一次函数 函数及其图像 单元测试卷
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数的图像和性质练题一、填空题1.正比例函数y=kx(k≠0)一定经过点(0,0),经过(1,k)点,(k,0)点。
过(0,0)的一次函数y=kx经过(0,0)点。
2.直线y=-2x+6与x轴的交点坐标是(3,0),与y轴的交点坐标是(0,6)。
与坐标轴围成的三角形的面积是9.3.若一次函数y=mx-(4m-4)的图象过原点,则m的值为4.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为(1,0)。
5.一次函数y=-x+3的图象经过点(1,2)和(2,1)。
6.满足条件的函数为y=-x。
7.函数y=2x与y=2x+6的图象平行且不重合。
8.若直线y=2x+6与直线y=mx+5平行,则m=2.9.函数y=ax+b与y=3x+2平行,则a=b=3.10.将直线y=-2x向上平移3个单位得到的直线解析式是y=-2x+3,将直线y=-2x向下移3个单位得到的直线解析式是y=-2x-3,将直线y=-2x+3向下移2个单位得到的直线解析式是y=-2x+1.11.直线y=kx+b经过一、二、三象限,则k>0,b>0;经过二、三、四象限,则k0;经过一、二、四象限,则k<0,b<0.12.一次函数y=(k-2)x+4-k的图象经过一、三、四象限,则-2<k<2.13.如果直线y=3x+b与y轴交点的纵坐标为-2,那么这条直线一定不经过第三象限。
14.已知点A(-4.a),B(-2,b)都在一次函数y=2x+1的图像上,则a<1<b。
15.1) 当x=0时,y=b;当y=0时,x=-b/k。
2) k=2,b=5.3) 当x=5时,y=3;当y=30时,x=25/2.二、选择题1.B。
当m>0时,y随x的增大而增大;当m -3.2.A。
ky2.1.选择题:1.B2.A3.B4.B5.C6.A7.D8.C2.解答题:1.1) 当y=0时,0=(3-k)x-2k+18,解得k=6.2) 当x=0时,y=-2k+18,代入点(0,-2),解得k=10.3) 当x=0时,y=(3-k)x-2k+18=-2k+18,要使其与x轴交点在上方,即-2k+18>0,解得k<9.4) 平行于直线y=-x的斜率为-1,即k=-(3-k),解得k=1.5) 当k>3时,随着x的增大,kx的值增大,y也随之增大。
人教版一次函数单元测试题(含答案)
人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。
m=,n=-B。
m=,n=-1C。
m=-1,n=-D。
m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。
n<-3或n>1B。
n>-3且n<1C。
n≥-3且n≤1D。
n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。
y1≤y2B。
y1=y2C。
y1<y2D。
y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。
A。
一B。
二C。
三D。
四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。
k>0B。
k<0C。
0<k<1D。
k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。
(-1,1) B。
(-1,-1) C。
(2,8) D。
(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。
y=x-2中,x取x≥2B。
y=2/(x+1)中,x取x≠-1C。
y=2x中,x取全体实数D。
y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。
第1讲 一次函数的概念及图像(练习)原卷版
第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.下列函数中,一次函数是( )A .21y x =-B .23y x =+C .3y x =D .y k b =+(k 、b 是常数)2.下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数3.函数y =12x ﹣3的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线21y x =-的截距是( )A .1B .1-C .2D .2-5.一次函数y kx k =+的图象可能是( )A .B .C .D .6.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0二、填空题7.若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.8.已知一次函数()32f x x =+,那么()1f -=______.9.如果23(2)2m y m x -=-+是一次函数,那么m 的值是__________.10.已知某汽车油箱中剩余油量y (升)与汽车行驶里程数x (千米)是一次函数关系,油箱中原有油100升,行驶60千米后的剩余油量为70升,那么行驶120(千米)后油箱中剩余油量为_______.11.把直线y =2x ﹣3沿y 轴方向向上平移4个单位后,所得直线的表达式_____.12.若正比例函数y kx =(k 是常数,0k ¹)的图象经过第二、四象限,则的值可以是_______(写出一个即可).13.已知一次函数y =kx +b 的图象经过点(0,3),则截距为_____.三、解答题14.如图,是甲、乙两种机器人根据电脑程序工作时各自工作量y 关于工作时间x 的函数图像,线段OA 表示甲机器人的工作量1y (吨)关于时间x (时)的函数图像,线段BC 表示乙机器人的工作量2y (吨)关于时间x (时)的函数图像.根据图像信息回答下列填空题.(1)甲种机器人比乙种机器人早开始工作 小时;甲种机器人每小时的工作量是 吨;(2)直线BC 的表达式为 ;当乙种机器人工作5小时后,它完成的工作量是 吨.能力提升一、单选题1.下列函数关系式:①y =2x ;②y =2x +11;③y =3﹣x ;④y =2x.其中一次函数的个数是( )A .1个B .2个C .3个D .4个2.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .yC .y x +1D .y =3x +23.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .4.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定5.已知正比例函数y kx =(k 是常数,0k ¹)的函数值y 随x 的增大而减小,则一次函数y x k =-+的图象大致是( )A .B .C .D .6.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D .7.如图,已知一次函数y =kx+b 的图象经过A 、B 两点,那么不等式kx+b >0的解集是( )A .x >3B .x <3C .x >5D .x <5二、填空题8.已知点A (2,0)和C (4,0),点P 在正比例函数2y x =上,且A C P S =4,D 则点P 的坐标是__________9.已知:y=(m ﹣1)x |m|+4,当m= _________ 时,图象是一条直线.10.(1)已知函数y =3+(m ―3)x m 是一次函数,则m=________.(2)若函数y =(k +2)x +(k 2―4)是正比例函数,则k =_________.11.我们知道:当2x =时,不论k 取何实数,函数(2)3y k x =-+的值为3,所以直线(2)3y k x =-+一定经过定点(2,3);同样,直线(2)3y k x k =-+一定经过的定点为______.12.已知点()11,x y ,()22,x y 是直线4y kx =-上的两点,且当 1x <2x 时,1y >2y ,则该直线经过______________象限.13.已知,一次函数y kx b =+的图像经过点A (2,1)(如下图所示),当1y ³时,x 的取值范围是______14.己知(),4P a 是直线2y x =+上的一个点,点M 在坐标轴正半轴上,当PM=5时,那么点M 的坐标是___________三、解答题15.已知点A (﹣1,1)是直线y =kx +3上的一点,若该直线和x 轴相交于点B ,求点B 的坐标.16.已知一次函数y=(1-2m)x+m+1(m ≠12),函数值y 随自变量x 值的增大而减小.(1)求m 的取值范围;(2)在平面直角坐标系xOy 中,这个函数的图象与x 轴的交点M 位于x 轴的正半轴还是负半轴?请简述理由.17.已知正比例函数图象经过(﹣2,4).(1)如果点(a ,1)和(﹣1,b )在函数图象上,求a ,b 的值;(2)过图象上一点P 作y 轴的垂线,垂足为Q ,S △OPQ =154,求Q 的坐标.18.一次函数图像经过点(4,-1),且与直线122y x =+平行,求一次函数解析式和这个函数图像与两坐标轴围成的三角形的面积.19.如图,直线3y kx =+与x 轴、y 轴分别相交于E F 、.点E 的坐标为()40-,,点P 是线段EF 上的一点.(1)求k 的值;(2)若OPE D 的面积为2,求点P 的坐标.。
