天津市南开区2018年七年级下期中数学试卷及答案

合集下载

【3套打包】天津市南开中学七年级下册数学期中考试题(1)

【3套打包】天津市南开中学七年级下册数学期中考试题(1)

七年级下册数学期中考试试题【含答案】一、填空题(本大题共6小题,共18.0分)1.16的平方根是______.2.命题“两直线平行,内错角相等”的题设是______,结论是______.3.要使有意义,则x的取值范围是______.4.若点M(a-3,a+4)在x轴上,则点M的坐标是______.5.把命题“对顶角相等”改写成“如果…那么…”的形式:______.6.的相反数是______,|-2|=______,=______.二、选择题(本大题共8小题,共24.0分)7.在平面直角坐标系中,点P(-3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.在实数,,0.121221221…,3.1415926,,-中,无理数有()A. 2个B. 3个C. 4个D. 5个9.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A. B.C. D.10.下列式子中,正确的是()A. B. C. D.11.下列说法正确的是()A. 是的平方根B. 3是的算术平方根C. 的平方根是2D. 8的平方根是12.下列命题中正确的是()A. 有限小数不是有理数B. 无限小数是无理数C. 数轴上的点与有理数一一对应D. 数轴上的点与实数一一对应13.中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”移动到图()A. B. C. D.14.如图,在正方形网格中,A点坐标为(-1,0),B点坐标为(0,-2),则C点坐标为()A.B.C.D.三、计算题(本大题共3小题,共18.0分)15.求x值:(1)(x-1)2=25.(2)125x3=816.如图,直线AB、CD相交于O,OD平分AOF,OE⊥CD于点O,1=50°,求COB、BOF的度数.17.已知2a-7的平方根是±3,2a+b-1的算术平方根是4,求a+b的立方根.四、解答题(本大题共6小题,共48.0分)18.计算:---19.如图,EF∥AD,1=2,BAC=70°.将求AGD的过程填写完整.∵EF∥AD,(______)∴ 2=______.(两直线平行,同位角相等)又∵ 1=2,(______)∴ 1=3.(______)∴AB∥DG.(______)∴ BAC+______=180°(______)又∵ BAC=70°,(______)∴ AGD=______.20.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积。

7—18学年下学期七年级期中考试数学试题(附答案)

7—18学年下学期七年级期中考试数学试题(附答案)

2017—2018学年度第二学期期中教学质量评估测试七年级数学试卷一、选择题(本大题共10道小题,每小题3分,共30分)1.4的平方根是( )A.±16B.2±C. 2D.± 2.下面四个图形中,∠1与∠2为对顶角的图形是( )A .B .C .D .3.若点A(m,n)在第二象限,那么点B(-m,│n│)在( ) A.第一象限B.第二象限C.第三象限D.第四象限4.在以下实数 , ,1.414,1.010010001…,42, , 中,无理数有( ) A.2个B.3个C.4个D.5个5.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A.①②B.①③C.②④D.③④ 6.下列各式正确的是( )C. D.7.若点P(x ,y)P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是( )A. (-2,3)B. (-2,-3)C.(2,-3)D.(2,3)8.如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E .若∠A =50°,则∠1的度数为( ) A .65° B .60° C .55° D .50°3π1334±393-=-113226138722第8题图 第10题图9.如果点P(-2,4)经平移变换后是Q(3,-2),则点M(1,-2)经这样平移后的对应点的坐标是( ) A.(5,3) B.(-4,4) C.(6,-8) D.(3,-5)10.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′=( )A.50°B.55°C.60°D.65°二、填空题(本大题共8道小题,每小题3分,共24分) 11.16的平方根是32-=12.把命题”对顶角相等”写成“如果……那么……”的形式是_____________ _________.13.点P(2,m )在x 轴上,则B (m -1,m+1)在第 象限. 14.若1.1001.102=,41.3201.10=,则=0201.1 . 15.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的数学原理是 .16.若+(b+4)2=0,则点M (a ,b )关于y 轴的对称点的坐标为第15题图 第17题图 第18题图 17.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =68°,则∠BOD 的度数为 .3-a 七年级 数学 第1页 (共6页)18.已知c b a 、、位置如图所示,试化简:()2b ac b c a --++-= .三、解答题(共66分)19.(6分) 计算:(1) 92)3(233--+-)( (2)32-20.(6分)求下列各式中x 的值: (1) 4(x+2)2﹣5=11 (2) (x ﹣2)3+27=021.(4分)如图,直线AB ,CD 相交于O ,OE 平分∠AOD ,∠AOC =28°,求∠AOE 的度数.22.(8分)如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(-9,7).(1)写出点A 、B 的坐标:A ( )、B ( ); (2)求△ABC 的面积;(3)将△ABC 先向右平移4个单位长度,再向下平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′23.(8分)如图,EF ∥AD ,∠1=∠2,∠BAC=70°,求∠AGD 的度数.请将解题过程填写完整.解:∵EF ∥AD (已知)∴∠2= ( )又∵∠1=∠2(已知)∴∠1=∠3()七年级 数学 第3页 (共6页)∴AB ∥ ( ) ∴∠BAC+ =180°( )∵∠BAC=70°(已知)∴∠AGD= .24. (5分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根25.(6分)如图,CD ∥AB ,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF 与AB有怎样的位置关系?为什么?26.(6分)阅读下列材料: ∵974<<,即372<<,∴7的整数部分为2,小数部分为)27(-. 请你观察上述的规律后试解下面的问题: 如果5的小数部分为a , 13的整数部分为b ,求5-+b a 的平方根.27. (7分)如图,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A=∠D ,∠1=∠2,求证:∠B=∠C .28. (10分)已知:下列各图中都有AB ∥CD,分别探究图(1)图(2)图(3)中∠D,∠E,∠B 之间的数量关系,并填在相应的横线上.(1)图1中∠D,∠E,∠B 之间的关系是 . (2)图2中∠D,∠E,∠B 之间的关系是 . (3)图3中∠D,∠E,∠B 之间的关系是 . (4)请你从(1)(2)(3)中选择一个进行证明.图(1) 图(2) 图(3)2 ABECFDHG 12017—2018年度第二学期期中质量检测试题数学参考答案一、选择题(本大题共10道小题,每小题3分,共30分) BCABD DBACA二、填空题(本大题共8道小题,每小题3分,共24分)11.±2, 12.如果两个角是对顶角,那么这两个角相等. 13.二 14.1.01 15. 垂线段最短 16.(-3,-4) 17.22° 18.2c 三、解答题(共66分) 19.(1)-2 (2)20.(1)x=0,x=-4 (2)x=-121解:∵∠AOC +∠AOD =180°,∠AOC =28°,∴∠AOD =152°. (2分) ∵OE 平分∠AOD ,∴∠AOE =12∠AOD =76° (2分)22.(1)(-2,3)(-6,2) (2分) (2)11.5 (2分)(3)图略 (1分) (2,2)(-2,1)(-5,6) (3分) 23. 解:∵EF ∥AD (已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知), ∴∠1=∠3(等量代换),∴AB ∥DG (内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补). ∵∠BAC=70°(已知),∴∠AGD=110°. .24.解答∵x-2的平方根是±2,2x+y+7的立方根是3, ∴x-2=4,2x+y+7=27, (2分) 解得x=6,y=8. (1分) ∴x 2+y 2=62+82=100, (1分) ∴x 2+y 2的平方根是士10(1分)310-23-25. EF 与AB 平行(1分)理由略(5分)26. 解:∵5的整数部分是2,∴5的小数部分a=5-2, (2分)13的整数部分b=3, (2分)∴a+b-5=1,(1分) ∴平方根是±1。

2018年下学期七年级期中考试数学试卷参考答案

2018年下学期七年级期中考试数学试卷参考答案

2018年上学期七年级期中考试数学试卷参考答案一、选择题(每小题3分,共36分)BBADC DBCAC CA二、填空题(每小题3分,共18分)13、4 14、622 15、﹣4<﹣<0<0.14<2.7 16、-3 17、75, -30. 18、19三、解答题(本题8个小题,满分66分)21.解: 原式=12x -2x +23y 2-32x +13y 2=-3x +y 2,(5分) 当x =-2,y =23时,原式=649 (或 958) (8分) 22.解(1)∵A=3a 2﹣4ab ,B=a 2+2ab ,∴A ﹣2B=3a 2﹣4ab ﹣2a 2﹣4ab=a 2﹣8ab ;(4分)(2)∵|2a+1|+(2﹣b )2=0,∴a=﹣,b=2,则原式=+8=8.(8分)23.解:因为-5x 3y |a |-(a -4)x -6是关于x ,y 的七次三项式,所以3+|a |=7,a -4≠0,(5分)所以a =-4.(7)故a 2-2a +1=(-4)2-2×(-4)+1=25.(9 分)24.(9分)因为a,b 互为相反数,且都不为零,c,d 互为倒数,所以a+b=0,=-1,cd=1.有理数m 所对应的点到3所对应的点的距离是4个单位长度,则m=7或-1(4分).当m=7时,2a+2b+-m=2×0+(-1-3)-7=-11.当m=-1时,2a+2b+-m=2×0+(-1-3)-(-1)=-3. (9分)25、(1)4.5,-4, -3.5(6分)(2)2n m (10分) 26、(10分)已知数轴上有A 、B 、C 三点,分别表示有理数-26,-10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.27、(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=________,PC=__________(4分)28、(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,当点P 运动到点C 时,P 、Q 两点运动停止, ①当P 、Q 两点运动停止时,求点P 和点Q 的距离;=÷﹣×=×﹣ =﹣﹣.(②求当t为何值时P、Q两点恰好在途中相遇。

