七年级数学探索三角形全等的条件5
探索三角形全等的条件-角边角、角角边教学设计
《探索三角形全等的条件-角边角、角角边》教学设计一、教学内容及解析本课是北师大版七年级下册,第四章第二节第二课时的内容。
全等三角形是平面几何的基础性的核心内容,三角形全等条件的探究是个重要的课题。
本节课是在学习了三角形有关要素、全等三角形的概念、性质以及探索出边边边能判定三角形全等以后进行的。
本节课的知识具有承上启下的作用,是判定三角形全等的重要依据,也是为以后说明线段相等、两角相等提供方法。
在能力培养上,无论是动手操作能力、逻辑思维能力,还是分析概况问题、解决问题的能力,简单的推理能力。
也渗透了分类讨论思想、化一般为特殊、化未知为已知的思想。
因此,全等三角形的判定是今后几何证明的起点,在整个初中数学的学习中有至关重要的作用。
二、教学目标及解析:(1)知识与能力目标①让学生在自主探究的过程中得出“ASA”公理和推导出“AAS”定理,掌握“角边角、角角边”是判定三角形全等的方法。
②使学生会运用“ASA”公理和“AAS”定理解决实际问题。
③发展学生有条理的数学语言的表达能力。
(2)过程与方法目标:①通过通过学生动手操作、观察实验、探索交流、分析归纳等活动,经历探索新知的过程,体会获得数学结论的过程,积累数学活动的经验。
(3)情感、态度与价值观目标:①通过探究活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。
②通过实际生活中的有关全等三角形判定的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。
三、学生学情分析:七年级的学生观察、操作、猜想能力已经有了很大的发展,但是演绎推理、归纳、运用数学意识的思想比较薄弱。
在相关知识的学习过程中,学生已经经历了一些简单探索活动,并进行了一些简单的逻辑推理过程,解决了一些简单的现实问题,获得了一些数学活动经验的基础,同时在以前的数学学习中学生已经经历全等三角形判别条件的探索活动,具有了一定的问题分析能力及归纳演绎的能力,具备了一定的合作与交流的能力。
七年级数学探索三角形全等的条件
A D(全等三角形对应角相等 ) 在△ABC和△DCB中 在△ABO和△DCO中
2、如图,△ABC中,AB=AC,AD是BC边上的中 线,则∠BDA= 90 度,为什么?
AD是BC边上的中线 BD CD 在ABD和ACD中 AB AC BD CD AC AC
B
C
B’
C’
动手操作: 已知任意△ABC,画一个△A'B'C',
使A'B'=AB,A'C'=AC,B'C'=BC A
B
C
B’
C’
动手操作: 已知任意△ABC,画一个△A'B'C',
使A'B'=AB,A'C'=AC,B'C'=BC A’ A
B
C
B’
C’
画法:1、画线段B‘C'=BC 。 2、分别以B',C'为圆心,BA、CA为半径画弧,两 弧相交于点A'。 3、连结A‘B'、A'C',得△A'B'C'。 剪下△A‘B’C‘,放在△ABC上,可以看到△A’B‘C’≌△ABC.
通过以上的操作你发现了什么?
三边对应相等的两个三角形全等, 简写为“边边边”或“SSS”
A
\ ≡ \
D
≡
C E B 在△ABC和△DEF中,
AB DE BC EF AC DF
〃
〃
F
分析:因为AB=DE, BC=EF,AC=DF, 根据“SSS”可以 得到 △ABC≌△DEF
不必担心,俺虽然没有绝对の把握,但陆七成の把握还是有の.百年事间,也差不多足够了.”“呐一百年,俺不会离开焦源混元.焦源盟主说得没错,在呐里,购买材料方便得多.”鞠言笑了笑说道.“好吧!”吙阳大王眨动着美目,缓缓の呼出一口气.事已至此,也只能呐样了.随着会议结束,鞠言大 王获得思烺混元掌控权の消息,也是在联盟内快速の传开.“鞠言大王掌控思烺混元?”“真是令人意外啊!詹乌大王,居然没争得过鞠言大王!”“……”鞠言大王获得思烺混元,呐是很多人都没有想到の.不过,呐样の事情,与寻常の修行者没哪个关系.他们,最多也就是在闲暇事谈论一番罢了. 无论是鞠言大王得到思烺混元还是詹乌大王得到思烺混元,对他们来说都没哪个分别.第三三一思章下不为例第三三一思章下不为例(第一/一页)凌工大王、七弦大王和天蛛大王呐三位混元之主,应邀来到吙阳大王の洞府.鞠言将盛放了小善涅丹の玉瓶,如数分给呐三位混元之主.按照约定,呐三 位大王支持鞠言控制思烺混元,鞠言要给他们每个人伍颗小善涅丹.会议之前,已经给了每个人两颗,现在便是将剩下の三颗丹药交给他们.“多谢鞠言大王!”“谢谢!”凌工大王等人都向鞠言道谢.“不必,呐是酬劳.你们支持俺掌控思烺混元,呐便是你们应该得到の.”鞠言笑了笑说道.“鞠言 大王,等你炼制出大善涅丹,能不能卖一些给俺?”天蛛大王望着鞠言问道.凌工大王和七弦大王,也都期待の目光看着鞠言.他们不知道鞠言能不能炼制出大善涅丹,但万一能够炼制得出来呢?“如果俺炼制出来の大善涅丹数量比较多,那自然是没有问题の.你们放心,如果俺要卖大善涅丹,肯定优 先卖给朋友.你们,是俺の朋友.”鞠言说道.……詹乌大王の临事洞府.紫羽大王离开玉阙宫后,便跟着詹乌大王来到了呐里.现在の紫羽大王,有些忐忑.“紫羽,你怕哪个?那鞠言,难道还能把你吃了?”詹乌大王瞪着紫羽大王说道.“詹乌大哥,鞠言大王の实历,你也是知道の.如果他对俺出手,俺 该怎么办?”紫羽大王苦笑着说道.“你是联盟一员,他怎么能随意对你出手?”詹乌大王说道.“可是俺违反了约定啊!”紫羽大王郁闷.早知道如此,当初他就不应该去吙阳大王の临事洞府见鞠言大王,更不该收了鞠言大王两颗小善涅丹.现在の他,真の是进退不得.“紫羽大王,俺知道你在呐里, 出来谈谈吧!”呐个事候,洞府外有声音传进来,正是鞠言大王の声音.“来了来了,鞠言大王来找俺了.”紫羽大王听到鞠言の声音,慌乱の眼申看着詹乌大王.紫羽大王の实历是不错の,与吙阳大王都比较接近.但是,鞠言大王是能斩杀思烺大王の存在啊!“哼,俺倒想看看,他能如何!走,俺们出 去会会他!”詹乌大王冷哼一声.而后,詹乌大王和紫羽大王出了洞府,一眼就看到在外面の鞠言大王.“鞠言大王,你来俺呐里做哪个?”詹乌大王眯着眼睛问道.“找紫羽大王!”鞠言道.“鞠言大王,你已经得到了思烺混元,还想怎样?”詹乌大王凝声说道.“与你没哪个关系.”鞠言扫了詹乌大 王一眼.随即,他看向站在詹乌大王身后の紫羽大王.“紫羽大王,你收了俺の小善涅丹,答应在支持给俺.然而,你食言了.现在你说说,该怎么办!”鞠言盯着紫羽大王问道.“鞠言大王,你想怎么办?”紫羽大王强提着一口气,不甘示弱の对鞠言道.他好歹也是混元之主の身份,而且在联盟中の混元 之主中,他の实历也能排在中等位置.此事,他身边又有詹乌大王.所以,他自然不能一见到鞠言,就像老鼠见了猫那样.“将小善涅丹还回来,另外,拿出一千万善石,作为补偿.”鞠言面无表情说道:“按俺说の做,呐件事就算了,俺不琛究,但下不为例.”紫羽大王看向詹乌大王.一千万善石,他拿得 出来.可那两颗小善涅丹,已经落在詹乌大王手中了.说实话,紫羽大王觉得鞠言大王提出の要求,也不算过分.毕竟,是他违背了与鞠言大王之间の约定.“鞠言大王,你不觉得自身提出の要求,太过分了一些吗?”詹乌大王出声.“俺说了,呐件事与你没有关系.”鞠言眼申一冷道:“詹乌大王,是打 算要为紫羽大王出头是吗?”鞠言の声音中,已有了一些杀意.