2012北京市高三一模理科数学分类汇编8:统计与概率

合集下载

2012高考理科数学概率统计_(答案详解)2

2012高考理科数学概率统计_(答案详解)2

高考试题汇编(理)---概率统计解答题1、(全国卷大纲版)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。

每次发球,胜方得1分,负方得0分。

设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。

甲、乙的一局比赛中,甲先发球。

(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望。

2、(全国卷新课标版)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1) 若花店某天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:n∈)的函数解析式;枝,N(2)以(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.3、(北京卷)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误额概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为c b a ,,其中0a >, 600a b c ++=。

当数据c b a ,,的方差2s 最大时,写出c b a ,,的值(结论不要求证明),并求此时2s 的值。

(注:])()()[(1222212x x x x x x ns n -++-+-=,其中x 为数据n x x x ,,,21 的平均数) 4、(福建卷)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (2)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙牌轿车的利润为2X ,分别求1X ,2X 的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由。

北京市2012年高考数学最新联考试题分类大汇编(12)概率试题解析

北京市2012年高考数学最新联考试题分类大汇编(12)概率试题解析

北京市2012年高考数学最新联考试题分类大汇编一、填空题:14. (2012年3月北京市朝阳区高三一模文科)已知集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.若O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,则MON ∆的面积S 与m 的关系式为 .241m m+二、解答题:16. (北京市西城区2012年1月高三期末考试理科)(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.【命题分析】本题考查随机事件的概率和独立事件的概率问题。

利用等可能事件的定义求概率,不要忘记等可能事件的两大特征:基本事件总数有限及基本事件的发生等可能.求概率的题目,找准“基本事件”很重要,因此一定要明确以什么“事件”作为基本事件,某事件A 所包含的基本事件必须与此相对应.求解等可能性事件A 的概率一般遵循如下步骤:多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.本题的第二问采用组合的知识,确定m 、n 的值。

(Ⅰ)解:记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A ,则2()7P A =. ………………2分所以3次抽取中恰有1次抽到使用过的零件的概率12325150C ()()77343P ==. ……5分(Ⅱ)解:随机变量X 的所有取值为2,3,4. ………………7分2227C 1(2)C21P X ===; 115227C C 10(3)C21P X ===;2527C 10(4)C21P X ===. ………………10分:……………11分11010242342121217EX =⨯+⨯+⨯=. (13)分率)(17)(本小题满分13分) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分 (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,………………………………………4分 因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414E X =⨯=)所以X 的数学期望为 1. ………………………………………13分(16)(本小题满分13分)解:(Ⅰ)由题设可知,0.085500200a =⨯⨯=, 0.02550050b =⨯⨯=.……………2分(Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=, 第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=,16. (北京市西城区2012年4月高三第一次模拟文)(本小题满分13分)某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.11(,)a a ,),(21a a ,),(11b a ,),(21b a ,),(31b a ,),(12a a ,22(,)a a ,),(12b a ,),(22b a ,),(32b a , ),(11a b ,),(21a b ,11(,)b b ,),(21b b ,),(31b b ,),(12a b ,),(22a b ,21(,)b b ,22(,)b b ,),(32b b ,),(13a b ,),(23a b ,31(,)b b ,),(23b b ,33(,)b b ,共25种. …9分 2次发言的学生恰好来自不同班级的基本事件为:),(11b a ,),(21b a ,),(31b a ,),(12b a ,),(22b a ,),(32b a ,),(11a b ,),(21a b ,),(12a b ,),(22a b ,),(13a b ,),(23a b ,共12种. ………12分所以2次发言的学生恰好来自不同班级的概率为1225P =. ……13分(16)(共13分)解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-.…………2分(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=,(3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥,又n *∈N 且4n ≤,得3n =,或4n =. ……10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625)答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分(16)(北京市东城区2012年4月高考一模文科)(本小题共13分)(16)(共13分)解:(Ⅰ)设三个“非低碳小区”为C B A ,,,两个“低碳小区”为,,m n …………2分用),(y x 表示选定的两个小区,{},,,,,x y A B C m n ∈,则从5个小区中任选两个小区,所有可能的结果有10个,它们是(,)A B ,(,)A C ,(,)A m ,(,)A n ,(,)B C ,(,)B m ,(,)B n ,(,)C m ,(,)C n ,(,)m n . …………5分用D 表示:“选出的两个小区恰有一个为非低碳小区”这一事件,则D 中的结果有6个,它们是:(,)A m ,(,)A n ,(,)B m ,(,)B n ,(,)C m ,(,)C n . ………7分 故所求概率为63()105P D ==. …………8分(II )由图1可知月碳排放量不超过300千克的成为“低碳族”. …………10分由图2可知,三个月后的低碳族的比例为0.070.230.460.760.75++=>,…………12分 所以三个月后小区A 达到了“低碳小区”标准. …………13分16. (2012年3月北京市丰台区高三一模文科)(本小题共13分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统教师(Ⅰ)求该校教师在教学中不.经常使用信息技术实施教学的概率;(Ⅱ)设经常使用信息技术实施教学,教龄在5年以下的教师为i a (i =1,2),教龄在5至10年的教师为i b (j =1,2,3,4),那么任选2人的基本事件为12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b ,12(,)b b ,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个. ……………………9分设“任选2人中恰有一人的教龄在5年以下”为事件B , ……………………10分包括的基本事件为11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b 共8个, ……………………11分 则8()15P B =. ……………………13分所以恰有一人教龄在5年以下的概率是815.16. (2012年4月北京市房山区高三一模理科(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分(II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分随机变量ξ的分布列为:………………………12分随机变量ξ的分布列为:所以34314=⨯==np E ξ …………………13分。

北京市西城区2012届高三第一次模拟考试理科数学试题

北京市西城区2012届高三第一次模拟考试理科数学试题

北京市西城区2012年高三一模试卷数 学(理科) 2012.4第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1) (B )(0,1](C )(,0](1,)-∞+∞ (D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A)2 (B)2 (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c << (B )a b c << (C )c b a << (D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1] (B )(0,2)(C )[1,2)(D)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120(C )2997(D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),, [1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M.若OC =1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()4ρθ+=_____.ABCOMN13. 已知函数12,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B分别在射线(0)y x x =≥和(0)y x =≥上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是_____.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅,求||AB AC +.16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)axaf x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间. 19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为3,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由. 20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数 列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=-,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1.C;2. D;3. A;4.A;5. B;6. D;7. A;8. D .二、填空题:本大题共6小题,每小题5分,共30分.;11.1;9.54;10.16012 13.1-和0,(0,4]; 14.2,2(1. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . ………………5分因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC +=. ………………10分因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分所以 ||129AB AC += ………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==. ………………4分(Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分334341111(5)2C ()()2224P X -===, ………………10分335251115(6)2C ()()22216P X -==⋅=, ………………11分336361115(7)2C ()()22216P X -==⋅=. ………………12分比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以平面FBC//平面EAD . ………………7分又⊂FC 平面FBC , 所以FC// 平面EAD . ………………8分(Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以(3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x '=⋅+-. ………………2分由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分(Ⅱ)解:2(1)[(1)1]()e axx a x f x a x++-'=,0x ≠. ………………6分① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞. (8)分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………11分④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a-===-, 得 23b a =. ………………2分依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C的方程是22194x y +=. ………………5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立, 消去x得22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补, 所以0=+PB PA k k . ………………9分设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. ………………12分将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ………………13分由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分(Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==. (Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤.令()n n B T A =,i p q b a a =-,其中p q a a ≥.因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =. 下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列. 不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理) ① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c--,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,T A a a b b -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b--,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a , (()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.………………13分薄雾浓云愁永昼,瑞脑消金兽。

北京市各区高考数学一模试题分类解析(14) 统计、概率、随机变量及其分布 理

北京市各区高考数学一模试题分类解析(14) 统计、概率、随机变量及其分布 理

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲十四、统计、概率、随机变量及其分布第一部分 统计、概率1.9.(2012年西城一模理9)某年级120名学生在一次百米测试中, 成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.答案:54.11.(2012年东城一模理11)在如图所示的茎叶图中,乙组数据的 中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个 最小数后,两组数据的平均数中较大的一组是 组. 答案:84; 乙。

11.(2012年门头沟一模理11)某单位招聘员工,从400名报名者中选出200名参加笔试, 再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 答案:80。

13.(2012年石景山一模理13)如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 . 答案:34π。

10.(2012年密云一模理10)样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算x的值为,样本数据落在[)6,14内的频数为.答案:0.09,680。

第二部分随机变量及其分布17.(2012年海淀一模理17)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =.(Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿. (Ⅲ)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 411(4)4256P X ⎛⎫===⎪⎝⎭.………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为1.16.(2012年西城一模理16)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率;Ⅲ求比赛局数的分布列.解:(Ⅰ)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. 记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. (Ⅱ)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, 乙以4比3获胜的概率为3363261115C ()()22232P -==,所以 125()16P B P P =+=. (Ⅲ)设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, 334341111(5)2C ()()2224P X -===, 335251115(6)2C ()()22216P X -==⋅=,336361115(7)2C ()()22216P X -==⋅=.16.(2012年东城一模理16)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-.(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. 由此得X 的分布列为:(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =.所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.17. (2012年丰台一模理17)某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.(Ⅰ)请根据图中所给数据,求出a 的值;(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X 表示所选学生成绩在[60,70)内的人数,求X 的分布列和数学期望.解:(Ⅰ)根据频率分布直方图中的数据,可得1(0.0050.00750.02250.035)100.10.070.0310a -+++⨯==-=,所以 0.03a =. ……2分(Ⅱ)学生成绩在[50,60)内的共有40×0.05=2人,在[60,70)内的共有40×0.225=9人,成绩在[50,70)内的学生共有11人. …4分设“从成绩在[50,70)的学生中随机选3名,且他们的成绩都在[60,70)内”为事件A ,则3931128()55C P A C ==. ……7分所以选取的3名学生成绩都在[60,70)内的概率为2855. (Ⅲ)依题意,X 的可能取值是1,2,3. …8分21293113(1)55C C P X C ===; 122931124(2)55C C P X C ===; 28(3)()55P X P A ===. …10分所以X32412355555511E ξ=⨯+⨯+⨯=. …13分16.(2012年朝阳一模理16)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(Ⅰ)下表是这次考试成绩的频数分布表,求正整(II )现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x=30, 即其中成绩为优秀的学生人数为30名. …7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. 13分16.(2012年东城11校联考理16)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X的分布 列及数学期望EX .解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+====== 则随机变量X 的分布列:012.156********X EX =⨯+⨯+⨯=所以的数学期望 ……13分16.(2012年石景山一模理16)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.解:(Ⅰ)ξ的可能取值为:0,1,2,3. …1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξ ξ的分布列如下表:……4分 127139229412780=⨯+⨯+⨯+⨯=ξE . 5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . ……8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. ……10分 =+=)()()(21B P B P A P 61819483278=⨯+⨯. 所以乙恰好比甲多投中2次的概率为61. …13分16.(2012年房山一模16)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P 答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ……4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 …6分 ()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()8132323113114=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()811323140444=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. 11分 随机变量ξ的分布列为:…12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE …13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …5分 则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……7分随机变量ξ的分布列为:所以334=⨯==np E ξ ……13分17.(2012年密云一模理17)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和期望. 解:设事件(1,2,3,4)i A i =表示“该选手能正确回答第i 轮问题”,由已知12345431(),(),(),()6543P A P A P A P A ====(Ⅰ)设事件B 表示“该选手进入第三轮才被淘汰”,则331212()()()()()P B P A A A P A P A P A ==543116546⎛⎫=⨯⨯-= ⎪⎝⎭.…3分(Ⅱ)设事件C 表示“该选手至多进入第三轮考核”,则123112()()P C P A A A A A A =++1231121515431()()()(1)6656542P A P A A P A A A =++=+⨯+⨯⨯-=;…7分(Ⅲ)X 的可能取值为1,2,3,411(1)()6P X P A ===,21541(2)()(1)656P X P A A ===⨯-=,3125431(3)()(1)6546P X P A A A ===⨯⨯-=,1235431(4)()6542P X P A A A ===⨯⨯=,()123436662E X =⨯+⨯+⨯+⨯=. …13分17.(2012年门头沟一模理17)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数.(Ⅰ)求1号球恰好落入1号盒子的概率;(Ⅱ)求ξ的分布列和数学期望ξE .解:(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A == 所以1号球恰好落入1号盒子的概率为14……5分 (Ⅱ)ξ的所有可能取值为0,1,2,4 ……6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯=== 22441(2)4C P A ξ=== 4411(4)24P A ξ===(每个1分)……10分 所以ξ的分布列为……11分 数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= ……13分。

2012年全国高考北京理科数学试题详细解析

2012年全国高考北京理科数学试题详细解析

B. 7 A. 5 8.【答案】C
C. 9
D. 11
【解析】若果树前 n 年的总产量 S 与 n 在图中对应 P ( S , n ) 点则前 n 年的年平均产量即为直 线 OP 的斜率由图易得当 n = 9 时,直线 OP 的斜率最大,即前 9 年的年平均产量最高. 【点评】 本题以函数的图象与图象变化为载体考查了斜率的几何意义, 其中正确分析出平均 产量的几何意义是解答本题的关键.
【解析】当 a = 0 时,如果 b = 0 同时等于零,此时 a + bi = 0 是实数,不是纯虚数,因此不
1
是充分条件;而如果 a + bi 已经为纯虚数,由定义实部为零,虚部不为零可以得到 a = 0 , 因此为必要条件。 【点评】本题考查复数的基本概念,必要条件、充分条件与充要条件的判断,考查基本知识 的掌握程度. 4.执行如图所示的程序框图,输出的 S 值为( )
x
① ∀x ∈ R , f ( x) < 0 或 g ( x) < 0 ; ② ∀x ∈ (−∞,−4) , f ( x) g ( x) < 0 。 则 m 的取值范围是_______。 14.【答案】 m ∈ (−4,−2) 【解析】根据 g ( x) = 2 − 2 < 0 ,可解得 x < 1 。由于题目中第一个条件的限制 ∀x ∈ R ,
A. 28 + 6 5
B. 30 + 6 5
C. 56 + 12 5
D. 60 + 12 5
7.【答案】B 【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为 直接从题目所给三视图中读出的长度, 黑色数字代表通过勾股定理的计算得到的边长。 所求 表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,

2012北京各区一模数学理试题分类解析-统计、概率、随机变量.

2012北京各区一模数学理试题分类解析-统计、概率、随机变量.