七年级数学期中试卷参考答案

七年级数学期中试卷参考答案

2018—2018学年度第二学期期中调研考试七年级数学试卷参考答案一、选择题二、填空题9.6105.2-⨯ 10. 253-=x y 11.10 12.答案不唯一:如⎩⎨⎧=-=+13x y y x 13.115 14.12 15.a <b <d < c 16.8± 17.144 18.91 三、解答题19. (1)23- (2) 912422-+-b b a20. (1)()()334-+x x (2)()()2222-+xy xy21.(1)⎩⎨⎧==55y x (2)⎩⎨⎧-=-=34y x22.23.(1)12(2)10 24.325.答案不唯一: 任选两个作为已知条件,另一个作为结论,皆可。

如:已知:∠A=∠F, ∠C =∠D 结论:BD ∥C E理由:∵∠A=∠F ,∴AC ∥DF , ∴∠C=∠CEF , ∵∠C=∠D , ∴∠D=∠CEF , ∴BD ∥CE .26. 3-=x 或1-=x 或3=x27.(1)甲:⎪⎩⎪⎨⎧=+=+900406020y x y x 乙:⎪⎩⎪⎨⎧=+=+204060900yx y x甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数; 乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度 (2)若解甲的方程组 ⎩⎨⎧=+=+900406020y x y x ,得⎩⎨⎧==155y x∴ 60x=300,40y=600答:A 、B 两工程队分别整治河道300米和600米。

若解乙的方程组⎪⎩⎪⎨⎧=+=+204060900yx y x ,得⎩⎨⎧==600300y x 答:A 、B 两工程队分别整治河道300米和600米。

28.(1)60°;60°(2)∠A +∠B +∠C =∠BDC;理由略; (3)①∠BEC=80°;②∠A =40°。

AB C DE A 1 B 1C 1。

2018~2019学年天津南开区天津市南开翔宇学校初一下学期期中数学试卷

2018~2019学年天津南开区天津市南开翔宇学校初一下学期期中数学试卷

2018~2019学年天津南开区天津市南开翔宇学校初一下学期期中数学试卷一、选择题每小题3分,共36分。

1. A. B.C. D.如图所示的车标,可以看作由“基本图案“经过平移得到的是( ).2. A.个 B.个 C.个 D.个下列各数中,,,(相邻两个之间依次多一个),,,,无理数的个数有( ).3. A.12 B.12C.12D.12下列图形中,与是内错角的是( ).4. A.在到之间 B.在到之间 C.在到之间 D.在到之间 估算的值( ).5. A. B. C. D.若,则的立方根是( ).6. A.等于 B.大于而小于 C.不大于 D.小于若,,是直线上的三点,是直线外一点,且,,,则点到直线的距离( ).7. A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形中,,则此三角形是( ).8. A. B. C. D.的三边长是,,且,若,,则的取值范围是( ).9. A. B. C. D.如图,如果,,下列各式正确的是( ).10.A. B. C. D.如图,已知三角形的面积为,.现将三角形沿直线向右平移个单位得到三角形.当三角形扫过的面积不小于时,则的取值范围是( ).11.A. B. C. D.如图,的平分线与的平分线交于点,若,,则的度数为( ).12.A. B. C. D.如图是的一张纸条,按图图图,把这一纸条先沿折叠并压平,再沿折叠并压平,若图中则图中的度数为( ).二、填空题每小题3分,共18分。

13.的算术平方根为 .14.若一个数的平方根与它的立方根相等,那么这个数是 .15.若与的两边分别平行,且比的倍少,则 度.16.若,,,则 .17.如图,,、为上的两点,、为上的两点,延长至点,平分,延长至,平分.若,则的度数为 .18.如图,点是的三条角平分线的交点,连接并延长交于点,、分别平分和的外角,直线和直线交于点,于点,有下列结论:①;②;③;④若,则.其中正确的有 .三、解答题共7小题,共46分。

人教版天津市南开区2017-2018学年七年级(下)期中数学试卷(含解析)

人教版天津市南开区2017-2018学年七年级(下)期中数学试卷(含解析)

2017-2018学年天津市南开区七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(3分)下列等式正确的是()A.B.C.D.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2 B.如图2,展开后测得∠1=∠2且∠3=∠4 C.如图3,测得∠1=∠2 D.在图④中,展开后测得∠1+∠2=180°8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣| (2)20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD 交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.2017-2018学年天津市南开区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±【考点】21:平方根.【分析】依据平方根的定义回答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】K6:三角形三边关系.【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)下列等式正确的是()A. B. C.D.【考点】24:立方根;22:算术平方根.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.【解答】解:A、原式=,错误;B、原式=﹣(﹣)=,错误;C、原式没有意义,错误;D、原式==4,正确,故选:D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个【考点】26:无理数;22:算术平方根;24:立方根.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在所列实数中无理数有,,0.1010010001…(相邻两个1之间依次多一个0)这3个数,故选:B.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角【考点】J6:同位角、内错角、同旁内角;J2:对顶角、邻补角.【分析】依据内错角、同位角、对顶角、邻补角的定义回答即可.【解答】解:A、∠1与∠C是内错角,故A正确,与要求不符;B、∠2与∠C是同旁内角,故B错误,与要求相符;C、∠1与∠3是对顶角,故C正确,与要求不符;D、∠1与∠2是邻补角,故D正确,与要求不符.故选:B.【点评】本题主要考查的是内错角、同位角、对顶角、邻补角的定义,掌握相关定义是解题的关键.6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行公理、平行线的性质、点到直线的距离的定义判断即可,【解答】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,①是真命题;两条平行线被第三条直线所截,同旁内角互补,②是假命题;两直线平行,内错角相等,③是真命题;同一平面内,过一点有且只有一条直线与已知直线垂直,④是真命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,⑤数假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°【考点】J9:平行线的判定.【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、当∠1=∠2时,a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90°,∴a∥b;C、∠1=∠2不等判定a,b互相平行;D、由∠1+∠2=180°可知a∥b;故选:C.【点评】本题主要考查平行线的判定,熟练掌握平行线的判定定理是关键.8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴得出a<0,a+b<0,进而化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°【考点】JA:平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,故选:D.【点评】本题考查了平行线的性质,三角板的知识,熟记性质是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【考点】K7:三角形内角和定理.【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°【考点】JA:平行线的性质;J8:平行公理及推论.【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出选项.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故选:D.【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定【考点】JB:平行线的判定与性质.【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA 的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.故选:B.【点评】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线段最短,利用了垂线段的性质:直线外的点与直线上任意一点的连线中垂线段最短.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=42°.【考点】J3:垂线;J2:对顶角、邻补角.【分析】根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.【解答】解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.【点评】此题主要考查了垂线,以及对顶角,关键是掌握对顶角相等.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为﹣.【考点】24:立方根;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵|2x+3|+=0,∴2x+3=0且9﹣4y=0,解得:x=﹣、y=,则===﹣,故答案为:﹣【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于12cm.【考点】Q2:平移的性质.【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10,∴AB+BC+AC=10,∴四边形ABFD的周长=10+1+1=12cm.故答案为:12cm,【点评】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有③④.【考点】K2:三角形的角平分线、中线和高.【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故答案为③④.【点评】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行3次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是255.【考点】2B:估算无理数的大小.【分析】(1)根据运算过程得出[]=9,[]=3,[]=1,即可得出答案.(2)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)【考点】2C:实数的运算.【分析】(1)首先利用绝对值的性质计算绝对值,然后再计算实数的加减即可;(2)本题涉及开立方、二次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=﹣1﹣(2﹣)+,=﹣1﹣2+﹣,=2﹣3;(2)原式=0.5﹣2﹣=﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】(1)根据补角,余角的关系,可得∠COB,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.【解答】解:(1)∵∠COF与∠DOF是邻补角,∴∠COF=180°﹣∠DOF=90°.∵∠AOC与∠AOF互为余角,∴∠AOC=90°﹣∠AOF=90°﹣50°=40°.∵∠AOC与∠BOC是邻补角,∴∠COB=180°﹣∠AOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠BOE=∠BOC=70°;(2)∠BOD:∠BOE=1:4,设∠BOD=∠AOC=x,∠BOE=∠COE=4x.∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,即x+4x+4x=180°,解得x=20°.∵∠AOC与∠AOF互为余角,∴∠AOF=90°﹣∠AOC=90°﹣20°=70°.【点评】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD 交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)【考点】K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)由∠B=35°,∠ACB=85°,根据三角形内角和等于180°,可得∠BAC的度数,因为AD平分∠BAC,从而可得∠DAC的度数,进而求得∠ADC的度数,由PE⊥AD,可得∠DPE的度数,从而求得∠E的度数.(2)根据第一问的推导,可以用含α、β的代数式表示∠E.【解答】解:(1)∵∠B=35°,∠ACB=85°,∠B+∠ACB+∠BAC=180°.∴∠BAC=60°.∵AD平分∠BA C.∴∠DAC=30°.∵∠ACB=85°,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=65°.又∵PE⊥A D.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=25°.(2))∵∠B=α,∠ACB=β,∠B+∠ACB+∠BAC=180°.∴∠BAC=180°﹣α﹣β.∵AD平分∠BA C.∴∠DAC=(180°﹣α﹣β).∵∠ACB=β,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=180°﹣β﹣(180°﹣α﹣β)=90°.又∵PE⊥A D.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=180°﹣90°﹣(90°)=.【点评】本题主要考查三角形的内角和的应用,关键是可以根据题意,灵活变化,最终求出所要求的问题的答案.22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠BOD,再根据角平分线的定义求出∠DOE,然后根据垂直的定义求出∠EOF=90°,再根据∠DOF=∠EOF﹣∠DOE代入数据计算即可得解.【解答】解:∵CD∥AB,∴∠BOD=180°﹣∠CDO=180°﹣62°=118°,∵OE平分∠BOD,∴∠DOE=∠BOD=×118°=59°,∵OE⊥OF,∴∠EOF=90°,∴∠DOF=∠EOF﹣∠DOE=90°﹣59°=31°.【点评】本题考查了平行线的性质,角平分线的对,垂线的定义,是基础题,熟记性质并准确识图是解题的关键.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.【考点】JB:平行线的判定与性质.【分析】相等,根据同角的补角相等可得∠2=∠EFD,则AB∥EF,得∠3=∠ADE,证明DE∥BC,可得结论.【解答】解:∠C=∠AED,理由是:∵∠1+∠2=180°,∠1+∠EFD=180°,∴∠2=∠EFD,∴AB∥EF,∴∠3=∠ADE,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC,∴∠C=∠AE D.【点评】本题考查了平行线的性质和判定及平角的定义,熟练掌握平行线的判定是关键.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A∴∠ACD﹣∠ABD=70°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系∠A n=∠A;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=25°.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【考点】L3:多边形内角与外角;K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【解答】解:(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A,∴∠ACD﹣∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,故答案为:∠A n=∠A.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF ﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,(1分)∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.【点评】本题考查了多边形内角与外角和角平分线的定义,三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键,要注意整体思想的利用.。

