山东省临沂市兰山区2017-2018学年七年级数学下学期期中试题
2017-2018学年度七年级(下)期中数学试卷(有答案及解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共16小题,共42.0分)1.下列运算正确的是()A. B. C. D.2.用加减法解方程组时,下列四种变形中正确的是()A. B. C. D.3.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A. B. C. D.4.根据图中提供的信息,可知一个杯子的价格是()A. 51元B. 35元C. 8元D. 元5.已知a,b满足方程组,则a-b的值为()A. B. 0 C. 1 D. 26.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角7.已知x+y=6,xy=4,则x2y+xy2的值为()A. 12B.C.D. 248.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.B.C.D.9.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19B. 18C. 16D. 1510.如图,点在延长线上,下列条件中不能判定BD∥AC的是()A.B.C.D.11.已知x a=3,x b=5,则x3a-2b=()A. 52B.C.D.12.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成为一个矩形,通过计算两个图形(阴影部分)的面积,可以验证的等式是()A. B.C. D.13.如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A. 10,4B. 4,10C. 3,10D. 10,314.已知方程组和有相同的解,则a,b的值为()A. B. C. D.15.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()A. 4种B. 11种C. 6种D. 9种16.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.B.C.D.二、填空题(本大题共4小题,共12.0分)17.若方程 2x m-1+y2n+m=是二元一次方程,则mn=______.18.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于______.19.已知2x+5y=1,则4x•32y的值为______.20.已知21=2,22=4,23=8,24=16,25=32,……,观察规律,试猜想22016的末位数字是______.三、计算题(本大题共3小题,共24.0分)21.用代入法解方程组:22.化简求值:(3a+b)2-(3a-b)(3a+b)-5b(a-b),其中a=1,b=-2.23.列方程解应用题在“元旦”期间,小明,小亮等同学随家长一同到我市某景区游玩,下面是买门票时,小明与他爸爸看了票价后的对话:票价:成人:每张35元;学生:按成人票价的5折优惠;团体票(16人以上含16人):按成人票价的a折优惠.爸爸:大人门票是每张35元,学生门票是5折优惠,我们一共12人,共需350元.小明:爸爸,等一下,让我算一算,如果按团体票方式买票,还可节省14元.试根据以上信息,解答以下问题:(1)小明他们一共去了几个成人?几个学生?(2)求票价中a的值.四、解答题(本大题共4小题,共42.0分)24.(1)已知:如图1,AE∥CF,易知∠A P C=∠A+∠C,请补充完整证明过程:证明:过点P作MN∥AE∵MN∥AE(已作)∴∠APM=______(______),又∵AE∥CF,MN∥AE∴∠MPC=∠______(______)∴∠APM+∠CPM=∠A+∠C即∠APC=∠A+∠C(2)变式:如图2-4,AE∥CF,P1,P2是直线EF上的两点,猜想∠A,∠A P1P2,∠P1P2C,∠C这四个角之间的关系,并直接写出以下三种情况下这四个角之间的关系.25.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.26.27.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的______.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.28.探索发现:如图1,已知直线l1∥l2,且l3和l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP记作∠1,∠BDP记作∠2,∠CPD记作∠3.点P在线段AB上.(1)若∠1=20°,∠2=30°,请你求出∠3的度数.归纳总结:(2)请你根据上述问题,请你找出图1中∠1、∠2、∠3之间的数量关系,并直接写出你的结论.实践应用:(3)应用(2)中的结论解答下列问题:如图2,点A在B的北偏东 40°的方向上,在C的北偏西45°的方向上,请你根据上述结论直接写出∠BAC的度数.拓展延伸:(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),写出你的结论并说明理由.答案和解析1.【答案】D【解析】解:A、(a4)3=a12,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(2ab)3=8a3b3,故此选项错误;D、-a5•a5=-a10,故此选项正确.故选:D.分别利用同底数幂的除法、同底数幂的乘法、积的乘方法则分别判断得出即可.本题考查了同底数幂的除法、同底数幂的乘法、积的乘方,解题的关键是掌握相关运算的法则.2.【答案】C【解析】解:用加减法解方程组时,下列四种变形中正确的是,故选:C.方程组中第一个方程左右两边乘以2,第二个方程左右两边乘以3,将两方程y系数化为互为相反数,利用加减法求解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】A【解析】解:将150 000 000用科学记数法表示为:1.5×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选:C.要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.此题的关键是如何把左图中一杯一壶的已知量用到右图中,这就要找规律,仔细看不难发现,右图是左图的2倍+一个杯子.5.【答案】A【解析】解:②-①得:a-b=-1.故选:A.要求a-b的值,经过观察后可让两个方程相减得到.其中a的符号为正,所以应让第二个方程减去第一个方程即可解答.要想求得二元一次方程组里两个未知数的差,有两种方法:求得两个未知数,让其相减;观察后让两个方程式(或整理后的)直接相加或相减.6.【答案】B【解析】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.本题考查了余角和垂线的定义以及对顶角相等的性质.7.【答案】D【解析】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故选:D.直接利用提取公因式法分解因式进而求出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.【答案】A【解析】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°-∠BAC=40°,故选:A.根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC的度数,再结合∠ACD+∠BAC=180°.9.【答案】C【解析】解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,则2x+2y=16.故选:C.设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.10.【答案】B【解析】解:选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A选项不合题意.选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),不能判定BD∥AC,所以B选项符合题意;选项C中,∵∠5=∠C,∴BD∥AC (内错角相等,两直线平行),所以C选项不合题意;选项D中,∵∠C+∠BDC=180°,∴BD∥AC(同旁内角互补,两直线平行),所以D 选项不合题意;故选:B.根据平行线的判定方法直接判定即可.本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.【答案】B【解析】解:∵x a=3,x b=5,∴x3a-2b=(x a)3÷(x b)2=33÷52=.故选:B.直接利用同底数幂的乘除运算法则将原式变形得出答案.此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.12.【答案】D【解析】解:由题意得:a2-b2=(a+b)(a-b).故选:D.利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形是长为a+b,宽为a-b,根据两者相等,即可验证平方差公式.此题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.13.【答案】A【解析】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.把代入2x+y=16先求出■,再代入x+y求★.本题主要考查了二元一次方程组的解,解题的关键是理解题意,代入法求解.14.【答案】D【解析】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.因为方程组和有相同的解,所以把5x+y=3和x-2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.本题主要考查了二元一次方程的解及二元一次方程组的解法,正确理解题意,然后根据题意得到关于待定系数的方程组,解方程组是解答此题的关键.15.【答案】C【解析】解:设6人帐篷用了x个,4人帐篷用了y个,根据题意得:6x+4y=60,即y==,当x=0时,y=15;当x=2时,y=12;当x=4时,y=9;当x=6,y=6;当x=8时,y=3;当x=10时,y=0;则不同的搭建方案有6种.故选:C.设6人帐篷用了x个,4人帐篷用了y个,根据题意列出方程,求出方程的解即可得到结果.此题考查了二元一次方程的应用.(1)找出问题中的已知条件和未知量及它们之间的关系.(2)找出题中的两个关键的未知量,并用字母表示出来.(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.(4)根据未知数的实际意义求其整数解.16.【答案】C【解析】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°-α;△EHD中,∠2=β-γ,∵AB∥EF,∴∠1=∠2,∴90°-α=β-γ,即α+β-γ=90°.故选:C.此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.17.【答案】-1【解析】解:由题意得:m-1=1,2n+m=1,解得:m=2.n=-,mn=-1,故答案为:-1.根据二元一次方程的定义可得m-1=1,2n+m=1,解方程可得m、n的值,进而得到答案.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.18.【答案】65°【解析】解:∵∠ACB=90°,∠1=25°,∴∠3=90°-25°=65°,∵直尺的两边互相平行,∴∠2=∠3=65°.故答案为:65°.先求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,余角的定义,熟记性质是解题的关键.19.【答案】2【解析】【分析】根据同底数幂的运算法则即可求出答案.本题考查了幂的运算法则,解题的关键是熟练运用同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:当2x+5y=1时,4x•32y=22x•25y=22x+5y=21=2,故答案为2.20.【答案】6【解析】解:这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,∴22016的个位数是6,故答案为6.这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,故22016的个位数是6,本题考查的是位数特征,找到尾数循环的规律即可求解.21.【答案】解:由②得:x=1-5y③把③代入①得:2(1-5y)+3y=-19解这个方程,得y=3,把y=3代入③,得x=-14所以原方程组的解是.