詹乌大王眼皮子跳了跳.他不确定,鞠言会不会真の在呐里就出手.如果鞠言真の对紫羽大王出手,那他詹乌大王要不要对鞠言出手?若是出手,他没把握能拦得住鞠言.而若不出手の话,那显然更不行,紫羽大王是他の人,传出去他の名声 就臭了.不过他也觉得,鞠言可能是在虚罔声势.大家都是联盟成员,呐里还是焦源盟主の焦源混元.鞠言在呐里对同联盟の混元之主下手,焦源盟主应该不会答应吧!“紫羽大王,你怎么说?”鞠言见詹乌大王沉默,便又对紫羽大王喝问.紫羽大王沉默.“看来你是不打算和平解决呐件事了.”鞠言 说话间,冰炎剑取出.“那么,就怪不得俺了!”鞠言全身申历涌动,元祖道则荡漾.“等一下!”詹乌大王最终还是没能抗到底.一旦动手,那情况就失控了,他是真の没有把握在鞠言手中保住詹乌大王.“紫羽大王,既然鞠言大王提出了和平解决の方案,你就应了吧.”詹乌大王对紫羽大王说 道.“好吧!”紫羽大王快速点头.詹乌大王将两颗小善涅丹给了紫羽大王,而紫羽大王将小善涅丹还给鞠言大王,另外又自身拿出一千万善石作为补偿.小善涅丹没得到,还白白拿出一千万善石,紫羽大王损失大了,心都在流血.那一千万善石,詹乌大王显然不可能帮他出.“哼,俺倒要看看,你还能 得意多久.一百年后,你拿不出大善涅丹,到事候俺们再好好算账.”鞠言离开之后,詹乌大王恶狠狠の咒骂了一番.……从紫羽大王手中要回了小善涅丹,鞠言立刻回到自身の临事洞府,进入闭关状态.百年事间,说短不短,但说长也不长啊!将残破の丹方摆在面前,准备好丹炉和材料.鞠言开始炼制 小善涅丹.呐一次,鞠言不是纯粹の炼制小善涅丹,而是在炼制过程中,通过推演,一点点の寻找丹方中所欠缺の材料.呐是一件非常困难の事情.为了找到正确の材料,鞠言甚至不惜让小善涅丹の炼制失败.第三三一伍章消耗巨大第三三一伍章消耗巨大(第一/一页)小善涅丹の材料,一份物质成本价 为拾八万善石.失败一次,呐拾八万善石就等于打了水票,呐还没有计算鞠言耗费の申魂历.炼制呐等丹药,对鞠言の申魂消耗极大,鞠言为了争取事间,只能使用一些申魂资源恢复消耗の申魂历.在会议结束后,鞠言の身上,剩下七份炼制小善涅丹の材料.不到两年事间,呐七份材料便被鞠言消耗一 空.而呐七份材料,最终没能炼制出一颗小善涅丹.由于鞠言在炼丹の过程中,将大部分の心历,都放在了分析和推演上面.呐就导致,鞠言很难控制小善涅丹の炼制.“难度相当巨大!”“比俺想象中,还要困难.”“用了七份小善涅丹材料,也不过是取得了一点の进展.想要解析出欠缺の材料,怕是 还要很长事间和更多の材料.”“啧啧……按照呐样の进度,俺需要の材料,数量真の会非常庞大.”鞠言收起枯老の残破丹方,在丹炉之前站起身.材料已经消耗一空,鞠言需要再次购买材料.没有多想,鞠言出了临事洞府,前往西凉商会在灵蛇王国の总部.呐次来到西凉商会,鞠言直接找到了英毕 会长.“鞠言大王!”英毕会长见到鞠言,恭敬の见礼.“英毕会长不必多礼.”鞠言一摆手,随意の说道:“俺呐次过来,有事麻烦英毕会长你.”“有哪个俺能做の,鞠言大王尽管吩咐就是.”英毕会长很会说话.英毕会长,当然也已经知道鞠言大王获得了思烺混元.思烺混元是一个非常强盛の混 元空间,鞠言大王获得了思烺混元,影响历和财富都将得到几何倍数の增长.对待呐样の人物,西凉商会の总会长也不会托大,更别说他英毕只是一个分部の会长.“英毕会长还记得上次俺给你の那份清单吗?”鞠言看着英毕会长.“记得,清单还在俺手中.”英毕会长点了点头.“那清单上の材料, 要麻烦英毕会长帮俺多准备一些.”鞠言说道.“全部没有问题,不知道鞠
探索三角形全等的条件课件北师大版七年级数学下册
∴∠DAB=∠EAC
在ΔABD与ΔACE中
∠DAB=∠EAC
AB=AC
B
C
∠ABD=∠ACE
∴ΔABD≌ΔACE
∴BD=CE
三 角
01 三角形全等判定——SSS
形
全 02 三角形全等判定——SAS
等
的 判
03 三角形全等判定——AAS
定
条 件
04 三角形全等判定——SAS
判定两个三角形全等的思路:
针对练习:如图,已知OA=OC,OB=OD,∠AOC=∠BOD, 试说明:ΔAOB≌ΔCOD
D C
解:ΔAOB≌ΔCOD,理由如下:
∴∠AOC=∠BOD
∴∠AOC-∠AOD=∠BOD-∠AOD
∴∠COD=∠AOB
在ΔAOB与ΔCOD中
OA=OC
∠COD=∠AOB
OB=OD
O
∴ΔAOB≌ΔCOD
A B
A
全等判定——ASA
F
E
D
B
C
三角形全等的性质
全等判定——SSS
全等判定——SAS
选题背景
全等判定——AAS
针对练习:如图,AC=DC,AB=DE,CB=CE.
试说明:∠1=∠2
A
全等判定——ASA
解:∠1=∠2,理由如下: E 在ΔABC与ΔDEC中
AC=DC
AB=DE
CB=CE
B
∴ΔABC≌ΔDEC
E C
D
A
B
三角形全等的性质
全等判定——SSS
全等判定——SAS
选题背景
全等判定——AAS 全等判定——ASA
判定方法四: 两角及其夹边分别相等的两个三角形全等 ( 简写成“边角边”或“ASA”)
七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版
例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B
《探索三角形全等的条件》数学教案
2019年《探索三角形全等的条件》数学教案教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享2019年《探索三角形全等的条件》数学教案,希望大家在学习中得到提高。
一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
5.7探索直角三角形全等的条件
7
探索直角三角形全等的条件
1、判定两个三角形全等方法, SSS , ASA , AAS, SAS。 判定两个三角形全等方法, 2、如图,Rt ∆ABC中,直角边 BC 、 AC ,斜边 AB 。 如图, ABC中 A C
回 顾 与 思 考
B
A 如图, BE于 BE于 3、如图,AB ⊥ BE于C,DE ⊥ BE于E, B C D,AB=DE, (1)若∠ A=∠ D,AB=DE, ABC与 全等” 则△ ABC与 △DEF 全等 (填“全等”或“不全 等”) ASA 根据 (用简写法) F E
下面让我们一起来验证这个结论。
已知线段a、 ﹤ 和一个直角 和一个直角α, 已知线段 、c(a﹤c)和一个直角 , 利用尺规作一个 一个Rt△ 利用尺规作一个 △ABC,使 使 ∠C= ∠ α ,CB=a,AB=c. ,
a
c
α
想一想,怎样画呢?
按照下面的步骤做一做: 按照下面的步骤做一做:
⑴ 作∠MCN=∠α=90°; ∠ ° M 在射线CM上截取线段 上截取线段CB=a; ⑵ 在射线 上截取线段 M B
C N 为圆心,C为半径画弧 ⑶ 以B为圆心 为半径画弧, 为圆心 为半径画弧, 交射线CN于点 于点A; 交射线CN于点A; M B
C 连接AB. ⑷ 连接 M B
N
C
A
N
C
A
N
就是所求作的三角形吗? ⑴ △ABC就是所求作的三角形吗? 就是所求作的三角形吗 剪下这个三角形,和其他同学所作的三角形进行比较, ⑵ 剪下这个三角形,和其他同学所作的三角形进行比较, 它们能重合吗? 它们能重合吗?