北师大版八年级上册数学 4.3一次函数的图像 同步测试卷 (含答案)
北师大版八年级上册数学 4.3一次函数的图像同步测试卷一.选择题1.下列各点在直线y=2x+6上的是()A.(﹣5,4)B.(﹣7,20)C.(,)D.(,1)2.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.3.点P(2,m)是正比例函数y=2x图象上的一点,则点P到原点的距离为()A.2B.C.4D.4.把直线l1:y=3x﹣2向右平移2个单位可以得到直线l2,要得到直线l2,也可以把直线l1()A.向上平移2个单位B.向下平移2个单位C.向上平移6个单位D.向下平移6个单位5.已知一次函数y=(a+3)x+b+1的图象经过过一、二、四象限,那么a,b的取值范围是()A.a>﹣3,b>﹣1B.a<﹣3,b<﹣1C.a>﹣3,b<﹣1D.a<﹣3,b>﹣1 6.一次函数y=﹣x﹣1的图象不经过第()象限.A.四B.三C.二D.一7.函数y=|x﹣1|的图象是()A.B.C.D.8.在平面直角坐标系xOy中,直线y=﹣2x+4与坐标轴所围成的三角形的面积等于()A.2B.4C.6D.89.一次函数y=kx+3经过点(1,0),那么这个一次函数()A.y随x的增大而增大B.y随x的增大而减小C.图象经过原点D.图象不经过第二象限10.已知点(﹣3,y1)、(﹣1,3)、(2,y2)在一次函数y=kx+5的图象上,则y1,y2,3的大小关系正确()A.3<y2<y1B.y1<3<y2C.y2<y1<3D.y2<3<y1二.填空题11.已知直线y=2x﹣2,则直线与y轴的交点坐标为.12.若将正比例函数y=2x的图象向上平移3个单位,得直线y=kx+b,则k+b的值为.13.当x=时,函数y=2x﹣3与函数y=﹣3x+5有相同的函数值.14.已知点(﹣6,m),(8,n)都在直线y=﹣x﹣b上,则m n.(填大小关系)15.若一次函数y=(k﹣2)x+3﹣k的图象经过第一,二,三象限,则k的取值范围是;若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k的取值范围是.三.解答题16.已知直线l:y=kx+3k(k≠0)经过点A(1,4).(1)求k的值;(2)点(﹣1,a)在这条直线l上,求a的值.17.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.参考答案1.解:A、当x=﹣5时,y=2×(﹣5)+6=﹣4,∴点(﹣5,4)不在直线y=2x+6上;B、当x=﹣7时,y=2×(﹣7)+6=﹣8,∴点(﹣7,20)不在直线y=2x+6上;C、当x=时,y=2×+6=,∴点(,)在直线y=2x+6上;D、当x=﹣时,y=2×(﹣)+6=﹣1,∴点(﹣,1)不在直线y=2x+6上.故选:C.2.解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=bx﹣k的一次项系数b>0,y随x的增大而增大,经过一三象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过一三四象限,故选:D.3.解:当x=2时,y=2×2=4,∴m=4,∴点P的坐标为(2,4),∴OP==2.故选:D.4.解:把直线l1:y=3x﹣2向右平移2个单位可以得到直线l2,则直线l2的解析式是:y =3(x﹣2)﹣2=3x﹣8.把直线l1:y=3x﹣2向下平移6个单位也可以得到直线l2:y=3x﹣2﹣6=3x﹣8.故选:D.5.解:一次函数y=(a+3)x+b+1的图象经过过一、二、四象限,故a+3<0,b+1>0,∴a<﹣3,b>﹣1,故选:D.6.解:∵一次函数y=﹣x﹣1中的k=﹣1<0,∴该函数图象经过第二、四象限.又∵b=﹣1<0,∴该函数图象与y轴交于负半轴,∴该函数图象经过第二、三、四象限,即不经过第一象限.故选:D.7.解:∵函数y=|x﹣1|=,∴当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小;故选:B.8.解:∵直线y=﹣2x+4与坐标轴的交点为(2,0)和(0,4),∴直线y=﹣2x+4与坐标轴所围成的三角形的面积等于,故选:B.9.解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故选:B.10.解:∵(﹣1,3)在一次函数y=kx+5的图象上,∴3=﹣k+5,解得:k=2,∴函数解析式为y=2x+5,∵点(﹣3,y1)、(2,y2)在一次函数y=2x+5的图象上,∴y1=﹣6+5=﹣1,y2=2×2+5=9,∵﹣1<3<9,∴y1<3<y2,故选:B.11.解:∵一次函数的解析式为y=2x﹣2.当x=0时,y=2x﹣2=﹣2,∴直线与y轴的交点坐标为(0,﹣2),故答案为(0,﹣2).12.解:∵正比例函数y=2x的图象向上平移3个单位,则平移后所得图象的解析式是:y =2x+3,∴k=2,b=3,∴k+b=5.故答案为:5.13.解:联立两函数解析式,得:,解得:.故答案为:.14.解:∵直线y=﹣x﹣b中,k=﹣1<0,∴y随x的增大而减小,∵﹣6<8,∴m>n.故答案为:>.15.解:一次函数y=(k﹣2)x+3﹣k的图象经过第一,二,三象限,则,解得2<k<3;若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k﹣2>0且3﹣k≥0,解得2<k≤3;故答案为2<k<3,2<k≤3.16.解:(1)∵直线l:y=kx+3k(k≠0)经过点A(1,4),∴k+3k=4,解得:k=1;(2)由(1)得直线l的解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,∴a=2.17.解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.。
中考数学专题复习之一次函数的图像及性质测试卷
中考数学专题复习之一次函数的图像及性质测试卷一.选择题1.若y =x +2﹣3b 是正比例函数,则b 的值是( )A .0B .﹣C .D .﹣2.函数y =(k ﹣1)x ,y 随x 增大而减小,则k 的范围是( )A .k <0B .k >1C .k ≤1D .k <13.已知点M (﹣2,m )和点N (3,n )是直线y =2x +1上的两个点,那么有( )A .m =nB .m >nC .m <nD .不能确定mn 的大小关系4.一次函数y =8x 的图象经过的象限是( )A .一、三B .二、四C .一、三、四D .二、三、四5.若点(1,2)M 关于y 轴的对称点在正比例函数(32)y k x =+的图象上,则k 的值为( )A .13B .13-C .43-D .06. 1(A x ,1)y 和2(B x ,2)y 是一次函数2(1)2y k x =++图象上的两点,且12x x <,则1y 与2y 的大小关系是( )A .12y y =B .12y y <C .12y y >D .不确定7.下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .8.下列关于一次函数y =﹣2x +2的图象的说法中,错误的是( )A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小9.如图,一次函数y=k1x+b1的图象l1与一次函数y=k2x+b2的图象l2相交于点P,则不等式组的解集为()A.x>﹣2B.﹣2<x<1.5C.x>﹣1D.x>210.如图,直线y=﹣x+5交坐标轴于点A、B,与坐标原点构成的△AOB向x轴正方向平移4个单位长度得△A′O′B′,边O′B′与直线AB交于点E,则图中阴影部分面积为()A.B.15C.10D.14二.