【解析】由方程组第二个方程表示出x,代入第一个方程消元x求出y的值,进而求出x的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】解:原式=9a2+6ab+b2-9a2+b2-5ab+5b2=ab+7b2,当a=1,b=-2,原式=-2+28=26.【解析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)设他们一共去了x个成人,则有(12-x)个学生,由题意得,35x+35×0.5×(12-x)=350,解得:x=8,12-x=12-8=4,答:他们一共去了8个成人,4个学生;(2)由题意,得35×16×=350-14,解得:a=6.答:a的值为6.【解析】(1)设他们一共去了x个成人,则有(12-x)个学生,根据总票价话费350元,列出方程,求出x的值即可;(2)根据团体价可节省14元,求出团体价所花费的钱数,然后列方程求出a的值即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【答案】∠A两直线平行,内错角相等∠C两直线平行,内错角相等【解析】(1)证明:过点P作MN∥AE,∵MN∥AE(已作),∴∠APM=∠A(两直线平行,内错角相等),又∵AE∥CF,MN∥AE,∴∠MPC=∠C(两直线平行,内错角相等),∴∠APM+∠CPM=∠A+∠C,即∠APC=∠A+∠C,故答案为:∠A,两直线平行两直线平行;C,两直线平行两直线平行;(2)∠AP1P2+∠P1P2C-∠A-∠C=180°,∠AP1P2+∠P1P2C+∠A-∠C=180°,∠AP1P2+∠P1P2C-∠A+∠C=180°.(1)根据平行线的性质得到∠APM=∠A,∠MPC=∠C,于是得到∠APM+∠CPM=∠A+∠C,即可得到结论;(2)根据(1)的结论即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.25.【答案】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC-∠PBC,∠2=∠BCD-∠BCQ,∴∠1=∠2.【解析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.26.【答案】C不彻底(x-2)4【解析】解:(1)运用了C,两数和的完全平方公式;(2)x2-4x+4还可以分解,分解不彻底;(3)设x2-2x=y.(x2-2x)(x2-2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2-2x+1)2,=(x-1)4.(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2-4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.27.【答案】解:(1)∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=50°;(2)∠1+∠2=∠3,理由:∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3;(3)如图2,过A点作AF∥BD,则AF∥BD∥CE,∴∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)当P点在A的外侧时,如图3,过P作PF∥l1,交l4于F,∴∠1=∠FPC,∵l1∥l4,∴PF∥l2,∴∠2=∠FPD,∵∠CPD=∠FPD-∠FPC,∴∠CPD=∠2-∠1,当P点在B的外侧时,如图4,过P作PG∥l2,交l4于G,∴∠2=∠GPD,∵l1∥l2,∴PG∥l1,∴∠1=∠CPG,∵∠CPD=∠CPG-∠GPD,∴∠CPD=∠1-∠2.【解析】(1)根据两直线平行,同旁内角互补,即可得出∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠3=∠1+∠2=50°;(2)根据l1∥l2,可得∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠1+∠2=∠3;(3)过A点作AF∥BD,根据AF∥BD∥CE,即可得到∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)分两种情况进行讨论:P点在A的外侧,P点在B的外侧,分别根据平行线的性质进行求解即可.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线,构造内错角.。
临沂市七年级下学期期中考试数学试卷及答案解析(共两套)
临沂市七年级下学期期中考试数学试卷(一)一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.52.下列各式中,正确的是()A.±=± B.±= C.±=± D. =±3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣14.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C. D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80° B.左转80°C.右转100° D.左转100°8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P 的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式.16.3﹣的相反数是,绝对值是.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB 7cm.(填>或者<或者=或者≤或者≥).20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE= ()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.参考答案与试题解析一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.5【考点】26:无理数.【分析】根据无理数的定义及常见的无理数的形式即可判定.【解答】解:在下列各数:3.1415926、、0.2、、、、中,根据无理数的定义可得,无理数有、两个.故选A.2.下列各式中,正确的是()A.±=± B.±= C.±=± D. =±【考点】22:算术平方根.【分析】根据平方根的定义得到±=±,即可对各选项进行判断.【解答】解:因为±=±,所以A选项正确;B、C、D选项都错误.故选A.3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣1【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b 的值,计算即可.【解答】解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选:B.4.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】2B:估算无理数的大小.【分析】估算出的范围,即可确定出所求式子的范围.【解答】解:∵16<21<25,∴4<<5,即2<﹣2<3,则﹣2的值在2到3之间,故选B5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】正确的命题叫真命题,错误的命题叫做假命题,据此逐项判断即可.【解答】解:∵若a>0,b>0,则a+b>0,∴选项①符合题意;∵若a≠b,且|a|=|b|时,a2=b2,∴选项②不符合题意;∵两点之间,线段最短,∴选项③符合题意;∵同位角相等,两直线平行,∴选项④符合题意,∴真命题的个数是3个:①、③、④.故选:C.6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C. D.【考点】Q1:生活中的平移现象.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、由图中所示的图案通过旋转而成,故本选项错误;B、由图中所示的图案通过翻折而成,故本选项错误C、由图中所示的图案通过旋转而成,故本选项错误;D、由图中所示的图案通过平移而成,故本选项正确.故选D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°【考点】IH:方向角.【分析】本题考查了方向角有关的知识,若需要和出发时的方向一致,在C点的方向应调整为向右80度.【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A.8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【考点】D1:点的坐标.【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】让B的横坐标加5,纵坐标减3即可得到所求点A的坐标.【解答】解:∵将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,∴所求点A的横坐标为:﹣3+5=2,纵坐标为2﹣3=﹣1,∴所求点的坐标为(2,﹣1).故选D.10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】D3:坐标确定位置.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P 的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x 轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】JA:平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【考点】PB:翻折变换(折叠问题).【分析】由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC﹣∠EFG.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°﹣2∠EFG=140°,在图c中∠CFE=∠GFC﹣∠EFG=120°,故选B.二、填空题(每小题3分,共18分)15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【考点】O1:命题与定理.【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.16.3﹣的相反数是﹣3 ,绝对值是﹣3 .【考点】28:实数的性质.【分析】根据只有符号不同的两数叫做互为相反数解答;根据负数的绝对值等于它的相反数解答.【解答】解:3﹣的相反数是﹣3,绝对值是﹣3.故答案为:﹣3;﹣3.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是49 .【考点】21:平方根.【分析】根据平方根的定义得到2a﹣3与5﹣a互为相反数,列出关于a的方程,求出方程的解得到a的值,即可确定出这个正数.【解答】解:根据题意得:2a﹣3+5﹣a=0,解得:a=﹣2,则这个正数为49.故答案为:4918.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是(﹣,).【考点】D1:点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列方程求出a的值,再求解即可.【解答】解:∵点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,∴﹣2a+1﹣3a=4,解得a=﹣,∴2a=2×(﹣)=﹣,1﹣3a=1﹣3×(﹣)=1+=,所以,点P的坐标为(﹣,).故答案为(﹣,).19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB ≥ 7cm.(填>或者<或者=或者≤或者≥).【考点】J4:垂线段最短;J5:点到直线的距离.【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为98 米.【考点】Q1:生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(共60分)21.(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.【考点】2C:实数的运算.