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲2012北京各区一模数学理试题分类解析(14)--统计、概率、随机变量及其分布 第一部分 统计、概率 1.9.(2012年西城一模理9)某年级120名学生在一次百米测试中, 成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.答案:54.11.(2012年东城一模理11)在如图所示的茎叶图中,乙组数据的 中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个 最小数后,两组数据的平均数中较大的一组是 组. 答案:84; 乙。

11.(2012年门头沟一模理11)某单位招聘员工,从400名报名者中选出200名参加笔试, 再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 答案:80。

13.(2012年石景山一模理13)如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 .答案:34π。

10.(2012年密云一模理10)样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算x 的值为 ,样本数据落在[)6,14内的频数为 .答案:0.09,680。

10第二部分 随机变量及其分布17.(2012年海淀一模理17)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿. (Ⅲ)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,4381(0)4256P X ⎛⎫===⎪⎝⎭,3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭,22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,411(4)4256P X ⎛⎫===⎪⎝⎭.所以的分布列为:812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=) 所以X 的数学期望为1.16.(2012年西城一模理16)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率;Ⅲ求比赛局数的分布列.解:(Ⅰ)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21.记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==.(Ⅱ)记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==,乙以4比3获胜的概率为3363261115C ()()22232P -==,所以125()16P B P P =+=.(Ⅲ)设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===,334341111(5)2C ()()2224P X -===,335251115(6)2C ()()22216P X -==⋅=,336361115(7)2C ()()22216P X -==⋅=.比赛局数的分布列为:X 45 6 7 P1814 516 51616.(2012年东城一模理16)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-.(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. 由此得的分布列为:(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥,又n *∈N 且4n ≤,得3n =,或4n =. 所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625)答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.17. (2012年丰台一模理17)某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.(Ⅰ)请根据图中所给数据,求出a 的值;(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X 表示所选学生成绩在[60,70)内的人数,求X 的分布列和数学期望.解:(Ⅰ)根据频率分布直方图中的数据,可得1(0.0050.00750.02250.035)100.10.070.0310a -+++⨯==-=, 所以 0.03a =. ……2分(Ⅱ)学生成绩在[50,60)内的共有40×0.05=2人,在[60,70)内的共有40×0.225=9人,成绩在[50,70)内的学生共有11人. …4分设“从成绩在[50,70)的学生中随机选3名,且他们的成绩都在[60,70)内”为事件A , 则3931128()55C P A C ==. ……7分所以选取的3名学生成绩都在[60,70)内的概率为2855.(Ⅲ)依题意,X 的可能取值是1,2,3. …8分21293113(1)55C C P X C ===;122931124(2)55C C P X C ===;28(3)()55P X P A ===. …10分所以X324282712355555511E ξ=⨯+⨯+⨯=. …13分16.(2012年朝阳一模理16)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(Ⅰ)下表是这次考试成绩的频数分布表,求正整(II )现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300*********x++=,解得:x=30,即其中成绩为优秀的学生人数为30名. …7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===,所以X 的分布列为352930125213522EX =⨯+⨯+⨯=,所以X 的数学期望为32. 13分16.(2012年东城11校联考理16)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X的分布 列及数学期望EX .解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+======则随机变量X 的分布列:012.156********X EX =⨯+⨯+⨯=所以的数学期望……13分16.(2012年石景山一模理16)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.解:(Ⅰ)ξ的可能取值为:0,1,2,3. …1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξξ的分布列如下表:……4分127139229412780=⨯+⨯+⨯+⨯=ξE . 5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . ……8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. ……10分=+=)()()(21B P B P A P 61819483278=⨯+⨯.所以乙恰好比甲多投中2次的概率为61. …13分16.(2012年房山一模16)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:高一年级 高二年级 高三年级 10人6人4人(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ……4分(II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 …6分()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()8132323113114=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()811323140444=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. 11分随机变量ξ的分布列为:ξ 0 1 2 3 4P81168132 278 818 811 …12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE …13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …5分则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……7分 随机变量ξ的分布列为:ξ 0 1 2 3 4P8116 8132 278 818 811 所以34314=⨯==np E ξ ……13分17.(2012年密云一模理17)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和期望. 解:设事件(1,2,3,4)iA i =表示“该选手能正确回答第i 轮问题”,由已知12345431(),(),(),()6543P A P A P A P A ====(Ⅰ)设事件B 表示“该选手进入第三轮才被淘汰”, 则331212()()()()()P B P A A A P A P A P A ==543116546⎛⎫=⨯⨯-= ⎪⎝⎭.…3分(Ⅱ)设事件C 表示“该选手至多进入第三轮考核”, 则123112()()P C P A A A A A A =++1231121515431()()()(1)6656542P A P A A P A A A =++=+⨯+⨯⨯-=;…7分(Ⅲ)X 的可能取值为1,2,3,411(1)()6P X P A ===,21541(2)()(1)656P X P A A ===⨯-=,3125431(3)()(1)6546P X P A A A ===⨯⨯-=,1235431(4)()6542P X P A A A ===⨯⨯=,所以,的分布列为1111()123436662E X =⨯+⨯+⨯+⨯=17.(2012年门头沟一模理17)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数.(Ⅰ)求1号球恰好落入1号盒子的概率;(Ⅱ)求ξ的分布列和数学期望ξE .解:(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A ==所以1号球恰好落入1号盒子的概率为14……5分(Ⅱ)ξ的所有可能取值为0,1,2,4 ……6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯===22441(2)4C P A ξ===4411(4)24P A ξ===(每个1分)……10分所以ξ的分布列为……11分数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= ……13分。

2012年高考理科数学北京卷-答案

2012年高考理科数学北京卷-答案
2012年普通高等学校招生全国统一考试(北京卷)
数学(理科)答案解析
第Ⅰ卷
一、选择题
1.【答案】D
【解析】 ,利用二次不等式的解法可得 或 ,易得 .
【提示】求出集合 ,然后直接求解 .
【考点】集合间的基本运算.
2.【答案】D
【解析】题目中 表示的区域表示正方形区域,而动点 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此 ,故选D.
20.【答案】(Ⅰ)
(Ⅱ1
(Ⅲ)
【解析】(Ⅰ)由题意可知 , , , ,

(Ⅱ)先用反证法证明 :
若 ,则 ,∴
同理可知 ,
∴ ,由题目所有数和为 ,即 ,
∴ 与题目条件矛盾
∴ .
易知当 时, 存在
∴ 的最大值为1.
(Ⅲ) 的最大值为 .
首先构造满足 的 :
, .
经计算知, 中每个元素的绝对值都小于1,所有元素之和为0,且 , , .
下面证明 是最大值.若不然,则存在一个数表 ,使得 .
由 的定义知 的每一列两个数之和的绝对值都不小于 ,而两个绝对值不超过1的数的和,其绝对值不超过2,故 的每一列两个数之和的绝对值都在区间 中.由于 ,故 的每一列两个数符号均与列和的符号相同,且绝对值均不小于 .
设 中有 列的列和为正,有 列的列和为负,由对称性不妨设 ,则 .另外,由对称性不妨设 的第一行行和为正,第二行行和为负.
【考点】由三视图求几何体的表面积.
8.【答案】C
【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C.
【提示】由已知中图像表示某棵果树前 年的总产量 与 之间的关系,结合图像可得答案.
【考点】函数图像的应用.

2012年北京市西城区高考数学一模试卷(理科)(附答案解析)

2012年北京市西城区高考数学一模试卷(理科)(附答案解析)

2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U=R,集合A={x|1x≥1},则∁U A()A.(0, 1)B.(0, 1]C.(−∞, 0]∪(1, +∞)D.(−∞, 0)∪[1, +∞)2. 执行如图所示的程序框图,若输入x=2,则输出y的值为()A.2B.5C.11D.233. 若实数x,y满足条件{x+y≥0x−y+3≥00≤x≤3,则z=2x−y的最大值为()A.9B.3C.0D.−34. 已知正六棱柱的底面边长和侧棱长均为2cm,其三视图中的俯视图如图所示,则其左视图的面积是()A.4√3cm2B.2√3cm2C.8cm2D.4cm25. 已知函数f(x)=sin4ωx−cos4ωx的最小正周期是π,那么正数ω=()A.2B.1C.12D.146. 若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<cB.a<b<cC.c<b<aD.b<c<a 7. 设等比数列{a n}的各项均为正数,公比为q,前n项和为S n.若对∀n∈N∗,有S2n<3S n,则q的取值范围是()A.(0, 1]B.(0, 2)C.[1, 2)D.(0,√2)8. 已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中a k∈{0, 1, 2}(k=0, 1, 2, 3),且a3≠0.则A中所有元素之和等于()A.3240B.3120C.2997D.2889二、填空题共6小题,每小题5分,共30分.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.(x−2)6的展开式中x3的系数是________.(用数字作答)如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=√3,OM=1,则MN=________.在极坐标系中,极点到直线l:ρsin(θ+π4)=√2的距离是________.已知函数f(x)={x12,0≤x≤cx2+x,−2≤x<0其中c>0.那么f(x)的零点是________;若f(x)的值域是[−14,2],则c的取值范围是________.在直角坐标系xOy 中,动点A ,B 分别在射线y =√33x(x ≥0)和y =−√3x(x ≥0)上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为________;△OAB 周长的最小值是________. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.在△ABC 中,已知sin (A +B)=sin B +sin (A −B). (1)求角A ;(2)若|BC →|=7,AB →⋅AC →=20,求|AB →+AC →|.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBF =60∘,且FA =FC .(1)求证:AC ⊥平面BDEF ;(2)求证:FC // 平面EAD ;(3)求二面角A −FC −B 的余弦值.已知函数f(x)=e ax ⋅(ax +a +1),其中a ≥−1.(1)当a =1时,求曲线y =f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√53,定点M(2, 0),椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分∠APB ?若存在,求出点P 的坐标;若不存在,说明理由.对于数列A n :a 1,a 2,…,a n (a i ∈N, i =1, 2,…,n),定义“T 变换”:T 将数列A n 变换成数列B n :b 1,b 2,…,b n ,其中b i =|a i −a i+1|(i =1, 2,…,n −1),且b n =|a n −a 1|,这种“T 变换”记作B n =T(A n ).继续对数列B n 进行“T 变换”,得到数列C n ,…,依此类推,当得到的数列各项均为0时变换结束.(1)试问A 3:4,2,8和A 4:1,4,2,9经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(2)求A 3:a 1,a 2,a 3经过有限次“T 变换”后能够结束的充要条件;(3)证明:A 4:a 1,a 2,a 3,a 4一定能经过有限次“T 变换”后结束.参考答案与试题解析2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】补集及其运算【解析】求出集合A的不等式的解集,然后求出集合A在R上的补集即可.【解答】解:∵全集U=R.集合A={x|1x≥1}={x|0<x≤1},∴∁U A={x|x≤0, 或x>1}.故选C.2.【答案】D【考点】循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:x y是否继续循环循环前25是第一圈511是第二圈1123否故输出y的值为23.故选D.3.【答案】A【考点】简单线性规划【解析】画出不等式表示的平面区域,z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,根据图形可得结论.【解答】解:画出不等式表示的平面区域z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,由{x=3x+y=0可得交点坐标为(3, −3),根据图形可知在点(3, −3)处,z=2x−y取得最大值,最大值为9故选A.4.【答案】A【考点】简单空间图形的三视图【解析】正六棱柱的底面边长和侧棱长均为2cm,故左视图是长方形,长为2√3,宽为2,由此能求出左视图的面积.【解答】解:∵正六棱柱的底面边长和侧棱长均为2cm,∴左视图是长方形,长为√4+4−2×4×cos120∘=2√3,宽为2,∴左视图的面积是2√3×2=4√3(cm2),故选A.5.【答案】B【考点】二倍角的三角函数【解析】利用平方差公式化简函数y=sin4ωx−cos4ωx,再利用二倍角公式化为一个角的一个三角函数的形式,根据周期求出ω.【解答】y=sin4ωx−cos4ωx=sin2ωx−cos2ωx=−cos2ωx因为T=π,所以ω=16.【答案】D【考点】不等式比较两数大小【解析】根据a=lg3lg2>1,b=lg2lg3<1,c=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=a,从而得出结论.【解答】解:∵a=log23=lg3lg2>1,b=log32=lg2lg3<1,c=log46=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=lg3lg2,故有b<c<a,故选D.7.【答案】A【考点】数列的求和【解析】当q=1时,S2n<3S n成立容易检验,当q≠1时,由S2n<3S n恒成立可得a1(1−q2n)1−q <3a1(1−q n)1−q,讨论整理可求q的范围.【解答】解:当q=1时,S2n<3S n成立当q≠1时,由S2n<3S n恒成立∴a1(1−q2n)1−q <3a1(1−q n)1−q∵q>1,显然不恒成立,则q2n−3q n+2<0,解得q n<1(q n>2舍去),∵等比数列{a n}的各项均为正数,∴q>0,∴0<q<1综上可得0<q≤1故选A8.【答案】D【考点】集合的确定性、互异性、无序性数列的求和【解析】由题意可知a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,利用数列求和即可求得A中所有元素之和.【解答】由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,由分步计数原理可得共有3×3×3×2种方法,∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种方法,即集合A中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A中含有a1项的所有数的和为(3×0+3×1+3×2)×18;集合A中含有a2项的所有数的和为(32×0+32×1+32×2)×18;集合A中含有a3项的所有数的和为(33×1+33×2)×27;由分类计数原理得集合A中所有元素之和:S=(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18(3+9+27)+81×27=702+2187=2889.二、填空题共6小题,每小题5分,共30分.【答案】54【考点】分布和频率分布表频率分布直方图【解析】根据从左到右的5个小矩形的面积之比为1:3:7:6:3及它们的面积之和为1,做出成绩在[16, 18]的频率,从而得出成绩在[16, 18]的学生人数.【解答】因从左到右的5个小矩形的面积之比为1:3:7:6:3,且它们的面积之和为1,∴最后两个小矩形的面积和为6+320×1=920,即成绩在[16, 18]的频率为920,由频率分布直方图知,成绩在[16, 18]的人数为120×920=54(人)【答案】−160【考点】二项式定理及相关概念【解析】根据题意,由二项式定理可得(x−2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=−160x3,即可得答案.【解答】根据题意,(x−2)6的展开式的通项为T r+1=C6r x6−r(−2)r=(−1)r⋅2r⋅C6r x6−r,令6−r=3可得r=3,此时T4=(−1)3⋅23⋅C63x3=−160x3,即x3的系数是−160;【答案】1【考点】与圆有关的比例线段【解析】根据题设条件,先由勾股定理求出BM,再由相交弦定理求MN.【解答】解:∵AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.OC=√3,OM=1,∴OB=√3,BM=√3+1=2,设MN=x,∵CM⋅AM=BM⋅MN,∴(√3+1)(√3−1)=2x,∴x=1,即MN=1.故答案为:1.【答案】√2【考点】圆的极坐标方程【解析】利用公式x=ρcosθ,y=ρsinθ,得出直线直角坐标方程,再利用点到直线的距离公式求解即可.【解答】解:直线方程ρsin(θ+π4)=√2,即为ρ(√22cosθ+√22sinθ)=√2,化为普通方程为x+y−2=0,极点的直角坐标为(0, 0),根据点到直线的距离公式求得d=√2=√2故答案为:√2;【答案】−1和0,0<c≤4【考点】函数的值域及其求法函数的零点【解析】分x为正数和负数两种情况讨论,分别解方程即可得到么f(x)的零点.根据二次函数的图象与性质,求出当x∈[−2, 0)时,函数f(x)的值域恰好是[−14,2],所以当0≤x≤c时,f(x)=x12的最大值不超过2,由此建立不等式,可解出实数c的取值范围.【解答】当x≥0时,令x 12=0,得x=0;当x<0时,令x2+x=0,得x=−1(舍零)∴f(x)的零点是−1和0∵函数y=x2+x在区间[−2, −12)上是减函数,在区间(−12, 0)上是增函数∴当x∈[−2, 0)时,函数f(x)最小值为f(−12)=−14,最大值是f(−2)=2∵当0≤x≤c时,f(x)=x12是增函数且值域为[0, √c]∴当f(x)的值域是[−14,2],√c≤2,即0<c≤4【答案】√32,2(1+√2)【考点】基本不等式在最值问题中的应用直线的点斜式方程【解析】根据题意,OA、OB的斜率之积为−1,得OA⊥OB.设A(x1, √33x1),B(x2, −√3x2),算出|OA|=2√33x1,|OB|=2x2,结合三角形面积为1列式,化简即得x1x2=√32.再由基本不等式算出△OAB周长|OA|+|OB|+|AB|≥2+2√2,当且仅当2√33x1=2x2=√2时,△OAB周长取最小值2(1+√2).【解答】解:∵y =√33x的斜率k1=√33,y=−√3x的斜率k2=−√3∴k1⋅k2=−1,可得OA⊥OB设A(x1, √33x 1),B(x2, −√3x2)∴|OA|=√x12+13x12=2√33x1,|OB|=√x22+3x22=2x2,可得△OAB的面积为S=12|OA|×|OB|=12×2√33x1×2x2=1解之,得x1x2=√32∵|AB|2=|OA|2+|OB|2=43x12+4x22∴|AB|=√(43x12+4x22)≥×2√33x12=√8√33x12=√8√33×√32=2又∵|OA|+|OB|=2√33x1+2x2≥2√2√33x1×2x2=2√4√33x1x2=2√4√33×√32=2√2∴△OAB周长|OA|+|OB|+|AB|≥2+2√2=2(1+√2)当且仅当2√33x1=2x2=√2,即x1=√62,x2=√22时,△OAB周长取最小值2(1+√2)故答案为:√32,2(1+√2)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】解:(1)原式可化为:sin B=sin(A+B)−sin(A−B)=sin A cos B+cos A sin B−sin A cos B+cos A sin B=2cos A sin B,…∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【考点】求两角和与差的正弦 向量的模平面向量数量积的性质及其运算律【解析】(1)将已知等式移项变形并利用两角和与差的正弦函数公式化简,整理后根据sin B 不为0,得出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(2)利用余弦定理列出关系式|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,将已知条件利用平面向量的数量积运算法则化简后代入求出|AB →|2+|AC →|2的值,把所求式子平方并利用完全平方公式展开,将各自的值代入开方即可求出值.【解答】 解:(1)原式可化为:sin B =sin (A +B)−sin (A −B)=sin A cos B +cos A sin B −sin A cos B +cos A sin B =2cos A sin B ,… ∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【答案】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,…乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,… P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:【考点】离散型随机变量及其分布列 互斥事件的概率加法公式 相互独立事件的概率乘法公式【解析】(1)先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,甲以4比1获胜,根据独立重复试验公式公式,列出算式,得到结果.(2)记“乙获胜且比赛局数多于5局”为事件B .B 包括乙以4:2获胜和乙以4:3获胜,根据独立重复试验公式列出算式,得到结果.(3)比赛结束时比赛的局数为X ,则X 的可能取值为4,5,6,7,根据独立重复试验公式计算出各自的概率即可得到分布列. 【解答】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,… 乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,…P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以 O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0).设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0). 由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【考点】直线与平面垂直的判定 直线与平面平行的判定 用空间向量求平面间的夹角【解析】(1)设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点.由FA =FC ,知AC ⊥FO .由此能够证明AC ⊥平面BDEF .(2)因为四边形ABCD 与BDEF 均为菱形,所以AD // BC ,DE // BF ,平面FBC // 平面EAD .由此能够证明FC // 平面EAD .(3)因为四边形BDEF 为菱形,且∠DBF =60∘,所以△DBF 为等边三角形.因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘,则BD =2,所以 CF →=(√3,0,√3),CB →=(√3,1,0).求得平面BFC 的法向量为n →=(1,−√3,−1),平面AFC 的法向量为v →=(0, 1, 0).由此能求出二面角A −FC −B 的余弦值. 【解答】(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点, 所以FO ⊥BD , 故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0). 设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0).由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【答案】解:(1)当a =1时,f(x)=e x ⋅(1x+2),f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的单调性【解析】(1)先求导数f ′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x =0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(2)对字母a 进行分类讨论,再令f ′(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间. 【解答】解:(1)当a =1时,f(x)=e x ⋅(1x +2), f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【答案】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得 ba =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.… 所以 y 1+y 2=−16m 4m +9,y 1y 2=−204m +9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x 2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得 2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m 2+9,y 1y 2=−204m 2+9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92.综上,存在定点P(92,0),使PM 平分∠APB .…【考点】直线与椭圆结合的最值问题 椭圆的标准方程 【解析】(1)利用离心率为√53,可得b a=23,由椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2,可得△MB 1B 2是等腰直角三角形,由此可求椭圆C 的方程;(2)设线AB 的方程与椭圆C 的方程联立,利用韦达定理,结合PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,建立方程,即可求得结论.【解答】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得b a =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.…所以 y 1+y 2=−16m 4m 2+9,y 1y 2=−204m 2+9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my 2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m +9,y 1y 2=−204m +9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92. 综上,存在定点P(92,0),使PM 平分∠APB .…【答案】(1)解:数列A 3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. …数列A 4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.… (2)解:A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.… 若a 1=a 2=a 3,则经过一次“T 变换”就得到数列0,0,0,从而结束. …当数列A 3经过有限次“T 变换”后能够结束时,先证命题“若数列T(A 3)为常数列,则A 3为常数列”. 当a 1≥a 2≥a 3时,数列T(A 3):a 1−a 2,a 2−a 3,a 1−a 3.由数列T(A 3)为常数列得a 1−a 2=a 2−a 3=a 1−a 3,解得a 1=a 2=a 3,从而数列A 3也为常数列. 其它情形同理,得证.在数列A 3经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A 3也为常数列. …所以,数列A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.(3)证明:先证明引理:“数列T(A n )的最大项一定不大于数列A n 的最大项,其中n ≥3”. 证明:记数列A n 中最大项为max (A n ),则0≤a i ≤max (A n ). 令B n =T(A n ),b i =a p −a q ,其中a p ≥a q . 因为a q ≥0,所以b i ≤a p ≤max (A n ),故max (B n )≤max (A n ),证毕. … 现将数列A 4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max (B 4)≤max (A 4)−1.第二类是含有为0的项,且与最大项相邻,此时max (B 4)=max (A 4). 下面证明第二类数列A 4经过有限次“T 变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T(T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…【考点】数列的应用【解析】(1)根据新定义,可得数列A3:4,2,8不能结束,数列A4:1,4,2,9能结束,并可写出各数列;(2)A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3,先证明a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束,再证明命题“若数列T(A3)为常数列,则A3为常数列”,即可得解;(3)先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”,再分类讨论:第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.【解答】(1)解:数列A3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形.…数列A4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.…(2)解:A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.…若a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束.…当数列A3经过有限次“T变换”后能够结束时,先证命题“若数列T(A3)为常数列,则A3为常数列”.当a1≥a2≥a3时,数列T(A3):a1−a2,a2−a3,a1−a3.由数列T(A3)为常数列得a1−a2=a2−a3=a1−a3,解得a1=a2=a3,从而数列A3也为常数列.其它情形同理,得证.在数列A3经过有限次“T变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A3也为常数列.…所以,数列A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.(3)证明:先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”.证明:记数列A n中最大项为max(A n),则0≤a i≤max(A n).令B n=T(A n),b i=a p−a q,其中a p≥a q.因为a q≥0,所以b i≤a p≤max(A n),故max(B n)≤max(A n),证毕.…现将数列A4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).下面证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T (T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…。