七年级南开区期中数学试卷

七年级南开区期中数学试卷

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √2C. -3D. 1/22. 已知a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 在直角坐标系中,点A(-2,3)关于x轴的对称点坐标是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,6)4. 下列方程中,解为整数的是()A. x^2 - 5x + 6 = 0B. x^2 - 5x + 9 = 0C. x^2 + 5x + 6 = 0D. x^2 + 5x + 9 = 05. 一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的面积是()A. 40cm²B. 48cm²C. 64cm²D. 80cm²6. 下列图形中,属于平行四边形的是()A. 矩形B. 等腰梯形C. 正方形D. 等腰三角形7. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x²C. y = 1/xD. y = 2x8. 在下列三角形中,不能构成直角三角形的是()A. a² + b² = c²B. a² + b² = 2c²C. a² + b² = c² + d²D. a² + b² = c² + d² + e²9. 下列数中,是质数的是()A. 10B. 15C. 17D. 2010. 下列等式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²二、填空题(每题5分,共25分)11. 有理数a、b、c满足a + b = 0,则a、b互为()12. 若a = -3,则a²的值是()13. 已知直线y = 2x + 1与x轴的交点坐标是()14. 一个等边三角形的边长是6cm,则它的周长是()15. 一个长方体的长、宽、高分别是5cm、4cm、3cm,则它的体积是()三、解答题(每题10分,共30分)16. 解下列方程:(1) 3x - 5 = 2x + 1(2) 2(x - 3) = 5(x + 2)17. 计算下列代数式的值:(1) (a + b)² - (a - b)²(2) (3x + 2y)² - (2x - 3y)²18. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

天津市南开区2019-2020学年七年级下期中数学试卷含答案解析

天津市南开区2019-2020学年七年级下期中数学试卷含答案解析

2017-2018学年天津市南开区七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣ C.± D.±2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(3分)下列等式正确的是()A.B.C.D.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个 B.3个 C.4个 D.5个5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个 B.2个 C.3个 D.4个7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120° D.100°12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F 的度数为()A.120°B.135°C.150° D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC 于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF 的角平分线和高线,其中判断正确的有.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.2017-2018学年天津市南开区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是( )A .B .﹣C .±D .±【考点】21:平方根.【分析】依据平方根的定义回答即可.【解答】解:∵(±)2=,∴的平方根是±. 故选:C .【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A .5B .6C .11D .16【考点】K6:三角形三边关系.【分析】设此三角形第三边的长为a ,再由三角形的三边关系即可得出结论. 【解答】解:设此三角形第三边的长为a ,则10﹣4<a <10+4,即6<a <14. 故选:C .【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)下列等式正确的是( )A .B .C .D .【考点】24:立方根;22:算术平方根.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.。

2017-2018年天津市南开区天津中学七年级(下)期中数学试卷(解析版)

2017-2018年天津市南开区天津中学七年级(下)期中数学试卷(解析版)

2017-2018学年天津市南开区天津中学七年级(下)期中数学试卷一.选择题(共12小题,满分36分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.43.下列等式成立的是()A.=﹣6B.=±7C.+=D.=﹣54.在实数,,,0,π,中,无理数的个数是()A.1B.2C.3D.45.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角6.下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣27.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C8.实数a,b在数轴上对应点的位置如图所示,化简|b|+的结果是()A.a﹣2b B.﹣a C.2b﹣a D.a9.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°11.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°12.如图,已知∠1=∠2,∠D=78°,则∠BCD=()A.98°B.62°C.88°D.102°二.填空题(共6小题,满分18分,每小题3分)13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.14.如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=度.15.若|3﹣a|+=0,则a+b的立方根是.16.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为.17.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE 交于H,则∠CHD=.18.规定符号[a]表示实数a的整数部分,[]=0,[4.15]=4.按此规定[+2]的值为.三.解答题(共6小题,满分46分)19.(8分)计算:|﹣2|+(﹣1)×(﹣3)20.(6分)如图,直线AB,CD交于点O,OB平分∠DOE,OF是∠BOC的角平分线.(1)说明:∠AOC=∠BOE;(2)若∠AOC=46°,求∠EOF的度数;(3)若∠EOF=30°,求∠AOC的度数.21.(8分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.22.(8分)如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.23.(8分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.24.(8分)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)2017-2018学年天津市南开区天津中学七年级(下)期中数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b 的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.2.【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x为正整数,即可选择答案.【解答】解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.【点评】本题考查了三角形的三边关系,熟练掌握“三角形任意两边之和大于第三边,任意两边之差小于第三边”求出x的取值范围是解题的关键.3.【分析】根据算术平方根与立方根的定义求解可得.【解答】解:A、=6,错误;B、=7,错误;C、+≠,错误;D、=﹣5,正确;故选:D.【点评】本题考查了,立方根,算术平方根的定义,掌握算术平方根与立方根的定义是解题的关键.4.【分析】根据无理数的定义进行解答即可.【解答】解:在实数,,,0,π,中,无理数有:、、π,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5.【分析】直接利用同旁内角、内错角、同位角、对顶角的定义分别分析得出答案.【解答】解:A、∠1和∠3是同旁内角,正确,不合题意;B、∠2和∠3是内错角,正确,不合题意;C、∠2和∠4是同位角,错误,符合题意;D、∠3和∠5是对顶角,正确,不合题意;故选:C.【点评】此题主要考查了同旁内角、内错角、同位角、对顶角的定义,正确把握相关定义是解题关键.6.【分析】根据有理数的乘方法则、假命题的概念解答.【解答】解:(﹣2)2=4>1,﹣2<1,∴当x=﹣2时,说明命题“若x2>1,则x>1”是假命题,故选:D.【点评】本题考查的是命题的真假判断,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.【点评】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.8.【分析】根据=|a|进行化简,然后再结合绝对值的性质:负数的绝对值等于它的相反数去绝对值符号,再合并即可.【解答】解:|b|+=﹣b+|b﹣a|=﹣b﹣b+a=﹣2b+a=a﹣2b,故选:A.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|,掌握绝对值的性质.9.【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.10.【分析】根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=130°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数.【解答】解:在△ABC中,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=130°﹣90°=40°;故选:C.【点评】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和为180°,此题难度不大.11.【分析】过C作CE∥直线m,根据平行公理的推论得到直线m∥n∥CE,根据平行线的性质得出∠ACE=∠DAC=42°,∠ECB=∠a,由∠ACB=90°即可求出答案.【解答】解:过C作CE∥直线m,∵直线m∥n,∴直线m∥n∥CE,∴∠ACE=∠DAC=42°,∠ECB=∠a,∵∠ACB=90°,∴∠a=90°﹣∠ACE=90°﹣42°=48°.故选:B.【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能灵活运用性质进行计算是解此题的关键.12.【分析】先根据∠1=∠2得出AD∥BC,再由平行线的性质即可得出结论.【解答】解:∵∠1=∠2,∴AD∥BC.∵∠D=78°,∴∠BCD=180°﹣78°=102°.故选:D.【点评】本题考查的是平行线的判定与性质,先根据题意判断出AD∥BC是解答此题的关键.二.填空题(共6小题,满分18分,每小题3分)13.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点评】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.14.【分析】由OE⊥AB,∠COE=34°,利用互余关系可求∠BOD.【解答】解:∵OE⊥AB,∠COE=34°,∴∠BOD=90°﹣∠COE=90°﹣34°=56°.故答案为:56.【点评】此题考查的知识点是垂线,关键是利用垂直的定义及余角的定义求解.15.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算,再根据立方根的定义解答.【解答】解:∵|3﹣a|+=0,∴3﹣a=0且2+b=0,解得a=3,b=﹣2,则==1,故答案为:1.【点评】本题考查了非负数的性质以及求一个数的立方根,解题关键是利用了:几个非负数的和为0,那么每一个都为0.16.【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=BC=3,于是得到AA′=3.【解答】解:∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=BC=3,∴AA′=3.故答案为3.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.【分析】在三角形中,三内角之和等于180°,锐角三角形三个高交于一点.【解答】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.【点评】考查三角形中,三条边的高交于一点,且内角和为180°.18.【分析】利用夹逼法求出的整数部分,继而可确定答案.【解答】解:∵<<,∴3<<4,整数部分为3,∴[+2]=5.故答案为:5.【点评】本题考查了估算无理数的大小,注意“夹逼法”的运用.三.解答题(共6小题,满分46分)19.【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.【分析】(1)根据角平分线的定义得到∠BOE=∠BOD,根据角的和差即可得到结论;(2)根据邻补角的定义得到∠BOC=180°﹣∠AOC=134°,∠BOE=46°,根据角平分线的定义得到∠BOF=∠BOC=67°,于是得到结论;(3)设∠AOC=α,则∠BOE=α,得到∠BOF=α+30°,由OF是∠BOC的角平分线,得到∠BOC=2∠BOF=2α+60°,于是得到结论.【解答】解:(1)∵OB平分∠DOE,∴∠BOE=∠BOD,∵∠AOC=∠BOD,∴∠AOC=∠BOE;(2)∵∠AOC=46°,∴∠BOC=180°﹣∠AOC=134°,∠BOE=46°,∵OF是∠BOC的角平分线,∴∠BOF=∠BOC=67°,∴∠EOF=∠BOF﹣∠BOE=21°;(3)设∠AOC=α,则∠BOE=α,∵∠EOF=30°,∴∠BOF=α+30°,∵OF是∠BOC的角平分线,∴∠BOC=2∠BOF=2α+60°,∴α=180°﹣(2α+60°),∴α=40°,∴∠AOC=40°.【点评】本题考查了对顶角,邻补角,角平分线的定义,正确的识别图形是解题的关键.21.【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,再表示出∠1+∠2即可;(2)方法与(1)相同;(3)根据点P的位置,分D、E、P三点共线前、后和三点共线时三种情况,利用三角形的一个外角等于与它不相邻的两个内角的和讨论求解.【解答】解:(1)如图,连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠DPE=∠α=50°,∠C=90°,∴∠1+∠2=50°+90°=140°,故答案为:140°;(2)连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠C=90°,∠DPE=∠α,∴∠1+∠2=90°+∠α;(3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键,难点在于作辅助线构造出三角形,(3)难点在于要分情况讨论.22.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°,∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,【点评】本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.23.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点评】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.24.【分析】(1)根据三角形外角的性质和三角形内角和定理可得∠A+∠B+∠C+∠D+∠E的度数;(2)根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)根据图中可找出规律∠A+∠B+∠C+∠D+∠E=180°,并且每截去一个角则会增加180度,由此即可求出答案.【解答】解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2))∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.【点评】本题主要考查了多边形的内角与外角之间的关系.有关五角星的角度问题是常见的问题,其5个角的和是180度.解此题的关键是找到规律利用规律求解.。