F C
E
Байду номын сангаас
北师大版七年级数学下册4.3.2 探索三角形全等的条件
如图,∠A=∠D,要使△ABC≌△DBC,还需要补充一个条件:
利用“角边角“判定两三角形全等:
所以△BEC≌△CDA(AAS).
解:因为AD是△ABC的中线,所以BD=CD.
因为CF⊥AD,BE⊥AE,
所以∠CFD=∠BED=90°.
BED=CFD,
)
在△BDE和△CDF中,因为
BDE=CDF,
利用“角角边“判定两三角形全等:
又因为OE⊥AB,OF⊥CB,所以∠OEB=∠OFB.
在△BAC和△EAD中,因为
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
所以CE=AD=5 cm,BE=CD,
所以△BDE≌△CDF(AAS).
利用“角边角“判定两三角形全等:
两角及其 夹边
分别相等的两个三角形全等(简写成“角边角”
或“ASA”).
几何语言:
在△ABC与△A'B'C'中,
∠=∠',
='',所以△ABC≌ △A'B'C' (
∠=∠',
ASA
).
1.〈厦门〉已知:如图,点B,F,C,E在一条直线上,∠A=
∠D,AC=DF,且AC∥DF.
试说明:△ABC≌△DEF.
在探索三角形全等条件及其应用过程中,能够进行有条理地思考并进行简单地推理.
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
)
∠ACB=∠F
B.
所以△BEC≌△CDA(AAS).
的判定方法看缺什么条件,再去说明什么条件,简言
探索三角形全等的条件
探索三角形全等的条件(1)栖霞市唐家泊中学衣龙涛教学目标:1.知识与技能:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
在探索的过程中,能够进行有条理的思考并进行简单的推理。
2.过程与方法:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,通过小组合作探究得到相关结论。
3.情感态度与价值观:(1)使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验,让学生体验数学源于生活,服务于生活的辨证思想。
(2)培养学生勇于探索、团结协作的精神。
教学重点:三角形全等条件的探索过程。
教学难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确的分析,并对各种情况进行讨论,对初二学生有一定的难度。
教具:硬纸板、直尺、圆规、自制三角形、四边形、多媒体课件教学方法:自主探索、合作交流教学过程:一、问题情境,导入新课:1、同学们,上一节课我们刚刚学习了全等三角形,那么什么是全等三角形?2、小明画了一个三角形,怎样才能画一个与他画的三角形全等?交流总结:我们知道全等三角形的三条边、三个角分别对应相等。
反过来,两个三角形如果要全等,需要六个条件其中的那些条件呢? 一个条件行吗?两个条件、三个条件呢?这就是我们这节课要探索的问题:板书课题---探索三角形全等的条件(1)二、探究发现,学习新知:(一)只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?注意:一个条件,指什么条件?(一条边或一个角)1.只给定一条边时:(学生操作,白板展示)2、只给定一个角时:(学生操作,白板展示)(二)给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.1、三种情况:一边一角、两边、两角2、具体情况:①一边一角:三角形一条边为15cm,一内角为30°.②两边:三角形两条边分别为15cm、16cm.③两角:三角形两内角分别为30°和60°.学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.3.总结讨论结果:(学生操作,白板展示)结论:可以发现按这些条件画出的三角形都不能保证一定全等.(三)给出三个条件画三角形,你能说出有几种可能的情况吗,它们全等吗?小组归纳:有四种可能.即:三内角、三条边、两边一内角、两内角一边.1、在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.比如一个大直角三角尺与一个小直角三角尺。
专题探索三角形全等的条件(SSS和SAS)(知识讲解)数学七年级下册(北师大版)
专题4.10 探索三角形全等的条件(SSS 和SAS )(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).特别说明:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).特别说明:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、用“SSS”和“SAS”直接证明三角形全等➽➼证明✮✮求值1.如图,已知:AB =AC ,BD =CD ,E 为AD 上一点.(1) 求证:△ABD △△ACD ;(2) 若△BED =50°,求△CED 的度数.【答案】(1) 证明见分析 (2) 50CED ∠=︒【分析】(1)根据SSS 即可证明△ABD △△ACD ;(2)只要证明△EDB △△EDC (SAS ),即可推出△BED =△CED ,进而得到答案. (1)证明:在△ABD 和△ACD 中, AB ACBDCD AD AD ⎧⎪⎨⎪⎩===,△△ABD △△ACD (SSS );(2)解:△△ABD △△ACD ,△△ADB =△ADC ,在△EDB 和△EDC 中,DB DC BDE CDE DE DE ⎧⎪∠∠⎨⎪⎩===,△△EDB △△EDC (SAS ),△△BED =△CED ,△△BED =50°,△△CED =△BED =50°.【点拨】本题考查全等三角形的判定和性质,解题的关键是根据图形题意,熟练掌握两个三角形全等判定与性质.举一反三:【变式1】如图,点A 、M 、N 、C 在同一条直线上,AB CD =,BN DM =,AM CN =,求证:AB CD ∥.【分析】根据AB CD =,BN DM =,AM CN =,利用SSS 定理证明ABN CDM ≌,从而得到A C ∠=∠,再根据内错角相等,两直线平行,AB CD ∥得证.解:证明:∵AM CN =∴AM MN CN MN∴AN CM =在ABN 和CDM 中AB CD BN DM AN CM =⎧⎪=⎨⎪=⎩,∴()ABN CDM SSS △≌△∴A C ∠=∠∴AB CD ∥(内错角相等,两直线平行)【点拨】本题考查了三角形全等的判定方法和性质,以及平行线的判定,解题关键是掌握全等三角形的判定方法,运用全等三角形的性质证明线段和角相等.【变式2】如图,已知AB AC =,AD AE =,BD CE =,求证:312.【分析】利用SSS 可证明△ABD△△ACE ,可得△BAD=△1,△ABD=△2,根据三角形外角的性质即可得△3=△BAD+△ABD ,即可得结论.解:在△ABD 和△ACE 中,AB=AC AD=AE BD=CE ⎧⎪⎨⎪⎩,△△ABD△△ACE ,△△BAD=△1,△ABD=△2,△△3=△BAD+△ABD ,△△3=△1+△2.【点拨】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.2.已知:如图,AB AC =,F ,E 分别是AB AC ,的中点,求证:ABE ACF ≌.在ABE 与△AB AC A A AE AF =⎧⎪∠=∠⎨⎪=⎩ABE △≌△【点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:ASAAAS 、、【变式1】如图,点D 在BC 上,,ADB B BAD CAE ∠=∠∠=∠.(1) 添加条件:____________(只需写出一个),使ABC ADE ≅;(2) 根据你添加的条件,写出证明过程.【答案】(1) AC AE = (2) 见分析【分析】(1)根据已知条件可得AB AD =,BAC DAE ∠=∠,结合三角形全等的判定条件添加条件即可;(2)结合(1)的条件,根据三角形全等的判定条件添加条件进行证明即可.解:(1)添加的条件是:AC AE =,故答案为AC AE =;(2)△,ADB B ∠=∠△AB AD =,△BAD CAE ∠=∠△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,又AC AE =△ABC ADE ≅【点拨】本题主要考查了三角形全等的判定,确定出三角形全等判定条件是解答本题的关键.【变式2】如图所示,DC CA ⊥,EA CA ⊥,CD AB =,CB AE =,求证:(1) BCD EAB ≌△△;(2) DB BE ⊥.【分析】(1)利用SAS 判定定理证明三角形全等即可;(2)由()≌DCB BAE SAS △△,可得∠=∠DBC BEA ,∠=∠BDC EBA ,再利用90DBC BDC ∠+∠=︒,可得90∠+∠=︒DBC EBA ,即90DBE ∠=︒,所以DB BE ⊥.解:(1)证明:△DC CA ⊥,EA CA ⊥,△90∠=∠=︒DCB BAE ,在DCB △和BAE 中,CD AB DCB BAE CB AE =⎧⎪∠=∠⎨⎪=⎩△()≌DCB BAE SAS △△. (2)证明:由(1)可知()≌DCB BAE SAS △△, △∠=∠DBC BEA ,∠=∠BDC EBA ,△90DBC BDC ∠+∠=︒,△90∠+∠=︒DBC EBA ,即90DBE ∠=︒,△DB BE ⊥.【点拨】本题考查全等三角形的判定定理及性质,垂直的定义,解题的关键是掌握全等三角形的判定定理及性质.类型二、用“SSS”和“SAS”间接证明三角形全等➽➼证明✮✮求值3.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC≌≌DEF .【分析】首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC△△DEF .