填空题11.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1>x2,则y1y2(填“>”或“<”).12.当m=时,函数y=(2m﹣1)x2m﹣2是正比例函数.13.一次函数y=mx+|m﹣1|的图象经过(0,3),且y随x增大而减小,则m=.14.定义:点P与图形W上各点连接的所有线段中,若线段P A最短,则线段P A的长度称为点P到图形W的距离,记为d(P,图形W).例如,在图1中,原点O(0,0)与直线l:x=3的各点连接的所有线段中,线段OA最短,长度为3,则d(O,直线x=3)=3.特别地,点P在图形W上,则点P到图形的距离为0,即d(P,图形W)=0.①在平面直角坐标系中,原点O(0,0)与直线l:y=x的距离d(O,y=x)=;②如图2,点P的坐标为(0,m)且d(p,y=2x﹣2)=,则m=.15.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,……l n分别交于点A1,A2,A3,……A n;函数y=3x的图象与直线l1,l2,l3,……l n分别交于点B1,B2,B3,……B n,如果△OA1B1的面积记的作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2020=.16.如图,在平面直角坐标系中,点C的坐标是(0,4),作点C关于直线AB:y=x+1的对称点D,则点D的坐标是.三.解答题17.已知函数y=(m+2)x|m|﹣1+n+4.(1)当m,n为何值时,此函数是正比例函数?(2)当m,n为何值时,此函数是一次函数?18.如图,已知直线y=x+5与x轴交于点A,直线y=kx+b与x轴交于点B(1,0),且与直线y=x+5交于第二象限点C(m,n).(1)若△ABC的面积为12,求点C的坐标及关于x的不等式的x+5>kx+b解集;(2)求k的取值范围.19.如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.20.如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.21.如图,已知一次函数y=﹣x+6的图象与x轴、y轴分别交于点A和点B,与直线y =x相交于点C.过点B作x轴的平行线l,点P是直线l上的一个动点.①点C坐标是;②若点E是直线y=x上的一个动点,且处于直线AB下方,当△APE是以∠EAP为直角的等腰直角三角形时,点E的坐标是.22.如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(t,0)作x轴的垂线l,且0<t<4,交一次函数的图象于点B,交正比例函数的图象于点C,连接OB.(1)求a值;(2)设△OBP的面积为s,求s与t之间的函数关系式;(3)当t=2时,在正比例函数y=x与一次函数y=ax+7的图象上分别有一动点M、N,是否存在点M、N,使△CMN是等腰直角三角形,且∠CNM=90°,若存在,请直接写出点M、N的坐标;若不存在,请说明理由.23.如图1,在平面直角坐标系中,直线y=﹣x+2与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC.点C为直角顶点,连接OC.(1)A点坐标为,B点坐标为.(2)请你过点C作CE⊥y轴于E点,试探究并证明OB+OA与CE的数量关系.(3)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.。
华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案
华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案一、单选题1.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S (千米)与离家的时间t (分钟)之间的函数关系的是( )A .B .C .D .2.已知函数 225y x =-,不在该函数图象上的点是( )A .(3,4)B .(4,-3)C .(4,3)D .(-3,4)3.下列关系式中,y 不是x 的函数的是( )A .2x y =B .22y x =C .(0)y x x =D .||(0)y x x =4.如果点A 在直线y=x-1上,则A 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,-1)D .(1,0)5.若一次函数的y =kx+b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 26.下列函数中,当x <0时y 随x 的增大而增大的是( )A .y=﹣3x+4B .1243y x =-- C .2y x =- D .23y x= 7.如图60MAN ∠=︒ ,点B 在射线 AN 上, 2AB =点P 在射线 AM 上运动(点P 不与点A 重合),连接 BP ,以点B 为圆心, BP 为半径作弧交射线 AN 于点Q ,连接 PQ .若AP x PQ y ==, ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .8.已知点()2A m -,,点()31B m +,,且直线AB x 轴,则m 的值为( ) A .1- B .1 C .3- D .39.当5x =时一次函数2y x k =+和3y kx =-4的值相同,则k 和y 的值分别为( )A .1,11B .19-,C .5,15D .3,3 10.关于反比例函数y=4x的图象,下列说法正确的是( ) A .必经过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 二、填空题11.已知2()1f x x =-,那么(1)f -的值是 . 12.如图所示,一次函数y=kx+b (k≠0)与反比例函数y= m x (m≠0)的图象交于A 、B 两点,则关于x 的不等式kx+b < m x的解集为 .13.已知点 ()21A -,在正比例函数的图象上,则这个函数的解析式为 . 14.一次函数y=kx+b 的图象如图所示,则关于x 的方程4kx+4b=0的解为 ;方程kx+b+3=5的解为15.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底” a :任意两点横坐标差的最大值,“铅垂高” h :任意两点纵坐标的最大值,则“矩面积” S ah = .例如:三点坐标分别为A (1,2)、B (-3,1)、C (2,-2),则“水平底” a =5,“铅垂高” h =4,“矩面积”S=20.若D (1,2)、E (-2,1),F (0,t )三点的“矩面积”S=15,则的 t 值为 .三、解答题16.如图,直线PA 是一次函数y=x+1的图象,直线PB 是一次函数y=﹣2x+2的图象.(1)求A 、B 、P 三点的坐标;(2)求四边形PQOB 的面积.17.乐乐从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买文具,于是又折回到刚经过的文具店,买到文具后继续骑车去学校.如图是他本次上学所用的时间与离家的距离之间的关系图.根据图中提供的信息,解答下列问题:(1)乐乐在文具店停留了 分钟,文具店到学校的距离是 米;(2)在整个上学途中,哪个时间段乐乐骑车速度最快?最快的速度是多少?(3)如果乐乐不买文具,以往常的速度去学校,需要多长时间?18.2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.19.国际上广泛使用“身体体重指数(BMI )”作为判断人体健康状况的一个指标:这个指数B 等于人体的体重G (kg )除以人体的身高h (m )的平方所得的商,即B =2G h .身体体重指数范围身体属型 B <18不健康瘦弱 18≤B <20偏瘦 20≤B <25正常 25≤B <30超重 B ≥30 不健康肥胖(1)上表是国内健康组织提供的参考标准,若林老师体重G =81kg ,身高h =1.80m ,请问他的体型属于哪一种,请说明理由.(2)赵老师的身高为1.6m ,那么他的体重在什么范围内时体型属于正常?四、综合题20.2022年翻开序章,冬奥集结号已经吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.21.阅读下列材料:现给如下定义:以x 为自变量的函数用y=f (x )表示,对于自变量x 取值范围内的一切值,总有f (﹣x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定义,我们来证明函数f (x )=x 2+1是偶函数.