2012届北京市顺义区高三一模数学理科试题(WORD精校版)

2012届北京市顺义区高三一模数学理科试题(WORD精校版)

顺义区2012届高三第二次统练 高三数学(理科)试卷 2012.4本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一.选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项)1. 已知集合{}0,1,3M =,{}|3,N x x a a M ==∈,则集合M N =A.{}0B.{}0,1C. {}0,3D. {}1,3 2.已知i 为虚数单位,则复数(1)i i -所对应点的坐标为A. (1,1)-B. (1,1)C. (1,1)-D. (1,1)-- 3.已知p 、q 是简单命题,则“p q ∧是真命题”是“p ⌝是假命题”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.如图给出的是计算111124620+++⋅⋅⋅+的值的一个程序框图,判断框内应填入的条件是A.20i <B.20i >C.10i <D.10i >5.已知直线l :10x y --= 和圆C :cos 1sin x y θθ=⎧⎨=+⎩(θ为参数,R θ∈), 则直线l 与圆C 的位置关系为A. 直线与圆相交B. 直线与圆相切C. 直线与圆相离D.直线与圆相交但不过圆心 A. 直线与圆相切 B. 直线与圆相离6.甲乙两人从4门课程中各选修2门,则甲乙两人所选的课程中恰有1门相同的选法有 A.12 种 B.16 种 C.24 种 D.48 种7.一个空间几何体的三视图如图所示,则该几何体的体积为A.60B.80C.100D.1208.已知椭圆:G 22221(0)x ya b a b +=>>的离心率为22,⊙M 过椭圆G 的一个顶点和一个焦点,圆心M 在此椭圆上,则满足条件的点M 的个数是A. 4B. 8C. 12D. 16二.填空题(本大题共6个小题,每小题5分,共30分,把答案填在答题卡上) 9.若1()nx x+展开式中第二项与第四项的系数相等,则n =________; 展开式中间一项的系数为_________.10.已知数列{}n a 的前n 项和为n S ,对任意的*n N ∈都有21n n S a =-,则1a 的值为________,数列{}n a 的通项公式n a =_____________. 11.如图所示:圆O 的直径6AB =,C 为圆周上一点,030BAC ∠=,过C 作圆O 的切线l ,过A 作直线l 的垂线,垂足为D ,则CD 的长为_________.12.已知O 是坐标原点,点(2,1)A -,若点(,)M x y 为平面区域101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,上的一个动点,则OA OM ⋅的最大值为 .13.已知A 、B 、P 是双曲线22221x y a b-=上不同的三点,且A 、B 两点关于原点O 对称,若直线,PA PB 的斜率乘积12PA PB k k ⋅=,则该双曲线的离心率e =___________. 俯视图左视图正(主)视图8232344lDOCBA14.已知全集为,U P U ,定义集合P 的特征函数为1,,()0,.P U x P f x x P ∈⎧⎪=⎨∈⎪⎩,对于A U , B U ,给出下列四个结论: ① 对x U ∀∈,有()()1UA Afx f x +=;② 对x U ∀∈,若A B ,则()()A B f x f x ≤; ③ 对x U ∀∈,有()()()A BA B f x f x f x =⋅; ④ 对x U ∀∈,有()()()ABA B f x f x f x =+.其中,正确结论的序号是_______________.三.解答题(本大题共6小题,共80分,解答应写出文字说明、证 明过程或演算步骤). 15.(本小题共13分) 已知向量(2cos,1)2x m =,(cos ,1)2xn =-,()x R ∈,设函数()f x m n =⋅. (Ⅰ)求函数()f x 的值域;(Ⅱ)已知ABC 的三个内角分别为A 、B 、C , 若1(),3f A =23,3BC AC ==,求边长AB 的值. 16. (本小题共13分)如图:四棱锥P ABCD -中,底面ABCD 是平行四边形,090ACB ∠=,PA ⊥平面ABCD ,1PA BC ==,2AB =,F 是BC 的中点.(Ⅰ) 求证:DA ⊥平面PAC ;(Ⅱ)试在线段PD 上确定一点G ,使CG ∥平面PAF ; (Ⅲ)求平面PAF 与平面PCD 所成锐二面角的余弦值. 17.(本小题共13分)计算机考试分理论考试与实际操作考试两部分进行,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”并颁发“合格证书”.甲、乙、丙三人在理论考试中“合格”的概率依次为:45、34、23,在实际操作考试中“合ADCF PB格”的概率依次为:12、23、56,所有考试是否合格相互之间没有影响. (Ⅰ)假设甲、乙、丙3人同时进行理论与实际操作两项考试,谁获得“合格证书”的可能性大;(Ⅱ)求这3人进行理论与实际操作两项考试后,恰有2人获得“合格证书”的概率; (Ⅲ)用X 表示甲、乙、丙3人在理论考试中合格的人数,求X 的分布列和数学期望EX . 18.(本小题共14分)已知函数()ln ,f x x x =-2()a g x x x=+,(其中0a >).(Ⅰ)求曲线()y f x =在(1,(1))f 处的切线方程;(Ⅱ)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值; (Ⅲ)若对任意的[]12,1,x x e ∈,(e 为自然对数的底数, 2.718e ≈)都有12()()f x g x ≤,求实数a 的取值范围.19.(本小题共14分)已知动圆过点(2,0)M ,且被y 轴截得的线段长为4,记动圆圆心的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点M 的直线交曲线C 于A ,B 两点,若在x 轴上存在定点(,0)P a ,使PM 平分APB ∠,求P 点的坐标.20. (本小题共13分)对于定义域为A 的函数)(x f ,如果任意的A x x ∈21,,当21x x <时,都有()()21x f x f <,则称函数()x f 是A 上的严格增函数;函数()k f 是定义在*N 上,函数值也在*N 中的严格增函数,并且满足条件()()k k f f 3=. (Ⅰ)证明:)(3)3(k f k f =; (Ⅱ)求*))(3(1N k f k ∈-的值;(Ⅲ)是否存在p 个连续的自然数,使得它们的函数值依次也是连续的自然数;若存在,找出所有的p 值,若不存在,请说明理由.顺义区2012届高三第二次统练高三数学(理科)试卷参考答案及评分标准 2012.4题号 1 2 3 4 5 6 7 8 答案CBADCCBC二.填空题(本大题共6个小题,每小题5分,共30分)其它答案参考给分9.4,6;10.1,12n -;11,332;12.3;13.62;14 .①、②、③; 三.解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)2()2cos 1cos 2xf x m n x =⋅=-=,__________4分x R ∈∴()cos f x x =的值域为[]1,1-. __________6分(Ⅱ) 1()cos 3f A A ==,由余弦定理2222cos BC AC AB AC AB A =+-⋅⋅__________8分∴21129233c c =+-⨯⨯⨯,即2230c c --=__________10分∴3AB c ==.__________13分 16. (本小题共13分)解:分别以,,AC AD AP 为x 、y 、z 轴建立空间直角坐标系,则1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(1,,0),(0,0,1)2A CB D F P --.__________(建系正确,坐标写对给3分)(Ⅰ) 证明方法一::四边形是平行四边形,∴090ACB DAC ∠=∠=,PA ⊥平面ABCD ∴PA DA ⊥,又AC DA ⊥,ACPA A =,∴DA ⊥平面PAC . __________4分方法二:易证DA 是平面平面PAC 的一个法向量,∴DA ⊥平面PAC .______4分ADCFPB(Ⅱ)方法一:设PD 的中点为G ,在平面PAD 内作GH PA ⊥于H ,则GH 平行且等于12AD ,连接FH ,则四边形FCGH 为平行四边形,_____6分∴GC ∥FH ,FH ⊂平面PAE ,CG ⊄平面PAE ,∴CG ∥平面PAE ,∴G 为PD 中点时,CG ∥平面PAE .__________8分方法二:设G 为PD 上一点,使CG ∥平面PAE ,令(0,,),(02)PG PD λλλλ==-≤≤,(1,,1)GC PC PG λλ=-=--+ 可求得平面PAE 法向量(1,2,0)m =, 要CG ∥平面PAE ,∴0m GC ⋅=,解得12λ=. ∴G 为PD 中点时,CG ∥平面PAE .(Ⅲ)可求得平面PCD 法向量(1,1,1)n =,__________10分||15cos ,5||||m n m n m n ⋅<>== ∴15.__________13分 17.(本小题共13分) 解:(Ⅰ)记“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C则41236()52590P A =⨯==,32145()43290P B =⨯==,25550()36990P C =⨯==()()()P C P B P A >>,所以丙获得合格证书的可能性大. __________4分(Ⅱ)设3人考试后恰有2人获得“合格证书”为事件D∴()(,,)(,,)(,,)P D P A B C P A B C P A B C =++=2142153151152952952930⨯⨯+⨯⨯+⨯⨯=.__________8分(Ⅲ)0,1,2,3.X =,1111(0)54360P X ==⨯⨯=,4111311129(1)54354354360P X ==⨯⨯+⨯⨯+⨯⨯=,43141213226(2)54354354360P X ==⨯⨯+⨯⨯+⨯⨯=, 43224(3)54360P X ==⨯⨯=.__________10分 X 的分布列为:13360EX =;__________13分18.(本小题共14分)解:(Ⅰ)222()()()ln 2ln a a h x f x g x x x x x x x x=+=-++=+-定义域()0,+∞__________1分∴222'2212()2a x x a h x x x x--=--=,__________3分 法一:令'(1)0h =,解得21a =, 又0a >,∴1a =,__________4分经验证1a =符合条件. __________5分法二:令22'22()0x x a h x x--==,∴2220x x a --=,2181a ∆=+> ∴21,21184a x ±+=,0x >,∴21184a x ++=为极值点, ∴211814a x ++==,解得21a =,又0a >,∴1a =,(Ⅱ)对任意的[]12,1,x x e ∈都有12()()f x g x ≤成立,等价于对任意的[]1,x e ∈都有max min ()()f x g x ≤成立,__________7分 当[]1,x e ∈,'11()10x f x x x-=-=≥,∴()f x 在[]1,e 上单调递增, max ()()1f x f e e ==-.__________8分X 0 123P 160960266024602'22()()()1a x a x a g x x x -+=-=,[]1,x e ∈,0a >∴(1)若01a <≤,222'222()()()10a x a x a x a g x x x x --+=-==≥, 2()a g x x x=+在[]1,e 单调递增,∴2min ()(1)1g x g a ==+, ∴211a e +≥-,解得21e a -≤≤.__________10分(2)若1a e <<当1x a ≤<,则'2()()()0x a x a g x x -+=<当a x e ≤≤,则'2()()()0x a x a g x x -+=≥ ∴()g x 在[)1,a 递减,在[],a e 递增,min max ()()2()1g x g a a f x e ==≥=-, ∴12e a -≥,又1a e <<,∴()1,a e ∈__________12分(3)当a e ≥时'2()()()0x a x a g x x-+=≤, ∴()g x 在[]1,e 递减, 2min max ()()()1a g x g e e f x e e==+≥=-,∴2a e ≥-恒成立. __________13分综上所述)2,a e ⎡∈-+∞⎣.__________14分 19.(本小题共14分)(Ⅰ)解:设动圆圆心的坐标为),(y x .依题意,有 2222)2(2y x x +-=+,化简得 x y 42=. 所以动圆圆心的轨迹方程为x y 42=.__________5分(Ⅱ)解法1:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+. 将直线AB 的方程与曲线C 的方程联立,消去x 得:2480y my --=. 所以124y y m +=,128y y =-.__________7分若PM 平分APB ∠,则直线PA ,PB 的倾斜角互补,所以0=+PB PA k k.(,0)P a ,则有12120y y x a x a+=--.__________10分 将 112x my =+,222x my =+代入上式,整理得 1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. 将 124y y m +=,128y y =-代入上式, 得 (2)0a m +⋅=对任意实数m 都成立,所以2-=a .故定点P 的坐标为(2,0)-.__________14分解法2:设11(,)A x y ,22(,)B x y ,当过点(2,0)M 的直线斜率不存在,则AB l :2x =,,,A B 两点关于x 轴对称,x 轴上任意一点(,0)P a (2)a ≠均满足PM 平分APB ∠,不合题意. __________6分当过点(2,0)M 的斜率k 存在时(0)k ≠,设AB l :(2)y k x =-,联立2(2)4y k x y x=-⎧⎨=⎩,消去y 得22224(1)40k x k x k -++=232160k ∆=+>,212244,k x x k ++=124x x =,__________7分 PM 平分APB ∠,则直线PA ,PB 的倾斜角互补,∴0=+PB PA k k .(,0)P a ,(2)a ≠,则有12120y y x a x a+=--.__________10分 将11(2)y k x =-22(2)y k x =-代入上式, 整理得122112(2)()(2)()0()()k x x a k x x a x a x a --+--=--,∴1221(2)()(2)()0k x x a k x x a --+--=整理得12122()(2)40x x x x a a -+++=,将212244,k x x k ++=124x x =代入化简得 2a =-,故定点P 的坐标为(2,0)-.__________14分 20. (本小题共13分)解:(Ⅰ)证明:对()()k k f f N k 3*,=∈()()[]()k f k f f f 3=∴①_________2分 由已知()()k k f f 3=∴()()[]()k f k f f f 3=②, 由①、②()()k f k f 33=∴__________3分(Ⅱ)若(),11=f 由已知()()k k f f 3=得()31=f ,矛盾; 设(1)1f a =>,∴((1))()3f f f a ==,③ 由()k f 严格递增,即()().311=<⇒<a f f a ,∴*(1)1(1)3(1)f f f N⎧≠⎪<⎨⎪∈⎩,∴(1)2f =,__________6分 由③有((1))()3f f f a ==故((1))(2)3f f f ==∴(1)2f =,(2)3f =.()()()()(),923236,6133==⋅===f f f f f ()()()()()()()().8118354,549327,276318,18339========f f f f f f f f ⋅⋅⋅⋅⋅⋅依此类推归纳猜出:*)(32)3(11N k f k k ∈⨯=--.__________8分 下面用数学归纳法证明: (1)当1=k 时,显然成立;(2)假设当)1(≥=l l k 时成立,即1132)3(--⨯=l l f ,那么当1+=l k 时,111(3)(33)3(3)32323l l l l l f f f ---=⨯==⨯⨯=⋅.猜想成立,由(1)、(2)所证可知,对*k N ∈1132)3(--⨯=k k f 成立. __________10分 (Ⅲ)存在,131+=-k p 当p 个连续自然数从11323--⨯→k k 时,函数值正好也是p 个连续自然数从k k k k f f 3)32(32)3(111=⨯→⨯=---.__________13分。