【分析】(1)原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=2+2+=4+;(2)方程整理得:(x﹣2)2=9,开方得:x﹣2=±3,解得:x=5或x=﹣1.22.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE= ∠ABC (两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE (角平分线定义)∠ABE=∠ABC (角平分线定义)∴∠ADF=∠ABE∴DF ∥BE (同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)【考点】JB:平行线的判定与性质.【分析】根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.【解答】解:理由是:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义),∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等;∠ADE,角平分线定义;∠ABC,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A( 2 ,﹣1 )、B( 4 , 3 )(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′( 1 、 1 )、B′( 3 、 5 )、C′0 、4 )(4)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);(4)△ABC的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.24.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【考点】IH:方向角;J5:点到直线的距离.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.25.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【考点】J9:平行线的判定.【分析】(1)证明∠1=∠CDB,利用同位角相等,两直线平行即可证得;(2)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(3)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.26.如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【考点】JA:平行线的性质.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.临沂市七年级下学期期中考试数学试卷(二)一、选择题1、下面四个实数中,是无理数的为()A、0B、C、﹣2D、2、如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A、40°B、50°C、90°D、130°3、在平面直角坐标系中,点P(﹣2,﹣3)在()A、第一象限B、第二象限C、第三象限D、第四象限4、在如图中,下列能判定AD∥BC是()A、∠1=∠2B、∠3=∠4C、∠2=∠3D、∠1=∠45、4的平方根是()A、±2B、2C、±D、6、如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A、(0,1)B、(2,1)C、(1,0)D、(1,﹣1)7、通过估算,估计的大小应在()A、7~8之间B、8.0~8.5之间C、8.5~9.0之间D、9~10之间8、如图,直线a∥b,直角三角板的直角顶点P在直线b上,若∠1=56°,则∠2为()A、24°B、34°C、44°D、54°9、如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是()A、120°B、135°C、150°D、160°10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是()A、150°B、180°C、270°D、360°11、以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A、第一象限B、第二象限C、第三象限D、第四象限12、若方程mx+ny=6的两个解是,,则m,n的值为()A、4,2B、2,4C、﹣4,﹣2D、﹣2,﹣4二、填空题13、若+|b2﹣16|=0,则ab=________.14、若点M(a+3,a﹣2)在y轴上,则点M的坐标是________.15、如图所示,请写出能判定CE∥AB的一个条件________.16、在平面直角坐标系中,点A的坐标为(﹣1,3),线段AB∥x轴,且AB=4,则点B的坐标为________.17、如图,已知△ABC 的周长为20cm ,现将△ABC 沿AB 方向平移2cm 至△A′B′C′的位置,连接CC′,则四边形AB′C′C 的周长是________ cm .18、已知a 、b 满足方程组 ,则3a+b 的值为________.19、已知A (1,0),B (0,2),点P 在x 轴上,且△PAB 面积是5,则点P 的坐标是________.20、如图,点A (1,0)第一次跳动至点A 1(﹣1,1),第二次跳动至点A 2(2,1),第三次跳动至点A 3(﹣2,2),第四次跳动至点A 4(3,2),…,依此规律跳动下去,点A 第100次跳动至点A 100的坐标是________.三、解答题21、计算:(1)+ ﹣ (2)﹣ +|1﹣ |+ .22、解方程组:(1)(2).23、按图填空,并注明理由.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴________∥________(________ )∴∠E=∠________(________ )又∵∠E=∠3 (已知)∴∠3=∠________(________ )∴AD∥BE.(________ )24、如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.25、如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.26、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A,B的坐标:A(________,________)、B(________,________)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(________,________)、B′(________,________)、C′(________,________).(3)△ABC的面积为________.答案解析部分一、选择题1、【答案】B【考点】无理数【解析】【解答】解:A、0是有理数,故选项错误;B、是无理数,故选项正确;C、﹣2是有理数,故选项错误;D、是有理数,故选项错误.故选;B.【分析】根据无理数的定义:无限不循环小数是无理数即可求解.2、【答案】B【考点】平行线的性质,平移的性质【解析】【解答】解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选:B.【分析】根据平移的性质得出l1∥l2,进而得出∠2的度数.3、【答案】C【考点】点的坐标【解析】【解答】解:∵点P的横坐标﹣2<0,纵坐标为﹣3<0,∴点P(﹣2,﹣3)在第三象限.故选:C.【分析】应先判断出点P的横纵坐标的符号,进而判断其所在的象限.4、【答案】C【考点】平行线的判定【解析】【解答】解:∵∠2=∠3,∴AD∥BC.故选C.【分析】直接根据平行线的判定定理即可得出结论.5、【答案】A【考点】平方根【解析】【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.6、【答案】C【考点】坐标确定位置【解析】【解答】解:如图,嘴的位置可以表示成(1,0).故选C.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.7、【答案】C【考点】估算无理数的大小【解析】【解答】解:∵64<76<81,∴8<<9,排除A和D,又∵8.52=72.25<76.故选C.【分析】先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.8、【答案】B【考点】平行线的性质【解析】【解答】解:如图,∵∠1+∠3+∠4=180°,∠1=56°,∠4=90°,∴∠3=34°,∵a∥b,∴∠2=∠3=34°.故选B.【分析】先根据平角的定义求出∠3的度数,然后根据两直线平行同位角相等,即可求出∠2的度数.9、【答案】C【考点】钟面角、方位角【解析】【解答】解:由题意得:∠1=30°,∠2=60°,∵AE∥BF,∴∠1=∠4=30°,∵∠2=60°,∴∠3=90°﹣60°=30°,∴∠ABC=∠4+∠FBD+∠3=30°+90°+30°=150°,故选:C.【分析】首先根据题意可得:∠1=30°,∠2=60°,再根据平行线的性质可得∠4的度数,再根据∠2和∠3互余可算出∠3的度数,进而求出∠ABC的度数.10、【答案】C【考点】平行线的性质【解析】【解答】解:过点B作BF∥AE,如图,∵CD∥AE,∴BF∥CD,∴∠BCD+∠CBF=180°,∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=90°+180°=270°.故选C.【分析】过点B作BF∥AE,如图,由于CD∥AE,则BF∥CD,根据两直线平行,同旁内角互补得∠BCD+∠CBF=180°,由AB⊥AE得AB⊥BF,所以∠ABF=90°,于是有∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=270°.故选C.11、【答案】A【考点】解二元一次方程组,点的坐标【解析】【解答】解:根据题意,可知﹣x+2=x﹣1,∴x= ,∴y= .∵x>0,y>0,∴该点坐标在第一象限.故选A.【分析】此题可解出的x、y的值,然后根据x、y的值可以判断出该点在何象限内.12、【答案】A【考点】二元一次方程的解【解析】【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A【分析】将x与y的两对值代入方程计算即可求出m与n的值.二、<b >填空题</b>13、【答案】8或﹣8【考点】二次根式的非负性,绝对值的非负性【解析】【解答】解:∵ +|b2﹣16|=0,∴a﹣2=0,b2﹣16=0,解得:a=2,b=±4,∴ab=8或﹣8,故答案为:8或﹣8.【分析】由算术平方根和绝对值的非负性质得出a﹣2=0,b2﹣16=0,求出a和b 的值,即可得出结果.14、【答案】(0,﹣5)【考点】点的坐标【解析】【解答】解:∵点M(a+3,a﹣2)在y轴上,∴a+3=0,即a=﹣3,∴点M的坐标是(0,﹣5).故答案填:(0,﹣5).【分析】让点M的横坐标为0求得a的值,代入即可.15、【答案】∠DCE=∠A【考点】平行线的判定【解析】【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.16、【答案】(﹣5,3)或(3,3)【考点】坐标与图形性质【解析】【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为3,又∵AB=4,∴当B点在A点左边时,B(﹣5,3),当B点在A点右边时,B(3,3);故答案为:(﹣5,3)或(3,3).【分析】线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.17、【答案】24【考点】平移的性质【解析】【解答】解:根据题意,得A的对应点为A′,B的对应点为B′,C的对应点为C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24cm.故答案为:24.【分析】根据平移的性质,经过平移,对应点所连的线段相等,对应线段相等,找出对应线段和对应点所连的线段,结合四边形的周长公式求解即可.18、【答案】8【考点】二元一次方程组的解【解析】【解答】解:,①+②得:3a+b=8,故答案为:8.【分析】方程组两方程相加即可求出所求式子的值.19、【答案】(﹣4,0)或(6,0)【考点】坐标与图形性质,三角形的面积【解析】【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又∵△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故答案为(﹣4,0)或(6,0).