证明:∵f (﹣x )=(﹣x )2+1=x 2+1=f (x )∴f (x )是偶函数.根据以上材料,解答下面的问题:已知函数 ()1(0)212x a f x x x ⎛⎫=+≠ ⎪-⎝⎭(1)若f (x )是偶函数,且 ()312f = ,求f (﹣1); (2)若a=1,求证:f (x )是偶函数.22.如图,函数y 1=﹣x+4的图象与函数y 2= k x(x >0)的图象交于A (a ,1)、B (1,b )两点.(1)求k 的值;(2)利用图象分别写出当x >1时①y 1和y 2的取值范围;②y 1和y 2的大小关系.23.如图,一次函数()20y kx k =+≠的图象与反比例函数()00m y m x x=≠>,的图象交于点()2A n ,,与y 轴交于点B ,与x 轴交于点()40C -,.(1)求k 与m 的值;(2)点P 是x 轴正半轴上一点,若BP BC =,求PAB 的面积.24.如图,在平面直角坐标系 xoy 中,函数 (0)k y x x=< 的图象经过点(-6,1),直线 y mx m =+ 与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n)作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)k y x x=< 的图象于点B. ①当n =-1时判断线段PA 与PB 的数量关系,并说明理由;②若PB≥2PA ,结合函数的图象,直接写出n 的取值范围.答案解析部分1.【答案】C【解析】【解答】∵小李距家3千米,∴离家的距离随着时间的增大而增大.∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合.故答案为:C.【分析】根据小李距家3千米,路程随着时间的增大而增大即可确定合适的函数图象。
初中数学一次函数的图像专项练习30题(有答案解析)ok
参考答案ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;
9.函数y=﹣x﹣1是一次函数,其图象是一条直线.
当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);
当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).
由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D
10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.
(3)由(1)中两函数图象可知,当x>1时,y1>y2.
26.如图.
(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;
(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);
当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);
(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.
C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;
D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B
14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:
拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),
如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D
一次函数及其图像练习(含答案详解)
一次函数及其图象一、选择题1.关于一次函数y =-x +1的图象,下列所画正确的是(C )【解析】 由一次函数y =-x +1知:图象过点(0,1)和(1,0),故选C.2.在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M ,则点M 的坐标为(D )A .(-1,4)B .(-1,2)C. (2,-1)D. (2,1)【解析】 一次函数y =-x +3与y =3x -5的图象的交点M 的坐标即为方程组⎩⎪⎨⎪⎧y =-x +3,y =3x -5的解, 解方程组,得⎩⎪⎨⎪⎧x =2,y =1,∴点M 的坐标为(2,1). 3.已知直线y =kx +b ,若k +b =-5,kb =6,则该直线不经过(A )A .第一象限B .第二象限C. 第三象限D. 第四象限【解析】 由kb =6,知k ,b 同号.又∵k +b =-5,∴k <0,b <0,∴直线y =kx +b 经过第二、三、四象限,∴不经过第一象限.4.直线y =-32x +3与x 轴,y 轴所围成的三角形的面积为(A )A .3B .6C.34D.32【解析】直线y=-32x+3与x轴的交点为(2,0),与y轴的交点为(0,3),所围成的三角形的面积为12×2×3=3.5.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(C)A.y1+y2>0 B.y1+y2<0C. y1-y2>0D. y1-y2<0【解析】∵正比例函数y=kx中k<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2,∴y1-y2>0.(第6题)6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20 km.设他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象提供的信息,下列说法正确的是(C) A.甲的速度是4 km/h B.乙的速度是10 km/hC.乙比甲晚出发1 h D.甲比乙晚到B地3 h【解析】根据图象知:甲的速度是204=5(km/h),乙的速度是202-1=20(km/h),乙比甲晚出发1-0=1(h),甲比乙晚到B地4-2=2(h),故选C.7.丁老师乘车从学校到省城去参加会议,学校距省城200 km,车行驶的平均速度为80 km/h.若x(h)后丁老师距省城y(km),则y与x之间的函数表达式为(D)A. y=80x-200B. y=-80x-200C. y=80x+200D. y=-80x+200【解析】∵丁老师x(h)行驶的路程为80x(km),∴x(h)后距省城(200-80x)km.8.如果一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么下列对k和b的符号判断正确的是(D)A.k>0,b>0 B.k>0,b<0C .k <0,b >0D .k <0,b <0【解析】 ∵y 随x 的增大而减小,∴k <0.∵图象与y 轴交于负半轴,∴b <0.(第9题)9.张师傅驾车从甲地到乙地,两地相距500km ,汽车出发前油箱有油25L ,途中加油若干升,加油前、后汽车都以100km/h 的速度匀速行驶,已知油箱中剩余油量y (L)与行驶时间t (h)之间的函数关系如图所示,则下列说法错误的是(C )A .加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式是y =-8t +25B .途中加油21LC. 汽车加油后还可行驶4hD. 汽车到达乙地时油箱中还剩油6L【解析】 A .设加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式为y =kt +b .将点(0,25),(2,9)的坐标代入,得⎩⎪⎨⎪⎧b =25,2k +b =9,解得⎩⎪⎨⎪⎧k =-8,b =25,∴y =-8t +25,故本选项正确.B .由图象可知,途中加油30-9=21(L),故本选项正确.C .由图象可知,汽车每小时用油(25-9)÷2=8(L),∴汽车加油后还可行驶30÷8=334(h)<4h ,故本选项错误.D .∵汽车从甲地到乙地所需时间为500÷100=5(h),又∵汽车油箱出发前有油25L ,途中加油21L ,∴汽车到达乙地时油箱中还剩油25+21-5×8=6(L),故本选项正确.故选C.二、填空题10.写出一个图象经过第一、三象限的正比例函数y=kx(k≠0)的表达式:y =2x.【解析】∵图象经过第一、三象限,∴k>0,∴k可以取大于0的任意实数.答案不唯一,如:y=2x.11.