天津部分地区2018-2019学年七年级下学期期中数学试题(真题)

天津部分地区2018-2019学年七年级下学期期中数学试题(真题)
A. 截至,启用,侦查,严惩不贷B. 截止,启用,侦察,严惩不怠
C. 截止,起用,侦察,严惩不怠D. 截至,起用,侦查,严惩不贷
3.下列句子没有语病的一项是( )
A. 由于各地工厂纷纷复工,使得前期极度紧缺的口罩生产得以恢复,口罩也将正常销售了。
B. 如果不开展网络教学,只是漫无目的地干等,广大初三学生的宝贵时光就要白白浪费掉。
16.若点 在第二象限两坐标轴夹角 平分线上,则点 的坐标为__________.
17.如果张强家在超市北偏西 方向,距超市 处,则超市在张强家__________的方向,距张强家__________处.
18.如图,己知 , 与 的平分线相交于点 ,若 ,则 的度数是__________.
三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或证明过程
A.1个B.2个C.3个D.4个
3.下图中的变换属于平移的是()
A. B.
C. D.
4.估计 的值在()
A.3和4之间B.4和5之间
C.5和6之间D.6和7之间
5.如图所示,若在象棋盘上建立平面直角坐标系,使“将”位于点 “象”位于点 ,则“炮”位于点()
A. B. C. D.
6.已知线段 是由线段 平移得到的,点 的对应点为 ,则点 )的对应点 的坐标为()
B. “伤心”二字是对古都长安今非昔比的感慨,“宫阙万间都做了土”间接描写战争,暗示了秦汉改朝换代的惨烈图景。
C. 本曲借古讽今,作者通过凭吊潼关古迹,想到朝代更迭中遭难的百姓,得出“兴,百姓苦;亡,百姓 苦”的结论,表达了对苦难人民的深切同情。
D. 在写法上,作者层层深入,先发起议论,进而写景怀古,将苍茫的景色、深沉的情感和精辞的议论三者完美结合,让这首小令有了强烈的感染力。

天津市南开区17-18学年七年级下期中数学试卷含答案解析

天津市南开区17-18学年七年级下期中数学试卷含答案解析

2017-2018学年天津市南开区七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣ C.± D.±2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(3分)下列等式正确的是()A.B.C.D.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个 B.3个 C.4个 D.5个5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个 B.2个 C.3个 D.4个7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120° D.100°12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150° D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.2017-2018学年天津市南开区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣ C.± D.±【考点】21:平方根.【分析】依据平方根的定义回答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】K6:三角形三边关系.【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)下列等式正确的是()A.B.C.D.【考点】24:立方根;22:算术平方根.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.【解答】解:A、原式=,错误;B、原式=﹣(﹣)=,错误;C、原式没有意义,错误;D、原式==4,正确,故选:D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个 B.3个 C.4个 D.5个【考点】26:无理数;22:算术平方根;24:立方根.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在所列实数中无理数有,,0.1010010001…(相邻两个1之间依次多一个0)这3个数,故选:B.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角【考点】J6:同位角、内错角、同旁内角;J2:对顶角、邻补角.【分析】依据内错角、同位角、对顶角、邻补角的定义回答即可.【解答】解:A、∠1与∠C是内错角,故A正确,与要求不符;B、∠2与∠C是同旁内角,故B错误,与要求相符;C、∠1与∠3是对顶角,故C正确,与要求不符;D、∠1与∠2是邻补角,故D正确,与要求不符.故选:B.【点评】本题主要考查的是内错角、同位角、对顶角、邻补角的定义,掌握相关定义是解题的关键.6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】根据平行公理、平行线的性质、点到直线的距离的定义判断即可,【解答】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,①是真命题;两条平行线被第三条直线所截,同旁内角互补,②是假命题;两直线平行,内错角相等,③是真命题;同一平面内,过一点有且只有一条直线与已知直线垂直,④是真命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,⑤数假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°【考点】J9:平行线的判定.【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、当∠1=∠2时,a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90°,∴a∥b;C、∠1=∠2不等判定a,b互相平行;D、由∠1+∠2=180°可知a∥b;故选:C.【点评】本题主要考查平行线的判定,熟练掌握平行线的判定定理是关键.8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴得出a<0,a+b<0,进而化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°【考点】JA:平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,故选:D.【点评】本题考查了平行线的性质,三角板的知识,熟记性质是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【考点】K7:三角形内角和定理.【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120° D.100°【考点】JA:平行线的性质;J8:平行公理及推论.【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出选项.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故选:D.【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150° D.不能确定【考点】JB:平行线的判定与性质.【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF 的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.故选:B.【点评】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线段最短,利用了垂线段的性质:直线外的点与直线上任意一点的连线中垂线段最短.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= 42°.【考点】J3:垂线;J2:对顶角、邻补角.【分析】根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.【解答】解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.【点评】此题主要考查了垂线,以及对顶角,关键是掌握对顶角相等.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为﹣.【考点】24:立方根;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵|2x+3|+=0,∴2x+3=0且9﹣4y=0,解得:x=﹣、y=,则===﹣,故答案为:﹣【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于12cm.【考点】Q2:平移的性质.【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10,∴AB+BC+AC=10,∴四边形ABFD的周长=10+1+1=12cm.故答案为:12cm,【点评】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有③④.【考点】K2:三角形的角平分线、中线和高.【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故答案为③④.【点评】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行3次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是255.【考点】2B:估算无理数的大小.【分析】(1)根据运算过程得出[]=9,[]=3,[]=1,即可得出答案.(2)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)【考点】2C:实数的运算.【分析】(1)首先利用绝对值的性质计算绝对值,然后再计算实数的加减即可;(2)本题涉及开立方、二次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=﹣1﹣(2﹣)+,=﹣1﹣2+﹣,=2﹣3;(2)原式=0.5﹣2﹣=﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】(1)根据补角,余角的关系,可得∠COB,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.【解答】解:(1)∵∠COF与∠DOF是邻补角,∴∠COF=180°﹣∠DOF=90°.∵∠AOC与∠AOF互为余角,∴∠AOC=90°﹣∠AOF=90°﹣50°=40°.∵∠AOC与∠BOC是邻补角,∴∠COB=180°﹣∠AOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠BOE=∠BOC=70°;(2)∠BOD:∠BOE=1:4,设∠BOD=∠AOC=x,∠BOE=∠COE=4x.∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,即x+4x+4x=180°,解得x=20°.∵∠AOC与∠AOF互为余角,∴∠AOF=90°﹣∠AOC=90°﹣20°=70°.【点评】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)【考点】K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)由∠B=35°,∠ACB=85°,根据三角形内角和等于180°,可得∠BAC的度数,因为AD平分∠BAC,从而可得∠DAC的度数,进而求得∠ADC的度数,由PE⊥AD,可得∠DPE 的度数,从而求得∠E的度数.(2)根据第一问的推导,可以用含α、β的代数式表示∠E.【解答】解:(1)∵∠B=35°,∠ACB=85°,∠B+∠ACB+∠BAC=180°.∴∠BAC=60°.∵AD平分∠BAC.∴∠DAC=30°.∵∠ACB=85°,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=65°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=25°.(2))∵∠B=α,∠ACB=β,∠B+∠ACB+∠BAC=180°.∴∠BAC=180°﹣α﹣β.∵AD平分∠BAC.∴∠DAC=(180°﹣α﹣β).∵∠ACB=β,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=180°﹣β﹣(180°﹣α﹣β)=90°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=180°﹣90°﹣(90°)=.【点评】本题主要考查三角形的内角和的应用,关键是可以根据题意,灵活变化,最终求出所要求的问题的答案.22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠BOD,再根据角平分线的定义求出∠DOE,然后根据垂直的定义求出∠EOF=90°,再根据∠DOF=∠EOF﹣∠DOE代入数据计算即可得解.【解答】解:∵CD∥AB,∴∠BOD=180°﹣∠CDO=180°﹣62°=118°,∵OE平分∠BOD,∴∠DOE=∠BOD=×118°=59°,∵OE⊥OF,∴∠EOF=90°,∴∠DOF=∠EOF﹣∠DOE=90°﹣59°=31°.【点评】本题考查了平行线的性质,角平分线的对,垂线的定义,是基础题,熟记性质并准确识图是解题的关键.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.【考点】JB:平行线的判定与性质.【分析】相等,根据同角的补角相等可得∠2=∠EFD,则AB∥EF,得∠3=∠ADE,证明DE∥BC,可得结论.【解答】解:∠C=∠AED,理由是:∵∠1+∠2=180°,∠1+∠EFD=180°,∴∠2=∠EFD,∴AB∥EF,∴∠3=∠ADE,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC,∴∠C=∠AED.【点评】本题考查了平行线的性质和判定及平角的定义,熟练掌握平行线的判定是关键.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A∴∠ACD﹣∠ABD=70°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系∠A n=∠A;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=25°.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【考点】L3:多边形内角与外角;K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【解答】解:(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A,∴∠ACD﹣∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,故答案为:∠A n=∠A.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF ﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,(1分)∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.【点评】本题考查了多边形内角与外角和角平分线的定义,三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键,要注意整体思想的利用.。

