九年级数学弧、弦、圆心角
人教版数学九年级上册《24.1.3 弧、弦、圆心角》课件精品
圆心角 ∠AOB 所对的弦为 AB.
B
任意给圆心角,对应出现三个量:
O
A
弧
圆心角
弦
想一想:圆心角、弧、弦之间有什么关系?
二 圆心角、弧、弦之间的关系 合作探究 观察:1. 将圆绕圆心旋转 180° 后,得到的 图形与原图形重合吗?由此你得到什么结论呢?
180° A
重合,
圆是中心对称图形
2. 把圆绕圆心旋转任意一个角度呢?仍与原来的圆 重合吗?
在同圆或等圆中
关系结构图
温馨提示:一条弦对 应两条弧,由弦相等 得到弧相等时需要区 分优弧和劣弧.
想一想:定理“在同圆或等圆中,相等的圆心角所
对的弧相等,所对的弦也相等”中,可否把条件
“在同圆或等圆中”去掉?为什么?
不可以,如图.
B D OCA
辨一辨 判断正误: (1) 等弦所对的弧相等.
(× )
B
O·
D
C
(4)如果 AB = CD,OE⊥AB 于 E,OF⊥CD 于 F,那
么 OE 与 OF 相等吗?为什么?
解:OE = OF. 理由如下:
∵ OE⊥AB,OF⊥CD,
∴ AE 1 AB,CF 1 CD.
2
2
∵ AB = CD,∴ AE = CF.
∵ OA = OC,
A
E
B
Байду номын сангаасO·
D
F C
A
O·
B ∴∠AOE = 180° - 3×35° = 75°.
例2 如图,在☉O 中,AB =AC ,∠ACB = 60°,
求证:∠AOB =∠BOC =∠AOC.
A
证明:∵ AB = AC ,
弧、弦、圆心角、圆周角--知识讲解(基础)
弧、弦、圆心角、圆周角--知识讲解(基础)责编:康红梅【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
人教版数学九年级上册教案-24.1.3弧、弦、圆心角
课堂上的实践活动,我发现学生们积极参与,热烈讨论。但在小组讨论环节,有些小组的讨论似乎偏离了主题。我及时进行了引导,让他们回到弧、弦、圆心角的应用上来。这也提醒了我,在今后的教学中,要更加注意引导学生关注讨论的主题。
1.培养学生运用几何图形语言描述和表达弧、弦、圆心角等概念,提高空间想象能力和几何直观能力。
2.通过探索弧、弦、圆心角之间的关系,培养学生的逻辑推理能力和抽象思维能力。
3.结合实际操作,使学生能够运用圆周角定理解决实际问题,提高问题解决能力和创新意识。
4.培养学生合作交流、分享探究过程和结果的习惯,提高团队协作能力和口头表达能力。
5.引导学生从数学角度观察和分析现实问题,体会数学在生活中的应用,培养数学应用意识和数学素养。
三、教学难点与重点
1.教学重点
-弧、弦、圆心角的定义及其分类:这是本节课的基础,要求学生能够准确理解和区分这些基本概念。
-弧、弦、圆心角之间的关系:强调圆心角所对的弧和弦的性质,以及圆周角定理的应用。
-实际问题中的运用:通过解决实际问题,让学生掌握如何将弧、弦、圆心角的理论知识应用于实际情境。
举例解释:
-弧的定义:圆上任意两点间的部分,如点A到点B的弧AB。分类为优弧(大于半圆的弧)、劣弧(小于半圆的弧)和半圆。
-弦的定义:圆上任意两点的连线,如点A和点B之间的线段AB。分类为直径(通过圆心的弦)和普通弦。
-圆心角的定义:以圆心为顶点的角,如角AOB,其中O为圆心。
-圆周角一半。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如通过折叠和切割圆纸片来观察圆心角和弧和弦的关系。
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。
本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。
教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。
教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。
但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。
三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。
2.教学难点:圆心角、弧、弦之间的数量关系。
五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。
六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。
3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。
4.课堂练习:布置针对性的练习题,巩固所学知识。
九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..
圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等考点一:圆心角,弧,弦的位置关系二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF . 分析:“弧AE=弧BF”←“∠______=∠______” 把证弧相等转化为证________________. 证明:例2 如图,点O 是∠BPD 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD . 分析:把证明弦相等转化为证明_弦心距_相等.例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 分析: (1)∠ACO=∠______, 而∠______=∠______. (2)在Rt ⊿______中,利用勾股定理列方程求例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE . 分析:把证BE=DE 转化为证∠____=∠____. CDBF E ONMDCB AOEAO DC DA1.如图1,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()2.如图2,BE是半径为6的圆D的14圆周,C点是BE上的任意一点,△ABD 是等边三角形,则四边形ABCD的周长P的取值范围是()2、已知AB^、CD^是同圆的两段弧,且AB^=2CD^,则弦AB与2CD之间的关系为()A、AB=2CDB、AB<2CDC、AB>2CDD、不能确定4、下列语句中正确的是()A、相等的圆心角所对的弧相等B、平分弦的直径垂直于弦C、长度相等的两条弧是等弧D、经过圆心的每一条直线都是圆的对称轴5、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的()6、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()7、如图3,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是()图1图2图38.如图所示,⊙O半径为2,弦,A为弧BD的中点,E为弦AC的中点,且在BD上,则四边形ABCD的面积为9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD^上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.1.如图1,∠A 是⊙O 的圆周角,且∠A =35°,则∠OBC=_____.2.如图2,圆心角∠AOB=100°,则∠ACB= .3:如图3,AB 是⊙O 的直径,点C D E ,,都在⊙O 上,若C D E ==∠∠∠,则A B +=∠∠ º. 4:如图4,⊙O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .图2 图14.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.考点2:圆周角定理1、如图,△ABC 中,∠A=60°,BC 为定长,以BC 为直径的⊙O 分别交AB ,AC 于点D ,E .连接DE ,已知DE=EC .下列结论:①BC=2DE ;②BD+CE=2DE .其中一定正确的有( )2.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为( )3.如图AB 是⊙O 的直径, AC^所对的圆心角为60°, BE^所对的圆心角为20°,且∠AFC=∠BFD ,∠AGD=∠BGE ,则∠FDG 的度数为( )4. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )1题图 2题 3题4题5:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.CBO A O AB C 图3 B C D E O EF C DG O 图46:已知⊙O 中,30C ∠=,2cm AB =,则⊙O 的半径为cm .7.已知:如图等边ABC △内接于⊙O ,点P 是劣弧BC ⋂上的一点(端点除外),延长BP 至D ,使BD AP =,连结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?8.如图AB 是圆O 的直径,C 是圆O 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长9.如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB=40°,∠APD=65°. (1)求∠B 的大小;(2)已知圆心0到BD 的距离为3,求AD 的长._D_B _A_O OAA O C PB 图① AOC PB 图②10.11.如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是12.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD 于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.13.5.圆内接多边形:一个多边形的顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆6.圆内接四边形:圆内接四边形的对角互补如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°7.确定圆的条件:不在同一直线上的三个点确定一个圆.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块 C.第③块D.第④块8.三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.这个三角形叫做圆的内接三角形。
2.1 圆(圆的弦、弧、圆心角) 苏科版数学九年级上册课件
·D
O
·
A·
·C ·B
练一练
问题一 请写出图中所有的弦; 问题二 请任选一条弦,写出这条弦所对的弧;
A
B
O
C
D
与圆有关的概念-圆心角
定义:顶点在圆心的角叫做圆心角。
注意:判断是否圆心角时需观察顶点是否在圆心。
AC
问题一 找出⊙O中的圆心角?
∠AOC、 ∠BOC
O·
问题二:∠ABC是不是圆心角?并说明原因?
与圆有关的概念-弧
圆上任意两点间的部分叫做圆弧,简称弧.
⌒
以A、B为端点的弧记作AB ,
读作“圆弧AB”或“弧AB”。
C
O·
⌒
小于半圆的弧(如图中的AB)叫做劣弧;
A
B
⌒
大于半圆的弧(用三个字母表示,如图中的ACB)叫做优弧.
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做半圆。
观察与思考
C
PADຫໍສະໝຸດ ●OB练一练
如图,⊙O中,PB经过圆心O,交⊙O于A、B,PD交⊙O于C、D, 且PC=OA=OB,∠BOD=60°。试求∠P的度数。
【提示】已知圆上的点时,可考虑作半径来帮助解题。
C
P
A
D
●
O
B
达标检测 1、判断题:
(1)半圆是弧,但弧不一定是半圆; (
)
(2)半径相等的两个半圆是等弧;
弧与半圆的区别和联系?
C
半圆是弧,但弧不一定是半圆; 半圆既不是劣弧,也不是优弧。
【注意】
O·
A
B
1)弧分为是优弧、劣弧、半圆。
2)已知弧的两个起点,不能判断它是优弧还是劣弧,需分情况讨论。
九年级数学 圆 第二讲 弧、弦、圆心角的对应关系
AB 3
3
3
∴ AM MN NB
A
M
NБайду номын сангаасO
B
E
F
C
A
MN O
B
E
F
解析二:
连结 OE,易知 OE 与半径的比.