已知一次函数y=(2-m)x+m-3,当m>2时,y随x的增大而减小.【解析】由一次函数的性质可知:当y随x的增大而减小时,k=2-m<0,∴m>2.12.如图是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的表达式为y=-2x-2.【解析】设原函数图象的表达式为y=kx.当x=-1时,y=2,则有2=-k,∴k=-2,∴y=-2x.设平移后的图象的表达式为y=-2x+b.当x=-1时,y=0,则有0=2+b,∴b=-2,∴y=-2x-2.(第12题)(第13题)13.如图所示是某工程队在“村村通”工程中修筑的公路长度y(m )与时间x(天)之间的函数关系图象.根据图象提供的信息,可知该公路的长度是504m .【解析】 当2≤x ≤8时,设y =kx +b.把点(2,180),(4,288)的坐标代入,得⎩⎪⎨⎪⎧180=2k +b ,288=4k +b ,解得⎩⎪⎨⎪⎧k =54,b =72.∴y =54x +72.当x =8时,y =504.14.直线y =kx +b 经过点A(-2,0)和y 轴正半轴上的一点B ,如果△ABO(O 为坐标原点)的面积为6,那么b 的值为__6__.【解析】 S △ABO =12×2·b =6,∴b =6.(第15题)15.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB =2,AD =1,过定点Q(0,2)和动点P(a ,0)的直线与矩形ABCD 的边有公共点,则a 的取值范围是-2≤a ≤2.【解析】 当QP 过点C 时,点P(2,0);当QP 过点D 时,点P(-2,0).∴-2≤a ≤2.16.一次越野跑中,当小明跑了1600 m 时,小刚跑了1400 m ,小明、小刚在此后所跑的路程y (m)与时间t (s)之间的函数关系如图所示,则这次越野跑的全程为2200m.,(第16题))【解析】 设小明的速度为a (m/s),小刚的速度为b (m/s),由题意,得 ⎩⎪⎨⎪⎧1600+100a =1400+100b ,1600+300a =1400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.∴这次越野跑的全程为1600+300×2=2200(m).17.已知直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)交于点A (-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于__4__.【解析】 如解图,设直线y =k 1x +b 1(k 1>0)与y 轴交于点B ,直线y =k 2x +b 2(k 2<0)与y 轴交于点C ,则OB =b 1,OC =-b 2.(第17题解)∵△ABC 的面积为4,∴12OA·OB +12OA·OC =4,∴12×2·b 1+12×2·(-b 2)=4,∴b 1-b 2=4.三、解答题(第18题)18.A ,B 两城相距600 km ,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (km)与行驶时间x (h)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数表达式,并写出自变量x 的取值范围.(2)当它们行驶7 h 时,两车相遇,求乙车的速度.【解析】 (1)①当0≤x ≤6时,易得y =100x .②当6<x ≤14时,设y =kx +b .∵图象过点(6,600),(14,0),∴⎩⎪⎨⎪⎧6k +b =600,14k +b =0,解得⎩⎪⎨⎪⎧k =-75,b =1050.∴y =-75x +1050.∴y =⎩⎪⎨⎪⎧100x (0≤x ≤6),-75x +1050(6<x ≤14).(2)当x =7时,y =-75×7+1050=525,∴v 乙=5257=75(km/h).19.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留了一段相同的时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x (h),两车之间的距离为y (km),如图中的折线表示y 与x 之间的函数关系.(第19题)请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__km.(2)求快车和慢车的速度.(3)求线段DE 所表示的y 关于x 的函数表达式,并写出自变量x 的取值范围.【解析】 (1)由图象可得:甲、乙两地之间的距离为560 km.(2)由图象可得:慢车往返分别用了4 h ,慢车行驶4 h 的距离,快车3 h 即可行驶完,∴可设慢车的速度为3x (km/h),则快车的速度为4x (km/h).由图象可得:4(3x +4x )=560,解得x =20.∴快车的速度为4x =80(km/h),慢车的速度为3x =60(km/h).(3)由题意可得:当x =8时,慢车距离甲地60×(4-3)=60(km),∴点D (8,60).∵慢车往返一次共需8h ,∴点E (9,0).设直线DE 的函数表达式为y =kx +b ,则⎩⎪⎨⎪⎧9k +b =0,8k +b =60,解得⎩⎪⎨⎪⎧k =-60,b =540.∴线段DE 所表示的y 关于x 的函数表达式为y =-60x +540(8≤x ≤9).20.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (kg)与上市时间x (天)的函数关系如图①所示,樱桃价格z (元/kg)与上市时间x (天)的函数关系如图②所示.(第20题)(1)观察图象,直接写出日销售量的最大值.(2)求小明家樱桃的日销售量y 与上市时间x 之间的函数表达式.(3)第10天与第12天的销售金额哪天多?请说明理由.【解析】 (1)日销售量的最大值为120 kg.(2)当0≤x ≤12时,设日销售量y 与上市时间x 之间的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上,∴120=12k ,∴k =10,∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 之间的函数表达式为y =k 1x +b 1.∵点(12,120),(20,0)在y =k 1x +b 1的图象上,∴⎩⎪⎨⎪⎧12k 1+b 1=120,20k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-15,b 1=300.∴函数表达式为y =-15x +300.∴小明家樱桃的日销售量y 与上市时间x 之间的函数表达式为y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)当5<x ≤15时,设樱桃价格z 与上市时间x 之间的函数表达式为z =k 2x +b 2.∵点(5,32),(15,12)在z =k 2x +b 2的图象上,∴⎩⎪⎨⎪⎧5k 2+b 2=32,15k 2+b 2=12,解得⎩⎪⎨⎪⎧k 2=-2,b 2=42.∴函数表达式为z =-2x +42.当x =10时,y =10×10=100,z =-2×10+42=22,∴销售金额为100×22=2200(元).当x =12时,y =10×12=120,z =-2×12+42=18,∴销售金额为120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
(完整版)一次函数单元测试题(含答案)(最新整理)
9.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为( A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=x-312价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t 之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米, 现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1. 1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0. 9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
第十四章_一次函数单元测试题