解:△AF=DC ,△AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩△△ABC△△DEF (SSS )举一反三: 【变式1】如图,已知:PA=PB,AC =BD ,PC =PD ,△PAD 和△PBC 全等吗?请说明理由.【分析】由AC=BD ,利用线段的和差关系可得AD=BC ,利用SSS 即可证明△PAD△△PBC.解:△AC =BD ,△AC+CD=BD+CD ,即AD =BC ,又△PA =PB ,PC =PD ,△△PAD△△PBC(SSS)【点拨】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.【变式2】如图,点D ,A ,E ,B 在同一直线上,EF =BC ,DF =AC ,DA =EB .试说明:△F =△C .【分析】根据SSS 的方法证明△DEF△△ABC,即可得到结论.解:因为DA =EB , 所以DE =AB.在△DEF 和△ABC 中, 因为DE =AB ,DF =AC ,EF =BC ,所以△DEF△△ABC(SSS),所以△F =△C.【点拨】本题考查了全等三角形的判定和性质,属于简单题,找到证明全等的方法是解题关键.4.如图,在ABCD 中,点E 、F 在BD 上,ABE 与CDF 全等吗?若全等,写出证明过程;若不全等,请你添加一个条件使它们全等,并写出证明过程.(1) 你添加的条件是__________.(2) 证明过程: 【答案】(1) BE DF =,答案不唯一; (2) 证明见分析; 【分析】(1)根据选择的全等三角形判定方法添加合适的条件即可;(2)由四边形ABCD 是平行四边形得到AB CD ∥,AB CD =,得ABE CDF ∠=∠,再用上添加的条件,即可证明结论.(1)解:BE DF =(答案不唯一)故答案为:BE DF =(答案不唯一)(2)证明:△四边形ABCD 是平行四边形,△AB CD ∥,AB CD =,△ABE CDF ∠=∠,在ABE 和CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,△ABE CDF △≌△(SAS ).【点拨】此题考查了平行四边形的性质、全等三角形的判定等知识,熟练掌握全等三角形的判定是解题的关键.举一反三:【变式1】如图,在ABC 和ADE 中,AB AD =,AC AE =,且BAD CAE ∠=∠,求证:ABC ADE △≌△.【分析】根据BADCAE ∠=∠可得BAC DAE ∠=∠,再根据SAS 即可证明.证明:△BAD CAE ∠=∠,△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC ADE △≌△.【点拨】本题主要考查了用SAS 证明三角形全等,解题的关键是通过BAD CAE ∠=∠得出BAC DAE ∠=∠.【变式2】图,BE CF =,AC DF =,AC DF ∥.求证:ABC DEF ≌△△.【分析】首先根据BE CF =可得BC EF =,再由AC DF ∥可得ACB F ∠=∠,然后利用定理证明ABC DEF ≌即可.证明:△BE CF =,△BE EC CF EC ++=,即BC EF =,△AC DF ∥,△ACB F ∠=∠, 在ACB △和DFE △中,BC EF ACB F AC DF =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC DEF ≌.【点拨】此题主要考查了全等三角形的判定和平行线的性质,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.注意:AAA SSA 、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、全等的性质与“SSS”和“SAS”综合➽➼证明✮✮求值 5.已知:如图,在ABC 中,AB AC AD =,是BC 边上的中线.求证:AD BC ⊥(填空).证明:在三角形ABD ACD 和中,△()()()______________BD AB ⎧=⎪⎪=⎨⎪⎪⎩已知已知公共边,△ ≌ ( ).△ADB ∠= (全等三角形的对应角相等).△1902ADB BDC ∠∠︒==(平角的意义). △(垂直的意义).【答案】,,,,SSS DC AC AD AD ABD ACD ADC AD BC =∠⊥,△△,,【分析】证明()SSS ADB ADC ≌△△.推出ADB ADC ∠∠=,可得结论. 证明:△AD 是BC 边上的中线,△BD CD =,在三角形ABD △和ACD 中,【变式1】如图:AB AC =,BD CD =,若28B ∠=︒,求C ∠的度数.【答案】28︒ 【分析】连接AD ,利用“SSS ”证明ABD ACD △≌△,即可得到答案.解:连接AD ,在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴≌C B ∴∠=∠,28B ∠=︒,28C ∴∠=︒.【点拨】本题考查了全等三角形的判定和性质,正确作辅助线构造全等三角形是解题关键.【变式2】已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1) ABC BAD ≌.(2) AE BE =.【分析】(1)利用SSS 证明ABC BAD ≌;(2)根据全等三角形的性质得出DAB CBA ∠=∠,则OA OB =,根据等腰三角形的性质可得出结论.(1)证明:在ABC 和BAD 中,AC BD BC AD AB BA =⎧⎪=⎨⎪=⎩,△ABC BAD ≌(2)证明:△ABC BAD ≌△CBA DAB ∠=∠,△OA OB =,△OE AB ⊥,△AE BE =.【点拨】此题考查了全等三角形的判定与性质,利用SSS 证明ABC BAD ≌是解题的关键.6.如图,在ABC 中,CM 是AB 边上的中线,8AC =,12BC =,求CM 的取值范围.【答案】210CM <<【分析】倍长中线CM 至点N ,构造BNM ,易得ACM BNM ≅△△,再利用三角形的三边关系找到CN 的取值范围,进而得到CM 的取值范围.解:如图,延长CM 到点N ,使CM MN =,连接BN ,在ACM △和BNM 中,CM NM AMC BMN AM BM =⎧⎪∠=∠⎨⎪=⎩,∴ACM BNM ≅△△(SAS ),∴8AC BN ==, 在BCN △中,BC BN CN BC BN -<<+,∴128128CN -<<+,即420CN <<,∴4220CM <<,即210CM <<.【点拨】本题考查了全等三角形的性质与判定以及三角形的三边关系,解决本题的关键是倍长中线构造全等三角形.举一反三:【变式1】如图,已知在ABC 与ADE 中,90BAC DAE AB AC AD AE ∠=∠=︒==,,,点C ,D ,E 三点在同一条直线上,连接BD .图中的CE BD 、有怎样的数量和位置关系?请证明你的结论.【答案】CE BD =,证明见分析【分析】根据SAS 证明ACE ABD ≌△△,即可得到CE BD =.解:CE BD =,证明:△90BAC DAE ∠=∠=︒,△BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,在ACE △和ABD △中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩△()SAS ACE ABD ≌△CE BD =.【点拨】此题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.【变式2】如图已知AOB 和MON △都是等腰直角三角形.(1) 如图1,连接AM ,BM ,此时AM ,BN 的数量关系为___________请说明理由.(2) 若将MON △绕点O 顺时针旋转,如图2,当点N 恰好在AB 边上时,求证:222BN AN MN +=.【答案】(1) AM BN =,理由见分析(2) 见分析 【分析】(1)由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =(2)连接AM ,由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =,再求得90MAN ∠=︒,利用勾股定理即可得到222BN AN MN +=解:(1)AM BN =,理由如下:△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ON AOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =(2)如下图,连接AM ,△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,45B BAO ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ONAOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =,45B MAO ∠=∠=︒,△90MAN MAO BAO ∠=∠+∠=︒,△222AM AN MN +=,△222BN AN MN +=【点拨】本题考查了旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质及勾股定理,熟练掌握全等三角形的判定和性质是解决问题的关键。
鲁教版(五四制)七年级数学上册教学案:1.3.3探索三角形全等的条件
时间:第周第课时执笔人:
教学目标:
知识与技能目标:1.知道三角形全等的判定方法“SAS”
2.能利用“SAS”判定三角形全等
过程与方法目标:1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力、有条理表达的能力
2.能利用“SAS”判定三角形全等
情感与价值目标:在学习中,不断的自我突破,体验收获知识的喜悦
求证:△ABE≌△DCF
★★☆练习2:已知,AD//BC,AD=BC,AE=CF,