2012北京市高三一模理科数学分类汇编1:集合、简易逻辑与函数.pdf

2012北京市高三一模理科数学分类汇编1:集合、简易逻辑与函数.pdf

2012北京市高三一模数学理分类汇编1:集合、简易逻辑与函数 【2012北京市丰台区一模理】1.已知集合,若,则a的取值范围是( ) A.B. C.(-1,1)D.[-1,1] 【答案】B 【2012北京市房山区一模理】1.已知集合 ()(B)(C)(D)【答案】C 【2012北京市海淀区一模理】(1)已知集合,,且,那么的值可以是 (A) (B) (C) (D) 【答案】D 【2012年北京市西城区高三一模理】1.已知全集,集合,则( ) (A)(B)(C)(D) 【答案】C 【解析】,所以,选C. 【2012北京市门头沟区一模理】已知全集,集合,,则集合 等于 (A)(B) (C)(D) 【答案】C 【2012北京市石景山区一模理】1.设,,则 A.B.C.D.【答案】B 【解析】,,所以,答案选B. 【2012北京市石景山区一模理】14.集合 现给出下列函数:①,②,③,④, 若 时,恒有则所有满足条件的函数的编号是 . 【答案】①②④ 【解析】由可知,画出相应的图象可知,①②④满足条件。

【2012北京市海淀区一模理】 (20)(本小题满分14分) 对于集合M,定义函数对于两个集合M,N,定义集合. 已知,. (Ⅰ)写出和的值,并用列举法写出集合; (Ⅱ)用Card(M)表示有限集合M所含元素的个数,求的最小值; (Ⅲ)有多少个集合对(P,Q),满足,且? 【答案】解:(Ⅰ),,. ……………3分 (Ⅱ)根据题意可知:对于集合,①若且,则;②若且,则. 所以 要使的值最小,2,4,8一定属于集合;1,6,10,16是否属于不影响的值;集合不能含有之外的元素. 所以 当为集合{1,6,10,16}的子集与集合{2,4,8}的并集时,取到最小值4.………………………………………8分 (Ⅲ)因为 , 所以 . 由定义可知:. 所以 对任意元素,, . 所以 . 所以 . 由 知:. 所以 . 所以 . 所以 ,即. 因为 , 所以 满足题意的集合对(P,Q)的个数为. 【2012北京市丰台区一模理】7.已知,函数命题,命题内有最值,则命题p是命题q成立的( ) A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 【答案】A 【2012北京市东城区一模理】(2)若集合,,则“”是“”的 (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 【答案】A 【2012北京市东城区一模理】(9)命题“”的否定是 . 【答案】 【2012北京市丰台区一模理】8.已知定义在R上的函数满足,当时,,若函数至少有6个零点,则a( ) A.B. C.D. 【答案】D 【2012北京市海淀区一模理】(7)已知函数 若,使得成立,则实数的取值范围是 (A) (B) (C) (D)或 【答案】A 【2012年北京市西城区高三一模理】6.若,,,则下列结论正确的是( ) (A)(B)(C)(D) 【答案】D 【解析】,所以,选D。

北京市高考数学联考试题分类大汇编概率试题解析

北京市高考数学联考试题分类大汇编概率试题解析

北京市2012年高考数学最新联考试题分类大汇编一、填空题:14. (2012年3月北京市朝阳区高三一模文科)已知集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.若O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,则MON ∆的面积S 与m 的关系式为 .241mm +二、解答题:16. (北京市西城区2012年1月高三期末考试理科)(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.【命题分析】本题考查随机事件的概率和独立事件的概率问题。

利用等可能事件的定义求概率,不要忘记等可能事件的两大特征:基本事件总数有限及基本事件的发生等可能.求概率的题目,找准“基本事件”很重要,因此一定要明确以什么“事件”作为基本事件,某事件A 所包含的基本事件必须与此相对应.求解等可能性事件A 的概率一般遵循如下步骤:多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.本题的第二问采用组合的知识,确定m 、n 的值。

(Ⅰ)解:记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A ,则2()7P A =. ………………2分 所以3次抽取中恰有1次抽到使用过的零件的概率12325150C ()()77343P ==. ……5分(Ⅱ)解:随机变量X 的所有取值为2,3,4. ………………7分2227C 1(2)C 21P X===; 115227C C 10(3)C 21P X ===; 2527C 10(4)C 21P X ===. ………………10分:X2 3 4 P121 1021 1021……………11分11010242342121217EX =⨯+⨯+⨯=. ………………13分率)(17)(本小题满分13分) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分(Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分所以X的分布列为:X0 1 2 3 4P812562764271283641256………………………………………12分812727310123412566412864256EX=⨯+⨯+⨯+⨯+⨯=.(或1414EX=⨯=)所以X的数学期望为 1. (13)分(16)(本小题满分13分)解:(Ⅰ)由题设可知,0.085500200a=⨯⨯=,0.02550050b=⨯⨯=.……………2分(Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=, 第2组的人数为5061300⨯=,第3组的人数为20064300⨯=,16. (北京市西城区2012年4月高三第一次模拟文)(本小题满分13分)某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.11(,)a a ,),(21a a ,),(11b a ,),(21b a ,),(31b a ,),(12a a ,22(,)a a ,),(12b a ,),(22b a ,),(32b a , ),(11a b ,),(21a b ,11(,)b b ,),(21b b ,),(31b b ,),(12a b ,),(22a b ,21(,)b b ,22(,)b b ,),(32b b ,),(13a b ,),(23a b ,31(,)b b ,),(23b b ,33(,)b b ,共25种. …9分2次发言的学生恰好来自不同班级的基本事件为:),(11b a ,),(21b a ,),(31b a ,),(12b a ,),(22b a ,),(32b a ,),(11a b ,),(21a b ,),(12a b ,),(22a b ,),(13a b ,),(23a b ,共12种. ………12分所以2次发言的学生恰好来自不同班级的概率为1225P =. ……13分(16)(共13分)解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-. …………2分(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=,(3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:X 10 5 2 3- P0.720.180.080.02…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =. ……10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分(16)(北京市东城区2012年4月高考一模文科)(本小题共13分)(16)(共13分)解:(Ⅰ)设三个“非低碳小区”为C B A ,,,两个“低碳小区”为,,m n …………2分用),(y x 表示选定的两个小区,{},,,,,x y A B C m n ∈,则从5个小区中任选两个小区,所有可能的结果有10个,它们是(,)A B ,(,)A C ,(,)A m ,(,)A n ,(,)B C ,(,)B m ,(,)B n ,(,)C m ,(,)C n ,(,)m n . …………5分用D 表示:“选出的两个小区恰有一个为非低碳小区”这一事件,则D 中的结果有6个,它们是:(,)A m ,(,)A n ,(,)B m ,(,)B n ,(,)C m ,(,)C n . ………7分 故所求概率为63()105P D ==. …………8分(II )由图1可知月碳排放量不超过300千克的成为“低碳族”. …………10分由图2可知,三个月后的低碳族的比例为0.070.230.460.760.75++=>,…………12分 所以三个月后小区A 达到了“低碳小区”标准. …………13分16. (2012年3月北京市丰台区高三一模文科)(本小题共13分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统教师教龄 5年以下5至10年10至20年20年以上教师人数 8 10 30 18 经常使用信息技术实施教学的人数24104.(Ⅱ)设经常使用信息技术实施教学,教龄在5年以下的教师为i a (i =1,2),教龄在5至10年的教师为i b (j =1,2,3,4),那么任选2人的基本事件为12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b ,12(,)b b ,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个. ……………………9分设“任选2人中恰有一人的教龄在5年以下”为事件B , ……………………10分包括的基本事件为11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b 共8个, ……………………11分 则8()15P B =. ……………………13分 所以恰有一人教龄在5年以下的概率是815.16. (2012年4月北京市房山区高三一模理科(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:高一年级 高二年级 高三年级 10人6人4人答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分随机变量ξ的分布列为:ξ 0 1 2 3 4P8116 8132 278 818 811 ………………………12分随机变量ξ的分布列为:ξ 0 1 2 3 4P8116 8132 278 818811 所以334=⨯==np E ξ …………………13分。

2012高考理科数学概率统计 (答案详解)

2012高考理科数学概率统计 (答案详解)