天津市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

天津市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

18、( 1 分 ) 规定:用{m}表示大于 m 的最小整数,例如 =3,{5}=6,{-1.3}=-1 等;用[m]表示不大于
m 的最大整数,例如 =3,[4]=4,[-1.5]=-2,如果整数 x 满足关系式:2{x}+3[x]=12,则 x=________. 【答案】2 【考点】解二元一次方程
则 x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在
中,由①+②+③得:


.
第 8 页,共 19 页
【分析】方程组中的三个方的 x、y、z 的系数都是 1,因此由(①+②+③)÷2,就可求出结果。
14、( 1 分 )
的立方根是________.
【答案】4 【考点】立方根及开立方
8、 ( 2 分 ) 如图,如果 AB∥CD,CD∥EF,那么∠BCE 等于( )
A. ∠1+∠2 【答案】C
B. ∠2-∠1
【考点】平行线的性质
C. 180°-∠2+∠1
D. 180°-∠1+∠2
第 5 页,共 19 页
【解析】【解答】解:∵B∥CD ∴∠1=∠BCD ∵CD∥EF, ∴∠2+∠DCE=180° ∠DCE=180°-∠2 ∵∠BCE=∠BCD+ ∠DCE ∴∠BCE=180°-∠2+∠1 故答案为:C
【解析】【解答】解:根据题目两种规定可得,{x}-[x]=1,2{x}+3[x]=12,将二式联立可得{x}=3,[x]=2, ∴2≤x<3 故答案为:2。 【分析】根据两种对于 m 的规定,可以得出{x}和[x]的数量关系,根据题目所给的条件,列出二元一次方程组 解答即可。

【精品】天津市南开区2017-2018学年七年级下学期期中数学试卷

【精品】天津市南开区2017-2018学年七年级下学期期中数学试卷

天津市南开区2017-2018学年七年级数学下学期期中试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣ C.± D.±2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(3分)下列等式正确的是()A.B.C.D.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50° B.60° C.70° D.80°10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71° B.64° C.80° D.45°11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30° B.150°C.120°D.100°12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= °.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FO D=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD= °∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1= °;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= .(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.2017-2018学年天津市南开区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣ C.± D.±【考点】21:平方根.【分析】依据平方根的定义回答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】K6:三角形三边关系.【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)下列等式正确的是()A.B.C.D.【考点】24:立方根;22:算术平方根.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.【解答】解:A、原式=,错误;B、原式=﹣(﹣)=,错误;C、原式没有意义,错误;D、原式==4,正确,故选:D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个【考点】26:无理数;22:算术平方根;24:立方根.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在所列实数中无理数有,,0.1010010001…(相邻两个1之间依次多一个0)这3个数,故选:B.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角【考点】J6:同位角、内错角、同旁内角;J2:对顶角、邻补角.【分析】依据内错角、同位角、对顶角、邻补角的定义回答即可.【解答】解:A、∠1与∠C是内错角,故A正确,与要求不符;B、∠2与∠C是同旁内角,故B错误,与要求相符;C、∠1与∠3是对顶角,故C正确,与要求不符;D、∠1与∠2是邻补角,故D正确,与要求不符.故选:B.【点评】本题主要考查的是内错角、同位角、对顶角、邻补角的定义,掌握相关定义是解题的关键.6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行公理、平行线的性质、点到直线的距离的定义判断即可,【解答】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,①是真命题;两条平行线被第三条直线所截,同旁内角互补,②是假命题;两直线平行,内错角相等,③是真命题;同一平面内,过一点有且只有一条直线与已知直线垂直,④是真命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,⑤数假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°【考点】J9:平行线的判定.【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、当∠1=∠2时,a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90°,∴a∥b;C、∠1=∠2不等判定a,b互相平行;D、由∠1+∠2=180°可知a∥b;故选:C.【点评】本题主要考查平行线的判定,熟练掌握平行线的判定定理是关键.8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴得出a<0,a+b<0,进而化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50° B.60° C.70° D.80°【考点】JA:平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,故选:D.【点评】本题考查了平行线的性质,三角板的知识,熟记性质是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71° B.64° C.80° D.45°【考点】K7:三角形内角和定理.【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30° B.150°C.120°D.100°【考点】JA:平行线的性质;J8:平行公理及推论.【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出选项.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故选:D.【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定【考点】JB:平行线的判定与性质.【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.故选:B.【点评】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线段最短,利用了垂线段的性质:直线外的点与直线上任意一点的连线中垂线段最短.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= 42 °.【考点】J3:垂线;J2:对顶角、邻补角.【分析】根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.【解答】解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.【点评】此题主要考查了垂线,以及对顶角,关键是掌握对顶角相等.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为﹣.【考点】24:立方根;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵|2x+3|+=0,∴2x+3=0且9﹣4y=0,解得:x=﹣、y=,则===﹣,故答案为:﹣【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于12cm .【考点】Q2:平移的性质.【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10,∴AB+BC+AC=10,∴四边形ABFD的周长=10+1+1=12cm.故答案为:12cm,【点评】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有③④.【考点】K2:三角形的角平分线、中线和高.【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故答案为③④.【点评】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行 3 次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是255 .【考点】2B:估算无理数的大小.【分析】(1)根据运算过程得出[]=9,[]=3,[]=1,即可得出答案.(2)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)【考点】2C:实数的运算.【分析】(1)首先利用绝对值的性质计算绝对值,然后再计算实数的加减即可;(2)本题涉及开立方、二次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=﹣1﹣(2﹣)+,=﹣1﹣2+﹣,=2﹣3;(2)原式=0.5﹣2﹣=﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】(1)根据补角,余角的关系,可得∠COB,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.【解答】解:(1)∵∠COF与∠DOF是邻补角,∴∠COF=180°﹣∠DOF=90°.∵∠AOC与∠AOF互为余角,∴∠AOC=90°﹣∠AOF=90°﹣50°=40°.∵∠AOC与∠BOC是邻补角,∴∠COB=180°﹣∠AOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠BOE=∠BOC=70°;(2)∠BOD:∠BOE=1:4,设∠BOD=∠AOC=x,∠BOE=∠COE=4x.∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,即x+4x+4x=180°,解得x=20°.∵∠AOC与∠AOF互为余角,∴∠AOF=90°﹣∠AOC=90°﹣20°=70°.【点评】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)【考点】K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)由∠B=35°,∠ACB=85°,根据三角形内角和等于180°,可得∠BAC的度数,因为AD平分∠BAC,从而可得∠DAC的度数,进而求得∠ADC的度数,由PE⊥AD,可得∠DPE 的度数,从而求得∠E的度数.(2)根据第一问的推导,可以用含α、β的代数式表示∠E.【解答】解:(1)∵∠B=35°,∠ACB=85°,∠B+∠ACB+∠BAC=180°.∴∠BAC=60°.∵AD平分∠BAC.∴∠DAC=30°.∵∠ACB=85°,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=65°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=25°.(2))∵∠B=α,∠ACB=β,∠B+∠ACB+∠BAC=180°.∴∠BAC=180°﹣α﹣β.∵AD平分∠BAC.∴∠DAC=(180°﹣α﹣β).∵∠ACB=β,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=180°﹣β﹣(180°﹣α﹣β)=90°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=180°﹣90°﹣(90°)=.【点评】本题主要考查三角形的内角和的应用,关键是可以根据题意,灵活变化,最终求出所要求的问题的答案.22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠BOD,再根据角平分线的定义求出∠DOE,然后根据垂直的定义求出∠EOF=90°,再根据∠DOF=∠EOF﹣∠DOE代入数据计算即可得解.【解答】解:∵CD∥AB,∴∠BOD=180°﹣∠CDO=180°﹣62°=118°,∵OE平分∠BOD,∴∠DOE=∠BOD=×118°=59°,∵OE⊥OF,∴∠EOF=90°,∴∠DOF=∠EOF﹣∠DOE=90°﹣59°=31°.【点评】本题考查了平行线的性质,角平分线的对,垂线的定义,是基础题,熟记性质并准确识图是解题的关键.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.【考点】JB:平行线的判定与性质.【分析】相等,根据同角的补角相等可得∠2=∠EFD,则AB∥EF,得∠3=∠ADE,证明DE∥BC,可得结论.【解答】解:∠C=∠AED,理由是:∵∠1+∠2=180°,∠1+∠EFD=180°,∴∠2=∠EFD,∴AB∥EF,∴∠3=∠ADE,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC,∴∠C=∠AED.【点评】本题考查了平行线的性质和判定及平角的定义,熟练掌握平行线的判定是关键.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠ A∴∠ACD﹣∠ABD= 70 °∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1= 35 °;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系∠A n=∠A ;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= 25°.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【考点】L3:多边形内角与外角;K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【解答】解:(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A,∴∠ACD﹣∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,故答案为:∠A n=∠A.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,(1分)∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.【点评】本题考查了多边形内角与外角和角平分线的定义,三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键,要注意整体思想的利用.。