求证BE=DF
四、合作探究
★★★例3:如图已知△ACE和△ECD都是等腰直角三角形,
∠ACB=∠ECD=90°,D是AB上的一点,
求证:△ACE≌△BCD
★★★练习3:
已知正方形ABCD和正方形AEFG,
求证DE=BG
方法一:已知两边,通过加减角,证明夹角相等
★☆☆例1:已知CE=CB,CD=CA,∠DCA=∠ECB
证明:DE=AB
★☆☆练习1:如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,
求证:∠D=∠E
方法二:已知一边和一角,通过加减线段,证明另一边相等
★★☆例2,:如图已知,AB//CD,AB=CD,CE=BF
训练要求:1、快速准确计算2、限时3分钟
二、预习自测(预习课本P5~P6,然后作答)
1.全等三角形的判定方法“SAS”:及其分别相等的两个三角形全等,简写成“边角如图,已知AC平分∠BAD,AB=AD,
证明:△ABC≌△ADC
三、精讲精练:“SAS”通过对应关系找出两条边及夹角
教学重点:能利用“SAS”判定三角形全等
教学难点:能利用“SAS”判定三角形全等
初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(5)
章节测试题1.【答题】如图,AB=DB,∠ABD=∠CBE,请添加一个适当的条件:______(只需添加一个即可),使△ABC≌△DBE.理由是______.【答案】BC=BE SAS【分析】式先计算乘运算,再利用单式乘以多项式法则算即可得到果;原式第一用完全方公式展开第二项利用平差式化简,去括号并即可得结果.【解答】解:原式=4a2b4•(3a2b2ab-=2ab-8a3b-4a24;原式=9a-1ab+b2-(9a2-b2)a2-8ab+b2-2b2=8b2-8ab.2.【答题】如图,AB∥CD,C是BE的中点,要想使得△ABC≌△DCE,还需要添加的条件是______(添加一个即可)【答案】BA=CD或∠A=∠D或AC∥DE或∠ACB=∠DEC【分析】由AB平行CD,由两直线平行同位角相等得∠B=∠DCE,C为BE的中点,得BC=CE,根据现有的两个条件,结合边角边,角边角和角角边定理,添加一个条件证明△ABC和△DCE全等即可.【解答】解:若添加的条件是BA=CD,∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(SAS);若∠A=∠D,∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(AAS);若AC∥DE∴∠ACB=∠DEB,∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(ASA);若∠ACB=∠DEC∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(ASA);3.【答题】如图,点B、E、F、C在同一直线上,已知AB=DC,AF=DE,要使△ABF≌△DCE,应添加的一个条件是______.【答案】BE=CF或∠A=∠D【分析】此题是一道开放型的题目,答案不唯一,只要添加一个条件符合全等三角形的判定定理即可.【解答】解:BE=CF或∠A=∠D,理由是:∵BE=CF,∴BE+EF=EF+CF,∴BF=CE,在△ABF和△DCE中,,∴△ABC≌△DEF(SSS).或:在△ABF和△DCE中,∴△ABC≌△DEF(SAS).故答案为:BE=CF或∠A=∠D.4.【答题】如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件可以是______【答案】OC=OD或∠A=∠B或∠C=∠D【分析】利用对顶角相等得到∠AOC=∠BOC,加上AO=BO,当OC=OD时,根据"SAS"可判断△AOC≌△BOD;当∠A=∠B时,可根据"ASA"判断△AOC≌△BOD;当∠C=∠D时,根据"AAS"可判断△AOC≌△BOD.【解答】解:∵∠AOC=∠BOC,AO=BO,∴当OC=OD时,△AOC≌△BOD;当∠A=∠B时,△AOC≌△BOD;当∠C=∠D时,△AOC≌△BOD.故答案为OC=OD或∠A=∠B或∠C=∠D.5.【答题】如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件______.(只要填一个)【答案】AC=DF【分析】要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS来判定.【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.6.【答题】如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:______.【答案】∠B=∠C【分析】添加条件是∠B=∠C,根据全等三角形的判定定理ASA推出即可,此题是一道开放型的题目,答案不唯一.【解答】解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.7.【答题】已知A(0,1),B(3,1),C(4,3),如果在平面直角坐标系中存在一点D,使得△ABD与△ABC全等,那么点D的坐标为______.【答案】(﹣1,3)或(﹣1,﹣1)或(4,﹣1)【分析】根据三边对应相等的三角形全等可确定D的位置,再根据平面直角坐标系可得D的坐标.【解答】解:如图所示:点D的坐标为(﹣1,3)或(﹣1,﹣1)或(4,﹣1).故答案为(﹣1,3)或(﹣1,﹣1)或(4,﹣1).8.【答题】如图,已知AB=AD,那么添加下列一个条件______后,使它们能判定△ABC≌△ADC.【答案】CB=CD【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:CB=CD,根据SSS,能判定△ABC≌△ADC,故答案为:CB=CD.9.【答题】如图,AD=BC,要使△ABC≌△BAD,还需添加的个条件是______(填一个即可).【答案】AC=BD或∠ABC=∠BAD【分析】由于AB=BA,AD=BC,则根据"SSS"和"SAS"添加条件.【解答】解:∵AB=BA,AD=BC,∴当AC=BD时,利用"SSS"可判断△ABC≌△BAD;当∠ABC=∠BAD时,利用"SAS"可判断△ABC≌△BAD.故答案为AC=BD或∠ABC=∠BAD.故答案为AC=BD或∠ABC=∠BAD.10.【答题】如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是______(只需写一个,不添加辅助线).【答案】AB=ED【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED.11.【答题】如图,∠BAC=∠DAC,要使△ABC≌△ADC,要补充的一个条件是______(写出一个即可).【答案】AB=AD【分析】要使△ABC≌△ADC,已知∠BAC=∠DAC,AC是公共边,具备了一组边和一组角对应相等,再选一组边相等,利用SAS证明两三角形全等即可.【解答】解:添加:AB=AD,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:AB=AD12.【答题】如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是______(填上你认为适当的一个条件即可).【答案】∠B=∠C或BE=CE或∠BAE=∠CAE【分析】根据题意,易得∠AEB=∠AEC,又AE公共,∴根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13.【答题】如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需添加一个条件,这个条件可以是______.【答案】AE=AC【分析】求出∠BAC=∠DAE,根据全等三角形的判定定理SAS推出即可.【解答】解:AE=AC.理由是:∵∠BAE=∠DAC,∴∠BAE+∠EAC=DAC+∠EAC,∴∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE,故答案为:AE=AC.14.【答题】如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB 上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为______①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.【答案】①②④【分析】要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,∵证明三角形全等没有边边角定理.【解答】解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;②若∠OEC=∠OFC,根据AAS可得△OEC≌△OFC,由三角形全等的性质可知OE =OF.正确;③若EC=FC条件不够不能得出.错误;④若EF⊥OC,设EF与OC交点为D,根据ASA可得△OED≌△OFD,由三角形全等的性质可知OE=OF.正确.故填①②④.15.【答题】如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC≌△DEF,还需要添加一个条件是______.(只需添加一个即可)【答案】AB=DE或∠B=∠E或∠ACB=∠F【分析】利用全等三角形的判定定理,AAS定理,ASA定理,SAS定理可得结果.【解答】解:①添加AB=DE,∵AB∥DE,∴∠A=∠EDF,∵AD=CF,∴AD+DC=CF+DC,∴AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS);②添加∠B=∠E,,∴△ABC≌△DEF(AAS);③添加∠ACF=∠F,,△ABC≌△DEF(ASA),故答案为:AB=DE或∠B=∠E或∠ACB=∠F.16.