AC ,也可求得 AM ,进而可求得 AM MO
证法二:
如图,连结 OE,设 AC=2a,则 AC=AB=2OE=2a
∵ CAM AOC 60 ,∴ AC OE , C
∴ OM OE a 1 AM AC 2a 2
60
,
AO
EO
a
,
C
∴ AOE 为等边三角形,∴ AE AO a
又∵ EAO CBA 60 ,∴ AE BC
∴ AME BMC ,∴ AM AE a 1 ,∴ AM 1
BM BC 2a 2
AB 3
同理: BN 1 ,∴ MN AB 2 AB 1 AB ,
第二讲 弧、弦、圆心角的对应关系
课标引路
必备解题知识
圆心角
弧
弦
弦心距
必备解题 知识
圆心角 定理
垂径定 理
圆心角 定理
圆心角概念
抓两点
圆心角定理推 论使用前提条 件
注意 必须在同 圆或者等圆中
必备解题知识
圆心角
弧
弦
弦心距
必备解题 知识
圆心角 定理
垂径定 理
圆心角 定理
注意:这里说的相等是指角 的度数与弧的度数相等.而 不是角与弧相等,在书写时
证明三:连结 AE,并延长交 CO 的延长线于 G
设 AC=2a,则有 AE=OA=a(证法一中已证明△AOE 为等边三角形)
圆心角、圆周角、弦、弧的关系
1圆的基本性质考点一、圆的相关概念 (1)圆的定义圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
固定的端点O 叫做圆心,线段OA 叫做半径。
(2)圆的几何表示以点O 为圆心的圆记作“⊙O ”,读作“圆O ”考点二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。
(如图中的AC )(2)直径:经过圆心的弦叫做直径。
(如图中的AB )直径等于半径的2倍。
(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A ,B为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心直径 平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧考点四、圆的对称性 (1)圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
(2)圆的中心对称性圆是以圆心为对称中心的中心对称图形。
2考点五、弧、弦、弦心距、圆心角之间的关系定理(1)圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角。
(2)弦心距:从圆心到弦的距离叫做弦心距。
(3)弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相 等,那么它们所对应的其余各组量都分别相等。
九年级数学圆心角、弧、弦、弦心距的关系人教四年制知识精讲
九年级数学圆心角、弧、弦、弦心距的关系人教四年制【本讲教育信息】一. 教学内容:圆心角、弧、弦、弦心距的关系二. 重点、难点:1. 等弧对等角、对等弦、对等弦心距。
2. 在同圆或等圆中,等角、等弦、等弦心距对等弧。
∴ 点A 、B 到DC 距离相等 ∴ AB ∥CD[例3] ABC ∆中,A ∠为直角,⊙O 与三边交于P 、Q 、R 、S 、K 、L ,若PQ=RS=KL ,求BOC ∠大小。
由勾股定理,2222)47(1)47(--=-x x 整理得02742=--x x 21=x ,412-=x (舍) ∴42==x AB[例6] 如图,C 、D 在以AB 为直径的半圆上,CE ⊥AB 于E ,DF ⊥AB 于F ,DH ⊥OC 于H ,若AE=2cm ,EO=3cm ,求HF 长。
解:作出⊙延长DH ∴ HF=NK 21∵ CM ∥DK ∴⋂⋂⋂==CN MK CD∴⋂⋂=NK CM ∴ CM=NK ∴HF CM CE ==21又 ∵ OC=OA=5cm OE=3cm ∴ CE=4cm ∴ HF=4cm【模拟试题】(答题时间:45分钟)4. 如图3,在半径为2cm 的⊙O 内有长为cm 32的弦AB ,则此弦所对的圆心角AOB ∠为( )A. ︒60B. ︒90C. ︒120D. ︒1507. 过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( ) A. cm 3 B. cm 2 C. cm 1 D. cm 38. 已知⊙O 的弦AB 长为8cm ,⊙O的半径为5cm ,则弦心距为( ) A. 3cm B. 6cm C. 39cm D. 392cm9. 如图6,在两半径不同的同心圆中,︒=''∠=∠60B O A AOB ,则( ) ︒=60AOB ;正确的是( )A. ①②③④⑤B. ①②④⑤C. ①②D. ②④⑤二. 填空题:11. 在圆中︒80的弧所对的圆心角的度数是。