xy-4o2 4 51 30 t(月)C(件)第十四章一次函数单元测试题一.选择题(每小题3分,共30分)1.如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A.2.5米B.2米C.1.5米D.1米2.在下列函数中,与y=x-2图像完全相同的函数是( )A. B. C. D.3.关于函数21y x=-+,下列结论正确的是()A.图象经过点(-2,1)B.图象经过第一、二、三象限C.当12x>时,0y< D.图象可由2y x=-的图象向下平移1个单位长度得到4.过点A(0,-2),且与直线5y x=平行的直线是()A.52y x=+ B. 52y x=-+ C.52y x=- D. 52y x=--5.如右图,直线y kx b=+与x轴交于点(-4,0),则0y>时,x的取值范围是()A.4x>- B. 0x> C.4x<- D. 0x<6.已知圆柱体的侧面积为80πcm2,若圆柱底面半径为r(cm),高线长为h(cm),则h关于r的函数的图象大致是( )7. 如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有().A.1个B.2个C.3个D.4个8.幸福村办工厂今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象,如图,则该厂对这种商品来说().A.1月至3月每月生产总量不变,4、5两月停止生产;B.1月至3月每月生产总量逐月增加,4、5两月停止生产;C.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少;D.1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平.B C A P 9.要从y=34x 的图像得到直线y=324-x ,就要把直线y=34x ( ) A.向上平移32个单位 B.向下平移32个单位 C.向上平移2个单位 D.向下平移2个单位 10.若直线2y x k =-+(k 为正整数)与坐标轴围成的三角形内的整点(含边界)有100个,则k 等于( )A. 9 B. 16 C. 18 D. 22二.填空题:(每小题3分,共18分)11.函数y=112x x +-- 的自变量x 取值范围是_____________. 12.把等腰三角形的一个底角的度数y 表示成顶角度数x 函数解析式是_____, 自变量x 的取值范围是____.13.当x =2时,函数y =kx -2和y =2x +k 的值相等,则k = .14.出租车收费按路程计算,2km 内(包括2km)收费3元,超过2km ,每增加1km 加收1元,则路程x ≥2km 时,车费y (元)与x 之间的函数关系为_____________________.15.若直线y=x-k 与 y=3x-1的交点在第三象限,则k 的取值范围是_______________.16. 如图,先观察图形,然后填空:(1)当x 时,1y >0;(2)当x 时,2y <0;(3)当x 时,1y >0且2y >0.三、解答题(共72分)17.(8分)已知:如图,在R t △ABC 中,∠C=90°,AC=6,BC=8,点P 在BC 上运动,设PC=x ,若用y 表示△APB 的面积, (1)求y 与x 的函数关系式,并求自变量x 的取值范围;(2)画出此函数图象.18.(6分) 已知y-m 与x+n 成正比例,m,n 是常数,(1)试说明:y 是x 的一次函数.(2)如果x=3时,y=5;x=2时,y=2,求当x=-3时,y 的值.19. (6分)已知点(3,3)在函数6y ax =-的图象上,(1)求a 的值;(2)求此图象上到x 轴距离为6的点的坐标.20.(8分) 已知点M 坐标为(-5,0),点N 在第三象限坐标为(x,y)且x+y=-6,设面积为S. (1)求S 关于x 的函数表达式;(2)求x 的取值范围;(3)当S=10时,求N 点坐标.21. (8分)为调动销售人员的积极性,A 、B 两公司均采取:“总收入=基本工资+奖金”的支付方式,其中A 公司每月2 000元基本工资,另加销售额的2%作为奖金;B 公司每月1 600元基本工资,另加销售额的4%作为奖金.已知A 、B 公司两位销售员小李、小张1~6月份的销售额如下表:(1)请问小李与小张2月份的总收入各是多少?(2)小李1~6月的销售额1y 与月份x 的函数关系式是1040012001+=x y ,小张1~6月的销售额2y 是月份x 的一次函数,请求出2y 与x 函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的总收入高于小李?22. (8分)机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q (升)与行驶时间t (时)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶___________小时后加油;(2)加油前油箱余油量Q 与行驶时间t 之间的函数关系式是_______,中途加油_____升;(3)如果加油站距目的地还有230千米,车速为40千米/时,要达到目的地,油箱中的油是否够用?请说明理由?月份 销售额 销售额(单位:元)1月 2月 3月 4月 5月 6月 小李(A 公司) 11600 12800 14000 15200 16400 17600 小张(B 公司) 7400 9200 11000 12800 14600 1640023. (10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件.已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A 、B 两种产品获总利润是y (元),其中一种的生产件数是x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?24.(8分)平面直角坐标系中,点A 的坐标是(2,0),点P 在直线y =-x +m 上,且AP =OP =2.求m 的值.25.(10分)如图,动点P 从A 开始在线段AO 上以每秒2个单位的速度向原点O 运动,直线EF 从x 轴开始以每秒1个长度单位的速度向上平行移动(即EF//x 轴),并分别与y 轴、线段AB 交于E 、F 两点,连结PF 、PB ,设动点P 与直线EF 同时出发,并且运动时间为t 秒。
一次函数的图像与性质练习卷
一次函数的图像与性质练习卷一.选择题(共2小题)1.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<02.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共38小题)3.一次函数y=﹣2x+1的图象一定不经过第象限.4.一次函数y=(m﹣2)x+3,若y随x的增大而增减少,则m的取值范围是.5.一次函数y=(m﹣3)x﹣2的图象经过二、三、四象限,则m的取值范围是.6.当时,一次函数y=(m+1)x+6的函数值随x的增大而减小.7.若点M(k﹣1,k+1)在第三象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.8.在函数y=(m﹣3)x﹣2(m是常数)中,y随着x的增大而增大,则m的取值范围是.9.若一次函数y=(a+3)x+a﹣3不经过第二象限,则a的取值范围是.10.若一次函数y=kx﹣k﹣2的图象经过第二、三、四象限,则k的取值范围为.11.一次函数y=(m+3)x+1,若y随x的增大而减小,则m的取值范围是.(第12题)(第15题)(第28题)(第29题)12.如图,一次函数y=(m﹣5)x+6﹣2m的图象与x轴,y轴相交于A,B两点,则m的取值范围.13.直线y=(6﹣3m)x+(2n﹣4)不经过第三象限,则m、n的范围是.14.若一次函数y=kx+k﹣1的图象与y轴的交点在x轴的下方,则k的取值范围是.15.直线y=(2﹣a)x+3﹣a在直角坐标系中的图象如图所示,化简|3﹣a|+|2﹣a|=.16.已知一次函数y=(2m﹣1)x+1的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是.17.已知函数y=(k﹣1)x+k2﹣4为正比例函数,若y值随x值的增大而增大,则k=.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为.20.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)21.设点(﹣1,m )和点(,n)是直线y=(k2﹣1)x+b(0<k<1)上的两个点,则m、n的大小关系为.22.一次函数y=﹣3x+6的图象与y轴的交点坐标是.23.