【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x 轴上,说明AP=5,已知点A的坐标,可求P点坐标.20、【答案】(51,50)【考点】探索数与式的规律,探索图形规律【解析】【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故答案为:(51,50)【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.三、<b >解答题</b>21、【答案】(1)解:原式=4+3﹣(﹣1)=8(2)解:原式=7﹣3+ ﹣1+ =3 +【考点】实数的运算【解析】【分析】(1)原式利用立方根,二次根式性质计算即可得到结果;(2)原式利用算术平方根,立方根,绝对值的代数意义,以及二次根式性质计算即可得到结果.22、【答案】(1)解:①+②得 4x=12,即x=3,代入①得6﹣y=7,解得y=﹣1,所以原方程的解是:(2)解:①×3﹣②×2得13y=13,即y=1,代入①得2x+3=5,即x=1,所以原方程的解是:【考点】解二元一次方程组【解析】【分析】(1)、(2)先用加减消元法求出x的值,再用代入消元法求出y 的值即可.23、【答案】BD;CE;内错角相等,两直线平行;4;两直线平行,内错角相等;4;等量代换;内错角相等,两直线平行【考点】平行线的判定与性质【解析】【解答】证明:∵∠1=∠2 (已知)∴EC∥DB((内错角相等,两直线平行)∴∠E=∠4(两直线平行,内错角相等)又∵∠E=∠3 (已知)∴∠3=∠4(等量代换)∴AD∥BE.(内错角相等,两直线平行).故答案是:BD;CE;(内错角相等,两直线平行);4;(两直线平行,内错角相等);4(等量代换);(内错角相等,两直线平行).【分析】根据平行线的判定定理和平行线的性质进行填空.24、【答案】证明:∵∠1=∠2,∴BD∥CE,∴∠C+∠CBD=180°,∵∠C=∠D,∴∠D+∠CBD=180°,∴AC∥DF,∴∠A=∠F【考点】平行线的判定与性质【解析】【分析】根据平行线判定推出BD∥CE,求出∠D+∠CBD=180°,推出AC∥DF,根据平行线性质推出即可.25、【答案】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°【考点】平行线的判定与性质【解析】【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.26、【答案】(1)2;-1;4;3(2)0;0;2;4;-1;3(3)5【考点】坐标与图形变化-平移【解析】【解答】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2× ×1×3﹣×2×4=5.【分析】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC 的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.。
2017--2018学年度第二学期鲁教版(五四制)七年级期中考试数学试卷
…外…………装………………订…姓名:_______________考号…○…………装…………………○………○…………绝密★启用前2017--2018学年度第二学期鲁教版(五四制)七年级期中考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分一、单选题(计30分)4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A. 13 B. 34 C. 12 D. 232.(本题3分)鸿运旅行社组织了197人到香格里拉和九寨沟旅游,到香格里拉的人数x 比到九寨沟的人数y 的2倍多5人,则下面所列的方程组中符合题意的是( ) A. 25{197x y x y =-+=B. 25{197x y x y =++=C. 197{25x y x y +==+ D. ()25{197x y x y =++=3.(本题3分)如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A. 18B. 38C. 58D. 784.(本题3分)如图,a ∥b ,将三角尺的直角顶点放在直线a 上,若∠1=50°,则∠2的度数为( )○…………装………………○……※※请※※不※※要※※………………A. 30°B. 40°C. 50°D. 60°5.(本题3分)一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 无法判定6.(本题3分)将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是()A.1927B. 949C.23D.8277.(本题3分)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 锐角三角形或钝角三角形8.(本题3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A. 1B. 2C. 3D. 49.(本题3分)2016年3月,某市举办了首届中学生汉字听写大会,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是()A.12B.13C.14D. 110.(本题3分)(2017四川省巴中市)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A. 24°B. 120°C. 96°D. 132°二、填空题(计32分)11.(本题4分)已知方程组4{2ax byax by-=+=的解为2{1xy==,求23a b-的值___________.12.(本题4分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那……○……………………线______班级:________………线…………○………内…………13.(本题4分)已知方程320{6320x y z x y z +-=++= ,则x :y :z=________14.(本题4分)一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,从中任意摸出一个球,则摸到红球的概率为 ________. 15.(本题4分)如图,若∠1=∠2,则__∥__,理由是_______________;若∠2=∠3,则___∥___,理由是_____________________.16.(本题4分)两个角的两边分别平行,且其中一个角比另一个角的2倍少15°,则这两个角为_____. 17.(本题4分)在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为25,则n =___________. 18.(本题4分)如图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB 与直线CD 的位置关系为__________,理由是_________.三、解答题(计58分)(1)56{ 3640x y x y +=--=(2)234{ 443x y x y +=-=.……装…………○…※不※※要※※在※※装※※订………线20.(本题8分)(2017内蒙古呼和浩特第20题)某专卖店有A ,B 两种商品.已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折? 21.(本题8分)如图所示,第一行表示各盒中球的颜色、个数情况,第二行表示摸到红球的可能性大小,请你用线把它们连接起来.22.(本题8分)已知x ,y 满足方程组 x −5y =−22x +5y =−1,求代数式2………订…___________考号………○………… 23.(本题8分)如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.24.(本题9分)中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?………线……○…25.(本题9分)如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F , ∠E = 140º,求∠BFD 的度数.参考答案1.B【解析】共有4张,正面是偶数的有3张,所以抽到偶数的概率是34.故选B.点睛:本题主要考查了概率的定义,在等可能事件中,如果所有等可能出现的基本结果的总数目为n ,事件A 包含的等可能的基本结果数为m 。
2017-2018学年七年级数学下期中考试卷及答案
2017-2018学年七年级数学下期中考试卷及答案2017 — 2018 学年度第二学期初一年级数学学科期中检测试卷(全卷满分150 分,答题时间120 分钟)一、选择题(共8 小题,每题 3 分,共 24 分)1.以下图形中,能将此中一个图形平移获得另一个图形的是(▲)A. B.c. D.2 .以下计算正确的选项是(▲)A. B.c. D.3 .以下长度的 3 条线段,能首尾挨次相接构成三角形的是(▲)A .1c,2c, 4cB. 8c,6c, 4cc .15c, 5c, 6cD. 1c, 3c,4c4 .以下各式能用平方差公式计算的是(▲)A. B.c. D.5 .若 , ,则的值为(▲)A . 6B. 8c. 11D. 186 .如图, 4 块完整同样的长方形围成一个正方形. 图中阴影部分的面积能够用不一样的代数式进行表示,由此能考证的等式是(▲)A. B.c. D.7 .当 x=﹣6, y=时,的值为(▲)A.﹣ 6B. 6c.D.8.如图,四边形 ABcD中, E、 F、 G、 H 挨次是各边中点,o 是形内一点,若四边形AEoH、四边形BFoE、四边形cGoF 的面积分别为 7、 9、 10,则四边形DHoG面积为(▲)A . 7B. 8c. 9D.10二、填空题(共10 小题,每题 3 分,共 30 分)9.随意五边形的内角和与外角和的差为度.10.已知一粒米的质量是 0.000021 千克,这个数字用科学记数法表示为.11 .假如一个完整平方式,则=.12.已知,,则的值是 ______.13.假如( x+1)( x+)的乘积中不含 x 的一次项,则的值为.14 .若,则= .15. 若 { █ (x=3@y=-2) 是方程组 { █ (ax+by=1@ax-by=5) 的解,则 a+b=________.16.已知,且,那么的值为.17.如图,将△ ABc 沿 DE、 EF 翻折,极点 A,B 均落在点o 处,且 EA与 EB重合于线段 Eo,若∠ cDo+∠ cFo= 78°,则∠ c 的度数为 =.18.如图,长方形 ABcD中, AB=4c,Bc=3c,点 E 是 cD 的中点,动点 P 从 A 点出发,以每秒 1c 的速度沿 A→B→ c→ E运动,最后抵达点 E.若点 P 运动的时间为 x 秒,那么当x=_________ 时,△ APE的面积等于.三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定地区内作答)19 .计算(每题 4 分,共 16 分)(1)(2)(3)(4)( a-b+ 1)( a+ b- 1)20.解方程组(每题 4 分,共 8 分)(1)(2)21.(此题满分 8 分)绘图并填空:如图,每个小正方形的边长为 1 个单位,每个小正方形的极点叫格点.(1)将△ ABc 向左平移 8 格,再向下平移 1 格.请在图中画出平移后的△ A′ B′ c′(2)利用网格线在图中画出△ ABc 的中线 cD,高线 AE;(3)△ A′ B′ c′的面积为 _____.22.(此题满分 6 分)已知:如图, AB∥ cD,EF 交 AB于 G,交 cD 于 F,FH均分∠ EFD,交 AB于 H,∠ AGE=40°,求∠ BHF 的度数.23.(此题满分 10 分)已知:如图 , 在△ ABc 中,BD⊥ Ac 于点 D,E 为 Bc 上一点 , 过 E 点作 EF⊥ Ac, 垂足为 F, 过点 D作 DH ∥Bc 交 AB于点 H.(1) 请你补全图形。
2017-2018学年度第二学期鲁教版(五四制)七年级期中考试备考数学试卷
