组装和求解:将所有小单元的数学模型组装成一个整体的数学模型,然后利用求解算法进行求解。
常见的求解算法有直接法、迭代法等。
4.后处理:得到结构的应力和位移分布后,可以进行各种后处理操作,如绘制位移云图、应力云图等,以帮助工程师分析结构的强度和刚度性能。
应用有限元分析在工程领域有着广泛的应用。
下面介绍几个常见的应用案例:结构分析有限元分析可以用于结构分析,以评估结构的刚度和强度。
在设计建筑、桥梁、航空器等工程项目时,工程师可以使用有限元分析来模拟结构的力学行为,预测结构在不同加载条件下的变形和应力分布,以优化结构设计。
热传导分析有限元分析也可以用于热传导分析,在工程项目中评估热传导或热辐射过程。
例如,在电子设备的散热设计中,可以使用有限元分析来预测电子元件的温度分布,优化散热设计,确保电子元件的正常工作。
流体流动分析在流体力学研究中,有限元分析可以用于模拟流体的运动和流动行为。
例如,在船舶设计中,可以使用有限元分析来模拟船体受到波浪作用时的变形和应力分布,验证船体的可靠性和安全性。
优缺点有限元分析具有以下优点:•可以模拟复杂结构和物理现象,提供准确的结果。
•可以优化结构设计,减少设计成本和时间。
有限元分析原理
有限元分析原理
有限元分析原理是一种通过划分连续物体为有限个小单元来近似计算连续系统行为的数值分析方法。
该方法将连续系统离散化为离散单元,每个单元通过节点相互连接成为网格结构。
在每个单元内,通过数学模型和物理方程,求解节点处的未知变量值,最终得到整个系统的行为。
有限元分析基于以下原理进行计算:
1. 可分割性原理:连续物体可以被分割为有限个小单元,每个单元的形状和尺寸可以根据问题的要求和特点进行选取。
2. 小单元原理:每个单元内的物理行为可以用简单的数学模型来描述,如线性弹性模型、非线性模型等,这些模型可通过数学方程来表示。
3. 节点连接原理:通过连接网格节点,将各个小单元组合成系统,节点间的连接方式可以根据物体的几何形状和要求来决定。
4. 平衡原理:在每个节点处,根据物体受力平衡条件建立方程,通过求解这些方程可以得到节点处的未知变量值。
5. 组装原理:通过连接不同单元的节点,并将各个单元的方程组装在一起,形成整个系统的方程。
6. 边界条件原理:根据问题的边界条件,将边界节点上的已知变量固定或设定初值。
7. 求解原理:通过数值计算方法,如有限差分法、有限元法等,求解得到整个系统的未知变量分布。
通过以上原理,有限元分析可以对各种连续物体在不同载荷和边界条件下的行为进行定量分析,例如结构的变形、应力分布、热传导、电磁场分布等。
有限元分析广泛应用于工程领域,如结构力学、流体力学、电磁学等。
它不仅能提供准确的数值计算结果,还能为工程师提供辅助设计和优化的依据。
第3章 有限元分析的数学求解原理-三大步骤
U x x y y z z xy xy yz yz zx zx dV
X u Y v Z w dV X u Y v Z w d W
V V
用 * 表示;引起的虚 应变分量用 * 表示
j Vj
Ui
i Vi
0 X
y
¼ 1-9 Í
ui* * vi wi* * * u j , v* j w*j
x* * y * z * * xy *yz * 18 zx
19
7.间接解法:最小势能原理
20
最小势能原理
W U 0
最小势能原理就是说当一个体系的势能最小时,系统会处于稳定 平衡状态。或者说在所有几何可能位移中,真实位移使得总势能取最小值
0 表明在满足位移边界条件的所有可能位移 最小势能原理: 中,实际发生的位移使弹性体的势能最小。即对于稳定平衡状态,实 际发生的位移使弹性体总势能取极小值。显然,最小势能原理与虚功 原理完全等价。 n m
虚功原理的矩阵表示
在虚位移发生时,外力在虚位移上的虚功是:
* 式中
U i u i* V i v i* W i w i* U j u *j V j v *j W j w *j
* 是 的转置矩阵。
T
*
F
T
同样,在虚位移发生时,在弹性体单位体积内,应力在虚应变上的虚 功是: * * * * * * * T x x y y z z xy xy yz yz zx zx
27
⑴解析法
第二章有限元分析基本理论
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
有限元法的理论基础
有限元法的理论基础有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。
能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。
下面介绍有限元法中经常使用的虚位移原理和最小势能原理。
1.虚位移原理虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。
反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。
可以看出,虚位移原理等价于平衡微分方程与力学边界条件。
所以虚位移原理表述了力系平衡的必要而充分的条件。
虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。
2.最小势能原理最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。
根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。
最小势能原理仅适用于弹性力学问题。
2.2有限元法求解问题的基本步骤弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。
