像素级图像融合课件
遥感入门图像融合ppt课件
编辑课件
1
图像融合处理
• 当代航天遥感系统已能为用户提供高空间分辨率、 高波谱分辨率和高时间分辨率的海量图像。如何将 同一地区的各种遥感图像的有用信息融合在一起是 遥感应用研究的课题之一。
• 从二十世纪70年代的航天遥感应用的研究和实践表 明:由于在可见光和红外波段,各类植被的响应大 都互相重叠。因此,单用一种多光谱图像进行分析, 要解决土地覆盖、耕地和森林资源监测、军事侦察 等问题是不可能的。
编辑课件
8
2.基于彩色空间变换的影像融合法-- 彩色变换
• 遥感图像融合方法的关键技术之一是彩色变换, 下面首先简单介绍彩色变换。
• 彩色变换又称为彩色编码,所谓彩色变换即为两 种彩色模型编码系统之间的变换。
• 彩色模型指的是某个三维彩色空间的一个可见光 子集。它包含某个彩色域的所有彩色,彩色模型 的用途是在某个彩色域内方便地指定彩色。由于 任何一个彩色都只是可见光的子集,所以任何一
个彩色模型都无法包含所有的可见光。
编辑课件
9
基于彩色空间变换的影像融合法
– 首先,必须将图像进行严格的几何校正,使不同的 遥感图像在几何上能完全匹配,并且分辨率一致。
– 将多波段图像由RGB彩色系统变换到IHS彩色系统 中;
– 用高分辨率的图像代替I分量,进行彩色逆变换,就 可以得到融合图像
编辑课件
H arctan[
2R G B ] C 3 (G B )
C 0, ifG B
C
, if
G B
S 6 R 2 G 2 B 2 RG RB GB 3
编辑课件
17
3.基于PCA变换的融合
对低分辨率图像进行PCA变换后,以高空间 分辨率图像代替第一主成分,进行反变换。
图像拼接和图像融合ppt课件
%格式转换
f=double(imm);
g=double(imm1);
% 第二幅图的第一列
g1=g(:,1);
%第一幅图的每一列与第二幅图的第一列求距离,此处用的是列各点差的和
for i=1:size(g,2)
d(i)=sum(abs(f(:,i)-g1));
end
%求出最小距离者,即为对应最为相似的列
PMin = sqrt(2);
PI = zeros(PMax,361);
for i = 1:M2
for j = 1:N2
p = sqrt(i^2+j^2);
theta= atan(j/i);
Hale Waihona Puke p = round(p)+1; %360* /PMax
theta = round(theta*180/pi)+1;
%图像矫正——旋转
for i=1:m
for j=1:n
A(i,j)=round(abs(i*cos(z)-j*sin(z)));
B(i,j)=round(abs(i*cos(z)-j*sin(z)));
end
end
%旋转后的拼接过程
ppt课件.
29
for i=1:m
for j=1:n
识别。
ppt课件.
9
1. 图像增强
◦ 空间域增强
点运算:线性变换,非线性变换,直方图均衡化,归一化。 邻域运算:图像平滑,锐化
◦ 频域增强
塔式分解增强,Fourier变换增强,滤波
◦ 彩色增强
伪彩色增强,假彩色增强,彩色变换
◦ 图像代数运算
插值法,比值法,混合运算法,分辨率融合
图像信息融合ppt课件
图像信息融合
(2)减法 可以用于:①区分不同的地物。假如物体甲对不同频率
电磁波的反射能力基本相同,而物体乙却有差异,那么对这两 种物体的遥感图像进行相减操作,就可以提供一些区分这两类 物体的信息;②提取地物变化的趋势。将同一地区不同时间的 遥感图像进行相减,可以从中得出这一地区地物光谱变化的信 息。
最低层次的融合。是基于最原始的图像数据,能更多地保留 图像原有的真实感,提供其他融合层次所不能提供的细微信 息,因而被广泛应用。 。
图像信息融合
② 特征级融合
是指运用不同算法,首先对各种数据源进行目标识别的 特征提取如边缘提取、分类等,即先从初始图像中提取 特征信息—空间结构信息如范围、形状、领域、纹理等; 然后对这些特征信息进行综合分析与融合处理。
着重于把那些在空间或时间上冗余或互补的多源数据, 按一定的规则(或算法)进行运算处理,获得比任何单一 数据更精确、更丰富的信息,生成一幅具有新的空间、波 谱、时间特征的合成图像。