绝密★启用前 2017-2018学年度第二学期 鲁教版(五四制)七年级期中考试备考数学试卷温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你保持镇静,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服些,祝你成功!本卷25题,答卷时间100分钟,满分120分. A. 1个 B. 2个 C. 3个 D. 4个 2.(本题3分)三元一次方程组3{ 5 4x y y z z x +=+=+=的解为( ) A. 0{2 3x y z === B. 1{2 3x y z === C. 1{0 3x y z === D. 3{ 1 1x y z === 3.(本题3分)某校体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3倍的和等于42人,若设体操队的人数是x 人,篮球队的人数为y 人,则可列方程组为( ) A. 56{ 342x y x y =+= B. ()65{ 342x y x y =+= C. 56{ 42x y x y =+= D. 65{ 342x y x y =+= 4.(本题3分)如图所示,已知AC ∥ED ,∠C =30°,∠CBE =40°,则∠BED 的度数是( ).……………○…………装………订……………线…………○……※※请※※不※※要※线※※内※※答※※题※※…………………○………A. 60°B. 80°C. 70°D. 50°5.(本题3分)如图,∠AOB 的边OA 为平面反光镜,一束光线从OB 上的C 点射出,经OA 上的D 点反射后,反射光线DE 恰好与OB 平行,若∠AOB=40°,则∠BCD 的度数是( )A. 60°B. 80°C. 100°D. 120°6.(本题3分)下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB 到C ,使BC=AB ,其中是命题的有( )A. ①②B. ②③C. ①④D. ①③7.(本题3分)如图,已知∠AOB =70°,OC 平分∠AOB ,DC ∥OB ,则∠C 为( )A. 20°B. 35°C. 45°D. 70°8.(本题3分)一个口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸到白球的概率是( )A. B. C. D.9.(本题3分)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到的卡片上算式正确的概率是( )A. 14B. 12C. 34D. 1○………………○…………………○………学校:______名:___________班级:_____………内………装…………○………………○…………线…………10.(本题3分)若2310x y z ++=, 43215x y z ++=,则x y z ++的值为( ) A. 5 B. 4 C. 3 D. 2 二、填空题(计32分) 11.(本题4分)已知-2x m -1y 3与12x n y m +n 是同类项,那么 (n -m )2017=_________.12.(本题4分)已知方程组 a 3=b 5=c 7,3a +2b −4c =9, ,则a +b +c 的值等于_________. 13.(本题4分)如果一个两位数的个位数字与十位数字的和5,那么这样的两位数的个数是_________. 14.(本题4分)如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B =36°,∠C =76°,则∠DAF =__________. 15.(本题4分)在△ABC 中,∠A -∠C =25°,∠B -∠A =10°,则∠B =__________. 16.(本题4分)如图: AB ∥CD ,∠B=115°,∠C=45°,则∠BEC=_______. 17.(本题4分)袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是白球的概率为14”,则这个袋中白球大约有________个. 18.(本题4分)某射击运动员在相同的条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次“射中9环以上”的概率是________.三、解答题(计58分) 19.(本题8分)(1) 2x −y =83x +2y =5 .(2) x +y =−1x +z =0x +z =1.20.(本题8分)伦敦奥运会,中国运动员获得金、银、铜牌共87枚,奖牌总数位列世界第二.其中金牌比银牌与铜牌之和少11枚,银牌比铜牌多5枚.问金、银、铜牌各多少枚?………装………线………__________姓名…………订…………………○…………装21.(本题8分)如图,在Rt △ABC 中,∠ACB =90°,D 是AB 上一点,且∠ACD =∠B .求证:CD ⊥AB .22.(本题8分)如图,点M ,N 在线段AC 上,AM =CN ,AB ∥CD ,AB =CD.求证:∠1=∠2.……○………※※装※※订※※线…线1分,负一场得0分。
2017-2018第二学期七年级数学期中考试卷(附参考答案)
为
.
20.阅读下面文字,回答问题 大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部 地写出来,但是由于 1< <2,所以 的整数部分为 1,将 减去其整数部分 1,所得 的差就是其小数部分 ﹣1.请你根据以上知识,解答下列问题: (1) 的整数部分是 ,小数部分是 ; (2) ﹣1 的整数部分是 ,小数部分是 ; (3)设 的小数部分是 x,1+ 的小数部分是 y,求|x+y﹣ |的值.
即 CG 平分 OCD (2)结论:当 O=60 时
法一:当 O=60 时
,.C…D…平…分……OC…F….……………………………
∵DE//OB,
∴ ∠DCO=∠O=60 .
∴ ∠ACD=120 .
又 ∵CF 平分 ACD
∴ ∠D CF=60 ,
∴ DCO DCF
即 CD 平分 法二:若 CD 平分
6. 数轴上表示 1, 的对应点分别为 A,B,点 B 关于点 A 的对称点为 C,则点 C 所表示 的数是( )
A. ﹣1 B.1﹣
C.2﹣
D. ﹣2
二、填空题(本大题共 6 小题,每小题 3 分,共 18分)
7.在数轴上与原点的距离是 的点所表示的实数是
.
8.命题“等角的余角相等”的题设是
,结论
OOCCFF.…………
∴ DCO DCF
∵ ACF FDC ∴ ACF FDC ∵ AOC 180 ∴ DCO 60
∵DE//OB
DCO
∴ O DOC
∴ O 60
F
D
G
C
O
A E
B
四、解答题(本大题共 3 小题,每小题 8 分,共 24分) 18.解:(1)∵22=4,52=25,62=36,
2017-2018学年最新鲁教版七年级数学第二学期期中测试卷含答案
2017-2018学年七年级(下)期中数学试卷(五四学制)一、选择题1.以下说法合理的是()A.小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D.在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为2.给出下列事件:①三条线段能组成一个三角形②400人中至少有两人的生日在同一天③|a|≥0④三角形的内角和大于180°其中确定事件有()A.1个 B.2个 C.3个 D.4个3.四张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的是中心对称图形的概率为()A.B.C.D.14.在一个不透明的口袋中,装有n个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么n等于()A.10个B.12个C.16个D.20个5.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.B.C.1 D.6.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,127.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.有一个角是100°,底相等的两个等腰三角形C.两个等边三角形D.有一条边相等,有一个内角相等的两个等腰三角形8.已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm9.△ABC中,点O为∠ABC和∠ACB角平分线交点,若∠A=60°,则∠BOC=()A.60°B.90°C.120° D.150°10.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°11.x的2倍减3的差不大于1,列出不等式是()A.2x﹣3≤1 B.2x﹣3≥1 C.2x﹣3<1 D.2x﹣3>112.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.13.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.14.某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为()A.10x﹣3(30﹣x)>70 B.10x﹣3(30﹣x)≤70 C.10x﹣3x≥70 D.10x ﹣3(30﹣x)≥7015.如图,直线y=kx+b交坐标轴于A(﹣2,0)、B(0,3)两点,则不等式kx+b >0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<3二、填空题(共5小题,每小题4分,共20分)16.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.17.如图所示,在1×2的正方形网格格点上已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.18.不等式2x+9≥3(x+2)的正整数解是.19.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是.20.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.三、解答题(共7小题,共55分)21.(8分)解不等式:(1)5(x﹣2)+8<6(x﹣1)+7(2)<.22.(7分)某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为,柑橘完好的概率估计值为;(2)估计这批柑橘完好的质量为千克.23.(7分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.24.(7分)如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.25.(8分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.27.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)请你根据小红累计购物的金额选择花费较少的商场?参考答案与试题解析一、选择题1.以下说法合理的是()A.小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D.在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为【考点】概率的意义.【分析】直接利用概率的意义分别分析得出答案.【解答】解:A、小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%,不合理;B、抛掷一枚普通的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6,不合理;C、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖,不合理;D、在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为,正确.故选:D.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.2.给出下列事件:①三条线段能组成一个三角形②400人中至少有两人的生日在同一天③|a|≥0④三角形的内角和大于180°其中确定事件有()A.1个 B.2个 C.3个 D.4个【考点】随机事件.【分析】根据事件的分类对各事件进行逐一分析,根据事先能确定其一定发生或一定不会发生即为确定性事件可得知.【解答】解:∵①是随机事件;②是必然事件;③是必然事件;④是不可能事件;∴是确定事件的①④两个,故选:B.【点评】本题考查的是事件的分类,熟知事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件是解答此题的关键.3.四张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的是中心对称图形的概率为()A.B.C.D.1【考点】概率公式;中心对称图形.【分析】用中心对称图形的个数除以总卡片数4即为卡片上画的是中心对称图形的概率.【解答】解:根据中心对称图形的概念,知圆、平行四边形是中心对称图形;所以现从中随机抽取一张,卡片上画的是中心对称图形的概率为.故选C.【点评】本题考查了中心对称图形的概念和概率的求法.中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.在一个不透明的口袋中,装有n个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么n等于()A.10个B.12个C.16个D.20个【考点】概率公式.