天津市南开区七年级下期中数学试卷及答案-推荐

天津市南开区七年级下期中数学试卷及答案-推荐

2017-2018学年天津市南开区七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(3分)下列等式正确的是()A.B.C.D.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= °.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠F OD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC 的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD= °∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A 1CD ﹣∠A 1BD=(∠ACD ﹣∠ABD )∴∠A 1= °;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系 ;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= .(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q+∠A 1的值为定值;②∠Q ﹣∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.2017-2018学年天津市南开区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±【考点】21:平方根.【分析】依据平方根的定义回答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】K6:三角形三边关系.【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)下列等式正确的是()A.B.C.D.【考点】24:立方根;22:算术平方根.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.【解答】解:A、原式=,错误;B、原式=﹣(﹣)=,错误;C、原式没有意义,错误;D、原式==4,正确,故选:D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个【考点】26:无理数;22:算术平方根;24:立方根.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在所列实数中无理数有,,0.1010010001…(相邻两个1之间依次多一个0)这3个数,故选:B.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角【考点】J6:同位角、内错角、同旁内角;J2:对顶角、邻补角.【分析】依据内错角、同位角、对顶角、邻补角的定义回答即可.【解答】解:A、∠1与∠C是内错角,故A正确,与要求不符;B、∠2与∠C是同旁内角,故B错误,与要求相符;C、∠1与∠3是对顶角,故C正确,与要求不符;D、∠1与∠2是邻补角,故D正确,与要求不符.故选:B.【点评】本题主要考查的是内错角、同位角、对顶角、邻补角的定义,掌握相关定义是解题的关键.6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行公理、平行线的性质、点到直线的距离的定义判断即可,【解答】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,①是真命题;两条平行线被第三条直线所截,同旁内角互补,②是假命题;两直线平行,内错角相等,③是真命题;同一平面内,过一点有且只有一条直线与已知直线垂直,④是真命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,⑤数假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°【考点】J9:平行线的判定.【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、当∠1=∠2时,a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90°,∴a∥b;C、∠1=∠2不等判定a,b互相平行;D、由∠1+∠2=180°可知a∥b;故选:C.【点评】本题主要考查平行线的判定,熟练掌握平行线的判定定理是关键.8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴得出a<0,a+b<0,进而化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°【考点】JA:平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,故选:D.【点评】本题考查了平行线的性质,三角板的知识,熟记性质是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【考点】K7:三角形内角和定理.【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°【考点】JA:平行线的性质;J8:平行公理及推论.【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出选项.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故选:D.【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定【考点】JB:平行线的判定与性质.【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF 的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.故选:B.【点评】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线段最短,利用了垂线段的性质:直线外的点与直线上任意一点的连线中垂线段最短.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= 42 °.【考点】J3:垂线;J2:对顶角、邻补角.【分析】根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.【解答】解:∵∠AOD=132°,∴∠COB=132°,∴∠COE=132°﹣90°=42°,故答案为:42.【点评】此题主要考查了垂线,以及对顶角,关键是掌握对顶角相等.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为﹣.【考点】24:立方根;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵|2x+3|+=0,∴2x+3=0且9﹣4y=0,解得:x=﹣、y=,则===﹣,故答案为:﹣【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于12cm .【考点】Q2:平移的性质.【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10,∴AB+BC+AC=10,∴四边形ABFD的周长=10+1+1=12cm.故答案为:12cm,【点评】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有③④.【考点】K2:三角形的角平分线、中线和高.【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故答案为③④.【点评】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行 3 次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是255 .【考点】2B:估算无理数的大小.【分析】(1)根据运算过程得出[]=9,[]=3,[]=1,即可得出答案.(2)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)【考点】2C:实数的运算.【分析】(1)首先利用绝对值的性质计算绝对值,然后再计算实数的加减即可;(2)本题涉及开立方、二次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=﹣1﹣(2﹣)+,=﹣1﹣2+﹣,=2﹣3;(2)原式=0.5﹣2﹣=﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】(1)根据补角,余角的关系,可得∠COB,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.【解答】解:(1)∵∠COF与∠DOF是邻补角,∴∠COF=180°﹣∠DOF=90°.∵∠AOC与∠AOF互为余角,∴∠AOC=90°﹣∠AOF=90°﹣50°=40°.∵∠AOC与∠BOC是邻补角,∴∠COB=180°﹣∠AOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠BOE=∠BOC=70°;(2)∠BOD:∠BOE=1:4,设∠BOD=∠AOC=x,∠BOE=∠COE=4x.∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,即x+4x+4x=180°,解得x=20°.∵∠AOC与∠AOF互为余角,∴∠AOF=90°﹣∠AOC=90°﹣20°=70°.【点评】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC 的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)【考点】K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)由∠B=35°,∠ACB=85°,根据三角形内角和等于180°,可得∠BAC的度数,因为AD平分∠BAC,从而可得∠DAC的度数,进而求得∠ADC的度数,由PE⊥AD,可得∠DPE 的度数,从而求得∠E的度数.(2)根据第一问的推导,可以用含α、β的代数式表示∠E.【解答】解:(1)∵∠B=35°,∠ACB=85°,∠B+∠ACB+∠BAC=180°.∴∠BAC=60°.∵AD平分∠BAC.∴∠DAC=30°.∵∠ACB=85°,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=65°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=25°.(2))∵∠B=α,∠ACB=β,∠B+∠ACB+∠BAC=180°.∴∠BAC=180°﹣α﹣β.∵AD平分∠BAC.∴∠DAC=(180°﹣α﹣β).∵∠ACB=β,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=180°﹣β﹣(180°﹣α﹣β)=90°.又∵PE⊥AD.∵∠PDE+∠DPE+∠E=180°.∴∠E=180°﹣90°﹣(90°)=.【点评】本题主要考查三角形的内角和的应用,关键是可以根据题意,灵活变化,最终求出所要求的问题的答案.22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠BOD,再根据角平分线的定义求出∠DOE,然后根据垂直的定义求出∠EOF=90°,再根据∠DOF=∠EOF﹣∠DOE代入数据计算即可得解.【解答】解:∵CD∥AB,∴∠BOD=180°﹣∠CDO=180°﹣62°=118°,∵OE平分∠BOD,∴∠DOE=∠BOD=×118°=59°,∵OE⊥OF,∴∠EOF=90°,∴∠DOF=∠EOF﹣∠DOE=90°﹣59°=31°.【点评】本题考查了平行线的性质,角平分线的对,垂线的定义,是基础题,熟记性质并准确识图是解题的关键.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.【考点】JB:平行线的判定与性质.【分析】相等,根据同角的补角相等可得∠2=∠EFD,则AB∥EF,得∠3=∠ADE,证明DE∥BC,可得结论.【解答】解:∠C=∠AED,理由是:∵∠1+∠2=180°,∠1+∠EFD=180°,∴∠2=∠EFD,∴AB∥EF,∵∠B=∠3, ∴∠ADE=∠B , ∴DE ∥BC ,∴∠C=∠AED .【点评】本题考查了平行线的性质和判定及平角的定义,熟练掌握平行线的判定是关键.24.(8分)如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时, ∵∠ACD ﹣∠ABD=∠ A ∴∠ACD ﹣∠ABD= 70 °∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A 1CD ﹣∠A 1BD=(∠ACD ﹣∠ABD ) ∴∠A 1= 35 °;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系 ∠A n =∠A ;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= 25° .(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q+∠A 1的值为定值;②∠Q ﹣∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【考点】L3:多边形内角与外角;K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)根据角平分线的定义可得∠A 1BC=∠ABC ,∠A 1CD=∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解;(2)由∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,而A 1B 、A 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,于是有∠BAC=2∠A 1,同理可得∠A 1=2∠A 2,即∠A=22∠A 2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DC B=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE )=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF )=180°﹣2(∠DCF ﹣∠FBC )=180°﹣2∠F ,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A 1=∠AEC+∠ACE=2(∠QEC+∠QCE ),利用三角形内角和定理表示出∠QEC+∠QCE ,即可得到∠A 1和∠Q 的关系.【解答】解:(1)当∠A 为70°时, ∵∠ACD ﹣∠ABD=∠A , ∴∠ACD ﹣∠ABD=70°,∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线,∴∠A 1CD ﹣∠A 1BD=(∠ACD ﹣∠ABD ) ∴∠A 1=35°;故答案为:A ,70,35;(2)∵A 1B 、A 1C 分别平分∠ABC 和∠ACD , ∴∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,而∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠BAC , ∴∠BAC=2∠A 1=80°, ∴∠A 1=40°,同理可得∠A 1=2∠A 2, 即∠BAC=22∠A 2=80°, ∴∠A 2=20°,∴∠A=2n ∠A n ,即∠A n =∠A ,故答案为:∠A n =∠A .(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D ),∴∠ABC+(180°﹣∠DCE )=360°﹣(∠A+∠D )=2∠FBC+(180°﹣2∠DCF )=180°﹣2(∠DCF ﹣∠FBC )=180°﹣2∠F , ∴360°﹣(α+β)=180°﹣2∠F , 2∠F=∠A+∠D ﹣180°,∴∠F=(∠A+∠D )﹣90°, ∵∠A+∠D=230°, ∴∠F=25°; 故答案为:25°.(4)①∠Q+∠A 1的值为定值正确.∵∠ACD ﹣∠ABD=∠BAC ,BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A 1=∠A 1CD ﹣∠A 1BD=∠BAC ,(1分)∵∠AEC+∠ACE=∠BAC ,EQ 、CQ 是∠AEC 、∠ACE 的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE )=∠BAC ,∴∠Q=180°﹣(∠QEC+∠QCE )=180°﹣∠BAC , ∴∠Q+∠A 1=180°.【点评】本题考查了多边形内角与外角和角平分线的定义,三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键,要注意整体思想的利用.。