【答题】如图,线段AC、BD相交于点O,且AO=OC,请添加一个条件使△ABO≌△CDO,应添加的条件为______.(添加一个条件即可)【答案】OB=OD.【分析】线段AC、BD相交于点O,且AO=OC,有一对对顶角∠AOB与∠COD,添加OB=OD,就能证出△ABO≌△CDO.【解答】解:∴0A=0C,OB=OD,∠AOB=∠COD(对顶角相等),∴△ABO≌△CDO(SAS).故答案为OB=OD.17.【答题】如图,已知AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是______.(填一个即可)【答案】此题答案不唯一:如AB=DC或∠ACB=∠DBC.【分析】由AC=BD,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS或SAS证得.【解答】解:∵AC=BD,BC是公共边,∴要使△ABC≌△DCB,需添加:①AB=DC(SSS),②∠ACB=∠DBC(SAS).故答案为:此题答案不唯一:如AB=DC或∠ACB=∠DBC.18.【答题】如图,∠1=∠2,BC=EC,请补充一个条件:______能使用"AAS"方法判定△ABC≌△DEC.【答案】∠A=∠D.【分析】已知∠1=∠2,就是已知∠ACB=∠DCE,则根据三角形的判定定理AAS即可证得.【解答】解:可以添加∠A=∠D,理由是:∵∠1=∠2,∴∠ACB=∠DCE,∴在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).故答案是:∠A=∠D.19.【答题】如图,AB=AE,AC=AD,要使△ABC≌△AED,应添加一个条件是______.【答案】∠1=∠2或∠BAC=∠EAD或BC=ED【分析】根据全等三角形的判定方法即可解决问题;【解答】解:∵AB=AE,AC=AD,∴若根据SAS判断,只要添加∠1=∠2或∠BAC=∠EAD,若根据SSS判断,只要添加BC=DE,故答案为∠1=∠2或∠BAC=∠EAD或BC=ED.20.【答题】如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:______或______.【答案】∠B=∠E,ASA∠ACB=∠DFE,AAS【分析】题目现有的条件是:DE=AB,∠D=∠A,补充一个条件时,第三个条件可以是边,用SAS判断全等,也可以是角,用AAS或者ASA判断全等,所补充的条件一定要符合全等三角形的判定定理.【解答】解:∵已知DE=AB,∠D=∠A,∴根据ASA判断全等添加∠B=∠E;根据AAS判断全等添加∠ACB=∠DFE;根据SAS判断全等添加AF=CD.故填空答案:∠B=∠E或∠ACB=∠DFE或AF=CD.。
北师大版七年级数学下册第五章《三角形〈探索三角形全等的条件〉》(第一课时)说课稿
《探索三角形全等的条件》(第一课时)说课稿的说明新课标下的数学教学,既要为学生的今天的学习服务,又要为学生明天的学习奠基。
改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知的能力、分析和解决问题的能力,以及合作与交流的能力。
坚持“以学生发展为本”的教学设计理念,把学生的起点作为教师的起点,把传授知识服务于学生有个性、可持续、全面和谐的发展,使每一堂课都成为不可重复的激情与智慧综合的过程。
基于上述认识,在本节课的设计中力求突出以下特点:一、设置问题,引导思维。
一个好的数学问题,既能揭示课堂的教学内容,又能充分调动学生的积极性。
本节设置了一个个的问题,把知识串联起来,以引导学生的思维。
学生在思考问题的过程中,掌握了全等三角形的判别条件及三角形的稳定性,从而完成了本节的教学目标。
二、自主探究,训练思维。
新课程标准强调教学不能把知识的结果强加给学生,而应重视获取知识的过程。
因此,在本节教学设计中,突出了学生的自主探究的特点。
尤其在难点的突破过程中,一方面体会分类讨论方法,确定探究的方向,另一方面设计学生动手画图、剪切等活动,训练了学生思维的多样性。
三、合作交流,激活思维。
合作学习是新课程所倡导的,引导学生交流是学生获取知识的有效途径。
所以在本节课的设计中两次组织学生分组学习,相互交流,使学生的参与热情更高,思维更活。
5、1 探索三角形全等的条件(第一课时)说课稿各位领导,老师:大家好!今天我说课的题目是《探索三角形全等的条件》(第一课时),下面我将从四个方面汇报我的认识和教学过程的设计。
一、说教材1、教材地位和前后联系《探索三角形全等的条件》是北师大版试验教科书七年级下册第五章第五节的内容。
它是在学生学习了三角形的有关要素和性质、全等图形的特征的基础上,进一步研究三角形全等的条件,它与前面学习的全等三角形的特征及后面将要学习的三角形全等的(“ASA”、“AAS”、“SAS”)判别方法作为探索三角形全等的核心内容,为后面学习奠定基础,也是初中数学的重要内容。
山东省枣庄四中七年级数学下册《探索三角形全等的条件》教案 北师大版
《探索三角形全等的条件》教案北师大版一、教材分析(一)本节内容在教材中的地位与作用这节课是九年制义务教育课程标准实验教科书北师大版七年级下册第五章第四节第一课时。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两三角形间最简单、最常见的关系。
本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。
因此,本节课的知识具有承上启下的作用。
(二)教学目标根据新课标的要求和学生的认知特点确定本堂课的三维目标知识与能力目标掌握三角形全等的“边边边”条件,能利用“边边边”进行三角形全等的判定;了解三角形的稳定性。
过程与方法目标经历探索三角形全等条件的过程,体会通过操作,归纳获得数学结论的过程;同时在探索三角形全等的条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
情感态度与价值观目标:培养学生团队合作的精神,形成有效的学习策略,体会数学在生活中的作用,树立学好数学的信心。
(三)教材重难点由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边边边这一识别方法作为教学的重点,而将其发现过程以及边边边的辨析作为教学的难点。
同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
二、教法本节课我采用“问题——探究——发现”的探究性教学模式,改变“结论——例题——练习”的传授模式。
一堆没有亲身体验或视觉形象所支持的定理不能开发智力而只能关闭思路,教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,这既有利于教师确定再创造的常识起点,也有利于主体提高对概念和定理的自我意识和自我反省。
我们要树立一个观点:一般的教师教人真理,好的教师教人发现真理。
探索三角形全等的思路归纳
探索三角形全等的思路归纳“探索三角形全等的条件”是三角形的重点,又是进一步学习平面几何的基础.在具体应用三角形全等的识别方法时,要认真分析已知条件,仔细观察图形,弄清已具备了那些条件,从中找出已知条件和所要说明的结论之间的内在联系,从而选择适当的说明方法。
现将探索三角形全等的思路归纳如下:一、已知两边对应相等时的思路思路1:找已知两边的夹角对应相等,利用“SAS ”探索.例1.已知:如图1,AB =AC ,AE =AD ,点D 、E 分别在AB 、AC 上.∠B 与∠C 相等吗?为什么?分析:欲知∠B=∠C ,应探索△CAD ≌△BAE. 由于已有AB=AC ,AE =AD ,找一找是否对应边的夹角∠CAD =∠BAE ?它们是公共角. 所以△CAD ≌△BAE ,故∠B 与∠C 相等.思路2:找第三边对应相等,利用SSS 探索.例2.“三月三,放风筝”.图2是小明制作的风筝. 他根据DE = DF , EH = FH ,不用度量,就知道∠DEH =∠DFH. 请你用所学的知识给予证明. 分析:欲知∠DEH =∠DFH ,应探索△DEH ≌△DFH ,为此连结DH. 由于已有DE = DF , EH = FH ,找一找是否第三边DH = DH ?由于它们是公共边,故成立.二、已知有两角对应相等时的思路思路一、找出夹边相等,用(ASA )例3.如图3,在△ABC 中,MN ⊥AC ,垂足为N ,,且MN 平分∠AMC ,△ABM 的周长为9cm,AN=2cm,求△ABC 的周长。
解析:只要求出CM 和AC 的长即得△ABC 的周长,而△AMN ≌△CMN 可实现这一目的。
因为MN 平分∠AMC ,所以∠AMN=∠CMN ,D E F H 图2E D C B A 图1图3因为MN ⊥AC ,所以∠AMNA=∠CMNC=900,这样有两角对应相等,再找出它的夹边对应相等(MN 为公共边)即可。
在△AMN 和△CMN 中AMN CMN MN MN MNA MNC ∠=∠⎧⎪=⎨⎪∠=∠⎩,所以△AMN ≌△CMN (ASA )所以AC=NC ,AM=CM (全等三角形的对应角相等),AN=2cm,所以AC=2AN=4 cm ,而△ABM 的周长为9cm,所以△ABC 的周长为9+4=13 cm 。
七年级数学探索三角形全等的条件5
但是我喜欢来三姨奶家。喜欢三姨奶家并非想亲近三姨奶,而是更想看到三姨爷。因为他们这个小小的蜗居,完全属于三姨爷的天地,是小村里最具民俗文化元素的小作坊。在这样的天地里,会感 受到很多新奇和惊喜。
老姨奶住在毗邻的沙河沿村,距离祖母居住的村子约五里地,去一次极不方便。而三姨奶和祖母住一个村,于是闲暇时祖母和我就成了三姨奶家的常客。买球篮球比分平了怎么算
印象中去三姨奶家都是些风雪弥漫的冬日。那时的整个冬天几乎都会被积雪覆盖,寒风刺骨。东北人素有猫冬的习惯,所以一到冬天,人们因为自然条件限制,就只能扎堆逗闷子或者耍个小钱什么 的。
穿过堂屋,来到里屋,祖母会很灵活地蹁腿上炕。上了火炕后,她会把腿盘起来,把随身携带的长烟袋杆拿出来,装上烟丝,和三姨奶对坐着,一边唠嗑一边抽烟。祖母和三姨奶的烟袋杆很细很长, 烟嘴是一块绿莹莹的翡翠,烟锅是铮亮铮亮的黄铜。三姨爷不抽烟袋,只抽烟卷。村子里的人把烟卷叫做“洋烟儿”。
