开关电源变换器拓扑结构的研究

合集下载

开关电源拓扑结构详解

开关电源拓扑结构详解

开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck 拓扑型开关电源就是属于串联式的开关电源。

上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

移相全桥拓扑原理分析

移相全桥拓扑原理分析

移相全桥拓扑原理分析移相全桥是一种常见的开关电源电路拓扑结构,也是一种常用的变换器结构。

它具有输入电压范围广、输出功率可调、效率高等优点,被广泛应用于电力电子领域。

移相全桥拓扑电路由四个开关、一个输入电源、一个输出负载和一个输出滤波电容组成。

移相全桥的工作原理基于开关器件的导通和断开来实现电源与负载之间的能量传输。

其中,两个开关称为高侧开关(S1和S2),两个开关称为低侧开关(S3和S4)。

S1和S3为一组开关,S2和S4为另一组开关,它们分别通过控制信号来实现导通和断开。

在移相全桥拓扑电路中,通过控制高侧开关和低侧开关的导通和断开时序,可以实现对输出电压和电流的控制。

拓扑电路的工作原理可分为四个阶段,即导通阶段、断开阶段、拓扑状态改变阶段和自由回馈阶段。

在导通阶段,高侧开关S1和低侧开关S4导通,低侧开关S3和高侧开关S2断开。

输出滤波电容开始充电,负载开始获取能量。

在断开阶段,高侧开关S1和低侧开关S4断开,低侧开关S3和高侧开关S2导通。

输出滤波电容继续放电,负载继续释放能量。

在拓扑状态改变阶段,高侧开关和低侧开关同时断开,输出电压振荡,然后高侧开关和低侧开关同时导通,输出电压逐渐恢复稳定。

这一过程使得变换器输出电压保持稳定,同时实现输入电源与负载之间的能量传递。

在自由回馈阶段,高侧开关和低侧开关交替导通和断开,向输出负载提供恒定的电能。

总结来说,移相全桥拓扑电路通过控制开关的导通和断开来实现对输出电压和电流的控制。

通过采用PWM技术,可以实现高效率、高精度的功率转换。

移相全桥拓扑电路被广泛应用于电力电子领域,例如开关电源、变频器、电动汽车充电器等。

开关电容DC/DC变换器的控制原理及拓扑结构

开关电容DC/DC变换器的控制原理及拓扑结构
( 1 : U蜊 t) : U蜊 R 1 2 c _

() 3
s 2断 开 后 , 等 效 电 路 变 为 图 1 c . 其 ( ) C1分 得 剩 余 电 荷 为 口 1= c1 ( 1, £) C2分 得 剩 余 电 荷 为 口 : 2 C2 ( 1 . 路 方 程 变 为 t) 电
维普资讯
第 2期
赵 春 华 开 关 电容 DC Dc变 换 器 的控 制 原 理 及 拓 扑 结 构 /
1 7

D, t ,
= — — — _■ 一 _
. .
( 2)
令 t 2一 t 1= T, 1一 t t 0= D . t 到 1时刻 , 电容 电压 下 降为


c1 蜊ec 到 u2 R ; 2 1 2


如 图 2所示 , 而 可 求 出 进
C 1U f 。

C1 C [ + 2 1一e ( —C Tc c’ :]


() 6
在 0时 刻 , 容 上 的 总 电场 能 为 Wc = u2 ; 电 l 到
£ 1时刻 , 的 剩 余 电场 能 为 W C1
干 扰 小 的 新 型 电 力 变换 装 置 . 分 析 了典 型 的 开 关 电 容 DC DC 变 换 器 的 控 现 /
制 原 理 , 绍 了典 型 的 DC DC 变 换 器 的 拓 扑 结 构 , 分 析 了开 关 电 容 DC 介 / 并 / DC 变 换 器 的 稳 压 原 理 和 控 制 方 法 .
维普资讯
第 1 8卷 第 2期
Vo . 1 18, o. N 2
滨州师专学报
J u n lo n h u Te c esColg o r a fBiz o a h r l e e