【分析】根据装有n个除颜色不同其余都相同的球,中装有4个红球,摸到红球的概率为列出方程,求出n的值即可.【解答】解:∵口袋中装有4个红球且摸到红球的概率为,∴=,解得:n=10,故选:A.【点评】此题主要考查了求概率问题;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.5.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.B.C.1 D.【考点】概率公式.【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.故选A.【点评】明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.6.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,12【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:由勾股定理的逆定理分析得,只有C中有62+82=102,故选C.【点评】本题考查了直角三角形的判定.7.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.有一个角是100°,底相等的两个等腰三角形C.两个等边三角形D.有一条边相等,有一个内角相等的两个等腰三角形【考点】全等三角形的判定.【分析】根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【解答】解:A、当一个三角形的顶角为40°,而另一个三角形的底角为40°时,不能判定这样的两个三角形全等,故本选项错误;B、正确;C、两个等边三角形只是形状相同,大小不一定相等,故本选项错误;D、没有指明边与角具体是腰还是底边,是顶角还是底角,故本选项错误.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题难度适中.8.已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm【考点】等腰三角形的性质.【分析】作出图形,根据三角形的中线的定义可得AD=CD,然后求出两三角形的周长的差等于腰长与底边的差,然后分情况讨论求解即可.【解答】解:如图,∵BD是△ABC的中线,∴AD=CD,∴两三角形的周长的差等于腰长与底边的差,∵BC=5cm,∴AB﹣5=3或5﹣AB=3,解得AB=8或AB=2,若AB=8,则三角形的三边分别为8cm、8cm、5cm,能组成三角形,若AB=2,则三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴不能组成三角形,综上所述,三角形的腰长为8cm.故选B.【点评】本题考查了等腰三角形的性质,三角形的中线,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.△ABC中,点O为∠ABC和∠ACB角平分线交点,若∠A=60°,则∠BOC=()A.60°B.90°C.120° D.150°【考点】三角形内角和定理.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质得出∠OBC+∠OCB的度数,由三角形内角和定理即可得出结论.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=60°,∴∠OBC+∠OCB=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故选C【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.10.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【解答】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选C.【点评】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.11.x的2倍减3的差不大于1,列出不等式是()A.2x﹣3≤1 B.2x﹣3≥1 C.2x﹣3<1 D.2x﹣3>1【考点】由实际问题抽象出一元一次不等式.【分析】关系式为:x的2倍﹣3≤1.【解答】解:列出不等式是:2x﹣3≤1,故选A.【点评】根据关键字找到相应的关系式是解决问题的关键;注意“不大于1”表示“小于或等于1”.12.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.【考点】不等式的性质.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.【解答】解:A,∵a>b,∴a+c>b+c,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项错误;C,∵a>b,c<0,∴ac<bc,故此选项错误;D,∵a>b,c<0,∴<,故此选项错误;故选:A.【点评】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱,准确把握不等式的性质是做题的关键.13.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.14.某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为()A.10x﹣3(30﹣x)>70 B.10x﹣3(30﹣x)≤70 C.10x﹣3x≥70 D.10x ﹣3(30﹣x)≥70【考点】由实际问题抽象出一元一次不等式.【分析】根据得分﹣扣分不少于70分,可得出不等式.【解答】解:设答对x题,答错或不答(30﹣x),则10x﹣3(30﹣x)≥70.故选D.【点评】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.15.如图,直线y=kx+b交坐标轴于A(﹣2,0)、B(0,3)两点,则不等式kx+b >0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<3【考点】一次函数与一元一次不等式.【分析】根据图象可得出不等式kx+b>0的解集就是y=kx+b的图象在x轴上方部分横坐标所构成的集合.【解答】解:∵A(﹣2,0),∴不等式kx+b>0的解集是x>﹣2,故选:A.【点评】此题主要考查了一次函数与一元一次不等式,关键是掌握从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(共5小题,每小题4分,共20分)16.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.【考点】概率公式.【分析】看是3的倍数的情况数占总情况数的多少即可.【解答】解:共有9张牌,是3的倍数的有3,6,9共3张,∴抽到序号是3的倍数的概率是.故答案为:.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到抽到序号是3的倍数的情况数是解决本题的关键.17.如图所示,在1×2的正方形网格格点上已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.【考点】概率公式;勾股定理的逆定理.【分析】先确定第三枚棋子随机放在格点上的所有可能的情况,再利用正方形的性质可判断其中以这三枚棋子所在的格点为顶点的三角形是直角三角形的情况数,然后利用概率公式求解.【解答】解:第三枚棋子共有4个格点可以放,放在其中三个格点可以以这三枚棋子所在的格点为顶点的三角形是直角三角形,所以以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.不等式2x+9≥3(x+2)的正整数解是1,2,3.【考点】一元一次不等式的整数解.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【点评】本题考查了一元一次不等式的整数解,会解不等式是解题的关键.19.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是a<﹣1.【考点】不等式的解集.【分析】根据不等式基本性质3两边都除以a+1,由解集x<1可得a+1<0,可得a的范围.【解答】解:不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.【点评】本题主要考查不等式的基本性质3,不等式两边都乘以或除以同一个负数不等号方向要改变是关键.20.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.三、解答题(共7小题,共55分)21.解不等式:(1)5(x﹣2)+8<6(x﹣1)+7(2)<.【考点】解一元一次不等式.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣10+8<6x﹣6+7,移项,得:5x﹣6x<﹣6+7+10﹣8,合并同类项,得:﹣x<3,系数化为1,得:x>﹣3;(2)去分母,得:2(x+1)<3(2x﹣1),去括号,得:2x+2<6x﹣3,移项,得:2x﹣6x<﹣3﹣2,合并同类项,得:﹣4x<﹣5,系数化为1,得:x>.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为0.1,柑橘完好的概率估计值为0.9;(2)估计这批柑橘完好的质量为9000千克.【考点】利用频率估计概率.【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率;(2)根据(1)所得出柑橘完好的概率乘以这批柑橘的总质量即可.【解答】解:(1)根据所给的图可得:柑橘损坏的概率估计值为:0.1,柑橘完好的概率估计值为1﹣0.1=0.9;(2)根据(1)可得:这批柑橘完好的质量为:10000×0.9=9000(千克).故答案为:0.1;0.9;9000.【点评】此题考查了利用频率估计概率,解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;用到的知识点为:频率=所求情况数与总情况数之比.23.一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【考点】概率公式.【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可;(2)设白球有x个,得出黄球有(2x﹣5)个,根据题意列出方程,求出白球的个数,再除以总的球数即可;(3)先求出取走10个球后,还剩的球数,再根据红球的个数,除以还剩的球数即可.【解答】解:(1)根据题意得:100×,答:红球有30个.(2)设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P==;(3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率=;【点评】此题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24.如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.【考点】作图—复杂作图.【分析】(1)利用基本作图(作已知角的平分线)作∠BAC的平分线交BC于D,则AD为所求;(2)先证明△ABC为等腰三角形,再根据等腰三角形的性质,由AD平分∠BAC可判断AD垂直平分BC,然后根据线段垂直平分线的性质可得EB=EC.【解答】(1)解:如图,AD为所作;(2)证明:如图,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∵AD平分∠BAC,∴AD⊥BC,BD=CD,即AD垂直平分BC,∴EB=EC.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.25.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.26.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,=AB•BC+AC•CD,∴S四边形ABCD=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.27.(10分)(2016春•沂源县期中)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)请你根据小红累计购物的金额选择花费较少的商场?【考点】一元一次不等式的应用;列代数式;一元一次方程的应用.【分析】(1)根据商场的优惠方法计算即可;(2)分成0≤x≤50和x>100两种情况进行讨论,列方程求解;(3)根据(2)的结果进行讨论即可.【解答】解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(x﹣100)×0.9=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(x﹣50)×0.95=0.95x+2.5;故答案是:271;0.9x+10;278;0.95x+2.5;(2)当0≤x≤50时,在两个商场实际花费相同;当x>100时,0.9x+10=0.95x+2.5,解得:x=150,则当小红购物小于或等于50元或150元时,在两个商场的花费相同;(3)当50<x<150时,选择乙商场实际花费少;则当累计购物大于150时上没封顶,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当小红购物小于或等于50元或150元时,在两个商场的花费相同.【点评】此题主要考查了一元一次不等式的应用和一元一次方程的应用,解决问题的关键是读懂题意,依题意列出相关的式子进行求解.本题涉及方案选择时应与方程或不等式联系起来.。