九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲
九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版【本讲教育信息】一、教学内容:弧、弦、圆心角、圆周角之间的关系 1. 圆心角、圆周角的概念. 2. 弧、弦、圆心角之间的关系. 3. 圆周角定理及推论.二、知识要点:1. 弧、弦、圆心角(1)我们把顶点在圆心的角叫做圆心角. (2)弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.如图所示,(1)若∠AOB =∠COD ,则︵AB =︵CD ,AB =CD ;(2)若︵AB =︵CD ,则∠AOB =∠COD ,AB =CD ;(3)若AB =CD ,则∠AOB =∠COD ,︵AB =︵CD.OABCD2. 圆周角(1)顶点在圆上,并且两边与圆都相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.③②①(3)推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三、重点难点:本节重点是圆心角、弦、弧之间的相等关系及圆周角定理. 难点是从圆的旋转不变性出发,得到圆心角、弦、弧之间的相等关系以及圆周角定理的证明.【典型例题】例1. 在⊙O 中,如图所示,∠AOB =∠DOC ,试说明:(1)︵DB =︵AC ; (2)BD =AC.B分析:(1)∵∠DOC =∠AOB ,∴︵DC +︵BC =︵AB +︵BC ,∴︵BD =︵AC. (2)∵在同圆或等圆中,相等的弧所对的弦相等,∴BD =AC.解:(1)∵∠DOC =∠AOB ,∴︵DC =︵AB , ∴︵DC +︵BC =︵AB +︵BC ,即︵BD =︵AC.(2)由(1)得︵BD =︵AC ,∴BD =AC.例2. 如图所示,C 是︵AB 的中点,与∠ADC 相等的角的个数是( ) A. 7个 B. 3个 C. 2个 D. 1个分析:由同弧或等弧所对的圆周角相等知,∠ADC =∠ABC =∠CAB =∠CDB ,故与∠ADC 相等的角共有3个.解:B评析:同弧或等弧所对的圆周角相等常用来证明两角相等;或进行角的转换,将一个圆周角转换为同弧所对的其他圆周角,从而达到题目中的要求.例3. 如图所示,BC 为半圆O 的直径,G 是半圆上异于B 、C 的点,A 是︵BG 的中点,AD ⊥BC 于点D ,BG 交AD 于点E ,请说明AE =BE.分析:在圆中,有关直径的问题常常需要添加辅助线,以便利用直径所对的圆周角是直角的性质,因此,欲说明AE 与BE 相等,可转化为说明∠BAD =∠ABE ,圆周角∠ABE 所对的弧为︵AG ,连结AB 、AC 即可解决问题.C解:连结AB 、AC. ∵︵AB =︵AG ,∴∠ABE =∠ACB. 又∵AD ⊥BC ,∴∠ABD +∠BAE =90°.∵BC 为直径,∴∠BAC =90°,∴∠ABD +∠BCA =90°, ∴∠BCA =∠BAE. ∴∠BAE =∠ABG , ∴AE =BE.例4. 如图所示,在⊙O 中,∠AOC =150°,求∠ABC 、∠ADC 、∠EBC 的度数,并判断∠ABC 和∠ADC 、∠EBC 和∠ADC 的度数关系.分析:解题的关键是分清同弧所对的圆心角和圆周角,如劣弧AC 所对的圆心角是∠AOC ,所对的圆周角是∠ABC ,优弧ABC 所对的圆心角是大于平角的∠α,所对的圆周角是∠ADC.解:∵∠AOC =150°,∴∠ABC =12∠AOC =75°.∵∠α=360°-∠AOC =360°-150°=210°,∴∠ADC =12∠α=105°,∠EBC =180°-∠ABC =180°-75°=105°.∵∠ABC +∠ADC =75°+105°=180°,∠EBC =∠ADC =105°, ∴∠ABC 和∠ADC 互补,∠EBC 和∠ADC 相等. 评析:理解圆周角的概念,分清同弧所对的圆心角和圆周角是熟练运用圆周角性质解题的前提.例5. 如图所示,AB 、CD 是⊙O 的弦,∠A =∠C. 求证:AB =CD.分析:此题的证明方法很多,由于AB 和CD 在圆中,且为弦,可证明AB 和CD 所对的圆心角相等或弧相等,也可直接或间接利用全等证明AB 和CD 相等. 等等.解法一:如图(1)所示,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.∴AB =2AE ,CD =2CF ,∠AEO =∠CFO =90°. 又∵∠A =∠C ,OA =OC , ∴△AOE ≌△COF ,∴AE =CF. ∴AB =CD.(1)解法二:如图(2)所示,连结OB 、OD.∵OA =OB =OC =OD ,∴∠A =∠B ,∠C =∠D. ∵∠A =∠C ,∴∠B =∠D. ∴△OAB ≌△OCD ,∴AB =CD.