开关电源原理设计及实例第变压器隔离的变换器拓扑结构演示文稿

开关电源原理设计及实例第变压器隔离的变换器拓扑结构演示文稿

开关电源原理设计及实例第变压器隔离的变换器拓扑结构演示文稿开关电源是一种将输入电源信号转换成所需要的输出电压或电流的电源装置。

它通过开关管的开关动作来控制输入电源的通断,从而实现对输出电压或电流的控制。

开关电源具有高效率、小体积和低成本等优势,因此在许多电子设备中广泛应用。

本文将介绍开关电源的原理设计及实例,并重点介绍了一种基于变压器隔离的变换器拓扑结构。

一、开关电源的工作原理开关电源主要由输入端、变换器、控制电路和输出端四部分构成。

其中变换器是其核心部分。

变换器主要由开关管、变压器和输出滤波电路组成。

开关电源的工作过程如下:1.输入电源输入交流电压,通过整流电路转换为直流电压;2.直流电压经过输入滤波电路进行滤波,去除电源中的高频杂波;3.控制电路根据输出电压的反馈信号,控制开关管的开关动作;4.当开关管接通时,变压器中的能量储存;5.当开关管断开时,储存在变压器中的能量释放,并经过输出滤波电路输出给负载。

二、变压器隔离的变换器拓扑结构变压器隔离是开关电源设计的一个重要技术,主要用于防止输出端与输入端之间的电气隔离,保护用户和设备的安全。

下面介绍一种基于变压器隔离的变换器拓扑结构,反激变换器。

1.反激变换器的工作原理:反激变换器是一种脉冲宽度调制(PWM)型开关电源,它采用反激(反冲击)的方式,将输入电压转换为所需的输出电压。

反激变换器主要由变压器、开关管、脉冲变压器、反激电容和输出滤波电路等组成。

2.反激变换器的工作过程:(1)开关管接通状态:当开关管接通时,电流通过变压器,将能量储存到脉冲变压器中。

(2)开关管断开状态:当开关管断开时,通过变压器的自感性,使脉冲变压器的磁场崩溃,产生反冲电压,将能量传输到输出端。

三、实例演示文稿标题:基于变压器隔离的反激变换器拓扑结构演示内容:1.引言:介绍开关电源的重要性和应用领域,并介绍本文将重点介绍的反激变换器拓扑结构。

2.开关电源的工作原理:简要介绍开关电源的工作原理,包括输入端、变换器、控制电路和输出端的作用。

开关电源拓扑结构

开关电源拓扑结构

开关电源拓扑结构开关电源拓扑结构一、定义:开关电源拓扑结构,也称为直流-直流转换器,通常采用小尺寸和轻质的结构,可以将低压或中压的电源转换成更高的直流电压或功率。