图像信息融合
1)遥感图像融合的三个层次 ① 像元级融合 是指直接在采集的原始数据层上进行融合。它强调不同图像 信息在像元基础上的综合,先对栅格数据进行相互的几何配 准,在各像元一 一对应的前提下进行图像像元级的合并处理, 以改善图像处理的效果,使图像分割、特征提取等工作在更 准确地基础上进行,并可能获得更好的图像视觉效果。
图像信息融合
二、遥感图像融合方法
像素级融合
代数法 IHS方法 HPF方法 小波变换方法 回归模型法
PCA法
卡尔曼滤波法
特征级融合
图像融合处理-Photoshop电子课件
任务1 魔术莲花—任务实施
任务实施
三、操作流程 步骤5:重新打开素材文件
“莲花”,选择“修补工具”, 设置工具各选项如图8所示。制 作如图9所示的选区。
步骤6:鼠标放在选区内部, 按下鼠标向左下拖动到如图10所 示的区域,放开鼠标,效果如图 11所示。
步骤7:再次向右上方拖动 鼠标,如图12所示位置,放开鼠 标, “消失的莲花”见效果图。
后 退返 回结 束 前 进
模糊工具
该工具的使用比较简单,只要用鼠标在图像中需要处理的部分拖动即可 使笔触经过的图像部分变得模糊。其工具选项栏中如下图所示。像“涂抹工 具”一样,它的工具选项栏中也有“画笔”、“模式”、“强度”和“对所 有图层取样”选项。不过“模式”和“强度”具有不同的含义,见下表。
后 退返 回结 束 前 进
任务引入
任务2 弹簧手与模糊手—任务引入
观察效果图,同样一双手臂在水中的变换无穷。弹簧手臂伸出的 长度远大于模糊手的伸出长度,图像却依旧清晰,而模糊手图像却早早 地模糊不清了。图像中的文字似随意涂抹而成。这效果都源于 Photosho中的同一个工具——“涂抹工具”。
素材图
素材图
效果图
后 退返 回结 束 前 进
任务目标
任务1 魔术莲花—修复工具
相关知识
能根据操作需要,正确选用修 复类工具,进行图像的修复处理。
1. 修复画笔工具 2. 修补工具 3. 污点修复画笔工具 4. 红眼工具 5. 仿制图章工具 6. 图案图章工具 7. 仿制源
后 退返 回结 束 前 进
修复画笔工具
后 退返 回结 束 前 进
修补工具使用方法
第一步,选择“修补工具”,默认情况下,此工具的“取样”选项栏 中会选中“源”单选项。在图像中拖动鼠标不放,圈选出要选取的区域。在 选取范围时,如果在没有到达起始点的位置释放鼠标,则系统会用直线连接 当前位置到开始点。
图像融合、镶嵌ppt课件
例如,行政区边界
实验数据:
图像融合、镶嵌
• 1) 手动绘制感兴趣区域 • 2) 矢量数据感兴趣区 • 3) 利用掩模文件对图形进行裁减
图像融合、镶嵌
图像融合、镶嵌
Gram-Schmidt
• 1)从低分辨率的波段复制出一个全色 波段
• 2)将复制出的全色波段和多波段进行 Gram-Schmidt变换,其中全色波段被 作为第一个波段
• 3)用高空间分辨率的全色波段替换 Gram-Schmidt变换后的第一个波段
• 4)应用Gram-Schmidt反变换得到融合 后的图像
图像融合、镶嵌
图像处理专题三 图像镶嵌
• 定义:将多景相邻遥感图像拼接成为一 个大范围,形成无缝图像的过程。
• 1.切割线:重叠区内,按照一定规则选 择一条线作为接边线
• 2.羽化:将接边线变得适当模糊,使其 能够很好地融入图像。包括1)边缘羽 化 2)切割线羽化
• 3. 颜色校正:颜色平衡
图像融合、镶嵌
图像处理专题三 图像镶嵌
• 镶嵌的方法: 1)有地理参考的图像镶嵌 2)基于像素的图像镶嵌
实验数据:
图像融合、镶嵌
实验步骤
• 1)启动图像镶嵌工具 • 2)加载镶嵌图像 • 3)图像重叠设置 • 4)切割线的设置 • 5)颜色平衡设置 • 6)结果输出
图像融合、镶嵌
图像处理专题四 图像裁剪
• 目的:将研究区以外的区域图像裁剪掉 • 1)规则裁减
实验专题二 图像融合
• 图像融合的目的: 低空间分辨率的多光谱图像或高光谱数 据与高空间分辨率的单波段图像重采样, 进而生成新的高分辨率的多光谱遥感图 像的图像处理技术。
图像融合、镶嵌
图像融合ppt课件
多源遥感数据合的内涵与基本原理 数据融合过程 数据融合分类及方法
•数据融合的方法分类 •主要图像融合方法
多源遥感数据融合的内容分类
ppt课件.