(2)(3)解法三:如图(3)所示,连结AC. ∵OA =OC ,∴∠1=∠3.又∵∠BAO =∠DCO ,∴∠2=∠4. ∴︵BC =︵AD.∴︵BC +︵BD =︵AD +︵BD ,即︵AB =︵CD , ∴AB =CD.例6. AB 、BC 、CA 是⊙O 的三条弦,O 到AB 的距离OE 等于12AB ,求∠C 的度数.分析:∠C 可能为一个钝角,也可能为一个锐角,要分类画图、分析和解答.BB m解:如图(1)所示,连结AO 、BO.因为OE ⊥AB ,所以EB =AE =12AB.又OE =12AB ,所以EB =OE =AE.所以∠EBO =∠EOB =∠EOA =∠EAO =45°.所以∠C =12∠AOB =12(∠AOE +∠EOB )=12×90°=45°.如图(2)所示,由(1)得∠AOB =90°,所以优弧A m B 所对的圆心角是270°,所以∠C =135°.即∠C 的度数为45°或135°.评析:图(1)中,△ABC 为锐角三角形,圆心在△ABC 内部;图(2)中,△ABC 为钝角三角形,圆心O 在△ABC 外部,两种情形都符合题意,所以本题应有两解.【方法总结】1. 圆不仅是轴对称图形和中心对称图形,实际上,圆绕圆心旋转任意一个角度α,都能与原来的图形重合,这样就把圆和其他的中心对称图形区别开来,即圆不仅是中心对称图形,而且还突破了中心对称图形旋转180°后才能与原来图形重合的局限性,得出圆所特有的性质:圆绕圆心旋转任意一个角度,都能与原来的图形重合,这叫做圆的旋转不变性. 利用这一性质可以推出圆的一些其他性质.2. 在利用圆心角、弧、弦的关系定理解题时,我们应注意:①作圆心到弦的垂线是圆中一种常见的作辅助线的方法;②由圆心到弦的垂线、弧、圆心角的相等来证明弦相等是证明线段相等的一条重要途径.3. 圆周角定理及其推论在证明和计算中应用非常广泛,它是证明角相等、线(弦)相等、弧相等的重要依据,尤其是其推论为在圆中确定直角、构成垂直关系创造了条件,它是圆中的一个很重要的性质,要熟练掌握. 同时它也是证明弦为直径的常用方法,若图中有直径,往往构造直径所对的圆周角形成直角,这也是圆中重要的辅助线.【预习导学案】(点和圆的位置关系)一、预习前知1. 圆可以看作是到__________的距离等于__________的点的集合,也就是说圆上的点到圆心的距离都等于__________.2. 圆的内部可以看作是到__________的距离小于半径的点的集合.3. 圆的外部可以看作是到__________的距离大于半径的点的集合.二、预习导学1. ⊙O 的半径r =5cm ,圆心O 到直线的距离OD =3cm . 点A 、B 、C 在直线l 上,若AD =23cm ,BD =4cm ,CD =5cm . 则点A 在⊙O__________,点B 在⊙O__________,点C 在⊙O__________.2. 下列条件中,可以画一个圆,并且只可以画一个圆的条件是( ) A. 已知圆心 B. 已知半径 C. 已知三点 D. 过直线上两点和直线外一点3. 三角形外接圆的圆心是( ) A. 三内角平分线的交点 B. 三边垂直平分线的交点 C. 三中线的交点 D. 三高线的交点4. 用反证法证明:“在△ABC 中,至少有两个内角是锐角”时,第一步假设__________成立.反思:(1)点和圆有哪些位置关系?(2)经过不在同一直线上的三点画圆的时候,如何确定圆心?(3)反证法的基本思路和一般步骤是怎样的?【模拟试题】(答题时间:50分钟)一、选择题1. 一条弦分圆周为5∶7,这条弦所对的两个圆周角分别为( )A. 150°,210°B. 75°,105°C. 60°,120°D. 120°,240°2. 已知AC 为⊙O 的直径,弦AB =10cm ,∠BAC =30°,那么⊙O 的半径为( )A. 5cmB. 52cmC. 1033cmD. 2033cm3. 如图所示,⊙O 的弦AB 、CD 相交于点E ,已知∠ECB =60°,∠AED =65°,那么,ADE的度数为( )A. 40°B. 45°C. 55°D. 65°*4. 如图所示,劣弧︵AE 所对的圆心角为40°,则∠B +∠D 等于( ) A. 320° B. 160° C. 300° D. 260°D5. 如图所示,AB 为⊙O 的直径,∠ACD =15°,则∠BAD 的度数为( ) A. 75° B. 72° C. 70° D. 65°6. 如图所示,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数为( ) A. 80° B. 100° C. 120°D. 130°**7. 已知⊙O 的半径为6cm ,⊙O 的一条弦AB 的长为63cm ,则弦AB 所对的圆周角是( ) A. 30° B. 60° C. 30°或150° D. 60°或120°二、填空题1. 