2012年高考试题汇编(理) ---概率统计(一)选择题1、(全国卷大纲版)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )(A )12种 (B )18种 (C )24种 (D )36种 2、(全国卷新课标版)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) (A )12种 (B )10种 (C )9种 (D )8种3、(北京卷)设不等式组⎩⎨⎧≤≤≤≤20,20y x 表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )4π (B )22π- (C )6π(D )44π-4、(北京卷)从0,2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数。

其中奇数的个数为( )(A ) 24 (B ) 18 (C ) 12 (D ) 65、(福建卷)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )(A )41 (B )51 (C )61 (D )716、(湖北卷)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(A )21π-(B )112π-(C )2π (D )1π7、(辽宁卷)一排9个座位坐了3个三口之家。

若每家人坐在一起,则不同的坐法种数为 (A )!33⨯(B )3)!3(3⨯ (C )4)!3((D )!98、(辽宁卷)在长为12cm 的线段AB 上任取一点C 。

现做一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A )61 (B )31 (C )32 (D )54 9、(山东卷)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C )10 (D )15 10、(山东卷)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A )232 (B)252 (C)472 (D)48411、(陕西卷)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )(A ) x x <甲乙,m 甲>m 乙 (B ) x x <甲乙,m 甲<m 乙 (C ) x x >甲乙,m 甲>m 乙 (D ) x x >甲乙,m 甲<m 乙12、(陕西卷)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )(A ) 10种 (B )15种 (C ) 20种 (D ) 30种13、(上海卷)设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )(A )21ξξD D > (B )21ξξD D =(C )21ξξD D < (D )1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关14、(浙江卷)若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )(A )60种 (B )63种 (C )65种 (D )66种15、(安徽卷)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A )甲的成绩的平均数小于乙的成绩的平均数 (B )甲的成绩的中位数等于乙的成绩的中位数 (C )甲的成绩的方差小于乙的成绩的方差 (D )甲的成绩的极差小于乙的成绩的极差 16、(安徽卷))6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品。

2012~2019北京市高考数学分类概率与统计

2012~2019北京市高考数学分类概率与统计

【解析分类汇编:北京高考数学理】9:概率与统计(2012文)(3)设不等式组2,2xy⎧⎨⎩≤≤≤≤表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是D(A)π4(B)π22-(C)π6(D)4π4-(2012理)(2)设不等式组2,2xy⎧⎨⎩≤≤≤≤表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是D(A)π4(B)π22-(C)π6(D)4π4-(2012文/理)(17)(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a b c ,,,其中0a >,600a b c ++=.当数据a b c ,,的方差2s 最大时,写出a b c ,,的值(结论不要求证明),并求此时2s 的值.(注:2222121[()()()]n s x x x x x x n =-+-++-L ,其中x 为数据12,,,n x x x L 的平均数)解:(Ⅰ)厨余垃圾投放正确的概率约为40024001001003==++“厨余垃圾”箱里厨余垃圾量厨余垃圾总量.(Ⅱ)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即()P A 约为4002406071000++=0.,所以()P A 约为10.70.3-=.(Ⅲ)当600a =,0b c ==时,2s 取得最大值.因为 1()2003x a b c =++=,所以 22221[(600200)(0200)(0200)]800003s =-+-+-=.(2013文/理)(16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解:(Ⅰ)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是6 13.(Ⅱ)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为4 13.(Ⅲ)从3月5日开始连续三天的空气质量指数方差最大.(2013理)(16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解:设i A 表示事件“此人于3月i 日到达该市”(1i =,2,L ,13).根据题意,1()13i P A =,且i j A A =∅I (i j ≠). (Ⅰ)设B 为事件“此人到达当日空气重度污染”,则58B A A =U .所以58582()()()()13P B P A A P A P A ==+=U . (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,且36711(1)()P X P A A A A ==U U U367114()()()()13P A P A P A P A =+++=, 121213(2)()P X P A A A A ==U U U1212134()()()()13P A P A P A P A =+++=, 5(0)1(1)(2)13P X P X P X ==-=-==. 所以X 的分布列为:故X的期望5441201213131313 EX=⨯+⨯+⨯=.(Ⅲ)从3月5日开始连续三天的空气质量指数方差最大.(2014文)(18)(本小题13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号 分组 频数1 [0,2) 62 [2,4) 83 [4,6) 174 [6,8) 225 [8,10) 256 [10,12) 127 [12,14) 68 [14,16) 2 9[16,18)2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (Ⅱ)求频率分布直方图中的,a b 的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是101100-0.9=. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(Ⅱ)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以a =频率组距=0.1720.085=. 课外阅读时间落在组[8,10)的有25人,频率为0.25,所以b =频率组距=0.2520.125=.(Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组.(2014理)(16)(本小题13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次 投篮次数 命中次数主场1 2212 客场1 18 8主场2 1512客场2 1312主场3 128 客场3 217 主场4 238 客场4 18 15主场52420客场52512阅读时间(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(Ⅲ)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x的大小.(只需写出结论)解:(Ⅰ)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(Ⅱ)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C AB AB=U,,A B独立.根据投篮统计数据,3()5P A=,2()5P B=.()()()P C P AB P AB=+33225555=⨯+⨯1325=.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13 25.(Ⅲ)EX x=.(2015文)(17)(本小题13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“⨯”表示未购买.(Ⅰ)估计顾客同时购买乙和丙的概率;(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(Ⅰ)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品. 所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为 1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=. 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.(2015理)(16)(本小题13分)A,B 两组各有7位病人.他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间相互独立.从A,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a 为何值时,A,B 两组病人康复时间的方差相等?(结论不要求证明)解:设事件i A 为“甲是A 组的第i 个人”,事件i B 为“乙是B 组的第i 个人”,1,2,,7i =L .由题意可知1()()7i i P A P B ==,1,2,,7i =L . (Ⅰ)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是5675673()()()()7P A A A P A P A P A =++=U U . (Ⅱ)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,41516171526272736676C A B A B A B A B A B A B A B A B A B A B =U U U U U U U U U .因此4151617152()()()()()()P C P A B P A B P A B P A B P A B =++++6272736676()()()()()P A B P A B P A B P A B P A B +++++ 4110()P A B = 4110()()P A P B =1049=. (Ⅲ)11a =或18a =.(2016理)(16)(本小题13分)A,B,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(Ⅰ)试估计C 班的学生人数;(Ⅱ)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明) 解:(Ⅰ)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人数估计为81004020⨯=. (Ⅱ)设事件i A 为“甲是现有样本中A 班的第i 个人”,1,2,,5i =L ,事件j C 为“乙是现有样本中C 班的第j 个人”,1,2,,8j =L .由题意可知,1(),1,2,,55i P A i ==L ;1(),1,2,,88j P C j ==L .111()()()5840i j i j P AC P A P C ==⨯=,1,2,,5i =L ,1,2,,8j =L . 设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知, 1112212223313233E AC AC A C A C A C A C A C A C =U U U U U U U414243A C A C A C U U U 51525354A C A C A C A C U U U U .因此1112212223()()()()()()P E P AC P AC P A C P A C P A C =++++313233()()()P A C P A C P A C +++414243()()()P A C P A C P A C +++ 51525354()()()()P A C P A C P A C P A C ++++1315408=⨯=.(Ⅲ)10μμ<.(2016文)(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A )15(B )25 (C )825(D )925【答案】B(2016文)(17)(本小题13分)某市居民用水拟实行阶梯水价.每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(Ⅰ)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替.当3w =时,估计该市居民该月的人均水费.解:(Ⅰ)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w 至少定为3.(Ⅱ)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:组号 12345678分组 [2,4] (4,6] (6,8] (8,10] (10,12] (12,17] (17,22] (22,27]频率0.1 0.15 0.2 0.25 0.15 0.05 0.05 0.05根据题意,该市居民该月的人均水费估计为:40.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯10.5=(元). (2017理)(17)(本小题13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.用水量(立方米)0.1 0.2 0.3 0.4 0.5 0.51.52.53.54.5 1234 O* D * * ** ++(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(Ⅱ)从图中A,B,C,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(Ⅲ)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)解:(Ⅰ)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为150.350=. (Ⅱ)由图知,A,B,C,D 四人中,指标x 的值大于1.7的有2人:A 和C .所以ξ的所有可能取值为0,1,2.22241(0)6C P C ξ===,1122242(1)3C C P C ξ===,22241(2)6C P C ξ===. 所以ξ的分布列为故ξ的期望121()0121636E ξ=⨯+⨯+⨯=.(Ⅲ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.(2017文)(17)(本小题13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),,[80,90],L 并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解:(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=,所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=. 所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=,所以样本中分数不小于70的男生人数为160302⨯=.所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2.(2018理)(17)(本小题12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(1,2,3,4,5,6)k =.写出方差123456,,,,,D D D D D D ξξξξξξ的大小关系.解:(Ⅰ)由题意知,样本中电影的总部数是140503002008005102000+++++=,第四类电影中获得好评的电影部数是2000.2550⨯=. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”,事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为()P AB AB +()()P AB P AB =+()(1())(1())()P A P B P A P B =-+-.由题意知:()P A 估计为0.25,()P B 估计为0.2. 故所求概率估计为0.250.80.750.2⨯+⨯0.35=. (Ⅲ)142536D D D D D D ξξξξξξ>>=>>.(2018文)(17)(本小题13分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(Ⅰ)由题意知,样本中电影的总部数是140503002008005102000+++++=,第四类电影中获得好评的电影部数是2000.2550⨯=.故所求概率为500.025 2000=.(Ⅱ)由题意知,样本中获得好评的电影部数是1400.4500.23000.152000.258000.25100.1⨯+⨯+⨯+⨯+⨯+⨯5610455016051=+++++372=.故所求概率估计为37210.8142000-=.(Ⅲ)增加第五类电影的好评率,减少第二类电影的好评率.(2019理)(17)(本小题13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B 两种支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 解:(Ⅰ)由题意知,样本中仅使用A 的学生有189330++=人,仅使用B 的学生有1014125++=人,A,B 两种支付方式都不使用的学生有5人. 故样本中A,B 两种支付方式都使用的学生有1003025540---=人.所以从全校学生中随机抽取1人,该学生上个月A,B 两种支付方式都使用的概率估计为400.4100=. (Ⅱ)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件,C D 相互独立,且93()0.430P C +==,141()0.625P D +==.所以(2)()()()0.24P X P CD P C P D ====, (1)()P X P CD CD ==U()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(Ⅲ)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.(2019文)(17)(本小题12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由. 解:(Ⅰ)由题知,样本中仅使用的学生有人,仅使用的学生有人,两种支付方式都不使用的学生有人.故样本中两种支付方式都使用的学生有人. 估计该校学生中上个月两种支付方式都使用的人数为. (Ⅱ)记事件为“从样本仅使用的学生中随机抽取人,该学生上个月的支付金额大于元”,则. (Ⅲ)记事件为“从样本仅使用的学生中随机抽查人,该学生本月的支付金额大于元”.假设样本仅使用的学生中,本月支付金额大于元的人数没有变化,则由(Ⅱ)知,.答案示例1:可以认为有变化.理由如下:比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于元的人数发生了变化.所以可以认为有变化.A 27330+=B 24125+=A,B 5A,B 1003025540---=A,B 401000400100⨯=C B 120001()0.0425P C ==E B 12000B 2000()0.04P E =()P E 2000事件是随机事件,比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.E ()P E。

2012年北京市朝阳区高考数学一模试卷(理科)(附答案解析)

2012年北京市朝阳区高考数学一模试卷(理科)(附答案解析)