1
4.4.1 多源遥感数据融合的内涵与基本原理
多种信息源的遥感数据融合是指多种空间分辨率、辐射分辨 率、波谱分辨率和时间分辨率的遥感数据之间以及遥感数据 与非遥感数据之间的信息进行多层次有机组合匹配的技术, 包括空间几何配准和数据融合两个方面,从而在统一地理坐 标系统下,构成一组新的空间信息和合成图像。
七波段图 像
ppt课件.
6
10米分辨 率SPOT 图像
ppt课件.
7
对比两图, 可以看出, 复合后的图 像既保留了 TM的光谱分 辨率又保留 了SPOT的空 间分辨率, 图像质量有 所提高。
ppt课件.
8
4.4.2 数据融合过程
1.预处理:主要包括遥感影像的几何纠正、辐射 校正和空间配准
(1)几何纠正、辐射校正的目的主要在于去除图 像变形、阴影等因素以及卫星扰动、天气变化、 大气散射等随机因素对成像结果一致性的影响;
决策级融合的流程:经过预处理的遥感影像数 据——特征提取——属性说明——属性融合——融 合属性说明。
ppt课件.
14
三级融合层次的特点
融合 框架
像元 级
特征 级
决策 级
信息 损失 小
中
大
实时 性 差
中
优
精度 高 中 低
容错 性 差
中
优
抗干 扰力
差
中
优
工作 量 小
中
大
融合 水平 低
中
高
ppt课件.
图像融合
图像融合:其主要载体是多样化的传感器,以此为基础来对于同一对象的图像数据进行配准,然后采用一定的算法将各种图像数据所蕴含的信息优势或者互补性有效结合在一起,通过这样一种方式所得到的新的图像数据技术就是图像融合。
一般情况下,图像融合由低到高分为三个层次:数据级融合、特征级融合、决策级融合。
数据级融合也称像素级融合,是指直接对传感器采集来得数据进行处理而获得融合图像的过程,它是高层次图像融合的基础,也是目前图像融合研究的重点之一。
这种融合的优点是保持尽可能多得现场原始数据,提供其它融合层次所不能提供的细微信息。
像素级融合中有空间域算法和变换域算法,空间域算法中又有多种融合规则方法,如逻辑滤波法,灰度加权平均法,对比调制法等;变换域中又有金字塔分解融合法,小波变换法。
其中的小波变换是当前最重要,最常用的方法。
在特征级融合中,保证不同图像包含信息的特征,如红外光对于对象热量的表征,可见光对于对象亮度的表征等等。
决策级融合主要在于主观的要求,同样也有一些规则,如贝叶斯法,D-S证据法和表决法等。
融合算法常结合图像的平均值、熵值、标准偏差、平均梯度;平均梯度反映了图像中的微小细节反差与纹理变化特征,同时也反映了图像的清晰度。
目前对图像融合存在两个问题:最佳小波基函数的选取和最佳小波分解层数的选取。
---------------《章毓晋图象工程》1、图象工程图象工程三层次:图象处理(图象--→图象)图象分析(图象—>数据)图象理解(图象-→解释)图象工程相关学科和领域:~图形学:原指用图形、图表、绘图等形式表达数据信息的科学,而计算机图形学研究的就是如何利用计算机技术来产生这些形式~图象模式识别:试图把图象分解成可用符号较抽象地描述的类别~计算机识别:主要强调用计算机实现人的视觉功能,目前的研究内容主要与图象理解相结合(一)图象处理:灰度图像:灰度数字图像是每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。
图像融合PPT课件
按人对颜色分辨能力构造的三维彩色立体
精选2021最新课件
16
3.1 彩色空间和彩色变换(续6)
(1) Lhc 彩色立体
圆柱的高由 下至上表示 明度(V)增加; 圆柱的圆周 表示色相(H), 沿圆周循环 ; 圆柱的半径 由内至外表 示彩度(C)增 加,至圆周 处彩度最高。
(2) 明度 L=42% 时的 hc 平面
精选2021最新课件
13
3.1 彩色空间和彩色变换(续3)
饱和度(纯度) 对于同一色调的彩色光,饱和度越深,颜色越鲜明或说越纯,相反则越淡。
在饱和的彩色光中增加白光的成分,相当于增加了光能,因而变得更亮 了,但是它的饱和度却降低了。若减少白光的成分,相当于降低了光能, 因而变得更暗,其饱和度也降低了。
5) CIE 系统
选三原色: 红 =700nm(R), 绿 =546.1nm(G), 蓝 =435nm(B)。 r=R/(R+G+B), g=G/(R+G+B), b=B/(R+G+B)。 由于 r+g+b=1, 所以只用给 出 r 和 g 的值, 就能唯一地 确定一种颜色。将光谱中的 所有颜色表示在 CIE 1931 RGB 系统色度图中, 如图 所 示。
精选2021最新课件
14
3.1 彩色空间和彩色变换(续4)