天津市南开区七年级下期中数学试卷及答案-精品

天津市南开区七年级下期中数学试卷及答案-精品

2017-2018学年天津市南开区七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(3分)下列等式正确的是()A.B.C.D.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角 B.∠2与∠C是同位角C.∠1与∠3是对顶角 D.∠1与∠2是邻补角6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= °.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠F OD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD= °∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1= °;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= .(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.2017-2018学年天津市南开区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±【考点】21:平方根.【分析】依据平方根的定义回答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】K6:三角形三边关系.【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)下列等式正确的是()A.B.C.D.【考点】24:立方根;22:算术平方根.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.【解答】解:A、原式=,错误;B、原式=﹣(﹣)=,错误;C、原式没有意义,错误;D、原式==4,正确,故选:D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个【考点】26:无理数;22:算术平方根;24:立方根.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在所列实数中无理数有,,0.1010010001…(相邻两个1之间依次多一个0)这3个数,故选:B.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角 B.∠2与∠C是同位角C.∠1与∠3是对顶角 D.∠1与∠2是邻补角【考点】J6:同位角、内错角、同旁内角;J2:对顶角、邻补角.【分析】依据内错角、同位角、对顶角、邻补角的定义回答即可.【解答】解:A、∠1与∠C是内错角,故A正确,与要求不符;B、∠2与∠C是同旁内角,故B错误,与要求相符;C、∠1与∠3是对顶角,故C正确,与要求不符;D、∠1与∠2是邻补角,故D正确,与要求不符.故选:B.【点评】本题主要考查的是内错角、同位角、对顶角、邻补角的定义,掌握相关定义是解题的关键.6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行公理、平行线的性质、点到直线的距离的定义判断即可,【解答】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,①是真命题;两条平行线被第三条直线所截,同旁内角互补,②是假命题;两直线平行,内错角相等,③是真命题;同一平面内,过一点有且只有一条直线与已知直线垂直,④是真命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,⑤数假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°【考点】J9:平行线的判定.【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、当∠1=∠2时,a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90°,∴a∥b;C、∠1=∠2不等判定a,b互相平行;D、由∠1+∠2=180°可知a∥b;故选:C.【点评】本题主要考查平行线的判定,熟练掌握平行线的判定定理是关键.8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.b B.﹣2a+b C.2a+b D.2a﹣b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴得出a<0,a+b<0,进而化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°【考点】JA:平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,故选:D.【点评】本题考查了平行线的性质,三角板的知识,熟记性质是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【考点】K7:三角形内角和定理.【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°【考点】JA:平行线的性质;J8:平行公理及推论.【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出选项.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故选:D.【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定【考点】JB:平行线的判定与性质.【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF 的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.故选:B.【点评】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线段最短,利用了垂线段的性质:直线外的点与直线上任意一点的连线中垂线段最短.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC= 42 °.【考点】J3:垂线;J2:对顶角、邻补角.【分析】根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.【解答】解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.【点评】此题主要考查了垂线,以及对顶角,关键是掌握对顶角相等.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为﹣.【考点】24:立方根;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵|2x+3|+=0,∴2x+3=0且9﹣4y=0,解得:x=﹣、y=,则===﹣,故答案为:﹣【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于12cm .【考点】Q2:平移的性质.【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10,∴AB+BC+AC=10,∴四边形ABFD的周长=10+1+1=12cm.故答案为:12cm,【点评】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有③④.【考点】K2:三角形的角平分线、中线和高.【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故答案为③④.【点评】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行 3 次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是255 .【考点】2B:估算无理数的大小.【分析】(1)根据运算过程得出[]=9,[]=3,[]=1,即可得出答案.(2)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)【考点】2C:实数的运算.【分析】(1)首先利用绝对值的性质计算绝对值,然后再计算实数的加减即可;(2)本题涉及开立方、二次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=﹣1﹣(2﹣)+,=﹣1﹣2+﹣,=2﹣3;(2)原式=0.5﹣2﹣=﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】(1)根据补角,余角的关系,可得∠COB,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.【解答】解:(1)∵∠COF与∠DOF是邻补角,∴∠COF=180°﹣∠DOF=90°.∵∠AOC与∠AOF互为余角,∴∠AOC=90°﹣∠AOF=90°﹣50°=40°.∵∠AOC与∠BOC是邻补角,∴∠COB=180°﹣∠AOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠BOE=∠BOC=70°;(2)∠BOD:∠BOE=1:4,设∠BOD=∠AOC=x,∠BOE=∠COE=4x.∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,即x+4x+4x=180°,解得x=20°.∵∠AOC与∠AOF互为余角,∴∠AOF=90°﹣∠AOC=90°﹣20°=70°.【点评】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC 的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)【考点】K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)由∠B=35°,∠ACB=85°,根据三角形内角和等于180°,可得∠BAC的度数,因为AD平分∠BAC,从而可得∠DAC的度数,进而求得∠ADC的度数,由PE⊥AD,可得∠DPE 的度数,从而求得∠E的度数.(2)根据第一问的推导,可以用含α、β的代数式表示∠E.【解答】解:(1)∵∠B=35°,∠ACB=85°,∠B+∠ACB+∠BAC=180°.∴∠BAC=60°.∵AD平分∠BAC.∴∠DAC=30°.∵∠ACB=85°,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=65°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=25°.(2))∵∠B=α,∠ACB=β,∠B+∠ACB+∠BAC=180°.∴∠BAC=180°﹣α﹣β.∵AD平分∠BAC.∴∠DAC=(180°﹣α﹣β).∵∠ACB=β,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=180°﹣β﹣(180°﹣α﹣β)=90°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=180°﹣90°﹣(90°)=.【点评】本题主要考查三角形的内角和的应用,关键是可以根据题意,灵活变化,最终求出所要求的问题的答案.22.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠BOD,再根据角平分线的定义求出∠DOE,然后根据垂直的定义求出∠EOF=90°,再根据∠DOF=∠EOF﹣∠DOE代入数据计算即可得解.【解答】解:∵CD∥AB,∴∠BOD=180°﹣∠CDO=180°﹣62°=118°,∵OE平分∠BOD,∴∠DOE=∠BOD=×118°=59°,∵OE⊥OF,∴∠EOF=90°,∴∠DOF=∠EOF﹣∠DOE=90°﹣59°=31°.【点评】本题考查了平行线的性质,角平分线的对,垂线的定义,是基础题,熟记性质并准确识图是解题的关键.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.【考点】JB:平行线的判定与性质.【分析】相等,根据同角的补角相等可得∠2=∠EFD,则AB∥EF,得∠3=∠ADE,证明DE∥BC,可得结论.【解答】解:∠C=∠AED,理由是:∵∠1+∠2=180°,∠1+∠EFD=180°,∴∠2=∠EFD,∴AB∥EF,∴∠3=∠ADE,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC,∴∠C=∠AED.【点评】本题考查了平行线的性质和判定及平角的定义,熟练掌握平行线的判定是关键.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A.1(1)当∠A 为70°时, ∵∠ACD ﹣∠ABD=∠ A ∴∠ACD ﹣∠ABD= 70 °∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A 1CD ﹣∠A 1BD=(∠ACD ﹣∠ABD )∴∠A 1= 35 °;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系 ∠A n =∠A ;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= 25° .(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q+∠A 1的值为定值;②∠Q ﹣∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【考点】L3:多边形内角与外角;K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)根据角平分线的定义可得∠A 1BC=∠ABC ,∠A 1CD=∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解;(2)由∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,而A 1B 、A 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,于是有∠BAC=2∠A 1,同理可得∠A 1=2∠A 2,即∠A=22∠A 2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DC B=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE )=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF )=180°﹣2(∠DCF ﹣∠FBC )=180°﹣2∠F ,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A 1=∠AEC+∠ACE=2(∠QEC+∠QCE ),利用三角形内角和定理表示出∠QEC+∠QCE ,即可得到∠A 1和∠Q 的关系. 【解答】解:(1)当∠A 为70°时, ∵∠ACD ﹣∠ABD=∠A , ∴∠ACD ﹣∠ABD=70°,∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线,∴∠A 1CD ﹣∠A 1BD=(∠ACD ﹣∠ABD ) ∴∠A 1=35°;故答案为:A ,70,35;(2)∵A 1B 、A 1C 分别平分∠ABC 和∠ACD ,∴∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,而∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠BAC , ∴∠BAC=2∠A 1=80°, ∴∠A 1=40°,同理可得∠A 1=2∠A 2, 即∠BAC=22∠A 2=80°, ∴∠A 2=20°,∴∠A=2n ∠A n ,即∠A n =∠A ,故答案为:∠A n =∠A .(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D ),∴∠ABC+(180°﹣∠DCE )=360°﹣(∠A+∠D )=2∠FBC+(180°﹣2∠DCF )=180°﹣2(∠DCF ﹣∠FBC )=180°﹣2∠F ,∴360°﹣(α+β)=180°﹣2∠F , 2∠F=∠A+∠D ﹣180°,∴∠F=(∠A+∠D )﹣90°, ∵∠A+∠D=230°, ∴∠F=25°;故答案为:25°.(4)①∠Q+∠A 1的值为定值正确.∵∠ACD ﹣∠ABD=∠BAC ,BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A 1=∠A 1CD ﹣∠A 1BD=∠BAC ,(1分)∵∠AEC+∠ACE=∠BAC ,EQ 、CQ 是∠AEC 、∠ACE 的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE )=∠BAC ,∴∠Q=180°﹣(∠QEC+∠QCE )=180°﹣∠BAC ,∴∠Q+∠A 1=180°.【点评】本题考查了多边形内角与外角和角平分线的定义,三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键,要注意整体思想的利用.。

南开初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

南开初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

南开初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列方程组中,属于二元一次方程组的是()A.B.C.D.【答案】C【考点】二元一次方程组的定义【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;B. 第一个方程不是整式方程,故不是二元一次方程组;C. 符合二元一次方程组的定义,是二元一次方程组;D.含有三个未知数,故不是二元一次方程组。