它具有体积小、重量轻、效率高、失真小等优点,在日常生活中被广泛应用。

二、组成:开关电源拓扑结构的基本构成包括:输入电路、开关模块、驱动电路、高压变换器、低压变换器、散热器、比较器、控制单元和数显仪等。

1.输入电路:采用有趣磁型滤波电路,具有较好的抗干扰能力,能够有效抑制工频信号,为开关模块提供稳定的电源。

2.开关模块:采用开关变换方式,它是实现输入电压转换成输出电压的基本组件。

3.驱动电路:开关模块的正常工作需要依赖于良好的驱动电路,它的信号周期必须严格控制,以实现电压和功率的平稳转换。

4.高压变换器:变换器的核心部分,也是实现电压转换的重要组件,通常采用电感和电容的加减容组合,以实现输入和输出电压的高效转换。

5.低压变换器:主要配合高压变换器,通过其核心部分电容,对输出电压进行必要的补偿,实现输出电压的平稳变换,保证输出电压的平稳性。

6.散热器:散热器的作用是控制过程中的温度,以防止开关模块过热,发生负载非线性等不良现象。

7.比较器:根据负责负荷管理的外部参数,通过比较器对外围负载信号进行实时修正,以实现轻负荷和小信号振荡的功率幅度调节。

8.控制单元:负责实时调整驱动电路和散热器的信号,以保证正常的电源、散热和负载控制。

9.数字显示仪:它通常是比较器的表示,而数字显示仪则是总结比较器的信息的必要工具,以便调节者实时了解相关信息。

三、优势和应用1.优势:开关电源拓扑结构体积小、重量轻、抗干扰性好、效率高,具有波形失真小、可靠性好、节能效率高、温度补偿能力强等优点。

2.应用:开关电源拓扑结构宽泛地用于医疗设备,汽车、航空航天、工厂自动化设备等场景,得到了越来越多的认可与应用,预计将会在未来领域发挥重要作用。

开关电源拓扑结构详解

开关电源拓扑结构详解

Output current is discontinuous (chopped). 输出电流不连续 ( 斩波 ) 。
Buck-Boost
Vin
降压 - 升压
Vout
Load 负载 (R)
Vout =
-D D'
Vin
Another arrangement of the inductor, switch and diode.
Output is always greater than or equal to the input. 输出总是比大于或等于输入。
– (neglecting the forward voltage drop of the diode). ( 忽略二极管的正向压降 ) 。
Input current is smooth. 输入电流平滑。
Forward 正激
Vin
i1 n
1
iRESET 复位
Vout
Load (R)
负载
m
Vout =
D n
Vin
The transformer-coupled version of the buck. 降压电路的变压器耦合形式。
– Discontinuous input current; smooth output current. 不连续的输入电流,平滑的输出电流。
– The voltage on each switch never exceeds the input voltage. 每个开关上的电压永远不会超过输入电压。
– No reset winding is needed. 无需对绕组磁道复位。
Push-Pull 推挽
Vout
n

开关电源拓扑之BUCK电路详解

开关电源拓扑之BUCK电路详解

Buck电路原理
上式中,对于Lc和D1 为固定值时,降压变换器的电流连续与否是由R = Vo/Io 值确定的。当R的欧姆值增大时,工作状态将从连续转化为不连续。另一方面 ,如果R和DTs 是固定的,则电感器的L<Lc 时,其工作状态由连续转化为不连 续。当Fs增大时,则保持开关变换器的连续状态工作的Lc降低。 从上图14、图15中可看到输入电流is是脉动的,与降压变换器的连续与否工作 状态无关。这个脉动电流,在实际应用中应受到限制,以免影响其他电器正常 工作。通常,电源Vs 和变换器的输入端之间会加上一些输入滤波器,这种滤 波器必须在开关变换器设计的早期阶段和建立模型过程就要预先进行考虑。否 则,在开关变换器与输入滤波器连接时,可能会引起意外的自激振荡。
+-
D
+
S
L2 C2
R
-
图6:Sepic
S
D
T
L
+
C
R
-
图8:单端反激变换器
开关电源拓扑概述
S1
D1
L
T
S2
D2
+
C
R
-
图9:推挽变换器
D1
L
C1
S1
T
D2
C2
S2
+
C3
R
-
D1
L
S1 S2
T
C
D2 S3 S4
图10:半桥变换器
+
R
-
图11:全桥变换器
之 开关电源拓扑介绍
Buck电路原理
Buck电路原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳 压器。
源的主要组成部分是开关型DC_DC变换器,它是整个变换的核心。

开关电源拓扑结构分析

开关电源拓扑结构分析

Vin
n:1
Lm
L
Vo
Io IL
Ip Lk
Cr
D
G S
[t1, t2]
V1
Vc
2I p I m
Lk Lm
T
Vgs
D 1-D
V1
Vc
Vds
Ip Im
t0 t1 t2 t3 t4 t5
IL
ΔIL
Vin/n-Vo VL
-Vo
Vin Io
15
谐振复位正激变换器(Resonant Reset Forward)(3)
Vin
n:1
Vo
Io
D
Lm
Vgs
Co
Vds
D
G
S
Im
根据变压器的伏秒平衡:
ID
Vin* DT nVo*(1 D)T
Vo Vin * D n *(1 D)
Vds Vin nVo
Vds Vin
VL
(1 D)
T D 1-D
Vin+nVo
Ip ID-p
Vin -nVo
Vin Io
7
反激变换器(Flyback)工作原理 (电流断续模式)
Vin
n:1
Vo
Io D Lm
Co
T
Vgs
D 1-D
Vin+nVo
Vds
Vin
D
G
S
Im
根据变压器的伏秒平衡:
ID-p
Vo Vin * D n *(1 D)
Vo' Vo
ID
根据能量守恒:
1 2
LmI
2 p
Vo 2 R
T
Io