这个锥体表示:
人们在最暗时和最亮时对颜 色的分辨能力较差, 中间亮度 时分辨能力最强。
实际上:
对于某些颜色, 人眼对其分辨 能力随亮度而加强, 直到极亮 时才急遽减少。
传统色度学著作常用来表示颜色的锥体
精选2021最新课件
15
3.1 彩色空间和彩色变换(续5)
精选2021最新课件
图像融合报告-课件(1)
其中, c(u A ,B ) t表示W 所( 有u ,从t)节点A到节点B的连接, u A ,t B
a( s A ,V s ) o 表示c 从W 节( u 点,tA)到所有结点的连接。 u A ,t V
我们还可以按照第(2)进一步的细化。
▽2、Spatial frequency(空间频率)
• 空间频率源于人们的目视系统,表明在一个图像中的全部活动程度, 一个图像块的空间频率定义如下: 假定一个像素为M×N的图像,行频率RF(row frequencies),列频率
CF(column frequencies),则
• 特征级图像融合是中间层次上的融合,它是先提 取来自传感器的原始信息的特征,产生特征矢量, 然后对特征矢量进行融合处理。一般来说,提取 的特征信息应该是像素信息的充分表示量或充分 估计量,然后按照特征信息对多传感器数据进行 综合分析和处理。 特征级图像融合的主要优点有:由于提取传感器原 始信息的特征信息,信息得到了压缩,有利于实 时处理。
(4)使用特征向量找出第二小的特征值,并找出 划分的点以便于把Ncut的值减小至最低范围;
(5)检查Ncut的值,最简单的是依据第一个计算 特征向量的柱状图,然后计算在最大值和最小值 之间的二进特征向量的比率,在实验中,设置一 个像上述的比率阈值,小于阈值的特征向量是不 稳定的(本实验设置阈值为0.06)。
• 计算流程
(1)定义一个给定的图像和权重函数的特征描述矩阵; (2)假定一个加权图G=(V,E),计算边缘权值,得出的
W和D的信息矩阵的W表达式如下:
X(i)为节点i的位置空间,F(i)=I(i)为强度值,矩阵D是N×N 的对角矩阵,对角线上的d(i)=ΣW(i,j);
图像融合及应用ppt课件
x y
a11 a21
a12 a22
x y
t t
x y
41
Example 1
Original images
50 50
100
100 150
200
150
250 50 100 150 200 250
50 100 150 200 250
冗余信息
图像传感器A
图像传感器B
互补信息
10
一、信息融合概述
3. 图像融合技术的研究现状及发展
起源:20世纪70年代初 20世纪70年代初,美国研究机构发现,利用计算机技 术对多个独立的连续声纳信号进行融合后,可以自动 检测出敌方潜艇的位置。这一尝试使得信息融合作为 一门独立的技术首先在军事应用中得到青睐。
11
一、信息融合概述
3. 图像融合技术的研究现状及发展
发展:20世纪80年代-20世纪末 20世纪80年代后,对信息融合技术的研究更加活 跃;国际上,关于信息融合的专著论文等数量可 观;图像融合在军事和民用等诸多领域得到广泛 的应用。
12
一、信息融合概述
3. 图像融合技术的研究现状及发展
完善:20世纪末-今 由于其研究领域覆盖范围的广泛性、多传感器数据 形式的多样性以及融合处理的多样性和复杂性,信 息融合理论至今尚未形成系统的理论框架和有效的 通用融合模型和算法。大部分研究工作都是针对特 定应用领域的问题来展开的。
30
Multi-modality Registration Examples
IR
RADARSAT
MR T1
MR T2
MMW
像素级图像融合课件
像素级图像融合课件山东大学(威海)毕业论文毕业设计(论文)设计(论文)题目像素级图像融合方法姓名:学号:李桂楠 201100800668学院:机电与信息工程学院专业:年级指导教师:自动化 2011级孙甲冰山东大学(威海)毕业论文目录目录摘要 (4)Abstract ................................................. 5 第一章绪论 ............................................ 1 1.1课题背景及来源 ..................................... 1 1.2图像融合的理论基础和研究现状 ....................... 1 1.3图像融合的应用 ..................................... 