2012年北京市朝阳区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 复数10i1−2i =( ) A.−4+2i B.4−2iC.2−4iD.2+4i2. 已知平面向量a →,b →满足a →⋅(a →+b →)=3,且|a →|=2,|b →|=1,则向量a →与b →的夹角为( ) A.π6 B.π3C.2π3D.5π63. 已知数列{a n }的前n 项和为S n ,且S n =2a n −1(n ∈N ∗),则a 5=( ) A.−16 B.16 C.31 D.324. 已知平面α,直线a ,b ,l ,且a ⊂α,b ⊂α,则“l ⊥a 且l ⊥b ”是“l ⊥α”的( ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5. 有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( ) A.16 B.24 C.32 D.486. 已知函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,f(x +2)=f(x).当0≤x ≤1时,f(x)=x 2,若直线y =x +a 与函数y =f(x)的图象在[0, 2]内恰有两个不同的公共点,则实数a 的值是( ) A.0 B.0或−12C.−14或−12D.0或−147. 某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件.从第二年开始,商场对A 种产品征收销售额的x%的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年 增加了70⋅x%1−x%元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的最大值是( ) A.2B.6.5C.8.8D.108. 已知点集A ={(x, y)|x 2+y 2−4x −8y +16≤0},B ={(x, y)|y ≥|x −m|+4, m 是常数},点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为M ,N .若点D(m, 4)在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是( ) A.1 B.2 C.2√2 D.4二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.已知双曲线的方程为x 23−y 2=1,则此双曲线的离心率为________,其焦点到渐近线的距离为________.已知某几何体的三视图如图所示,则该几何体的体积为________.执行如图所示的程序框图,若输入k 的值是4,则输出S 的值是________.在极坐标系中,曲线ρ=2√3sin θ和ρcos θ=1相交于点A ,B ,则线段AB 的中点E 到极点的距离是________.已知函数f(x)={(12)x+34,x≥2log2x,0<x<2若函数g(x)=f(x)−k有两个不同的零点,则实数k的取值范围是________.已知△ABC中,∠C=90∘,AC=3,BC=4.一个圆心为M,半径为14的圆在△ABC内,沿着△ABC的边滚动一周回到原位.在滚动过程中,圆M至少与△ABC的一边相切,则点M到△ABC顶点的最短距离是________,点M的运动轨迹的周长是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.把答案答在答题卡上.已知函数f(x)=cos(x−π4).(1)若f(α)=7√210,求sin2α的值;(2)设g(x)=f(x)⋅f(x+π2),求函数g(x)在区间[−π6,π3]上的最大值和最小值.某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(Ⅰ)下表是这次考试成绩的频数分布表,求正整数a,b的值;(Ⅲ)在(Ⅱ)中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X,求X的分布列与数学期望.在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90∘,EB⊥平面ABCD,EF // AB,AB=2,EB=√3,EF=1,BC=√13,且M是BD的中点.(Ⅰ)求证:EM // 平面ADF;(Ⅱ)求二面角D−AF−B的大小;(Ⅲ)在线段EB上是否存在一点P,使得CP与AF所成的角为30∘?若存在,求出BP的长度;若不存在,请说明理由.设函数f(x)=e axx2+1,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(0, f(0))处的切线方程;(Ⅱ)求函数f(x)单调区间.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(−√2,0),F2(√2,0).点M(1, 0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点N的坐标为(3, 2),点P的坐标为(m, n)(m≠3).过点M任作直线l与椭圆C相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,若k1+k3=2k2,试求m,n满足的关系式.已知各项均为非负整数的数列A0:a0,a1,…,a n(n∈N∗),满足a0=0,a1+...+a n=n.若存在最小的正整数k,使得a k=k(k≥1),则可定义变换T,变换T将数列A0变为T(A0):a0+1,a1+1,…,a k−1+1,0,a k+1,…,a n.设A i+1=T(A i),i=0,1,2….(1)若数列A0:0,1,1,3,0,0,试写出数列A5;若数列A4:4,0,0,0,0,试写出数列A0;(2)证明存在数列A0,经过有限次T变换,可将数列A0变为数列n,0,0,…,0⏟n个;(3)若数列A0经过有限次T变换,可变为数列n,0,0,…,0⏟n个.设S m=a m+a m+1+...+a n,m=1,2,…,n,求证a m=S m−[S mm+1](m+1),其中[S mm+1]表示不超过S mm+1的最大整数.参考答案与试题解析2012年北京市朝阳区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.【答案】 A【考点】 复数的运算 【解析】两个复数相除,分子和分母同时乘以分母的共轭复数,再利用虚数单位i 的幂运算性质求出结果. 【解答】复数10i1−2i =10i(1+2i)(1−2i)(1+2i)=−20+10i5=−4+2i ,2.【答案】 C【考点】数量积表示两个向量的夹角 平面向量数量积的运算 【解析】根据向量数量积的性质,得到a →2=|a|→2=4,代入已知等式得a →⋅b →=−1.设a →与b →的夹角为α,结合向量数量积的定义和|a|→=2,|b|→=1,算出cos α=−12,最后根据两个向量夹角的范围,可得a →与b →夹角的大小. 【解答】解:∵ |a|→=2,∴ a →2=4 又∵ a →⋅(a →+b →)=3,∴ a →2+a →⋅b →=4+a →⋅b →=3,得a →⋅b →=−1, 设a →与b →的夹角为α,则a →⋅b →=|a|→|b|→cos α=−1,即2×1×cos α=−1,得cos α=−12 ∵ α∈[0, π], ∴ α=2π3故选C 3. 【答案】B【考点】数列的概念及简单表示法 【解析】先根据a 1=S 1,a n =S n −S n−1(n ≥2)求出数列{a n }的通项公式,再将n =5代入可求出所求. 【解答】当n =1时,a 1=S 1=2a 1−1,∴ a 1=1.当n >1时,S n =2a n −1,∴ S n−1=2a n−1−1, ∴ S n −S n−1=2a n −2a n−1, ∴ a n =2a n −2a n−1, ∴ a n =2a n−1, ∴ a nan−1=2,∴ {a n }是首项为1,公比为2的等比数列,∴ a n =2n−1,n ∈N ∗. ∴ a 5=25−1=16. 4.【答案】 B【考点】空间中直线与平面之间的位置关系 充分条件、必要条件、充要条件【解析】题目给出了平面内的两条直线a 、b ,根据平面外的直线l 与a 、b 垂直,断定直线l 和平面的位置关系,a ⊂α,b ⊂α,直线a 、b 的位置关系不唯一. 【解答】a ⊂α,b ⊂α,直线a 、b 的位置关系可能平行,也可能相交.若a 与b 相交,则由l ⊥a 且l ⊥b 能得到l ⊥α,否则不一定,所以,“l ⊥a 且l ⊥b ”是“l ⊥α”的不充分条件;反之,根据线面垂直的定义,若l ⊥α,则l 垂直于平面α内的所有直线,所以“l ⊥a 且l ⊥b ”是“l ⊥α”的必要条件. 所以,“l ⊥a 且l ⊥b ”是“l ⊥α”的必要不充分条件. 5. 【答案】 C【考点】排列、组合及简单计数问题 【解析】根据题意,分析可得若恰好3次就结束测试,必有前2次测试中测出1件次品,第3次测出第2件次品,先分析第3次测出次品情况数目,再分析前2次测试,即一次正品、1次次品的情况数目,由分步计数原理,计算可得答案. 【解答】根据题意,若恰好3次就结束测试,则前2次测试中测出1件次品,第3次测出第2件次品,第3次测试的是次品,而共有2件次品,则有C 21=2种情况,前2次测试,即一次正品、1次次品,有C 81×A 22=16种情况, 则恰好3次就结束测试共有2×16=32种情况, 6.【答案】 D【考点】根的存在性及根的个数判断 函数奇偶性的性质【解析】先作出函数f(x)在[0, 2]上的图象,再分类讨论,通过数形结合与方程思想的应用即可解决问题. 【解答】解:∵ f(x)是定义在R 上的偶函数,当0≤x ≤1时,f(x)=x 2, ∴ 当−1≤x ≤0时,0≤−x ≤1,f(−x)=(−x)2=x 2=f(x), 又f(x +2)=f(x),∴ f(x)是周期为2的函数.又直线y =x +a 与函数y =f(x)的图象在[0, 2]内恰有两个不同的公共点,其图象如下:当a =0时,直线y =x +a 变为直线l 1,其方程为:y =x ,显然,l 1与函数y =f(x)的图象在[0, 2]内恰有两个不同的公共点;当a ≠0时,直线y =x +a 与函数y =f(x)的图象在[0, 2]内恰有两个不同的公共点,由图可知,直线y =x +a 与函数y =f(x)相切,切点的横坐标x 0∈[0, 1]. 由{y =x +a,y =x 2,得:x 2−x −a =0,由Δ=1+4a =0,得a =−14,此时,x 0=x =12∈[0, 1]. 综上所述,a =−14或0. 故选D . 7. 【答案】 D【考点】根据实际问题选择函数类型 【解析】先确定商场该年对该商品征收的总管理费的函数解析式,再根据第二年商场在A 种产品经营中收取的管理费不少于14万元,建立不等式,即可求得x 的最大值. 【解答】解:依题意,第二年该商品年销售量为(11.8−x)万件,年销售收入为(70+70⋅x%1−x%)(11.8−x)万元,则商场该年对该商品征收的总管理费为(70+70⋅x%1−x%)(11.8−x)x%(万元).故所求函数为:y =7100−x(118−10x)x(x >0).令7100−x (118−10x)x ≥14,化简得x 2−12x +20≤0,即(x −2)(x −10)≤0,解得2≤x ≤10. ∴ x 的最大值是10故选D . 8. 【答案】 B【考点】求线性目标函数的最值 【解析】先确定点D 在直线y =4上,集合A 表示的平面区域是图中圆O′的内部,集合B 表示的平面区域是图中直角的内部,由此可得结论. 【解答】解:由题意,点D 在直线y =4上,集合A 表示的平面区域是图中圆O′的内部,集合B 表示的平面区域是图中直角的内部当D 运动到O′时,△DMN 的面积的最大值,此时三角形是一个直角边为2的等腰直角三角形, 所以面积为2故选B .二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.【答案】2√33,1 【考点】 双曲线的特性 【解析】由双曲线的方程为x 23−y 2=1,可得a =√3,b =1,c =2,由此求得离心率以及焦点到渐近线的距离. 【解答】解:由双曲线的方程为x 23−y 2=1,可得a =√3,b =1,c =2,则此双曲线的离心率为ca =√3=2√33.故渐近线方程为y =√3,即x ±√3y =0,焦点为(±2, 0),故一个焦点(2, 0)到渐近线x−√3y=0的距离等于√1+3=1,故答案为2√33,1.【答案】32【考点】由三视图求体积【解析】由已知中的三视图,我们可以判断出几何体的形状,进而求出几何体的底面面积和高后,代入棱锥体积公式,可得答案.【解答】由已知中的三视图可得几何体是一个三棱锥且棱锥的底面是一个以(2+1)=3为底,以1为高的三角形棱锥的高为3故棱锥的体积V=13⋅12(2+1)⋅1⋅3=32【答案】3【考点】程序框图【解析】由图知运算规则是求和,共进行3次循环,由此可得结论.【解答】解:由图知运算规则是求和:S=11×2+12×3+13×4=1−12+12−13+13−14=34.故答案为:34.【答案】2【考点】圆的极坐标方程极坐标刻画点的位置【解析】先将曲线ρ=2√3sinθ方程的两边同乘以ρ后化成直角坐标方程,再将ρcosθ=1也化成极坐标方程,后利用直角坐标方程进行求解即可.【解答】将曲线ρ=2√3sinθ和p cosθ=1都化为直角坐标方程为x2+y2−2√3y=0和x=1,将x=1代入x2+y2−2√3y=0,得:y2−2√3y+1=0,设其两个实根分别为y1,y2,则线段AB的中点E的纵坐标y=y1+y22=2√32=√3,∴线段AB的中点E(1, √3)到极点的距离是2.【答案】(34, 1)【考点】分段函数的应用【解析】由题意可得函数f(x)的图象与直线y=k有二个不同的交点,结合图象求出实数k的取值范围.【解答】由题意可得函数f(x)的图象与直线y=k有二个不同的交点,如图所示:故实数k的取值范围是(34, 1),故答案为:(34, 1).【答案】√24,9【考点】轨迹方程【解析】由题意,当圆与AC,BC都相切时,M到C的距离最小;设点M的运动轨迹的周长为C,则点M的运动轨迹是一直角三角形,且与△ABC相似,由此可得结论.【解答】解:由题意,当圆与AC,BC都相切时,M到C的距离最小,因为圆的半径为14,∠C=90∘,所以MC=√24设点M的运动轨迹的周长为C,则点M的运动轨迹是一直角三角形,且与△ABC相似,如图,sin∠B=sin∠B1DE=14B1D=35∴B1D=512,∴B1C1=113−14−512=3∴C12=34,∴C=9故答案为:√24,9.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.把答案答在答题卡上.【答案】解:(1)∵ f(α)=cos (α−π4)=7√210, ∴√22(cos α+sin α)=7√210,得 cos α+sin α=75.两边平方得,sin 2α+2sin αcos α+cos 2α=4925, 即1+sin 2α=4925,可得sin 2α=2425.…(2)g(x)=f(x)⋅f(x +π2)=cos (x −π4)⋅cos (x +π4) =√22(cos x +sin x)⋅√22(cos x −sin x) =12(cos 2x −sin 2x)=12cos 2x .… 当x ∈[−π6,π3]时,2x ∈[−π3,2π3].所以,当x =0时,g(x)的最大值为12;当x =π3时,g(x)的最小值为−14. 即函数g(x)在区间[−π6,π3]上的最大值为g(0)=12,最小值为g(π3)=−14.… 【考点】求二倍角的正弦两角和与差的余弦公式 三角函数的最值 【解析】(1)根据函数f(x)表达式,结合两角差的余弦公式化简整理,得cos α+sin α=75.再将两边平方,结合同角三角函数平方关系和二倍角的正弦公式,可得sin 2α的值;(2)将f(x)表达式代入,利用两角和与差的余弦公式展开,并用二倍角的余弦公式化简整理,得g(x)=12cos 2x .最后结合余弦函数的图象与性质,可得到函数g(x)在区间[−π6,π3]上的最大值和最小值. 【解答】解:(1)∵ f(α)=cos (α−π4)=7√210, ∴√22(cos α+sin α)=7√210,得 cos α+sin α=75.两边平方得,sin 2α+2sin αcos α+cos 2α=4925, 即1+sin 2α=4925,可得sin 2α=2425.…(2)g(x)=f(x)⋅f(x +π2)=cos (x −π4)⋅cos (x +π4) =√22(cos x +sin x)⋅√22(cos x −sin x) =12(cos 2x −sin 2x)=12cos 2x .…当x ∈[−π6,π3]时,2x ∈[−π3,2π3].所以,当x =0时,g(x)的最大值为12;当x =π3时,g(x)的最小值为−14. 即函数g(x)在区间[−π6,π3]上的最大值为g(0)=12,最小值为g(π3)=−14.… 【答案】(本小题满分1(1)依题意,a =0.04×5×1000=200,b =0.02×5×1000=100. (2)设其中成绩为优秀的学生人数为x ,则x 40=350+300+1001000,解得:x =30,即其中成绩为优秀的学生人数为30名.(Ⅲ)依题意,X 的取值为0,1,2,P(X =0)=C 102C 402=352,P(X =1)=C 101C301C 402=513,P(X =2)=C 302C 402=2952,所以X 的分布列为EX =0×352+1×513+2×2952=32,所以X 的数学期望为32.【考点】频率分布直方图离散型随机变量的期望与方差 【解析】(I )根据频数=频率×样本容量,频率=×组距,可求出a 与b 的值;(Ⅱ)设其中成绩为优秀的学生人数为x ,根据40人中优秀的比例等于1000人中优秀的比例,建立等式,解之即可;(Ⅲ)X 的取值为0,1,2,然后利用排列组合的知识求出相应的概率,最后利用数学期望公式解之即可. 【解答】(本小题满分1(1)依题意,a =0.04×5×1000=200,b =0.02×5×1000=100. (2)设其中成绩为优秀的学生人数为x ,则x 40=350+300+1001000,解得:x =30,即其中成绩为优秀的学生人数为30名. (Ⅲ)依题意,X 的取值为0,1,2,P(X =0)=C 102C 402=352,P(X =1)=C 101C301C 402=513,P(X =2)=C 302C 402=2952,所以X 的分布列为EX =0×352+1×513+2×2952=32,所以X 的数学期望为32. 【答案】(1)证明:取AD 的中点N ,连接MN ,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以MN ∥AB,MN =12AB ,又因为EF ∥AB,EF =12AB ,所以MN // EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM // FN .又因为FN ⊂平面ADF ,EM ⊄平面ADF , 故EM // 平面ADF .解法二:因为EB ⊥平面ABD ,AB ⊥BD ,故以B 为原点,建立如图2所示的空间直角坐标系B −xyz .由已知可得 B(0, 0, 0),A(0, 2, 0),D(3, 0, 0),C(3,−2,0),E(0,0,√3),F(0,1,√3),M(32,0,0)(1)EM →=(32,0,−√3),AD →=(3,−2,0),AF →=(0,−1,√3).设平面ADF 的一个法向量是n →=(x, y, z).由{n →⋅AD →=0n →⋅AF →=0 得{3x −2y =0−y +√3z =0 令y =3,则n →=(2,3,√3).又因为EM →⋅n →=(32,0,−√3)⋅(2,3,√3)=3+0−3=0,所以EM →⊥n →,又EM ⊄平面ADF ,所以EM // 平面ADF . (2)由(Ⅰ)可知平面ADF 的一个法向量是n →=(2,3,√3). 因为EB ⊥平面ABD ,所以EB ⊥BD . 又因为AB ⊥BD ,所以BD ⊥平面EBAF . 故BD →=(3,0,0)是平面EBAF 的一个法向量. 所以cos <BD →,n →>=BD →⋅n→|BD →|⋅|n →|=12,又二面角D −AF −B 为锐角,故二面角D −AF −B 的大小为60∘.(Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30∘. 不妨设P(0, 0, t)(0≤t ≤√3),则PC →=(3,−2,−t),AF →=(0,−1,√3). 所以cos <PC →,AF →>=|PC →⋅AF →||PC →|⋅|AF →|=√3t|2√t 2+13, 由题意得√3t 2√t 2+13=√32,化简得−4√3t =35,解得t =4√3<0.所以在线段EB 上不存在点P ,使得CP 与AF 所成的角为30∘. 【考点】异面直线及其所成的角 直线与平面平行 二面角的平面角及求法【解析】(Ⅰ)证明EM // 平面ADF ,利用线面平行的判定,证明EM 平行于平面ADF 中一条直线即可;也可建立如空间直角坐标系,求出平面ADF 的一个法向量,证明EM →⊥n →;(Ⅱ)平面ADF 的一个法向量是n →=(2,3,√3),BD →=(3,0,0)是平面EBAF 的一个法向量,利用向量的夹角公式,可求二面角D −AF −B 的大小;(Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30∘,不妨设P(0, 0, t)(0≤t ≤√3),则PC →=(3,−2,−t),AF →=(0,−1,√3),利用向量的夹角公式,求出t 的值,即可得到结论. 【解答】(1)证明:取AD 的中点N ,连接MN ,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以MN ∥AB,MN =12AB ,又因为EF ∥AB,EF =12AB ,所以MN // EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM // FN .又因为FN ⊂平面ADF ,EM ⊄平面ADF , 故EM // 平面ADF .解法二:因为EB ⊥平面ABD ,AB ⊥BD ,故以B 为原点,建立如图2所示的空间直角坐标系B −xyz . 由已知可得 B(0, 0, 0),A(0, 2, 0),D(3, 0, 0),C(3,−2,0),E(0,0,√3),F(0,1,√3),M(32,0,0)(1)EM →=(32,0,−√3),AD →=(3,−2,0),AF →=(0,−1,√3).设平面ADF 的一个法向量是n →=(x, y, z). 由{n →⋅AD →=0n →⋅AF →=0 得{3x −2y =0−y +√3z =0 令y =3,则n →=(2,3,√3).又因为EM →⋅n →=(32,0,−√3)⋅(2,3,√3)=3+0−3=0,所以EM →⊥n →,又EM ⊄平面ADF ,所以EM // 平面ADF . (2)由(Ⅰ)可知平面ADF 的一个法向量是n →=(2,3,√3). 因为EB ⊥平面ABD ,所以EB ⊥BD . 又因为AB ⊥BD ,所以BD ⊥平面EBAF . 故BD →=(3,0,0)是平面EBAF 的一个法向量. 所以cos <BD →,n →>=BD →⋅n→|BD →|⋅|n →|=12,又二面角D −AF −B 为锐角,故二面角D −AF −B 的大小为60∘.(Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30∘. 不妨设P(0, 0, t)(0≤t ≤√3),则PC →=(3,−2,−t),AF →=(0,−1,√3). 所以cos <PC →,AF →>=|PC →⋅AF →||PC →|⋅|AF →|=√3t|2√t 2+13, 由题意得√3t 2√t 2+13=√32,化简得−4√3t =35,解得t =4√3<0.所以在线段EB 上不存在点P ,使得CP 与AF 所成的角为30∘.【答案】因为f(x)=e axx 2+1,所以f ′(x)=e ax (ax 2−2x+a)(x 2+1)2.(1)当a =1时,f(x)=e xx 2+1,f ′(x)=e x (x 2−2x+1)(x 2+1)2,所以f(0)=1,f ′(0)=1.所以曲线y =f(x)在点(0, f(0))处的切线方程为x −y +1=0. (2)因为f ′(x)=e ax (ax 2−2x+a)(x 2+1)2=e ax (x 2+1)2(ax 2−2x +a),(1)当a =0时,由f ′(x)>0得x <0;由f ′(x)<0得x >0.所以函数f(x)在区间(−∞, 0)单调递增,在区间(0, +∞)单调递减.(2)当a ≠0时,设g(x)=ax 2−2x +a ,方程g(x)=ax 2−2x +a =0的判别式△=4−4a 2=4(1−a)(1+a),①当0<a <1时,此时△>0. 由f ′(x)>0得x <1−√1−a 2a,或x >1+√1−a 2a;由f ′(x)<0得1−√1−a 2a<x <1+√1−a 2a.所以函数f(x)单调递增区间是(−∞,1−√1−a 2a)和(1+√1−a 2a,+∞),单调递减区间(1−√1−a 2a,1+√1−a 2a).②当a ≥1时,此时△≤0.所以f ′(x)≥0,所以函数f(x)单调递增区间是(−∞, +∞). ③当−1<a <0时,此时△>0.由f ′(x)>0得1+√1−a 2a<x <1−√1−a 2a;由f ′(x)<0得x <1+√1−a 2a,或x >1−√1−a 2a.所以当−1<a <0时,函数f(x)单调递减区间是(−∞,1+√1−a 2a)和(1−√1−a 2a,+∞), 单调递增区间(1+√1−a 2a,1−√1−a 2a).④当a ≤−1时,此时△≤0,f ′(x)≤0,所以函数f(x)单调递减区间是(−∞, +∞). 【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的单调性【解析】(I )先求导数f ′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x =0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(II)对字母a 进行分类讨论,再令f ′(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间. 【解答】因为f(x)=e axx 2+1,所以f ′(x)=e ax (ax 2−2x+a)(x 2+1)2.(1)当a =1时,f(x)=e xx 2+1,f ′(x)=e x (x 2−2x+1)(x 2+1)2,所以f(0)=1,f ′(0)=1.所以曲线y =f(x)在点(0, f(0))处的切线方程为x −y +1=0. (2)因为f ′(x)=e ax (ax 2−2x+a)(x 2+1)2=e ax(x 2+1)2(ax 2−2x +a),(1)当a =0时,由f ′(x)>0得x <0;由f ′(x)<0得x >0.所以函数f(x)在区间(−∞, 0)单调递增,在区间(0, +∞)单调递减.(2)当a ≠0时,设g(x)=ax 2−2x +a ,方程g(x)=ax 2−2x +a =0的判别式△=4−4a 2=4(1−a)(1+a),①当0<a <1时,此时△>0. 由f ′(x)>0得x <1−√1−a 2a,或x >1+√1−a 2a;由f ′(x)<0得1−√1−a 2a<x <1+√1−a 2a.所以函数f(x)单调递增区间是(−∞,1−√1−a 2a)和(1+√1−a 2a,+∞),单调递减区间(1−√1−a 2a,1+√1−a 2a).②当a ≥1时,此时△≤0.所以f ′(x)≥0, 所以函数f(x)单调递增区间是(−∞, +∞). ③当−1<a <0时,此时△>0. 由f ′(x)>0得1+√1−a 2a<x <1−√1−a 2a;由f ′(x)<0得x <1+√1−a 2a,或x >1−√1−a 2a.所以当−1<a <0时,函数f(x)单调递减区间是(−∞,1+√1−a 2a)和(1−√1−a 2a,+∞),单调递增区间(1+√1−a 2a,1−√1−a 2a).④当a ≤−1时,此时△≤0,f ′(x)≤0,所以函数f(x)单调递减区间是(−∞, +∞). 【答案】(1)依题意,c =√2,b =1,所以a =2+c 2=√3. 故椭圆C 的方程为x 23+y 2=1. (2)①当直线l 的斜率不存在时,由{x =1x 23+y 2=1解得x =1,y =±√63. 不妨设A(1,√63),B(1,−√63), 因为k 1+k 3=2−√632+2+√632=2,又k 1+k 3=2k 2,所以k 2=1,所以m ,n 的关系式为n−2m−3=1,即m −n −1=0. ②当直线l 的斜率存在时,设直线l 的方程为y =k(x −1).将y =k(x −1)代入x 23+y 2=1整理化简得,(3k 2+1)x 2−6k 2x +3k 2−3=0.设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=6k 23k 2+1,x 1x 2=3k 2−33k 2+1. 又y 1=k(x 1−1),y 2=k(x 2−1). 所以k 1+k 3=2−y 13−x 1+2−y23−x 2=(2−y 1)(3−x 2)+(2−y 2)(3−x 1)(3−x 1)(3−x 2)=[2−k(x 1−1)](3−x 2)+[2−k(x 2−1)](3−x 1)x 1x 2−3(x 1+x 2)+9=2kx 1x 2−(4k+2)(x 1+x 2)+6k+12x 1x 2−3(x 1+x 2)+9=2k×3k 2−33k 2+1−(4k+2)×6k 23k 2+1+6k+123k 2−33k 2+1−3×6k 23k 2+1+9=2(12k 2+6)12k 2+6=2.所以2k 2=2,所以k 2=n−2m−3=1,所以m ,n 的关系式为m −n −1=0. 综上所述,m ,n 的关系式为m −n −1=0.【考点】直线与椭圆结合的最值问题 椭圆的标准方程【解析】(Ⅰ)依题意,c =√2,b =1,求出a 的值,即可得到椭圆C 的方程;(Ⅱ)①当直线l 的斜率不存在时,将直线x =1与椭圆方程联立,求得A ,B 的坐标,利用k 1+k 3=2k 2,可得m ,n 满足的关系式;②当直线l 的斜率存在时,设直线l 的方程代入x 23+y 2=1整理化简,利用韦达定理及k 1+k 3=2k 2,可得k 2的值从而可得m ,n 满足的关系式. 【解答】(1)依题意,c =√2,b =1,所以a =√b 2+c 2=√3.故椭圆C 的方程为x 23+y 2=1. (2)①当直线l 的斜率不存在时,由{x =1x 23+y 2=1解得x =1,y =±√63. 不妨设A(1,√63),B(1,−√63), 因为k 1+k 3=2−√632+2+√632=2,又k 1+k 3=2k 2,所以k 2=1,所以m ,n 的关系式为n−2m−3=1,即m −n −1=0. ②当直线l 的斜率存在时,设直线l 的方程为y =k(x −1).将y =k(x −1)代入x 23+y 2=1整理化简得,(3k 2+1)x 2−6k 2x +3k 2−3=0. 设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=6k 23k 2+1,x 1x 2=3k 2−33k 2+1.又y 1=k(x 1−1),y 2=k(x 2−1). 所以k 1+k 3=2−y 13−x 1+2−y 23−x 2=(2−y 1)(3−x 2)+(2−y 2)(3−x 1)(3−x 1)(3−x 2)=[2−k(x 1−1)](3−x 2)+[2−k(x 2−1)](3−x 1)x 1x 2−3(x 1+x 2)+9=2kx 1x 2−(4k+2)(x 1+x 2)+6k+12x 1x 2−3(x 1+x 2)+9=2k×3k 2−33k 2+1−(4k+2)×6k 23k 2+1+6k+123k 2−33k 2+1−3×6k 23k 2+1+9=2(12k 2+6)12k 2+6=2.所以2k 2=2,所以k 2=n−2m−3=1,所以m ,n 的关系式为m −n −1=0.综上所述,m ,n 的关系式为m −n −1=0.【答案】(1)解:若A 0:0,1,1,3,0,0,则A 1:1,0,1,3,0,0;A 2:2,1,2,0,0,0; A 3:3,0,2,0,0,0;A 4:4,1,0,0,0,0; A 5:5,0,0,0,0,0.若A 4:4,0,0,0,0,则 A 3:3,1,0,0,0; A 2:2,0,2,0,0; A 1:1,1,2,0,0; A 0:0,0,1,3,0..….…(2)证明:若数列A 0:a 0,a 1,…,a n 满足a k =0及a i >0(0≤i ≤k −1),则定义变换T −1,变换T −1将数列A 0变为数列T −1(A 0):a 0−1,a 1−1,…,a k−1−1,k ,a k+1,…,a n .可得T −1和T 是互逆变换. 对于数列n ,0,0,…,0连续实施变换T−1(一直不能再作T−1变换为止)得n ,0,0,…,0→T −1n −1,1,0,…,0→T −1 n −2,0,2,0,…,0→T −1 n −3,1,2,0,…,0→T −1 ...→T −1 a 0,a 1,…,a n ,则必有a 0=0(若a 0≠0,则还可作变换T −1).反过来对a 0,a 1,…,a n 作有限次变换T ,即可还原为数列n ,0,0,…,0,因此存在数列A 0满足条件.… (3)证明:显然a i ≤i(i =1, 2,…,n),这是由于若对某个i 0,a i 0>i 0,则由变换的定义可知,a i 0通过变换,不能变为0.由变换T 的定义可知数列A 0每经过一次变换,S k 的值或者不变,或者减少k ,由于数列A 0经有限次变换T ,变为数列n ,0,…,0时,有S m =0,m =1,2,…,n , 所以S m =mt m (t m 为整数),于是S m =a m +S m+1=a m +(m +1)t m+1,0≤a m ≤m ,所以a m 为S m 除以m +1后所得的余数,即a m =S m −[Sm m+1](m +1).…【考点】综合法与分析法 【解析】(1)根据新定义,首项分别取1,2,3,4,5,从而可写出其余各项;(2)若数列A 0:a 0,a 1,…,a n 满足a k =0及a i >0(0≤i ≤k −1),则定义变换T −1,变换T −1将数列A 0变为数列T −1(A 0):a 0−1,a 1−1,…,a k−1−1,k ,a k+1,…,a n .可验证数列A 0满足条件;(3)显然a i ≤i(i =1, 2,…,n),由变换T 的定义可知数列A 0每经过一次变换,S k 的值或者不变,或者减少k ,由于数列A 0经有限次变换T ,变为数列n ,0,…,0时,有S m =0,m =1,2,…,n ,从而可得S m =a m +S m+1=a m +(m +1)t m+1,0≤a m ≤m ,由此可得结论.【解答】(1)解:若A 0:0,1,1,3,0,0,则A 1:1,0,1,3,0,0;A 2:2,1,2,0,0,0; A 3:3,0,2,0,0,0;A 4:4,1,0,0,0,0; A 5:5,0,0,0,0,0.若A 4:4,0,0,0,0,则 A 3:3,1,0,0,0; A 2:2,0,2,0,0; A 1:1,1,2,0,0; A 0:0,0,1,3,0..….…(2)证明:若数列A 0:a 0,a 1,…,a n 满足a k =0及a i >0(0≤i ≤k −1),则定义变换T −1,变换T −1将数列A 0变为数列T −1(A 0):a 0−1,a 1−1,…,a k−1−1,k ,a k+1,…,a n .可得T −1和T 是互逆变换.对于数列n ,0,0,…,0连续实施变换T−1(一直不能再作T−1变换为止)得n ,0,0,…,0→T −1n −1,1,0,…,0→T −1 n −2,0,2,0,…,0→T −1 n −3,1,2,0,…,0→T −1 ...→T −1 a 0,a 1,…,a n ,则必有a 0=0(若a 0≠0,则还可作变换T −1).反过来对a 0,a 1,…,a n 作有限次变换T ,即可还原为数列n ,0,0,…,0,因此存在数列A 0满足条件.… (3)证明:显然a i ≤i(i =1, 2,…,n),这是由于若对某个i 0,a i 0>i 0,则由变换的定义可知,a i 0通过变换,不能变为0.由变换T 的定义可知数列A 0每经过一次变换,S k 的值或者不变,或者减少k ,由于数列A 0经有限次变换T ,变为数列n ,0,…,0时,有S m =0,m =1,2,…,n , 所以S m =mt m (t m 为整数),于是S m =a m +S m+1=a m +(m +1)t m+1,0≤a m ≤m , 所以a m 为S m 除以m +1后所得的余数,即a m =S m −[S m m+1](m +1).…。