开关电源 拓扑 电路

开关电源 拓扑 电路

开关电源的拓扑是指开关电源电路的结构形式,常见的开关电源拓扑包括:降压(Buck)电路:将输入电压降低至所需电压的电路。

升压(Boost)电路:将输入电压升至所需电压的电路。

升降压(Buck-Boost)电路:既可以升压也可以降压的电路。

正激式(Forward)电路:一种单端正激式电源变换器,使用一个磁性变压器实现电压变换。

反激式(Flyback)电路:一种单端反激式电源变换器,使用一个磁性变压器实现电压变换。

半桥(Half-Bridge)电路:一种将两个开关管连接在电源变压器的初级线圈中的电路。

全桥(Full-Bridge)电路:一种将四个开关管连接在电源变压器的初级线圈中的电路。

推挽(Push-Pull)电路:一种将两个开关管交替工作的电路,可以消除直流分量并提高效率。

交错式(Interleaved)电路:将两个或多个开关电源的输出端并联,以增加输出电流能力并降低纹波的电路。

这些拓扑可以根据实际需求进行选择和组合,以满足不同的电源设计要求。

输出低电压大电流的拓扑

输出低电压大电流的拓扑

以下是一个适合输出低电压大电流的拓扑结构——反激式变换器。

反激式变换器是一种常用的开关电源变换器,它具有结构简单、成本低、易于实现大功率输出等优点。

它的工作原理是利用变压器将输入电压和输出电压进行隔离,通过控制开关管的导通和关断时间来调整输出电压的大小和电流的流向。

在反激式变换器中,当输入电压较低时,变压器可以起到隔离和缓冲的作用,使输出电压不会受到输入电压波动的影响。

同时,由于反激式变换器采用开关电源的方式,它可以在较低的输入电压下实现较大的输出电流,因此在一些需要大电流输出的应用场景中具有广泛的应用前景。

为了实现更低电压大电流的输出,可以采用以下几种方法:
1. 采用更高功率密度的变压器:在反激式变换器中,变压器是决定功率密度的关键元件之一。

通过采用更高功率密度的变压器,可以提高输出电压和电流的同时,减小变压器的体积和重量,从而降低成本和提高了效率。

2. 采用多级变换:对于需要更大输出电流的应用场景,可以采用多级变换的方式来实现。

通过将输入电压经过多个反激式变换器逐级升压和降压,可以实现更低电压和大电流的输出。

这种方式可以提高系统的稳定性和可靠性,同时降低成本和提高了效率。

3. 采用先进的控制策略:反激式变换器的控制策略对输出电压和电流的稳定性具有重要影响。

采用先进的控制策略,如脉宽调制(PWM)和零电压开关(ZVS)等,可以更好地调整输出电压和电流,提高系统的效率和控制精度。

综上所述,反激式变换器是一种适合输出低电压大电流的拓扑结构,通过采用更高功率密度的变压器、多级变换和先进的控制策略等方法,可以实现更低电压和大电流的输出,同时降低成本和提高效率。

开关电源中常见变换器主电路拓扑

开关电源中常见变换器主电路拓扑

开关电源中常见变换器主电路拓扑1.1 Buck变换器Buck变换器又称降压变换器,Buck型电路拓扑由有源开关(功率MOSFET)、续流二极管D(或由同步整流开关代替)、储能电感L、滤波电容C组成。