1 1.4图像融合的分类 ..................................... 1 第二章像素级图像融合的预处理 ........................... 3 2.1图像增强 .......................................... 3 2.2图像校正 .......................................... 6 2.3图像配准 .......................................... 6 第三章像素级图像融合的方法综述 ......................... 8 3.1加权平均图像融合方法 ............................... 8 3.2 HIS空间图像融合方法 ............................... 8 3.3 主成分分析图像融合方法 ............................ 8 3.4 伪彩色图像融合方法 ................................ 9 第四章基于小波变换的像素级图像融合概述 ................ 10 4.1 小波变换的基本理论 ............................... 10 4.2 基于小波变换的图像融合 .......................... 11 4.3基于小波变换的图像融合性能分析 (12)山东大学(威海)毕业论文目录第五章像素级图像融合方法的研究总结与展望 .............. 19 参考文献 ................................................ 20 谢辞 ................................. 错误!未定义书签。
图像融合的三大方法
图像融合分类图像融合的层次可分为像素级、特征级和决策级三个部分。
(1)像素级图像融合像素级图像融合是指在严格配准条件下对各传感器输出的信号直接进行信息综合处理的过程。
像素级图像融合是直接在原始数据层上进行融合,该层次的融合准确性最高,相比其他层次上的图像融合该层次上的图像融合具有的更精确、更丰富、更可靠的细节信息,有利于图像更进一步的理解与分析。
像素级图像融合是特征级和决策级图像融合的基础,也是目前应用最广泛图像融合方式。
但像素级图像融合也是有缺点的,缺点是预处理的信息量最大,处理时间较长,对通信带宽的要求高,因此在此层析上进行图像融合之前必须先对参加融合的图像进行精确的配准,加大了工作量。
像素级图像融合通常用于:图像分析和理解、多源图2-1像素级数据融合原理示意图(2)特征级图像融合特征级图像融合是指对不同传感器的多源信息进行特征提取(包括形状、边缘、区域、轮廓、纹理、角等),然后再对从多个传感器获得的多个特征信息进行综合的分析和处理的过程。
特征级图像融合属于中间层次,为决策级图像融合做准备,它既保留了重要信息,有对信息进行了压缩,便于实时处理。
特征级图像融合可以分为两大类:目标状态数据融合和目标特性融合。
目标状态数据融合主要用于多传感器目标跟踪领域;目标特性融合就是特征层次的识别。
目前特征级图像融合的方法有:加权平均法、贝叶斯估计方法、聚类分析方法等。
图2-2特征级数据融合原理示意图(3)决策级图像融合决策级图像融合是指对每个图像的特征信息进行分类、识别等处理,形成相应的结果,进行进一步的融合过程,最终的决策结果是全局最优决策。
决策级图像融合是一种更高层次的信息融合,其结果将为各种控制或决策提供依据。
进行Array图2-3决策级数据融合原理示意图。
图像融合层次
图像融合的层次根据信息表征层次的不同和融合在处理流程中所处的阶段,图像融合由低到高分为3个层次:像素级,特征级和决策级。
(1)像素级图像融合其结构如图1.2所示,即在严格的配准条件下,对多源图像直接进行信息的综合分析。
像素级图像融合是在基础数据层面上进行的信息融合,其主要完成的任务是对多源图像中目标和背景等信息直接进行融合处理。
像素级图像融合是最低层次的图像融合,能够保持尽可能多的现场数据,提供其他融合层次所不能提供的细节信息。
但需处理的信息量最大,对设备的要求较高.图1.2 像素级图像融合(2)特征级图像融合其结构如图1.3所示,即对预处理和特征提取后获取的特征信息如边缘、形状、纹理和区域等进行综合与处理.特征级融合是在中间层次上进行的信息融合,它既保留了足够数量的重要信息,又可对信息进行压缩,有利于实时处理.但相对于像素级图像融合,特征级融合信息丢失最多.图1.3 特征级图像融合(3)决策级图像融合其结构如图1。