2012高三一模理科分类:集合、简易逻辑和函数

2012高三一模理科分类:集合、简易逻辑和函数

2012北京市高三一模数学理分类汇编1:集合、简易逻辑与函数【2012北京市丰台区一模理】1.已知集合2{|1},{}A x x B a =<=,若AB φ=,则a 的取值范围是( )A .(,1)(1,)-∞-+∞B .(][),11,-∞-+∞C .(-1,1)D .[-1,1]【答案】B 【2012北京市房山区一模理】1.已知集合{}{}2,0,250,,,M a N x x x xM N a ==-<∈≠∅Z 如果则等于( ) (A )1 (B )2 (C )12或(D )25【答案】C【2012北京市海淀区一模理】(1)已知集合{}1A x x =>,{}B x x m =<,且A B =R ,那么m 的值可以是(A )1- (B )0 (C )1 (D )2 【答案】D【2012年北京市西城区高三一模理】1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1)(B )(0,1](C )(,0](1,)-∞+∞(D )(,0)[1,)-∞+∞【答案】C 【解析】}10{}11{≤<=≥=x x xxA ,所以}10{>≤=x x x A C U 或,选C. 【2012北京市门头沟区一模理】已知全集U R =,集合{}2340A x x x =--≤,{}23B x x x =<->或,则集合A UB 等于(A){}24x x -≤≤ (B){}21x x -≤≤- (C){}13x x -≤≤(D){}34x x <≤【答案】C【2012北京市石景山区一模理】1.设集合}032|{2<--=x x x M ,}0log |{21<=x x N ,则N M 等于( )A .)1,1(-B .)3,1(C .)1,0(D .)0,1(-【答案】B【解析】}31|{}032|{2<<-=<--=x x x x x M ,}1|{}0log |{21>=<=x x x x N ,所以}31{<<=x x N M ,答案选B.【2012北京市石景山区一模理】14.集合{}{},|),(,,|),(a y x y x M R y R x y x U <+=∈∈={},)(|),(x f y y x P ==现给出下列函数:①xa y =,②x y a log =,③sin()y x a =+,④cos y ax =, 若10<<a 时,恒有,P M C P U = 则所有满足条件的函数)(x f 的编号是 .【答案】①②④【解析】由,P M C P U = 可知φ=⋂P M ,画出相应的图象可知,①②④满足条件。