其电路如图1-1所示。

电感和输出电容组成一个低通滤波器,滤波后电压以很小的纹波呈现在输出端。

图1-1 Buck变换器拓扑结构1.2 Boost变换器Boost变器又称升压变换器,其电路如图1-2所示。

改变降压变换器中元件的位置就可把它变成升压变换器。

在升压变换器中,开关管导通时在电感中有斜波电流流过。

当开关管断开时,电感中的电流必须保持流动,电感上的电压改变极性,使二极管正向偏置,并释放能量到输出端和输出电容器。

图1-2 Boost变换器拓扑结构1.3 反激变换器反激变换器又称Flyback式变换器,其电路如图1-3所示。

由于反激变换器的电路拓扑结构简单,能提供多组直流输出和升降范围宽,因此广泛应用于中小功率变换场合。

其结构相当于在Boost变换器中,用一个变压器代替升压电感,即构成了反激式变换器。

图1-3 反激电路原理图V1213T111423131211109867451516R12C1R14VZ112R11C5C6VZ212R9R1C10R18R13C8VD312R15VD112R7C3N1MC33262VFB1Comp2Multi3CS 4Z c d5G N D6Dri 7Vcc 8R10R19VD212C7R6VCC Vpfc,inVpfc,out 当开关晶体管VS 被驱动脉冲激励而导通时,Vin 加在开关变压器T 的初级绕组L1上,此时次级绕组L2的极性使VD 处于反偏而截止,因此L2上没有电流流过,此时电感能量储存在L1中,当VS 截止时,L2上电压极性颠倒使VD 处于正偏,L2上有电流流过,在VS 导通期间储存在L1中的能量此时通过VD 向负载释放。

反激式变换器工作波形见图 1-4。

图1-4 反激式变换器工作波形2.PFC 电路PFC 的英文全称为Power Factor Correction ,意思是功率因数校正。

开关电源拓扑结构详解

开关电源拓扑结构详解

开关电源拓扑结构详解开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。

主回路⼀般包含了开关电源中的开⼊端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全⾯了解开关电源主回路的各种基本类型,以及⼯作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与⾮隔离式两⼤类型。

1. ⾮隔离式电路的类型:⾮隔离——输⼊端与输出端电⽓相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所⽰的开关三极管T)与输⼊端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替⼯作于通/断两种状态,当开关管T导通时,输⼊端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流⼆极管D⾃动导通,电感器L中储存的能量通过续流⼆极管D形成的回路,对负载R继续供电,从⽽保证了负载端获得连续的电流。

串联式结构,只能获得低于输⼊电压的输出电压,因此为降压式变换。

例如buck 拓扑型开关电源就是属于串联式的开关电源。

上图是在图1-1-a电路的基础上,增加了⼀个整流⼆极管和⼀个LC滤波电路。

其中L是储能滤波电感,它的作⽤是在控制开关K 接通期间Ton限制⼤电流通过,防⽌输⼊电压Ui直接加到负载R上,对负载R进⾏电压冲击,同时对流过电感的电流iL转化成磁能进⾏能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作⽤是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进⾏存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流⼆极管,主要功能是续流作⽤,故称它为续流⼆极管,其作⽤是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产⽣反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流⼆极管D的正极,然后从续流⼆极管D的负极流出,最后回到反电动势eL的负极。