4所示,即在每个传感器已完成目标提取与分类之后,融合系统根据一定的准则以及每个决策的可信度作出决策融合处理。
此种融合实时性好,并且具有一定的容错能力。
决策级融合方法主要是基于认知模型的方法,需要大型数据库和专家决策系统进行分析、推理、识别和判决.图1.4 决策级图像融合像素级融合和特征层融合都需要对多源信息进行关联和配准,决策层融合只需要对数据进行关联。
只是它们进行相关联和识别的顺序不同,像素级融合直接对原始数据进行配准和关联,特征层融合对特征向量进行配准和关联,然后再进行识别,而决策层融合则是先进行识别,再对各个决策结果进行关联,得到融合的判决结果。
决策层融合对传感器依赖性较小,传感器可以是同质的,也可以是异质的。
除非传感器的信号是独立的,否则,决策层融合的分类性能可能低于特征层融合。
对于特定的应用选择在哪一个层次进行融合是一个系统工程问题,需要综合考虑通信带宽、信源的特点、可用的计算资源等方面的因素影响。
04图像融合技术概论(像素级)
图像像素级融合算法(讲稿1)2、图像融合算法研究主要集中介绍像素级融合算法。
依实现原理划分,像素级图像融合算法大体分为:代数算法,假彩色技术,图像调制技术,多分辨技术,基于视觉神经动力学的图像融合技术,等。
2.1 代数法代数法包括加权融合、单变量图像差值法、图像比值法等。
最常用的方法是加权平均法。
加权平均法主要是运用代数运算和线性运算来处理图像,是早期的图像融合方法。
它的基本原理是不对源图像进行任何的图像变换或分解,而是直接对各源图像中的对应像素进行选择(选取最大值或最小值)、平均或加权平均等简单处理后输出融合图像。
以j L 表示融合图像的第j 个像素灰度值,ji G 表示参加融合的第i 幅图像第j 个像素灰度值。
ji A 表示参加融合的第i 幅图像第j 个像素的权值。
加权平均法的数学表示式为:1nj ji ji i L A G ==∑11n ji i A==∑根据实际使用的需要,代数法可采取局部和全局处理。
下面主要说明全局法的处理过程。
考虑到图像的整体性,所有融合运算采用了统一标准,因此称为全局法。
主要步骤如下:(1)求出图像灰度的最大值、最小值、均值和方差;(2)由这些参数通过一定的运算,计算出一个变换式,可将高分辨力图像的灰度变成0到1的实数;(3)用变换后的实数和低分辨力图像进行一定的运算,其所得到的结果即为融合图像;(4)这个图像往往色调比较暗,必须进行增强才能满足要求。
设高分辨力图像灰度、灰度最小值、最大值、均值和方差分别为m i n m a x h h h h h g g g g δ,,, ,,低分辨力图像灰度值为l g ,融合后的灰度值为f g ,'D 为变换系数。
2、假彩色技术假彩色(False Color )图像融合处理的原理基于如下事实:人眼对颜色的分辨力远超过对灰度等级的分辨力。
因此,如果通过某种彩色化处理技术将蕴藏在不同原始信道图像灰度等级中的细节信息以不同的色彩来表征,可以使人眼对融合图像的细节有更丰富的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东大学(威海)毕业论文毕业设计(论文)设计(论文)题目像素级图像融合方法姓名:李桂楠学号:201100800668学院:机电与信息工程学院专业:自动化年级2011级指导教师:孙甲冰目录摘要 (4)Abstract (5)第一章绪论 (1)1.1课题背景及来源 (1)1.2图像融合的理论基础和研究现状 (1)1.3图像融合的应用 (1)1.4图像融合的分类 (1)第二章像素级图像融合的预处理 (3)2.1图像增强 (3)2.2图像校正 (6)2.3图像配准 (6)第三章像素级图像融合的方法综述 (8)3.1加权平均图像融合方法 (8)3.2 HIS空间图像融合方法 (8)3.3 主成分分析图像融合方法 (8)3.4 伪彩色图像融合方法 (9)第四章基于小波变换的像素级图像融合概述 (10)4.1 小波变换的基本理论 (10)4.2 基于小波变换的图像融合 (11)4.3基于小波变换的图像融合性能分析 (12)第五章像素级图像融合方法的研究总结与展望 (19)参考文献 (20)谢辞................................. 错误!未定义书签。
摘要近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。
而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。