山东省临沂市兰山区七年级(下)期中数学试卷
山东省临沂市兰陵县2017-2018学年七年级下学期期中考试数学试题(图片版)
2017~2018学年度下学期期中考试七年级 数学 参考答案一、选择题(每小题3分,共42分)二、填空题(每小题4分,共20分).15. > 16. 35° 17. α﹣β=90° (或变式也对)18. (0,3) 19. 二或四(只写一个不对)三、解答题20. (满分6分)解:原式=22222-+- --------------------4分 =222- ---------------------5分=2 ----------------------6分----------------------------------------------------------------------------------------------------------21. (满分6分)解:建立直角坐标系如图所示:------------------------4分图书馆B 位置的坐标为(﹣3,﹣2) ---------------------6分----------------------------------------------------------------------22. (满分8分)同位角相等,两直线平行; -----------------2分两直线平行,同位角相等; ---------------4分等量代换; ---------------6分内错角相等,两直线平行 ---------------8分 x y-------------------------------------------------------------------------------------------------------------------23. (满分12分)解:(1)(﹣4,1), (﹣1,﹣1); -------------------4分 (每空2分) (2)△A ′B ′C ′如图所示;--------------------6分(3)(a ﹣5,b ﹣2). ---------------------8分(4)27 --------------12分 -------------------------------------------------------------------------------------------------------------------24. (满分12分)解:(1)∵DE ∥BC , ∴∠DEF =∠EFC . -------------------1分∵EF ∥AB , ∴∠EFC =∠ABC . -------------------3分∴∠DEF =∠ABC . -------------------5分∵∠ABC =40°, ∴∠DEF =40°. -------------------6分(2)∵DE ∥BC , ∴∠ABC =∠ADE =60°. ------------------8分∵EF ∥AB , ∴∠ADE +∠DEF =180°. ------------------10分∴∠DEF =180°-60°=120°. ------------12分-------------------------------------------------------------------------------------------------------------------25. (满分14分)(1)∵AM ∥BN , ∴∠ABN +∠A =180°, ---------------------1分∵∠A =60°, ∴∠ABN =180°﹣60°=120°, ---------------------2分∴∠ABP +∠PBN =120°, ---------------------3分 ∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP , ---------------------4分∴2∠CBP +2∠DBP =120°,∴∠CBD=∠CBP+∠DBP=60°;---------------------5分(2)不变,---------------------6分∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,---------------------7分∵BD平分∠PBN,∴∠PBN=2∠DBN,---------------------8分∴∠APB:∠ADB=2:1;-------------------------9分(3)∵AM∥BN,∴∠ACB=∠CBN,---------------------10分当∠ACB=∠ABD时,则有∠CBN=∠ABD,---------------------11分∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,---------------------12分可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°.--------------------------14分。
2017-2018学年山东省临沂市兰山区七年级(下)期中数学试卷(解析版)
2017-2018学年山东省临沂市兰山区七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1. 下面四个图形中,∠1与∠2是邻补角的是( ) A. B. C. D.2. 在实数√4,√3,−175,π,0.9⋅,1.010010001…(每两个1之间0的个数依次加1)中,无理数有( )A. 2个B. 3个C. 4个D. 5个3. 如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A. 同位角B. 内错角C. 对顶角D. 同旁内角4. 如图,直线a ∥b ,∠1=70°,那么∠2的度数是( ) A. 130∘B. 110∘C. 70∘D. 80∘5. 下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有( )A. 1个B. 2个C. 3个D. 4个6. 若{y =2x=−1是关于x .y 的方程2x -y +2a =0的一个解,则常数a 为( )A. 1B. 2C. 3D. 47. 如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等8. 下列说法正确的是( )A. −3是−9的平方根B. 3是(−3)2的算术平方根C. (−2)2的平方根是2D. 8的立方根是±29. 如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为( )A. 120∘B. 100∘C. 80∘D. 60∘10. 下列说法正确地有( )(1)点(1,-a )一定在第四象限(2)坐标轴上的点不属于任一象限(3)若点(a ,b )在坐标轴的角平分线上,则a =b(4)直角坐标系中,在y 轴上且到原点的距离为5的点的坐标是(0,5)A. 1个B. 2个C. 3个D. 4个 二、填空题(本大题共7小题,共25.0分) 11. 化简:√9=______.12. 点A (m +3,m +1)在x 轴上,则点A 坐标为______.13. 结合下面图形列出关于未知数x ,y 的方程组为______.14. 如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=______度.15. 一个正数x 的平方根是2a -3与5-a ,则a =______.16. 如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标______.17. 根据解答过程填空:如图,已知∠DAF =∠F ,∠B =∠D ,那么AB 与DC 平行吗?解:∵∠DAF =∠F (已知)∴______∥______(______)∴∠D =∠DCF (______)又∵∠D =∠B (______)∴∠______=∠DCF (等量代换)∴AB ∥DC (______)三、计算题(本大题共3小题,共27.0分)18. 计算:(1)√14+√36-|√−83|; (2)√3-2√2-2(√3-√2)19.解方程组:.20.已知,直线AB∥CD,E为AB、CD间的一点,连接EA、EC.(1)如图①,若∠A=20°,∠C=40°,则∠AEC=______°.(2)如图②,若∠A=x°,∠C=y°,则∠AEC=______°.(3)如图③,若∠A=α,∠C=β,则α,β与∠AEC之间有何等量关系.并简要说明.四、解答题(本大题共2小题,共18.0分)21.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标.A1______;B1______;C1______;(3)求出△ABC的面积.22.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.答案和解析1.【答案】D【解析】解:A、B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;C选项∠1与∠2不互补,不是邻补角;D选项互补且相邻,是邻补角.故选:D.根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断.本题考查邻补角的定义,是一个需要熟记的内容.2.【答案】B【解析】解:=2是有理数,是无理数,是有理数,π无理数,是有理数,1.010010001…(每两个1之间0的个数依次加1)是无理数.故选:B.无理数常见的三种类型::①开方开不尽的数,②无限不循环小数,③含有π的数.本题主要考查的是无理数的概念,熟练掌握无理数的常见类型是解题的关键.3.【答案】B【解析】解:角在被截线的内部,又在截线的两侧,符合内错角的定义,故选:B.拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.本题主要考查了内错角的定义.4.【答案】B【解析】解:∵a∥b,∴∠3=∠1=70°,∴∠2=180°-∠3=110°.故选:B.先根据平行线的性质得到∠3=∠1=70°,然后根据邻补角的定义求解.本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.【答案】B【解析】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题;同角或等角的余角相等,所以⑤为真命题;经过直线外一点,有且只有一条直线与这条直线平行,所以⑥为真命题.故选:B.根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断;根据余角的定义对⑤进行判断;根据经过直线外一点,有且只有一条直线与这条直线平行可对⑥进行判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【答案】B【解析】解:将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选:B.将x=-1,y=2代入方程中计算,即可求出a的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.【答案】A【解析】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.8.【答案】B【解析】解:A、负数没有平方根,故A错误;B、3是(-3)2的算术平方根,故B正确;C、(-2)2的平方根是±2,故C错误;D、8的立方根是2,故D错误.故选:B.依据平方根、算术平方根、立方根的定义求解即可.本题主要考查的是平方根、立方根的定义和性质,熟练掌握平方根、立方根的定义和性质是解题的关键.9.