如图所示,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA ,CE ⊥OB ,CD =CE ,则AC 与CB 弧长的大小关系是__________.2. 如图所示,点A 、B 、C 、E 都在圆周上,AE 平分∠BAC 交BC 于点D ,则图中相等的圆周角是__________.3. 如图所示,AB 是⊙O 的直径,︵BC =︵BD ,∠A =30°,则∠BOD =__________.AB4. 如图所示,已知⊙O 的半径为2,圆周角∠ABC =30°,则弦AC 的长是__________.5. 如图所示,AB 是半圆O 的直径,∠BAC =40°,D 是︵AC 上任意一点,那么∠D 的度数是__________.A**6. 如图所示,A 、B 、C 、D 、E 是⊙O 上顺次五点,且AB =BC =CD ,如果∠BAD =50°,那么∠AED =__________.B三、解答题1. 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F. (1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?︵AB 与︵CD 的大小关系?为什么?∠AOB 与∠COD 呢?BD2. 如图所示,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD =CE ,BE 与CE 的大小有什么关系?为什么?*3. 如图所示,AB 为⊙O 的直径,AC 为弦,P 为AC 延长线上一点,且AC =PC. PB 的延长线交⊙O 于D. 求证:AC =DC.P*4. 如图所示,已知A 、B 、C 、F 、G 是⊙O 上的五点,AF 交BC 于点D ,AG 交BC 于点E ,且BD =CE ,∠1=∠2. 求证:AB =AC.试题答案一、选择题1. B2. C3. C4. B5. A6. D7. D二、填空题 1. 相等2. ∠ABC =∠AEC ,∠ACB =∠AEB ,∠BAE =∠CAE =∠BCE =∠CBE3. 60°4. 25. 130°6. 75°三、解答题1.(1)如果∠AOB =∠COD ,那么OE =OF ,理由是:因为∠AOB =∠COD ,所以AB =CD. 因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD ,所以AE =CF. 又因为OA =OC ,所以R t △OAE≌R t △OCF. 所以OE =OF. (2)如果OE =OF ,那么AB =CD ,︵AB =︵CD ,∠AOB =∠COD ,理由是:因为OA =OC ,OE =OF ,所以R t △OAE ≌R t △OCF. 所以AE =CF ,又因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD. 所以AB =2AE ,CD =2CF. 所以AB =CD. 所以︵AB =︵CD ,∠AOB =∠COD.2. BE =CE. 理由:∵AB 、DE 为⊙O 的两条相交的直径,∴∠AOD =∠BOE ,∴BE =AD ,又∵AD =CE ,∴BE =CE.3. 连结AD ,∵AB 是⊙O 的直径,∴∠ADP =90°,∵AC =CP ,∴CD =12AP. ∴CD =AC =12AP.∴AC =DC.4.∵∠1=∠2,∴⌒BF =⌒CG ,∴BF =CG ,⌒BG =⌒CF ,∴∠FBC =∠GCE. 又BD =CE ,∴△BFD ≌△CGE (SAS ),∴∠F =∠G. ∴⌒AB =⌒AC ,∴AB =AC.。
弧、弦、圆心角、圆周角--知识讲解(基础)
弧、弦、圆心角、圆周角--知识讲解(基础)责编:常春芳【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
九年级数学人教版(上册)24.1.3弧、弦、圆心角
OF相等吗?为什么?
解:OE=OF. 理由如下:
A
E
B
OE AB,OF CD,
O·
D
AE 1 AB,CF 1 CD.
2
2
F C
又 AB=CD , AE=CF.
又 OA=OC, RtAOE≌RtCOF.
OE OF.
侵权必究
当堂练习
✓ 当堂反馈 ✓ 即学即用
侵权必究
当堂练习
在同一个圆中,如果圆心角相等,那么它们所对
的弧相等,所对的弦相等.
①∠AOB=∠COD
CB
②A⌒B=C⌒D ③AB=CD
D
O
A
侵权必究
新课导入
练一练
下列说法中,正确的是( C)
A.等弦所对的弧相等 B.等弧所对的弦相等 C.在同圆中,圆心角相等,所对的弦相等 D.弦相等,所对的圆心角相等
侵权必究
新课导入
弦所对应的圆心角相等 弦所对应的优弧相等 弦所对应的劣弧相等
侵权必究
新课导入
要点归纳
二、弧、弦与圆心角关系定理的推论
在同一个圆中,如果弧相等,那么它们所对的 圆心角相等,所对的弦相等.
在同一个圆中,如果弦相等,那么它们所对的 圆心角相等,所对的弧相等.