已知直线y=2x﹣4,则此直线与两坐标轴围成的三角形面积为.24.已知一次函数y=x+4的图象经过点(m,6),则m=.25.已知点A(2,0)、B(0,2)、C(﹣1,m)在同一条直线上,则m的值为.26.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则=.27.对于正比例函数y=mx|m|﹣1,若y的值随x的值增大而减小,则m的值为.28.如图是y=kx+b的图象,则b=,与x轴的交点坐标为,y的值随x的增大而.29.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.30.一次函数y=kx+b的图象如图所示,其中b=,k=.31.一次函数y=﹣x+1的图象如图所示,当﹣1≤y<3时,x的取值范围是.32.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是.33.已知函数y=﹣x﹣3的图象如图所示,当y>0时,x的取值范围为.(第30题)(第31题)(第32题)(第33题)34.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.35.如图,已知函数y=﹣2x+4,观察图象回答下列问题(1)x时,y>0;(2)x时,y<0;(3)x时,y=0;(4)x时,y>4.(第34题)(第35题)(第36题)36.关于x的一次函数y=kx+k2+1的图象可能正确的是.37.如图,已知函数y=2x﹣5,观察图象回答下列问题:(1)x时,y<0;(2)y时,x<0.(第38题)(第39题)(第41题)(第45题)38.如图,在平面直角坐标系中,点P (﹣,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是.39.已知一次函数y=(2m﹣1)x﹣1+3m(m为常数),当x<2时,y>0,则m的取值范围为.40.已知y=2x+7,当﹣2<x<1时,y的取值范围为.41.如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x 轴上存在一点P使得PA+PB的值最小,则点P的坐标为.42.将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为.43.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.44.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k﹣b的值是.45.如图,已知坐标轴上两点A(﹣1,0),B(0,2),直线l过点B与x轴的正半轴交于点C.若∠ABC=90°,则直线l的解析式是.46.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),若y>0时,x的取值范围是.(第46题)(第55题)(第63题)47.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为.48.已知y﹣2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是.49.已知y与x+2成正比例,当x=2时,y=12,则y与x的函数关系式为.50.已知一次函数图象交x轴于点(﹣2,0),与y轴的交点到原点的距离为5,则该一次函数解析式为.51.已知直线y=kx+9与两坐标轴所围成的三角形面积等于3,已知k>0,则直线解析式为.52.若y+2与x+3成正比例,且x=时,y=5,则y=8时,x=.53.若一次函数y=kx+b的图象经过点(﹣1,0),(0,2),则这个一次函数的表达式为.54.直线y=kx+1与y=2x﹣1平行,则y=kx+1的图象不经过象限.55.如图,直线x=2与y=x+a的交点A在第四象限,则a的取值范围是.56.直线y=﹣x﹣2与y=x+3的交点在象限内.57.已知一次函数y1=k1x+5和y2=k2x+7,若k1>0,且k2<0,则这两个一次函数的图象的交点在第象限.58.直线y=x+1与y=﹣x+7分别与x轴交于A、B两点,两直线相交于点C,则△ABC的面积为.59.若一次函数y=﹣2x+b的图象与直线y=2x﹣1的交点在第四象限,则b的取值范围是.60.如果直线y=kx+b经过点A(2,0),且与直线y=﹣4x平行,则实数b=.61.函数y=kx+b的图象与函数y=﹣x+3的图象平行,且与y轴的交点为M(0,﹣2),则其函数表达式为.62.若要直线y=(2m+1)x+m﹣3与直线y=3x﹣3平行,m=.63.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),直线y=kx+3与线段AB有公共点,则k 的取值范围是.一次函数的图像与性质练习卷参考答案一.选择题(共2小题)1.A;2.C;二.填空题(共38小题)3.三;4.m<2;5.m<3;6.m<﹣1;7.一;8.m>3;9.﹣3<a≤3;10.﹣2<k<0;11.m <﹣3;12.3<m<5;13.m>2,n≥2;14.k<1且k≠0;15.2a﹣5;16.m>;17.2;18.一;19.﹣1;20.<;21.m>n;22.(0,6);23.4;24.2;25.3;26.﹣3;27.﹣2;28.﹣2;;增大;29.x>0;30.3;﹣;31.﹣4<x≤4;32.x<1;33.x<﹣3;34.x<2;35.<2;>2;=2;<0;36.(3);37.<2.5;<﹣5;38.1<a<3;39.≤m<;40.3<y<9;1.(,0);2.4;3.y=﹣5x+5;4.﹣1或﹣8;5.y=﹣x+2;6.x>﹣3;7.y=﹣x+10;8.y=3x+2;9.y=3x+6;10.y=x+5或y=﹣x﹣5;11.y=x+9;12.2;13.y=2x+2;14.四;15.a<﹣2;16.二;17.一;18.12;19.﹣1<b<1;20.8;21.y=﹣x﹣2;22.1;23.﹣2≤k≤﹣;。
初中数学一次函数的图像专项练习30题(有答案)
初中数学一次函数的图像专项练习30题(有答案)1.本题为选择题,无需改写。
2.在图中,当x>2时,y2>y1,因此结论③正确。
由于y1=kx+b与y2=x+a的图象相交于第三象限,因此a<0,结论②也正确。
而k<0,因此结论①错误。
因此选项C正确。
3.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,应该是选项A。
4.本题为选择题,无需改写。
5.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,斜率的绝对值小于1,应该是选项B。
6.将直线l1和直线l2的方程化简可得y=2x+1和y=-x-1,因此直线l1的斜率为2,直线l2的斜率为-1.由于x+y=0,因此该点在第三部分。
因此选项C正确。
7.根据两个函数的表达式可知它们的图象分别是斜率为负数的直线和斜率为正数的直线,应该是选项B。
8.函数y=2x+3的斜率为2,截距为3,应该是选项A。
9.根据图象可知,选项C表示的是y=-x-1的图象,因此选项C正确。
10.将函数kx-y=2化简可得y=kx-2,因此函数的图象是斜率为正数的直线,截距为-2,应该是选项C。
11.由于b1<b2,因此直线y1在直线y2的下方。
由于k1k2<0,因此直线y1和直线y2的斜率异号,相交于第二象限。
因此选项B正确。
12.根据图象可知,选项D表示的是y=abx的图象,因此选项D正确。
13.根据图象可知,降雨后,蓄水量每天增加5万立方米,因此选项B正确。
14.本题为选择题,无需改写。
15.将y=kx代入y=kx-k可得y=k(x-1),因此函数的图象是斜率为正数的直线,截距为-k,应该是选项C。
16.当x增加时,y的值也会增加,且当x大于某个值时,y会大于2.17.当x增加时,y的值也会增加,但当x大于某个值时,y会小于某个值。
18.当x增加时,y的值也会增加,且当x大于某个值时,y会大于某个值。
19.正确的判断是:①k0;③当x=3时,y1=y2;④当03时,y1>y2.20.当x增加时,y1的值也会增加,且当x大于某个值时,y1会大于y2.21.当y小于某个值时,x的取值范围是一定的,具体取值范围需要根据具体函数图象来确定。
(完整版)一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0),点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
与坐标轴围成的三角形的面积是 。