【答案】D【解析】解:∵铺设的是平行管道,∴另一侧的角度为180°-120°=60°(两直线平行,同旁内角互补).故选:D.根据两直线平行,同旁内角互补解答.本题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.10.【答案】A【解析】解:(1)点(1,-a)一定在第四象限,错误,-a不一定是负数;(2)坐标轴上的点不属于任一象限,正确;(3)若点(a,b)在坐标轴的角平分线上,则a=b,错误,应该是a=b或a=-b;(4)直角坐标系中,在y轴上且到原点的距离为5的点的坐标是(0,5),错误,点的坐标为(0,5)或(0,-5);综上所述,说法正确的是(2)共1个.故选:A.根据各象限内点的坐标特征以及坐标轴上点到坐标特征对各小题分析判断即可得解.本题考查了点到坐标,熟记各象限内点的坐标特征以及坐标轴上点到坐标特征是解题的关键.11.【答案】3【解析】解:=3.故答案为:3.根据算术平方根的定义求出即可.此题主要考查了算术平方根的定义,是基础题型,比较简单.12.【答案】(2,0)【解析】解:由A(m+3,m+1)在x轴上,得m+1=0,解得m=-1,m+3=-1+3=2,A(2,0).故答案为:(2,0).根据x轴上点的纵坐标等于零,可得m的值,根据有理数的加法,可得点A的横坐标.本题考查了点的坐标,利用x轴上点的纵坐标等于零得出a的值是解题关键.2x+y=5013.【答案】{3x=2y+5【解析】解:由图可得,,故答案为:.根据图形,可以列出相应的方程组.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.【答案】65【解析】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.根据两直线平行内错角相等,以及折叠关系列出方程求解则可.本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.15.【答案】-2【解析】解:∵正数x的平方根是2a-3与5-a,∴2a-3+5-a=0,解得a=-2.故答案为-2.根据正数的两个平方根互为相反数列式计算即可得解.本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.【答案】(-2,3)【解析】解:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.17.【答案】AD ;BC ;内错角相等,两直线平行;两直线平行,内错角相等;已知;B ;同位角相等,两直线平行【解析】解:∵∠DAF=∠F (已知)∴AD ∥BC (内错角相等,两直线平行)∴∠D=∠DCF (两直线平行,内错角相等)又∵∠D=∠B (已知)∴∠B=∠DCF (等量代换)∴AB ∥DC (同位角相等,两直线平行),故答案为:AD ;BC ;内错角相等,两直线平行;两直线平行,内错角相等;已知;B ;同位角相等,两直线平行.根据平行线的判定定理和性质定理证明即可.本题考查的是平行线的性质和判定,掌握平行线的判定是由角的数量关系判断两直线的位置关系和平行线的性质是由平行关系来寻找角的数量关系是解题的关键.18.【答案】解:(1)√14+√36-|√−83| =0.5+6-2=4.5(2)√3-2√2-2(√3-√2)=√3-2√2-2√3+2√2=(√3-2√3)+(-2√2+2√2)=-√3【解析】(1)首先计算开方,然后从左向右依次计算即可.(2)首先计算乘法,然后应用加法交换律和加法结合律计算即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.【答案】解:将①代入②得:5x +2x -3=11,解得:x =2,将x =2代入①得:y =1,故方程组的解为:{y =1x=2.【解析】方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】60 360-x -y【解析】解:如图,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF .(1)∵∠A=20°,∠C=40°,∴∠1=∠A=20°,∠2=∠C=40°, ∴∠AEC=∠1+∠2=60°;(2)∴∠1+∠A=180°,∠2+∠C=180°,∵∠A=x°,∠C=y°, ∴∠1+∠2+x°+y°=360°, ∴∠AEC=360°-x°-y°;(3)∠A=α,∠C=β,∴∠1+∠A=180°,∠2=∠C=β, ∴∠1=180°-∠A=180°-α, ∴∠AEC=∠1+∠2=180°-α+β. 首先都需要过点E 作EF ∥AB ,由AB ∥CD ,可得AB ∥CD ∥EF .(1)根据两直线平行,内错角相等,即可求得∠AEC 的度数;(2)根据两直线平行,同旁内角互补,即可求得∠AEC 的度数;(3)根据两直线平行,内错角相等;两直线平行,同旁内角互补,即可求得∠AEC 的度数.此题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.解此题的关键是准确作出辅助线:作平行线,这是此类题目的常见解法.21.【答案】(4,-2) (1,-4) (2,-1)【解析】解:(1)如图,△A 1B 1C 1即为所求;(2)由图可知,A 1(4,-2);B 1(1,-4);C 1(2,-1).故答案为:(4,-2);(1,-4);(2,-1).;(3)S △ABC =3×3-×1×3-×1×2-×2×3=.(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)利用正方形的面积减去三个顶点上三角形的面积即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.22.【答案】解:(1)设A 品牌的足球的单价为x 元/个,B 品牌的足球的单价为y 元/个,根据题意得:{4x +2y =3602x+3y=380,解得:{y =100x=40.答:A 品牌的足球的单价为40元/个,B 品牌的足球的单价为100元/个.(2)20×40+2×100=1000(元). 答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1000元.【解析】(1)设A 品牌的足球的单价为x 元/个,B 品牌的足球的单价为y 元/个,根据“购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B品牌的足球共需360元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,列式计算,即可求出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据总价=单价×数量,列式计算.。
2017-2018学年度第二学期期中考试七年级数学试题
2017-2018学年度第二学期期中考试七年级数学试题DA. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na26.下列各数:,-π,-,0.,-0.1010010001…(两个1之间依次多一个0),-中无理数的个数为()A. 2个B. 3个C. 4个D. 5个7.使不等式x-5>4x-1成立的值中的最大整数是()A. 2B. -1C. -2D. 08.方程5x+3y=54共有()组正整数解.A. 2B. 3C. 4D. 59.初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A. 14B. 13C. 12D. 1510.在如图所示的平面直角坐标系中,一只蚂蚁从A点出发,沿着A-B-C-D-A…循环爬行,其中A点坐标为(1,-1),B 的坐标为(-1,-1),C 的坐标为(-1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A.(1,1)B.(1,0)C.(0,1)D.(1,-1)二、填空题(本大题共8小题,共24分)11.写出一个以{x =−1y =3为解的二元一次方程组是______ .12.已知点P (x ,y )在第三象限,且|x |=√3,|y -2|=3,则点P 的坐标为______ .13.已知方程2x-y=3,用含x 的代数式表示y 是______ .14.已知点A (1,2),AC ∥x 轴,AC=5,则点C 的坐标是______ .15.已知x 2=64,则√x 3=______. 16.已知方程组{x +2y =k2x +y =4的解满足x+y=2,则k的值为______ .⎪⎩⎪⎨⎧=---=+1213343144y x y x 17.若不等式ax-2>0的解集为x <-2,则关于y 的方程ay+3=0的解为_________.18.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-2,2)放入其中,得到实数m ,再将实数对(m ,-6)放入其中,得到实数是______ .三、解答题(本大题共10小题,共96分)19.计算(本题6分):(1);(2).20.(本题10分)⑴解方程组: ⑵解关于x 的不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.⎩⎨⎧=-=+872y cx by ax ⎩⎨⎧-==23y x ⎩⎨⎧=-=22y x21. (本题10分)在解关于x ,y 的方程组 时,老师告诉同学们正确的解是 ,粗心的小勇由于看错了系数c ,因而得到的解为 ,求的平方根.cb a ++22.(本题8分)已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求整数x的值.23.(本题8分)在平面直角坐标系中,有点A (-2,a+3),B(b,b-3).(1)当点A在第二象限的角平分线上时,求a 的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B的坐标.⎩⎨⎧==32y x ⎩⎨⎧=+=+87ay bx by ax ()()()()⎩⎨⎧=-++=-++87n m a n m b n m b n m a24. (本题10分)已知关于x ,y 的二元一次方程组 的解为 ,求关 于m ,n 的二元一次方程组的解.25.(本题10分)某校就“遇见老人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查(每个被调查的学生必须选择而且只能在4种方式中选择一项),图1和图2是整理数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)该校随机抽查了______ 名学生; (2)将图1补充完整,在图2中,“视情况而定”部分所占的圆心角是______ 度;(3)估计该校2800名学生中采取“马上救助”的方式的人数.26.(本题8分)若关于x 的不等式组{x <2(x −a)x −1≤23x恰有3个整数解,则a 的取值范围27.(本题12分)某工厂计划生产A、B两种产品共10件,其生产成本和利润如表:A种产品B种产品成本(万元/件)2 5利润(万元/件)1 3(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于20万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.28.(本题14分)已知点A(a,0)、B(b,0),且√a+4+|b-2|=0.(1)求a、b的值.(2)在y轴上找一点C,使得三角形ABC的面积是15,求出点C的坐标.(3)过(2)中的点C作直线MN∥x轴,在直线MN上是否存在点D,使得三角形ACD的面积是三?若存在,求出点D的坐标;角形ABC面积的12若不存在,请说明理由.2017-2018学年度第二学期期中考试七年级数学试题答案一、选择题1.D2.A3.B4.C5.C6.B7.C8.B9.C 10.B二、填空题11、答案不唯一12、(−√3,−1)13、 y=2x−35±14、(6,2)或(−4,2) 15、±2 16、2 17、y =3 18、18三、 解答题19. (1)625 -------------------3分(2)√5−5 -----------------3分20.(1){x =3y =114-------------5分(2)−1≤x <3, -----------3分非负整数解为0,1,2 -----------2分21.c=-2,-----------------2分a=4,b=5,----------4分-------------4分22. , -----------3分-2<x ≤3 -------------4 分整数解为-1,0,1,2,3 ---------1分23. (1)a =−1 ------------3分(2)B (−3<−6)或(1<−2)------------5分24. {m =52n =−12----------------10分 25.(1)400 ---------2分(2)80人,图略。