侵权必究
新课导入
关系结构图
圆心角 相等
弦相等
侵权必究
当堂练习
( (
( (
4.如图,已知AB、CD为⊙O的两条弦,AD=BC
求证:AB=CD.
证明:连接AO,BO,CO,DO.
∵AD=BC
AOD BOC.
C B
O.
D A
AOD+BOD=BOC+BOD.
弧、弦、圆心角课件(共22张PPT)人教版数学九年级上册
∴∠ACE=∠AEC, ∴AC=AE,同理,BF=BD.易知AC=
CD=BD,∴AE=BF=CD.
【题型三】利用弧、弦、圆心角证明
= ,
⊥ 于点D,CE⊥
例5:如题图,在⊙O中,
OB于点E,求证:AD=BE.
D.3 个
例4:如题图,已知∠ AOB=90°, C, D 是的三等分点,
连接AB分别交OC, OD 于点 E, F.(1)求∠AEC的度数;
(1)解:连接AC, BD,如答图.∵C,D是的三等分点,
=
= ,∴∠AOC=∠COD=∠BOD.
∴
∵∠ = 90°, ∴ ∠ =
相等,所对的弦相等.
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角
相等,所对的优弧和劣弧分别相等.
教师讲评
注:理解弦、弧、圆心角的关系思维图:
典型精讲
【题型一】弧、弦、圆心角概念的理解与认识
例1: 下列语句中,正确的有( A )
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度
证明:如答图,连接OC.
= ,
∴ ∠ = ∠.
∵
∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90° .
又∵CO=CO,∴△COD≌△COE,∴OD=OE.
又∵OA=OB, ∴OA-OD=OB-OE,∴AD=BE.
例6:如题图,AB为⊙O的直径,AE为⊙O的弦,C为⊙O上一点,
心角相等,所对的优弧和劣弧分别相等)
5.如果没有“在同圆或等圆中”这个条件,还能得出对应的结论吗?
(不能)
九年级数学弧、弦、圆心角
相等 ,所对的弧也________ 相等 . 角________
弧、弦、圆心角关系的应用
例题:如图 1,已知⊙O 的弦 AB 与半径 OE、OF 分别交于 C、D,且 AC=BD.
求证:(1)OC=OD;
(2) AE = BF . 图1 思路导引:作OH⊥AB 交 AB 于 H,构造垂径定理.
证明:(1)作 OH⊥AB 交 AB 于 H,交圆于 G, ∵OH⊥AB,∴AH=BH, 又 AC=BD,∴CH=DH.∴△OCH≌△ODH, ∴OC=OD.
第 3 课时
弧、弦、圆心角
弧、弦、圆心角之间的相等关系 相等 ,所对的弦 在同圆或等圆中,相等的圆心角所对的弧_____
相等 . ______
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心
相等 . 相等 ,所对的弦也________ 角________
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心
4.如图 5,⊙O 中,弦 AB=CD,求证:=CD,∴ AB = CD . ∴ AB - BD = CD - BD .∴ AD = BC .∴AD=BC.
(2)由(1)得∠EOG=∠FOG,∴ EG = FG , 又 AG = BG ,∴ AE = BF .
1.在图 2 中,下列各角是圆心角的是( C )
A.∠ODC C.∠AOB B.∠OCD
D.∠BDC
图2 图3 2.如图 3,A、B、C、D 是⊙O 上的四点,如果 AB = CD , 50° ∠COD=50°,那么∠AOB=________.
3.如图 4,已知⊙O 中, AB =2 CD ,则 AB 与 CD 的关系
是( C ) A.AB=2CD
C.AB<2CD
24.1.3 弧、弦、圆心角 初中数学人教版数学九年级上册课件
符号语言: ∠AOB=∠A′OB′
AB=AB AB=A′B′
B′ A′ B
O
A
定理:在同圆或等圆中,如果圆心角相等,那么圆心角所对的 弧相等;圆心角所对的弦相等.
把题设中“圆心角相等”与两个结论中的任意一个交换,得到 两个新命题,你能验证这两个命题的真假吗?
命题1:在同圆或等圆中,如果弧相等,那么弧所对的圆心角相 等,弧所对的弦相等.
证明:∵ AB= AC, ∴AB=AC. ∴△ABC是等腰三角形. 又∠ACB=60°, ∴△ABC是等边三角形 . ∴AB=BC=CA. ∴∠AOB=∠BOC=∠AOC.
A
O
B
C
在同圆或等圆中,当证明等弦、等 角的问题时,除利用三角形全等及其他 相关的性质外,一定要善于利用弧、弦、 圆心角三者的相关定理来完成.
B
O
A
∴∠AOB=∠A′OB′.
∴ AB=AB(在同圆或等圆中,相等的圆心角所对的弧相等).