中大功率开关电源常用变换拓扑结构形式

中大功率开关电源常用变换拓扑结构形式

中大功率开关电源常用变换拓扑结构形式一、前言中大功率开关电源是一种将交流电转换为直流电的电源设备,广泛应用于各个领域,如工业控制、通信设备、医疗仪器等。

常用的变换拓扑结构有:单端正激变换器、单端反激变换器、双端正激变换器、双端反激变换器和桥式变换器。

二、单端正激变换器单端正激变换器是中大功率开关电源中最常见的一种拓扑结构。

它由交流输入端、变压器、开关管、输出电感、输出滤波电容和负载组成。

当交流电输入时,开关管周期性地打开和关闭,通过变压器将输入电压转换为所需的输出电压。

这种结构简单、成本低廉,但效率较低。

三、单端反激变换器单端反激变换器是在单端正激变换器的基础上进行改进的一种结构。

它通过在变压器的次级侧串联一个电感,使得变压器在每个开关周期内都能正常工作。

这种结构能够实现零电流开关和零电压开关,提高了效率和稳定性。

四、双端正激变换器双端正激变换器是一种将输入电压转换为输出电压的常用拓扑结构。

它由两个开关管、两个变压器和输出电感组成。

当交流电输入时,两个开关管交替工作,通过变压器将输入电压转换为所需的输出电压。

这种结构能够实现双端开关,提高了效率和稳定性。

五、双端反激变换器双端反激变换器是在双端正激变换器的基础上进行改进的一种结构。

它通过在两个变压器的次级侧串联一个电感,使得变压器在每个开关周期内都能正常工作。

这种结构能够实现零电流开关和零电压开关,提高了效率和稳定性。

六、桥式变换器桥式变换器是一种将交流电转换为直流电的常用拓扑结构。

它由四个开关管和变压器组成。

当交流电输入时,四个开关管交替工作,通过变压器将输入电压转换为所需的输出电压。

这种结构能够实现全桥开关,提高了效率和稳定性。

七、总结中大功率开关电源常用的变换拓扑结构包括:单端正激变换器、单端反激变换器、双端正激变换器、双端反激变换器和桥式变换器。

每种拓扑结构都有其优点和特点,应根据具体需求选择适合的结构。

在设计中,还需要考虑电路的效率、稳定性和成本等因素,以确保电源的正常工作。

几种常见的开关电源拓扑结构及应用

几种常见的开关电源拓扑结构及应用

几种常见的开关电源拓扑结构及应用什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。

最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。

下面简单介绍一下常用的开关电源拓扑结构。

Buck电路首先我们要讲的就是Buck电路。

Buck电路也成为降压(step-down)变换器。

它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。

Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。

展开剩余88%反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。

反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。

应用最多的是单端反激式开关电源。

优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。

Boost电路Boost(升压)电路是最基本的反激变换器。

Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。

上面的图就是Boost电路图。

Boost电路是一个升压电路,它的输出电压高于输入电压。

Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。

Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和 I 给负载 提供 电流 且 向 C充 电 ; 当 开关 管 VT 关 断时, I 两端 的电压 极性 变 为左负 右 正 , 保 持 电感 电 流方 向不 变 , 负载 两 端 的 电压仍 为 上 正下 负 。如 果 电感 电流小 于负载 电流 , 电容放 电维 持 负载 电流 、 电 压 不变 。此 时二 极 管 VD 正偏 导 通 , 给 电感 电 流 提 供 通路 , 因此 VD又 称 为 续 流 二极 管 。 该电路 中 虽 然输 入 电流 为脉 动 电流 , 但输 出电流 在 电感 、 二极 管
D C / DC变 换器 进行 功率转 换 , 是开 关 电源 的核 心 部
分, 决 定着 开关 电源 的设计 方 向E 2 ] 。D C / DC变 换 器 的拓扑 结构 主要 分 为隔离 和非 隔离 两种 。