图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。
本文的主要工作是针对像素级的图像融合所展开的。
关键词图像融合理论基础、加权平均、图像融合方法、小波变换、AbstractIn recent years, with the rapid development of science and technology, all kinds of image sensor appear in front of the people's field of vision, image sensor in a wide range of this style in different imaging principle and under different working conditions have different function. And because of multiple sensors, image fusion technology is also more and more been used in medical, exploration, Marine resources development, biological sciences, and other fields, and image fusion for national security more strategic significance to construction and economic development. Therefore, the study of image fusion is and its important theoretical significance and application prospects.Image fusion is divided into pixel level, feature level and decision level three different levels, image fusion at pixel level and as a basis for other levels of fusion provide more accurate, comprehensive, image information can be lazy, is advantageous to the image analysis and further research. The research work of this article is the surrounding image fusion at pixel level.Key wordsimage fusion, weighted average, pseudo color image fusion method and wavelet transform第一章绪论1.1课题背景及来源在现代化的农业、生活、资源管理开发、国防等方面的实际应用中,图像融合被广泛的开发应用,是较为常用的图像信息融合技术,它可以对源图像中的像素进行逐个的信息融合,尽可能保留源图像中的重要信息以得到对图像更精确、更丰富的描述。
为了特征级和决策级的研究提供帮助。
本章主要工作是对图像融合的理论和发展做出介绍,并在该基础上分析图像融合在实际应用前景。
1.2图像融合的理论和现状图像融合是对不同传感器所收集到的一幅或者多幅源图像进行融合,用融合技术合成同一幅包含了多幅源图像优点、内容更加全面丰富的图像,其最早产生于20世纪70年代末,而该技术随着实际应用中的所占比例的增大在其后的时间内有了很大的发展。
虽然图像融合技术越来越多地在实际生活中得到应用,但因为该技术所覆盖领域的广泛性和该技术的多样性,研究结果只是反映了特定的方面,而不是形成完整的体系。
总而言之,其中仍有很多问题有待我们的解决和探讨。
1.3图像融合的应用多传感器技术的提高和电子科技技术方面的提高,图像融合技术越来越多的被用于实际应用中。
在民用方面,图像融合在应用于各个领域。
遥感方面,随着遥感技术的发展,在同一地区可使用越来越多不同的传感器,因此能获得不同时间段的各类遥感图像信息,国土资源规划等方面都有效的利用到该技术。
在医学领域,多模医学图像融合技术已经被广泛的用于医疗诊断中,根据不同影像设备可反应出人体体征情况各有不同,弥补了原来医学单一成像的缺点。