推论1
在同圆或等圆中,如果两条弧相等,那么它们所对 的圆心角相等,所对的弦相等.
符号语言: AB=AB
∠AOB=∠A′OB′ AB=A′B′
B′ A′ B
O
A
推论2
在同圆或等圆中,如果两条弦相等,那么它们所对 的圆心角相等,所对的优弧和劣弧分别相等.
2023—2024学年人教版数学九年级上册
24___等__圆____,在同圆或等圆中,能够 互相重合的弧叫做___等__弧_____.
2.圆是轴对称图形,_任__何__一__条__直__径__所__在__直__线___都是圆的对称轴. 3.垂径定理: 垂直于弦的直径平分弦,并且平分弦所对的两条弧. 4.垂径定理的推论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
人教版数学九年级上册《弧、弦、圆心角》圆
15
︵︵
11.如图,AB 是⊙O 的直径,点 C、D 在圆上,且CD=BD. (1)求证:AC∥OD;
︵
(2)若∠AOD=110°,求AC所对的圆心角的度数.
16
(1)证明:连接 OC.∵C︵D=B︵D,∴∠COD=∠DOB=12∠COB.∵OA=OC, ∴∠A=∠C=12∠COB,∴∠A=∠DOB,∴AC∥OD.
2
• 知识点3 弧、弦、圆心角的关系定理 • 在同圆或等圆中,相等的圆心角所对的弧相等,所
对的弦也相等. • 注意:(1)在同圆或等圆中,两条弧、两条弦、两个
圆心角三组量中,如果有一组量相等,那么它们所 对的另外两组量也分别相等. • (2)不能忽略“在同圆或等圆中”这个前提条件,如 果丢掉了这个前提条件,即使圆心角相等,所对的 弧、弦也不一定相等.
︵︵︵ 9.如图,在⊙O 中,AB=BC=CD,OB、OC 分别交 AC、BD 于点 E、F,则 下 列 结 论 : ① OE = BE ; ② OC ⊥ BD ; ③ AE = DF ; ④ OE = OF. 其 中 正 确 的 有 __②__③__④____.(填序号)
14
︵︵
10.【山东德州中考】如图,CD 为⊙O 的直径,弦 AB⊥CD,垂足为 E,AB=BF, 48
21
︵
︵︵
证明:连接 OE.∵E 是BC的中点,∴BE=EC
,∴OE⊥BC.∵AD⊥BC,∴OE
∥AD,∴∠OEA=∠EAD.∵OE=OA,∴∠OAE=∠OEA,∴∠OAE=∠EAD.
22
9
︵︵
︵︵
6.如图,在⊙O 中,∠AOD=∠BOC,则AB与CD的大小关系是__A_B_=__C__D__.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在图 2 中,下列各角是圆心角的是( C )
A.∠ODC
B.∠OCD
C.∠AOB
D.∠BDC
图2
图3
2.如图 3,A、B、C、D 是⊙O 上的四点,如果 AB=CD,
∠COD=50°,那么∠AOB=___5_0_°___.
3.如图 4,已知⊙O 中, AB=2CD,则 AB 与 CD 的关系
是( C )
A.AB=2CD
C.AB<2CD B.AB>2CD D.无法确定
E
图4
解析:过点 O 作 AB 的垂线,交 AB于点 E.连接 AE、BE, 则 AE = BE .又∵ AB=2CD,∴ AE = BE =CD,∴AE=BE=CD. ∵AE+BE>AB,∴2CD>AB.
4.如图 5,⊙O 中,弦 AB=CD,求证:AD=BC.
图5 证明:∵AB=CD,∴ AB=CD. ∴ AB- BD=CD- BD.∴ AD= BC .∴AD=BC.
第 3 课时 弧、弦、圆心角
弧、弦、圆心角之间的相等关系 在同圆或等圆中,相等的圆心角所对的弧_____,所对的弦 ______. 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心 角________,所对的弦也________. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心 角________,所对的弧也________.
弧、弦、圆心角关系的应用 例题:如图 1,已知⊙O 的弦 AB 与半径 OE、OF 分别交于 C、D,且 AC=BD. 求证:(1)OC=OD;
(2) AE = BF .
图1 思路导引:ቤተ መጻሕፍቲ ባይዱOH⊥AB 交 AB 于 H,构造垂径定理.
证明:(1)作 OH⊥AB 交 AB 于 H,交圆于 G, ∵OH⊥AB,∴AH=BH, 又 AC=BD,∴CH=DH.∴△OCH≌△ODH, ∴OC=OD. (2)由(1)得∠EOG=∠FOG,∴ EG= FG, 又 AG= BG,∴ AE = BF .