故答案为:C【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。

2、(2分)若方程的解是负数,则的取值范围是()A.B.C.D.【答案】A【考点】解一元一次不等式,解含括号的一元一次方程【解析】【解答】解:解含有系数m的方程,可得x=- ,然后根据方程的解为负数,可知4m-5>0,解得m>- .故答案为:A.【分析】先把m看作已知数,解关于x的一元一次方程,求出x的值(用含m的代数式表示),由方程的解是负数可知x<0即4m-5>0,然后解不等式即可求出m的取值范围。

3、(2分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°【答案】B【考点】平行线的性质【解析】【解答】解:∵DE∥OB∴∠ADE=∠AOB=40°,∠CDE+∠DCB=180°∵CD和DE为光线∴∠ODC=∠ADE=40°∴∠CDE=180°-40°-40°=100°∴∠BCD=180°-100°=80°。

2018-2019年南开区初一期中数学考试试卷分析

2018-2019年南开区初一期中数学考试试卷分析

2018-2019年南开区初一期中考试试卷分析本次南开区七年级期中考试刚刚结束,针对这次考试,首先我们先来一起看一下题型分布。

一、选择题的内容都相对基础。

难度较大的题目主要是在于绝对值、整式以及一元一次方程的综合题。

下面针对每一道题目进行具体分析:1. -6的相反数是( )A. 6B. 61C. -6D.61 【答案】A【解析】本题考察“相反数”的基本概念。

只有符号不同的两个数,互为相反数。

【拓展考点】1.相反数的性质:互为相反数的两个数,和为02.相反数的判定:如果两个数和为0,那么这两个数互为相反数3.相反数的其他知识点:互为相反数且不为0的两个数,商为-14.乘积为1的两个数互为倒数。

【涉及知识】有理数基本概念——相反数【点评】题目考察相反数的概念,注意只有符号不同的两个数互为相反数。

2.有理数中( )A.不是正有理数就是负有理数B.有最小的整数C.有最大的负数D.有绝对值最小的数【答案】D【解析】本题考察有理数的分类。

A选项,有理数按照性质(符号)分类,可以分为:正有理数、负有理数、0。

所以选项缺少0.B选项,不存在最小的整数。

整数可分为:正整数、负整数、0。

在数轴中,负方向可以无限延伸,所以没有最小的负整数。

所以没有最小的整数C选项,没有最大的负数。

最大的负整数为-1,在-1到0之间有无数个小数,没有最大的负数。

D选项,有绝对值最小的数。

绝对值最小的数是0。

任何有理数的绝对值都是非负数。

非负数包括:正数、0。

正数是大于0的数,所以绝对值最小的数是0. 【拓展考点】1.有理数按照定义分类,分为:整数和分数2.非负数:正数、0 非正数:负数、0非负整数:正整数、0 非正整数:负整数、0非负有理数:正有理数、0 非正有理数:负有理数、03.最大的非正(整)数:0 最小的非负(整)数: 0最大的负整数:-1 最小的正整数:14.没有最大的负(整)数,但有最大的负整数 -1没有最小的正(整)数,但有最小的正整数 1没有绝对值最大的数,但有绝对值最小的数 0【涉及知识】有理数分类【点评】题目考察有理数的分类,注意掌握有理数按照定义分类、按照符号分类,区分“六个非”。

南开七年级期中数学试卷

南开七年级期中数学试卷

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()。

A. √9B. πC. √-1D. 0.1010010001……2. 如果a > b,那么下列不等式中正确的是()。

A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 下列图形中,对称轴最多的是()。

A. 正方形B. 等边三角形C. 等腰梯形D. 圆4. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么它的体积是()。

A. 24cm³B. 36cm³C. 48cm³D. 60cm³5. 若x² - 5x + 6 = 0,则x的值为()。

A. 2B. 3C. 2或3D. 无法确定二、填空题(每题5分,共20分)6. 3的平方根是______。

7. 若a² = 16,则a的值为______。

8. 等腰三角形的底边长为8cm,腰长为6cm,那么它的周长是______cm。

9. 0.125的小数点向右移动三位后变成______。

10. 如果一个数的倒数是3,那么这个数是______。

三、解答题(共100分)11. (20分)计算下列各题:(1)(-3)² + 5×(-2) - 2³(2)(4x - 3y)² - 2(4x - 3y) + 112. (20分)解下列方程:(1)2x + 3 = 11(2)3(x - 2) = 2x + 713. (20分)已知长方形的长为10cm,宽为5cm,求:(1)长方形的面积(2)长方形的周长14. (20分)已知直角三角形的两个直角边分别为3cm和4cm,求:(1)斜边的长度(2)直角三角形的面积15. (20分)小明去商店买了一件衣服,原价200元,打八折后付款,然后再用找零的10元买了一个书包。

求:(1)小明实际付款的金额(2)书包的价格注意:本试卷满分120分,考试时间为90分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.(8分)如图,在△ABC中,AD平分/BAC点P为线段AD上的一个动点,PE! AD交BC的延长线于点E.
(1)若/B=35,/ACB=85,求/E得度数.
(2)当点P在线段AD上运动时,设/B=a,ZACB^B(B>a),求/E得大小.(用含a、B的代数式表示)
22.(8分)如图,已知CD// AB, OE平分/BOD OELOF,/CDO=6°,求/DOF的度数.
A.5 B.6 C.11 D.16
【考点】K6:三角形三边关系.
【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.
【解答】解:设此三角形第三边的长为a,则10-4vav10+4,即6<av14.故选:C.
2017-2018
一、选择题(本大题共12小题,每小题3分,共36分)
1.(3分)的平方根是()
A.B.-C.土D.土
2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()
A.5 B.6 C.11 D.16
3.(3分)下列等式正确的是()
A.B.C.D.
4.(3分)实数,相邻两个1之间依次多一个0),其中,无理数有()
10.(3分)如图,在Rt△ABC中,/ACB=90,点D在AB边上,将△CBD召CD折叠,使
点B恰好落在AC边上的点E处,若/A=26°,则/CDE度数为()
A.71°B.64°C.80°D.45°
11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB// DE/A=30°,/ACE=110,
C.如图3,测得7仁72
D.在图④中,展开后测得71+72=180°
8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简-|a+b|的结果为( )
9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若/1=2/2,
那么/1的度数为( )
A.50°B.60°C.70°D.80°
4同一平面内,过一点有且只有一条直线与已知直线垂直
5从直线外一点到这条直线的垂线段,叫做这点到直线的距离
A.1个B.2个C.3个D.4个
7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相 平行的是( )
A.如图1,展开后测得/仁/2
B.如图2,展开后测得/ 仁/2且/3=74
16.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF若厶ABC的周长等于10cm则四边形ABFD勺周长等于
17.(3分)如图所示,在△ABC中,Z仁/2,G是AD的中点,延长BG交AC于点E,F为
AB上一点,CFLAD交AD于点H.①人。是厶ABE的角平分线;②BE是厶ABD的边AD上的中线;
(2)只需进行3次操作后变为1的所有正整数中,最大的是
三、解答题(本大题共6小题,共46分)
19.(8分)计算:
(1)I-1|-I-2|+|-|
(2)
20.(6分)如图,直线AB CD相交于点O, 0E平分/BOC/FOD=90
(1)若/AOF=50,求/B0E的度数;
(2)若/BOD/BOE=14,求/AOF的度数.
1.(3分)的平方根是()
A.B.-C.土D.土
【考点】21:平方根. 【分析】依据平方根的定义回答即可.
【解答】解:T(土)2=,
•••的平方根是土.
故选:C.
【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.
2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()
•••ZACD-ZABD=(ZACD-ZABD
•••/Ai=° ;
(2)ZABC的角平分线与/ACD的角平分线交于A,/ABC与ACD的平分线交于A,如此
继续下去可得 代、…、An,请写出/A与/A的数量关系;
(3)如图2,四边形ABCD^,/F为/ABC的角平分线及外角/DCE勺平分线所在的直线构
3CH*^ACD的边AD上的高;④AH>^ACF的角平分线和高线,其中判断正确的有
18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行 如下操作:
72 []=8 []=2 []=1,这样对72只需进行3次操作后变为1,类似地:
(1) 对81只需进行次操作后变为1;
13.(3分)如图,要把池中的水引到D处,可过D点引DCLAB于C,然后沿DC开渠,可 使所开渠道最短,试说明设计的依据:
14.(3分)如图,直线AB CD相交于点O, EOL AB垂足为点O,若/AOD=132,则/
EOC=°.
15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为
23.(8分)如图,已知/1 +Z2=180°,ZB=Z3,判断/C与/AED的大小关系,并说明理 由.
24.(8分)如图,△ABC中,/ABC的角平分线与/ACB勺外角/ACD的平分线交于A.
(1)当/A为70°时,
vZACD-ZABD2
•••/ACD-ZABD=°
vBA、CA是ZABC的角平分线与ZACB的外角ZACD勺平分线
则/E的度数为()
A.30°图,AB丄BC,AE平分/BAD交BC于点E, AE!DE/1+Z2=90°,M N分别
是BA CD延长线上的点,/EAMffi/EDN勺平分线交于点F.ZF的度数为()
A.120°B.135°C.150°D.不能确定
二、填空题(本大题共6小题,每小题3分,共18分)
A.2个B.3个C.4个D.5个
5.(3分)如图,下面说法错误的是()
A.Z1与/C是内错角B.Z2与/C是同位角
C.Z1与/3是对顶角D.Z1与/2是邻补角
6.(3分)下列命题中,真命题的个数是()
1如果两条直线都与第三条直线平行,那么这两条直线也互相平行
2两条直线被第三条直线所截,同旁内角互补
3两直线平行,内错角相等
成的角,若/A+/D=230度,则/F=.
(4)如图3,若E为BA延长线上一动点,连EC,/AEC与/ACE的角平分线交于Q,当E滑动时有下面两个结论:①/Q+ZA的值为定值;②/Q-/Ai的值为定值.其中有且只有一 个是正确的,请写出正确的结论,并求出其值.
2017-2018
参考答案与试题解析
一、选择题(本大题共12小题,每小题3分,共36分)
相关文档
最新文档