2.2.1问题的分类求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。
对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。
2.2.2建模在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。
有限元分析理论基础大全超详细
有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
它包括大位移大应变及大位移小应变问题。
第3有限元分析的数学求解原理
3.1 简单问题的解析求解
针对这两个特征,可以做出以下假定: 直法线假定 小变形与平面假定 该问题的三类基本变量: 位移: (中层性挠度) 应力:σ(采用σ x,其他应力分量很小,不考虑),该变 量对应于梁截面上的弯矩M 应变:ε(采用εx,满足直线假设)
3.1 简单问题的解析求解
下面取具有全高度梁的dx“微段”来推导三大类方程 ① 平衡方程
3的体系,当发生与约束条件相 符合的任意微小的刚体位移时,体系上所有的主动力在位移 上所作的总功(各力所作的功的代数和)恒对于零。 虚功原理用公式表示为:
W P 0
这就是虚功方程,其中P和Δ相应的代表力和虚位移。
3.2 虚功原理
虚功方程是按刚体的情况得出的,即假设图示杠杆是绝对刚性,没有任何 的变形,因而在方程中没有内功项出现,而只有外功项。
将虚功原理用于弹性变形时,总功W要包括外力功(T)和内力功(U)两部分 ,即: W = T - U ;内力功(-U)前面有一负号,是由于弹性体在变形过程 中,内力是克服变形而产生的,所有内力的方向总是与变形的方向相反, 所以内力功取负值。 根据虚功原理,总功等于零得: T - U = 0
3.1 简单问题的解析求解
(2)基本方程 对原三维问题的所有基本方程进行简化,只保留沿x方向 的方程,得到该问题的三大类基本方程和边界条件 ①平衡方程(无体力)
②几何方程
③物理方程
3.1 简单问题的解析求解
④ 边界条件(BC)
上述方程中,力的边界条件为一种近似,因为在x=l的端面 ,σx(x)不应是均匀分布的。由圣维南原理(Saint-Venant principle),在远离x=l的截面,力的边界条件才较好的满 足。
vi Vi
有限元方法基本原理
有限元方法基本原理有限元方法被广泛应用于工程领域中对复杂结构力学问题的求解。
其基本原理是将一个复杂的实体分割成连续的小元素,并在每个小元素内近似描述结构的力学行为。
然后根据各个小元素的相互连接关系,通过求解各个小元素的力学方程,得到整个结构体系的力学响应。
在有限元方法中,划分成小元素的实体被称为有限元。
每个有限元内会选择一个适当的数学函数形式来近似描述该元素内的过程变量(如位移、应力等)。
通常,利用多项式函数或三角函数来近似描述是较为常见的选择。
有限元法的基本思想是利用小元素内的力学方程来建立元素间的联系。
这一联系通过引入节点来实现。
节点是在有限元网格上选取的特殊位置,在节点处的位移和应力是所有相邻元素的位移和应力的加权平均。
在整体结构体系上,所有节点只有两种运动自由度(如平面问题为两个:水平和垂直方向),我们将节点处对应的变量称为自由度。
有限元分析的过程可以分为网格划分、单元插值、力学方程建立和边界条件处理四个主要步骤。
首先,将整个结构体系划分成小的有限元。
然后,在每个有限元内部选择一个插值函数,并利用插值函数得到相应的位移和应力的近似解。
接下来,根据物体在各个小元素上的力学原则,建立每个小元素的力学方程。
最后,在整个结构体系上,应用边界条件将自由度限制在给定的边界条件下。
通过求解各个小元素的力学方程,可以得到整个结构体系的应力、应变和位移分布。
这些分析结果可以用来评估结构的强度、刚度和稳定性等重要参数。
有限元方法的优点在于它能够处理复杂的几何形状和边界条件,并提供了精确的力学响应。
因此,它被广泛用于各个工程领域中的结构设计和分析中。
第三讲有限元数学原理
一般说来,求解方程的途径有两大类: 1)直接针对原始方程进行求解 2)间接针对原始方程进行求解
直接解法——解析法:
解析法从力平衡关系、几何关系以及物理关系出发,推导出一个 或一组关于应力或者关于应变、有时是同时含有应力、应变的微 分方程或偏微分方程,通过求解微分方程,解出应力、应变和变 形量。工程中,常采用的解析方法有材料力学中对杆件的分析, 弹性力学中平面问题的求解,板壳理论等。 解析法的很多基本理论是建立在一些简化的假设基础之上的,经 过大量的工程实践,被证明能很好的符合构件实际工作情况,已 成为成熟的理论。解析法得到的结果是未知量(应力、应变等) 的函数解,可直接得到结构中任意点的精确解。解析法在分析理 论问题以及一些工程问题时起着重要作用。但是解析法在应用到 一些形状复杂或应力分布复杂的结构时,往往由于数学上的问题 而显得无能为力,因而使解析法在应力分析中的应用受到限制。
x
du dx
物理方程
x E x
u
x 0 0 x
边界条件
x l
P px A
对三大方程直接进行求解得
平衡方程
d x 0 dx
x c
c x E c ux x c1 E
物理方程
x E x
x
du dx
几何方程
根据边界条件可得,c=P/A, c1=0
讨论1 若用材料力学的经验方法求解,则需先作平面假设, 即假设应力为均匀分布 σx=P/A 由广义胡克定律得 εx=P/EA 右端的伸长量为
Δu=εxl=Pl/EA
讨论2
应变能
动能 势能
1 1 l P2l U ij ij d x x Adx 2 2 0 2EA