在军事领域,随着传感器的种类不停增多,可得到的战场信息战况越来越丰富,而有关于战场图像信息的分析也需要越来越准确,而多传感器图像融合技术则成为控制战争态势的有效利器。
1.4图像融合的分类(1)按信息表征层次分类像素级图像融合:根据某个融合规则直接对源图像灰度进行融合。
像素级图像融合是最低层次的融合,但其保留信息的能力要强于决策级和特征级。
但像素级融合对配准精度的要求也更高。
特征级图像融合:在像素级的基础上提取其特征信息进行综合性分析和融合处理。
特征级融合首先从各个多传感器图像中提取原始信息特征,去掉其中的虚无用特征。
特征级图像融合能压缩信息,还能保留图像的复合特征,可以直接为决策级融合分析提供帮助。
决策级图像融合:是最高层次的融合,从源图像中获取特征信息并进行预处理,得出各自的决策,合并成一个全局性的联合决策。
决策级图像融合有较高的实时性和容错性,但是在处理过程中损失的图像信息量大,预处理的要求也比较高。
(2)按图像源分类同类传感器图像融合:对同一传感器在不同成像模式下获得图像进行融合。
异类传感器图像融合:将不同类型的并且彼此相互独立传感器收集到的图像进行融合。
遥感图像融合:对多遥感器所获得的图像进行融合。
(3)按融合方法分类基于空间域的图像融合:在像素级别上对图像直接进行处理。
其算法有:加权平均法、主成分分析法、HIS空间法、伪彩色法等等。
基于变换域的图像融合:首先对多幅源图像进行图像变换,之后在对其获得的系数按准则进行融合,再对其进行逆变换得到融合结果。
常用算法有:傅里叶变换,多尺度分解等等。
第二章 像素级图像融合的预处理像素级图像融合是最底层的图像融合,它可以获得另外两个层级不能获得的细微的源图像信息,因为要精确要像素级别,所以在图像融合前要进行预处理,例如图像的增强、校正、配准等。
2.1图像的增强图像增强是一类图像预处理的技术,其目的是为了获得效果更明显、对研究内容更加有用的图像信息。
图像增强的主要方法有:1.空间域增强2.频率域增强。
(一) 空间域增强1.线性变换和非线性变换在对图像的像元进行灰度值的变换以后,我们将会得到可视度更高、分辨率更为清晰的图像。
根据变换函数分类,当变换函数为线性或者分段函数时,称其为线性变换。
灰度变换的过程可以表示为:g(x,y)=T[h(x,y)],射映射为T ,则输入图像中的每个像素的灰度值f (x ,y )可以通过该映射,经过变换后得到输出图像的灰度值h (x ,y )。
简单的线性变换公式课定义为:c m y x +-=]),(h [m-n c -d )y ,x (g ,其中,n 和m 分别为输入图像亮度分量的最大和最小值,d 和c 分别是输出图像亮度分量的最大和最小值。
如图1所示,在线性变换后其灰度范围明显扩大,由[m,n]扩展为[c ,d]。
变换后的图像中相邻像素灰度的差值增加,将有效改善图像视觉效果。
线性变换效果图如下:非线性变换则可以理解为,变换函数是非线性的,则为非线性变换,它是有选择的对某一灰度范围进行扩展。
指数变换和对数变换都是比较常用的非线性变换。
指数变换一般公式为:c bex a ax b +=对数变换一般公式为: c )1ax (blg x a b ++=其中,a x 和b x 分别表示变换前和变换后每个像元的灰度值。
a 、b 、c 为参数。
图4 非线性灰度变换2.空间增强为了达到强化图像特征信息的目的,则采用空间增强。
领域处理:对于某一图像(i ,j ),对于该图像像元的集合{i+m ,j+n}(m 、n 为任意整数)称为该像元的领域。
由图可知g(i,j)可由f (i ,j )确定,它们分别为处理前和处理后的像元值,这种处理称为领域处理。
领域运算的计算表达式为:)],([),(g j i N j i N ϕ=N ϕ为对),(j i N 像元的运算法则。
卷积运算:在空间域上对图像做加权求和的过程。
需选定一个模板。
在运算前,需选定一个大小为B A ⨯的运算模板),(b a ϕ。
并建立一个和模板大小相同的活动窗口),(f b a ,再将模板与窗口的对应的灰度值做对应运算。
得到新的窗口中心灰度值。
其公式为:∑∑==⋅=Bb A a b a b a f n m g 11),(),(),(ϕ 将模板和窗口作相同移动后再按上式计算得出新的灰度值。
根据该公式进行类推,最后获得目标图像。
平滑:传感器在成像过程会存在各种客观原因造成的误差,图像在形成过程中会出现“噪声。
”平滑的目的是为提高图像质量而进行的处理。
锐化:锐化可突出边缘和线状口信息。
(二)频率域增强在图像处理过程中,像元的灰度值随着位置变化的频繁程度用频率来表示,属于空间频率。