2012北京市高三一模理科数学分类汇编8:统计与概率

2012北京市高三一模理科数学分类汇编8:统计与概率

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲2012北京市高三一模数学理分类汇编7:圆锥曲线【2012年北京市西城区高三一模理】9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.【答案】54【解析】成绩在[16,18]的学生的人数比为2093673136=+++++,所以成绩在[16,18]的学生的人数为54209120=⨯。

【2012北京市门头沟区一模理】11.某单位招聘员工,从400名报名者中选出200名参加笔试,再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 【答案】80【2012北京市东城区一模理】(11)在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数 后,两组数据的平均数中较大的一组是 组.【答案】84 乙【2012北京市石景山区一模理】13.如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 .【答案】34π【解析】阴影部分的面积为4)cos (2sin 200=-=⎰ππx xdx ,圆的面积为3π,所以点A 落在区域M 内的概率是34π。

16.【2012北京市石景山区一模理】(本小题满分13分)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ; (Ⅱ)求乙至多投中2次的概率; (Ⅲ)求乙恰好比甲多投进2次的概率.【答案】解:(Ⅰ)ξ的可能取值为:0,1,2,3. …………1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξ ξ的分布列如下表:…………4分 127139229412780=⨯+⨯+⨯+⨯=ξE . …………5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . …………8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. …………10分 =+=)()()(21B P B P A P 61819483278=⨯+⨯.所以乙恰好比甲多投中2次的概率为61. …………13分 【2012北京市门头沟区一模理】17.(本小题满分13分)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数. (Ⅰ)求1号球恰好落入1号盒子的概率; (Ⅱ)求ξ的分布列和数学期望ξE .【答案】(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A ==所以1号球恰好落入1号盒子的概率为14…………5分 (Ⅱ)ξ的所有可能取值为0,1,2,4…………6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯=== 22441(2)4C P A ξ=== 4411(4)24P A ξ===(每个1分)……………………10分 所以ξ的分布列为……………………11分数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= …………………13分【2012北京市朝阳区一模理】16. (本小题满分13分)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.【答案】解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. ……………13分 【2012北京市东城区一模理】(16)(本小题共13分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列; (Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.【答案】解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-. …………2分 (10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= ,(2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =. …………10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分【2012年北京市西城区高三一模理】16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.【答案】(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. ………………4分 (Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分 乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分 (Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分 334341111(5)2C ()()2224P X -===, ………………10分 335251115(6)2C ()()22216P X -==⋅=, ………………11分 336361115(7)2C ()()22216P X -==⋅=. ………………12分 比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分 【2012北京市海淀区一模理】(17)(本小题满分13分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿; (Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 【答案】解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分 (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 411(4)4256P X ⎛⎫===⎪⎝⎭.X………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为1. ………………………………………13分 【2012北京市房山区一模理】16.(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.【答案】解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P 答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()8132323113114=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()811323140444=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. ………………………11分随机变量ξ的分布列为:………………………12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE ……………………13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …………………5分 则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……………7分随机变量ξ的分布列为:所以334=⨯==np E ξ …………………13分。

2012北京市高三一模理科数学分类汇编9:程序框图、二项式定理、选考部分

2012北京市高三一模理科数学分类汇编9:程序框图、二项式定理、选考部分

2012北京市高三一模数学理分类汇编9:程序框图、二项式定理、选考部分.程序框图与二项式部分【2012北京市房山区一模理】5.执行如图所示的程序框图,则输出的n 的值为(A )5(B )6 (C )7 (D )8 【答案】C【2012北京市丰台区一模理】3.6的二项展开式中,常数项是( )A .10B .15C .20D .30【答案】C【2012北京市丰台区一模理】6.学校组织一年级4个班外出春游,每个班从指定的甲、乙、丙、丁四个景区中任选一个游览,则恰有2个班选择了甲景区的选法共有 ( ) A .2243A ⋅种 B .2243A A ⋅种C .2243C ⋅种D .2243C A ⋅种【答案】C【2012北京市丰台区一模理】13.执行如下图所示的程序框图,则输出的i 值为 。

【答案】6【2012北京市房山区一模理】12.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有种.【答案】120【2012北京市海淀区一模理】(5)执行如图所示的程序框图,输出的k值是(A)4 (B)5 (C)6 (D)7【答案】B【2012北京市海淀区一模理】(6)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是(A )12 (B )24 (C )36 (D )48【答案】D【2012年北京市西城区高三一模理】2.执行如图所示的程序框图,若输入2x =,则输出y 的值为( )(A )2(B )5(C )11(D )23【答案】D【解析】输入2=x ,5=y 。

8352<=-,11,5==y x ,86115<=-,23,11==y x ,8122311>=-,满足条件,输出23=y ,选D.【2012年北京市西城区高三一模理】10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答) 【答案】160-【解析】二项式展开式k k k k x C T )2(661-=-+,令36=-k ,所以3=k ,所以333364160)2(x x C T -=-=,所以3x 的系数为160-。

2012届北京市高三一模文科数学分类汇编8:统计与概率

2012届北京市高三一模文科数学分类汇编8:统计与概率

2012北京市高三一模数学文分类汇编:统计与概率【2012年北京市西城区高三一模文】10. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为 1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.【答案】54【解析】成绩在[16,18]的学生的人数比为2093673136=+++++,所以成绩在[16,18]的学生的人数为54209120=⨯。

【2012北京市门头沟区一模文】13. 某公司对下属员工在龙年春节期间收到的祝福短信数量进行了统计,得到了如下的直方图,如果该公司共有员工200人,则收到125条以上的大约有 人.数值频率/组距1451251058565452550.0090.0120.01050.00750.0060.003【答案】8【2012北京市门头沟区一模文】某高中校三个年级人数见下表:通过分层抽样从中抽取40人进行问卷调查,现在从答卷中随机抽取一张,恰好是高三学生的答卷的概率是 (A)101 (B)401 (C)32 (D)52 【答案】D【2012北京市东城区一模文】(11) 在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是 组.【答案】84 乙【2012北京市丰台区一模文】12.为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图(如图所示).若[5.0,5.4]内的 学生人数是2,则根据图中数据可得被抽查的学生总数是____;样本数据在[3.8,4.2)内的频率是______【答案】【2012北京市石景山区一模文】12.在区间[]9,0上随机取一实数x ,则该实数x 满足不等式21log 2x ≤≤的概率为 . 【答案】29【解析】由不等式21log 2x ≤≤,可得42≤≤x ,所以所求概率为920924=--。

北京市西城区2012届高三数学4月第一次模拟考试试题 理

北京市西城区2012届高三数学4月第一次模拟考试试题 理

北京市西城区2012届高三4月第一次模拟考试试题数学(理科)2012.4第Ⅰ卷(选择题共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合1{|1}A xx=≥,则UA=()(A)(0,1)(B)(0,1](C)(,0](1,)-∞+∞(D)(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x=,则输出y的值为()(A)2(B)5(C)11(D)233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9(B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3.其三视图中的俯视图如图所示,则其左视图的面积是( )(A)2(B)2 (C )28cm (D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( ) (A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( )(A )b a c << (B )a b c << (C )c b a <<(D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1](B )(0,2)(C )[1,2)(D)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120 (C )2997 (D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若3OC =,1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()24ρθ+=的距离是_____.13. 已知函数122,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.ABCOM N14. 在直角坐标系xOy 中,动点A ,B 分别在射线3(0)y x x =≥和3(0)y x x =-≥上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是_____.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅AC AB ,求||AB AC +.16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同 (Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =.(Ⅰ)求证:AC ⊥平面BDEF ; (Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)ax af x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间.EDF19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b+=>>的离心率为5,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数 列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=-,且1||n n b a a =-,这种“T变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.数学(理科)参考答案及评分标准2012.4 一、选择题:本大题共8小题,每小题5分,共40分.1. C ;2. D ;3. A ;4.A ;5. B ;6. D ;7. A ;8. D .二、填空题:本大题共6小题,每小题5分,共30分.9.54; 10.160-; 11.1; 12.2; 13.1-和0,(0,4]; 14.32,2(12)+.注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. …………3分因为(0,π)B ∈, 所以 0sin >B , 所以21cos =A . …………5分因为(0,π)A ∈, 所以 π3A =. ……………6分 (Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………8分因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC +=. …………10分 因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………12分 所以 ||129AB AC +=. …………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………1分记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. …………4分 (Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ……………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………7分 所以 125()16P B P P =+=. …………8分 (Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, …………9分 334341111(5)2C ()()2224P X -===, …………10分335251115(6)2C ()()22216P X -==⋅=, ……………11分 336361115(7)2C ()()22216P X -==⋅=. ………………12分 比赛局数的分布列为:X4 5 6 7 P 18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥,且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. (3)分因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分(Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . ………………7分又⊂FC 平面FBC ,所以FC // 平面EAD . ……………8分 (Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD . 由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分 设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,3OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -. 所以 (3,0,3)CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分 易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得 cos ,⋅〈〉==n vn v n v . 所以二面角B FC A --的余弦值为515. ……………14分 18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)x f x x x'=⋅+-.…………2分 由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ……4分 (Ⅱ)解:2(1)[(1)1]()e ax x a x f x a x++-'=,0x ≠. …………6分 ① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.…8分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(1,0)-,1(0,)1a +. ……10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ……………11分④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. …………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a -===-, 得 23b a =. ………2分 依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. …………4分 所以椭圆C 的方程是22194x y +=. ……5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立,消去x 得 22(49)16200m y my ++-=. ……7分 所以 1221649m y y m -+=+,1222049y y m -=+. ……8分 若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补,所以0=+PB PA k k . …………9分 设(,0)P a ,则有 12120y y x a x a+=--.将 112x my =+,222x my =+代入上式,整理得 1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-, 所以 12122(2)()0my y a y y +-+=. ………………12分 将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ……………13分 由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. …………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;....从而以下重复出现,不会出现所有项均为0的情形. (2)分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ……………3分 (Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.……4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束.……5分当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也 为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==. (Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤. 令()n n B T A =,i p q b a a =-,其中p q a a ≥.因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ……………9分 现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =. 下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列. 不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理) ① 当数列4A 中只有一项为0时, 若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c --,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,,T A a a b b -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b --,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列各项均不为0,为第一类数列; 若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列. ③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a ,(()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数, 故经过有限次“T 变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束. ………………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲2012北京市高三一模数学理分类汇编7:圆锥曲线【2012年北京市西城区高三一模理】9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.【答案】54【解析】成绩在[16,18]的学生的人数比为2093673136=+++++,所以成绩在[16,18]的学生的人数为54209120=⨯。

【2012北京市门头沟区一模理】11.某单位招聘员工,从400名报名者中选出200名参加笔试,再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 【答案】80【2012北京市东城区一模理】(11)在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数 后,两组数据的平均数中较大的一组是 组.【答案】84 乙【2012北京市石景山区一模理】13.如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机 往圆O 内投一个点A ,则点A 落在区域M 内的 概率是 .【答案】34π 【解析】阴影部分的面积为4)cos (2sin 200=-=⎰ππx xdx ,圆的面积为3π,所以点A 落在区域M 内的概率是34π。

16.【2012北京市石景山区一模理】(本小题满分13分)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮. (Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ; (Ⅱ)求乙至多投中2次的概率; (Ⅲ)求乙恰好比甲多投进2次的概率.【答案】解:(Ⅰ)ξ的可能取值为:0,1,2,3. …………1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ.27131)3(333=⎪⎭⎫⎝⎛==C P ξξ的分布列如下表:…………4分 127139229412780=⨯+⨯+⨯+⨯=ξE . …………5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . …………8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. …………10分 =+=)()()(21B P B P A P 61819483278=⨯+⨯.所以乙恰好比甲多投中2次的概率为61. …………13分 【2012北京市门头沟区一模理】17.(本小题满分13分)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数. (Ⅰ)求1号球恰好落入1号盒子的概率; (Ⅱ)求ξ的分布列和数学期望ξE .【答案】(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A ==所以1号球恰好落入1号盒子的概率为14…………5分 (Ⅱ)ξ的所有可能取值为0,1,2, 4…………6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯=== 22441(2)4C P A ξ=== 4411(4)24P A ξ===(每个1分)……………………10分所以ξ的分布列为……………………11分数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= …………………13分【2012北京市朝阳区一模理】16. (本小题满分13分)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(II )现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.【答案】解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分(Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C PX C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. ……………13分 【2012北京市东城区一模理】(16)(本小题共13分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.【答案】解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-. …………2分 (10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=,(3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =. …………10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分【2012年北京市西城区高三一模理】16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.【答案】(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. ………………4分 (Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分334341111(5)2C ()()2224P X -===, ………………10分335251115(6)2C ()()22216P X -==⋅=, ………………11分336361115(7)2C ()()22216P X -==⋅=. ………………12分比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分【2012北京市海淀区一模理】(17)(本小题满分13分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 【答案】解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分 (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,411(4)4256P X ⎛⎫===⎪⎝⎭.………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为1. ………………………………………13分 【2012北京市房山区一模理】16.(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.【答案】解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P 答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分(II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分 ()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()8132323113114=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()811323140444=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. ………………………11分随机变量ξ的分布列为:………………………12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE ……………………13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …………………5分 则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……………7分随机变量ξ的分布列为:所以334=⨯==np E ξ …………………13分。

相关文档
最新文档