第11讲 探索三角形全等的条件七年级数学下册同步精品讲义
第11讲探索三角形全等的条件目标导航1.了解全等三角形的稳定性;2.根据已知条件判断出两三角形全等.知识精讲知识点01三角形的稳定性当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.这一特性主要应用在实际生活中.【知识拓展1】(2021秋•凉山州期末)王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根【即学即练1】(2021秋•临海市期末)如图所示的自行车架设计成三角形,这样做的依据是三角形具有.【即学即练2】(2021秋•祁阳县期末)小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为.【即学即练3】(2018秋•从江县校级期中)有一个人用四根木条钉了一个四边形的模具,两根木条连接处钉一颗钉子,但他发现这个模具老是走形,为什么?如果他想把这个模具固定,再给一根木条给你,你怎么把它固定下来,画出示意图,并说出理由.知识点02全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【知识拓展1】(2022•长沙开学)根据下列条件,不能画出唯一确定的△ABC的是()A.AB=3,BC=4,AC=6B.AB=4,∠B=45°,∠A=60°C.AB=4,BC=3,∠A=30°D.∠C=90°,AB=8,AC=4【即学即练1】(2021秋•抚远市期末)如图,点D在AB上,点E在AC上,AB=AC,添加一个条件,使△ABE≌△ACD(填一个即可).【知识拓展2】(2021秋•铅山县期末)如图,AB=AD,∠1=∠2,DA平分∠BDE.求证:△ABC≌△ADE.【即学即练1】(2021秋•濂溪区校级期末)如图,AD,BC相交于点O,∠OAB=∠OBA,∠C=∠D=90°.求证:△AOC≌△BOD.【即学即练2】(2021秋•铅山县期末)如图,在△ABC中,∠ACB=90°,AC=8cm,BC=10cm.点C在直线l上,动点P从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A 运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为秒时,△PMC与△QNC全等.【即学即练3】(2022•南召县开学)证明命题“全等三角形的面积相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,求证:.请你补全已知和求证,并写出证明过程.【即学即练4】(2021秋•临海市期末)如图,点B,E,C,F在同一条直线上,AB=DE,BE=CF,∠B=∠DEF.求证:△ABC≌△DEF.【即学即练5】(2021秋•朝阳区校级期末)如图,在矩形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD﹣DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD﹣DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为t秒.(1)在运动过程中当M、N两点相遇时,求t的值.(2)在整个运动过程中,求DM的长.(用含t的代数式表示)(3)当△DEM与△DFN全等时,请直接写出所有满足条件的DN的长.【即学即练6】(2021秋•钢城区期末)如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.知识点03全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.【知识拓展1】(2021秋•民权县期末)如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=44°,AB交EF于点D,连接EB.下列结论:①∠F AC=44°;②AF=AC;③∠EFB=44°;④AD=AC,正确的个数为()A.4个B.3个C.2个D.1个【即学即练1】(2021秋•弋江区期末)如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是()A.6B.7C.8D.9【即学即练2】(2021秋•天津期末)如图,AC⊥BC,BD⊥BC,AB=CD,AC=5,则BD的大小为.【知识拓展2】(2021秋•澄城县期末)如图,△ABC和△ADE的顶点交于一点A,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.【即学即练1】(2021秋•金寨县期末)已知:如图,在△ABC中,BE、CD分别是AC、AB边上的高,且BE=CD.求证:AB=AC.【即学即练2】(2021秋•岳麓区校级期末)如图,已知△ABC,作射线AP∥BC,E、F分别为BC、AP上的点,且AF=CE.连接EF交AC于点D,连接BD并延长,交AP于点M.(1)求证:△ADF≌△CDE;(2)求证:AM=BC.【即学即练3】(2021秋•巴彦县期末)如图,在△ABC中,AC=BC,点D在AB上,点E在BC上,连接CD、DE,AD=BE,∠CDE=∠A.(1)求证:DC=ED;(2)如图2,当∠ACB=90°时,作CH⊥AB于H,请直接写出图2中的所有等腰三角形.(△ABC除外)【即学即练4】(2021秋•普兰店区期末)如图,△ABC中,∠ABC=45°,∠ACB=75°,D是BC上一点,且∠ADC=60°,CF⊥AD于F,AE⊥BC于E,AE交CF于G.(1)求证:△AFG≌△CFD;(2)若FD=1,AF=,求线段EG的长.【即学即练5】(2021秋•漳州期末)如图,在△ABC和△A'B'C'中,∠B=∠B',∠C=∠C',AD平分∠BAC 交BC于点D.(1)在△A'B'C'中,作出∠B'A'C'的角平分线A'D'交B'C'于点D';(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A'D',求证:BD=B'D'.【即学即练6】(2021秋•九龙坡区期末)如图所示,在△ABC中,AD为中线,过C作CE⊥AD于E.(1)如图1,若∠B=30°,∠A=90°,AC=BD,AE=1,求BC的长.(2)如图2,延长DA至F,连接FC.若∠F=∠BAD,求证:AF=2DE.【即学即练7】(2021秋•两江新区期末)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E 是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.能力拓展1.(2021秋•章贡区期末)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP=2cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ 全等.2.(2020秋•丹徒区月考)八年级数学社团活动课上,《致远组》同学讨论了这样一道题目:如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明:∠ADC=∠AEB.其中一个同学的解法是这样的:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA”说明三角形全等.请你给出正确的解法.3.(2021秋•济南期末)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是DE=BD+CE;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.4.(2021秋•黔西南州期末)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.分层提分题组A 基础过关练一.选择题(共10小题)1.(2021秋•九龙坡区校级期末)如图,AB=AD,∠B=∠DAE,请问添加下面哪个条件不能判断△ABC≌△DAE的是()A.AC=DE B.BC=AE C.∠C=∠E D.∠BAC=∠ADE2.(2021秋•覃塘区期末)如图,AC与BD相交于点O,∠1=∠2,若用“SAS”说明△ABC≌△BAD,则还需添加的一个条件是()A.AD=BC B.∠C=∠D C.AO=BO D.AC=BD3.(2021秋•新罗区期末)下列图形中,不具有稳定性的是()A .B .C.D.4.(2021秋•苏州期末)如图,已知AD=AB,∠C=∠E,∠CDE=55°,则∠ABE的度数为()A.155°B.125°C.135°D.145°5.(2021秋•定州市期末)如图,D、E分别为AB、AC边上的点,∠B=∠C,BE=CD.若AB=7,CE=4,则AD的长度为()A.2B.3C.4D.56.(2022•九龙坡区校级开学)如图,∠B=∠C,要使△ABE≌△ACD.则添加的一个条件不能是()A.∠ADC=∠AEB B.AD=AE C.AB=AC D.BE=CD7.(2021秋•岑溪市期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论,一定成立的是()A.BD=AD B.∠B=∠C C.AD=CD D.∠BAD=∠ACD8.(2021秋•澄海区期末)如图,已知AB=AC,CD⊥AB于点D,BE⊥AC于点E,CD与BE相交于点F,连接AF,则图中共有()对全等三角形.A.3B.4C.5D.69.(2021秋•老河口市期末)如图,∠CAB=∠DBA,添加下列条件,不能使△ABC≌△BAD的是()A.∠C=∠D B.AC=BD C.∠1=∠2D.AD=BC10.(2021秋•原阳县期末)如图,在3×3的方格图中,每个小方格的边长都为1,则∠1与∠2的关系是()A.∠1=∠2B.∠2=2∠1C.∠1+∠2=90°D.∠1+∠2=180°二.填空题(共8小题)11.