和 电容作 用 下 是 连 续 且 平 稳 的 , 其 高低 由 加 在 VT
0 引 言
由 于开 关 电源具 有效率 高 、 体积 小 、 重量轻 等优
点, 在全 球能 源危 机 的今天 , 由其 取代 线性 电源 已成 为进一 步降 低 电子产 品能耗 的主要方 法 之一[ 1 l 。开 关 电源 的主 要功 能是 将交 流输 入 电转 换 成 电力 电子 设 备所 需 的直流 电 , 其 基 本 结 构 如 图 1所示 。其 中
关 管 VT 导 通 时 , 电感 I 储 存 能 量 , 二极 管 反 偏 截 止, 所 以 电容 只能通 过负 载放 电 , 形 成极 性 上正 _ F 负
图 1
开 关 电 源 基 本 结 构 图
的输 出电压 。当开关 管 VT截 止 时 , 电感 L感 应 出 左 负 右正 的 电压 , 该 电压 与 电源 电压 串联 , 以高 于输 入 电压的形 式 向 电容 C、 负 载 R供 电 , 使 输 出 电压 高
于输入 电压 , 故 又称 之 为升压 式变 换器 。
1 . 3 Bu c k — b o o s t 变 换 器
l 非隔离式 D C / D C变 换 器
非隔 离 D C / D C变换 器 使 用元 件 少 、 电路 简 单 ,
只需 要利用 电感 、 电容 、 二 极 管 和 开关 管 即可 实 现 。 常 用 的 非 隔 离 DC / D C变换器有 B u c k变 换 器 、 B o o s t变 换 器 、 B u c k — b o o s t变 换 器 、 C u k变 换 器、 S e p i c变 换 器 和 Z e t a变 换 器 , 它 们 分 别 构 成 了 3组 对 偶 关 系 。
1 . 1 B u c k变 换 器
B u c k — b o o s t 变 换 器也 称 升 降 压 式 变 换 器 , 这 是 因为其 输 出 电压 的极 性 与输 入 电压 相 反 , 且 电压 可
以大 于也 可小 于输入 电压 , 其 经 典 电路 如 图 2 ( e ) 所
示 。当开关 管 VT导 通 时 , 二 极管 VD截 止 , 开关 管 与 电感 、 电源 形 成 回路 , 电感 L储 存 能 量 , 负载 R 靠 电容 C 上 的充 电 电 荷 供 电 ; 当 开 关 管 VT 截 止 时, 电感两 端 电压极 性 改变为 下 正 上负 。 二极管 正偏
出, 一 方 面 给 电容 充 电 。
Bu c k变换 器 的典型 电路 如 图 2 ( a ) 所 示 。 当开 关管 VT 导通 时 , 二 极 管 VD 上所 加 电压 的极 性 为 上正 下负 , 二极 管 VD截 止 , 输 入 的整流 电压 经 VT
收 稿 日期 : 2 0l 4 0 卜O 9 基金项 目: 河 南 省 骨 干 教 师 资 助 项 目( 2 0 1 0 G - GJ S 一 2 2 0 )
第 3 1卷
Vo1 . 31
第 2期
N O. 2
新 乡学 院 学 报
J o u r n a 1 o f Xi n x i a n g Un i v e r s i t y
2 ( ) 1 4年 2月
Fe b .2 01 4
开 关 电 源 变 换 器 拓 扑 结 构 的 研 究
作者简介 : 张清枝( 1 9 7 0 ) , 女, 河 南 滑 县人 。 副 教授 , 硕士 , 研 究方向 : 电 力 电 子技 术及 其 自动化 。
张 清枝 : 开 关 电源 变换 器拓 扑 结 构 的 研 究
・ 5 1 ・
导通 , 电感 中 的电流 一 方 面供 给负 载 维 持 负 电压 输
基 极上 的脉 冲宽度 来 确定 。 由以上分 析 可知该 电路 输 出电压小 于输 入 电压 , 故 又称 为 降压 式变换 器t 。
薹 蠢
D C / D C 变


1 . 2 B o o s t变 换 器
B o o s t 变 换器 的典 型 电路如 图 2 ( b ) 所 示 。 当 开
张 清枝
( 新 乡学 院 机 电 工程 学 院 , 河南 新 乡 4 5 3 0 0 3 )
摘 要 : 在 详 细分 析 6 种 非隔离式 D C / D C 变换 器 的基 础 上 , 介 绍 了 由其 演 变 而 来 的 5种 隔 离式 D C / D C 变换 器 , 重 点 分 析 了与 以上 变换 器 的逆 变 电路 不 同 的推 挽 、 半 桥 式 和 全 桥 式 隔 离 变换 器 , 并 分 别 指 出其 优 缺 点 。 关键词 : 变换 器 ; 开关管 ; 变压器 中图 分 类 号 : TM4 6 文献标志码 : A 文章编号 : 2 0 9 5 7 7 2 6 ( 2 0 1 4 ) 0 2 — 0 0 5 0 — 0 3
相关文档
最新文档