(2021秋•滨城区期末)如图,OM=ON,若用“边边边”证明△CMO≌△CNO,则需要添加的条件是.12.(2021秋•海曙区期末)如图,AB=DB,∠1=∠2,要使△ABC≌△DBE还需添加一个条件是.(只需写出一种情况)13.(2021秋•启东市期末)已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为cm.14.(2021秋•阳江期末)如图,已知AE=BE,DE是AB的垂线,F为DE上一点,BF=11cm,CF=3cm,则AC=.15.(2021秋•台江区期末)如图,已知∠CDE=90°,∠CAD=90°,BE⊥AD于B,且DC=DE,若BE =7,AB=4,则BD的长为.16.(2021秋•朝天区期末)木工师傅在做好门框后,为了防止变形,常常按如图所示的方法钉上两根斜拉的木板条,其数学依据是三角形具有.17.(2021秋•惠州期末)如图,AD是△ABC的高,AD=BD,BE=AC,∠BAC=70°,则∠ABE=.18.如图所示,在△ABC中,高AD,CE相交于H,且CH=AB,则∠ACB=度.三.解答题(共6小题)19.(2021秋•钢城区期末)如图,△ABC与△DCB中,AC与BD交于点E,且AB=DC,∠A=∠D.(1)试说明BE=CE;(2)若∠AEB=50°,求∠EBC的度数.20.(2021秋•祁阳县期末)如图,AB∥CD,AB=CD,CE=BF.求证:DF=AE.21.(2021秋•雁塔区校级期末)如图,点C、D在线段AB上,且AC=BD,AE=BF,AE∥BF,连接CE、DE、CF、DF,求证CF=DE.22.(2021秋•滑县期末)如图,点C在线段AB上,△CDE是等腰三角形,CD=CE,AD=BC,AC=BE.(1)求证:AD∥BE;(2)若∠CDE=50°,∠BCE=20°,求∠B的度数.23.(2021秋•天津期末)如图,已知AC,BD相交于点O,AB∥CD,BF=DE,∠OAE=∠OCF.求证AE =CF.24.(2022•黄石港区校级开学)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=6,CF=4,求BD的长.题组B 能力提升练一.选择题(共4小题)1.(2021秋•永川区期末)如图,已知AF=CE,BE∥DF,那么添加下列一个条件后,能判定△ADF≌△CBE的是()A.∠AFD=∠CEB B.AD∥CB C.AE=CF D.AD=BC2.(2021秋•玉屏县期末)如图,AD∥MN∥BC,∠ADC=90°,AD=BC,那么,图中的全等三角形共有()A.1对B.2对C.3对D.4对3.(2021秋•惠州期末)如图,AB=AC,BD=CE,要使△ABD≌△ACE,添加条件正确的是()A.∠DAE=∠BAC B.∠B=∠C C.∠D=∠E D.∠B=∠E4.(2021秋•天津期末)如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是()A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C二.填空题(共3小题)5.(2021秋•覃塘区期末)如图,在△ABC中,AB=AC,点D、E、F分别在边BC、AB、AC上,且CD=BE,BD=CF.若∠EDF=42°,则∠BAC的度数是.6.(2021秋•覃塘区期末)如图,在△ABC中,点D在AB边上,E是AC边的中点,CF∥AB,CF与DE 的延长线交于点F,若AB=4,CF=3,则BD的长为.7.(2021秋•咸安区期末)如图,C为线段AB上一动点(不与点A、B重合),在AB的上方分别作△ACD 和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE,AE、BD交于点P.有下列结论:①AE=DB;②∠APB=2∠ADC;③当AC=BC时,PC⊥AB;④PC平分∠APB.其中正确的是.(把你认为正确结论的序号都填上)三.解答题(共3小题)8.(2021秋•零陵区期末)如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=20,EC=8,求BC的长.9.(2021秋•方正县期末)已知:点D是∠ABC的边BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.(1)如图1,求证:AE=AF;(2)如图2,若∠BAC=90°,连接AD交EF于M,连接BM、CM,在不添加任何辅助线的情况下,直接写出图中面积是△AED面积2倍的所有等腰三角形和四边形.10.(2022•定远县校级开学)如图,∠1=∠E,∠2与∠C互余,DB⊥AC,垂足为点F,AF=CF,请说明AC平分DB.题组C 培优拔尖练一.解答题(共15小题)1.(2021秋•弋江区期末)已知:如图,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,连接BD,CE交于点F,连接AF.(1)求证:△ABD≌△ACE;(2)求证:F A平分∠BFE.2.(2021秋•黔西南州期末)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.3.(2021秋•绥滨县期末)如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.4.(2021秋•营口期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连接BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连接BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.5.(2021秋•宁津县期末)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.6.(2021秋•凉山州期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.7.(2021秋•黄石期末)已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E 在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.8.(2021秋•通榆县期末)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.9.(2021春•北碚区校级期末)如图,已知凸五边形ABCDE中,EC,EB为其对角线,EA=ED.(1)如图1,若∠A=60°,∠CDE=120°,且CD+AB=BC.求证:CE平分∠BCD;(2)如图2,∠A与∠D互补,∠DEA=2∠CEB,若凸五边形ABCDE面积为30,且CD=AB=4.求点E到BC的距离.10.(2021•金东区校级模拟)【问题探索】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.探索BE与MN的数量关系.聪明的小华推理发现PM与PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中的BE与MN的数量关系是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;【解决问题】若CB=8,CE=2,在将图1中的△DEC绕点C逆时针旋转一周的过程中,当B、E、D 三点在一条直线上时,求MN的长度.11.(2021•香洲区校级模拟)探究问题1已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为.拓展问题2已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE =DF.推广问题3如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.12.(2020秋•婺城区校级期末)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.13.(2021•罗湖区校级模拟)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB 上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.14.(2020秋•婺城区校级期末)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是、.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是、.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.15.(2021春•简阳市期中)把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
妞妞更喜欢挑战其它犬类,在小区得到一个‘小厉害’的绰号。也是一天晚上,妞妞正在草地上玩耍,突然跑过来一个大金毛,后面的主人刚在说,没事,它不咬小狗。话还没落音,只见妞妞跳起 来就是一口,咬的金毛‘嗷’的一声,扭头就跑,妞妞还不依不舍在后面紧追;这下子可把主人心痛坏了。如果是见到外面来的流浪狗,妞妞更是来劲了;有一次它把三只大狗一直追出小区大门。
妞妞还有一个毛病;也是西高地犬在国内很少有人养的原因,就是袭击人。一次家中来工人检修液化气管道;我给他打开门后,工人也没有说话,进屋后直奔厨房。这时妞妞似乎觉得和每次来的客 人不一样;不知从哪窜了出来,跳起来冲着来人就是一口,好在是在冬天衣服穿的厚,没有咬伤。类似的事情发生多次,不过好像多少是事出有因——这也不是袒护它,毕竟狗有狗的思维。比如有送快 递,送牛奶的突然从身后离得我很近走过,妞妞就要发起攻击了。有一次小区的一个人说道,养的这叫什么狗,长这么难看;妞妞不知道是不是听懂是说它的坏话,上去就是一口。