3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 .4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 . 5.一次函数3+-=x y 的图象经过点( ,5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数 7.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 . 8. 若直线y=2x+6与直线y=mx+5平行,则m=____________.9.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 . 10.将直线y= -2x 向上平移3个单位得到的直线解析式是 ,将直线y= -2x 向下移3个单得到的直线解析式是 .将直线y= -2x+3向下移2个单得到的直线解析式是 .11.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数(2)4y k x k =-+-的图象经过一、三、四象限,则k 的取值范围是 . 13.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 象限. 14. 已知点A(-4, a),B(-2,b)都在一次函数y=21x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”) 15.一次函数y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=____________;当x=____________时,y=0. (2)k=__________,b=____________.(3)当x=5时,y=__________;当y=30时,x=___________. 二、选择题1.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( )A.3m -≥B.3m >-C.3m -≤D.3m <-2.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >B.12y y <C.12y y =D.不能确定3.若直线23y mx m =--经过第二、三、四象限,则m 的取值范围是( )A.32m <B.302m -<<C.32m >D.0m >4.一次函数31y x =-的图象不经过( )A.第一象限B.第二象限 C.第三象限D.第四象限5. 如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 6. 若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.下列图象中不可能是一次函数(3)y mx m =--的图象的是( )8.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )三、解答题1.已知一次函数y=(3-k)x-2k+18, (1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方; (4) k 为何值时,它的图像平行于直线y=-x; (5) k 为何值时,y 随x 的增大而减小.2. 设一次函数)0(≠+=k b kx y ,当2=x 时,3-=y ,当1-=x 时,4=y 。
东阿二中八年级数学《函数及其图像》单元测试
八年级数学《函数及其图像》单元测试一、选择题(40分)1、已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( ) A .1a > B .1a <C .0a >D .0a <2、如果一次函数y kx b =+的图象经过第一象限, 且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b <C .0k <,0b >D .0k <,0b <3、如图2,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( )A .2y x =-+B .2y x =+C .2y x =-D .2y x =--4、如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )(A)x l =1,x 2=2 (B)x l =-2,x 2= -1 (C)x l =1,x 2= -2 (D)x l =2,x 2= -1 5、已知一次函数y kx b =+的图象如图(5) 所示,当1x <时,y 的取值范围是( ) A.20y -<< B.40y -<<C.2y <-D.4y <-6、一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .37、(2007山东青岛)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ). A .不小于54m 3B .小于54m 3C .不小于45m 3 D .小于45m 38、(2007山东枣庄)反比例函数xk y =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( )(A)2 (B)-2 (C)4 (D)-49、(2007四川绵阳)若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )A .b 1<b 2B .b 1 = b 2C .b 1>b 2D .大小不确定 10、(2007福建龙岩)函数y x m =+与(0)m y m x=≠在同一坐标系内的图象可以是(二、填空题(20分)1、(2007福建晋江)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。
《函数及其图像》单元测试题
第11题图 x巴州区雪山初级中学2011级《函数及其图像》单元测试卷(时间:90分钟 满分:120分)提示:1、必须想着数学知识,运用数学方法(画图法、列不等式、列函数解析式等)才能解决数学问题。
2、勤学使人进步;懒惰使人落后!预祝同学们学习进步,千万不要当空想家!第Ⅰ卷(选择题,共48分)一、 选择题:请将正确答案的字母填在第Ⅰ卷后的表格内.(本大题共12小题,每小题3分,共36分) 1、函数y =x 的取值范围是( )A .2x> B .2x <21-<m D .21>m4、已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( ) A .(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)5、若正比例函数的图像经过点(-1,2),则这个图像必经过点( ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)6、P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点, 下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 2 7、已知一次函数32-=x y的大致图像为 ( )8、已知函数y =x3 (x>0),那么( )A 、函数图象在一象限内,且y 随x 的增大而减小B 、函数图象在一象限内,且y 随x 的增大而增大C 、函数图象在三象限内,且y 随x 的增大而减小D 、函数图象在三象限内,且y 随x 的增大而增大 9、已知反比例函数y=2x,下列结论中,不正确...的是( ) A .图象必经过点(1,2) B .y 随x 的增大而减少C .图象在第一、三象限内D .若x >1,则y <2 10、下列四个函数中,y 随x 增大而减小的是( )A .y=2xB .y=―2x+5C .y=―3x D .y=―x 2+2x ―111一次函数ykx b=+的图象如图所示,当0y<时,x ( )描图A .0x >B .0x< C .2x> D .2x <12段时间后继续骑行,按时赶到了学校.下 列说法中错误..的是( ) A .修车时间为15分钟 B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米第Ⅱ卷(非选择题,共102分)二、 填空题:本大题共8小题,每小题3分,共24分.请将答案填写在第二题相应题号后的横线上. 13、直线21yx =+向下平移2个单位后的解析式是 。
专题01 一次函数的概念与图像(真题测试)(解析版)
专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。
最全一次函数图像专题(带解析)完整版.doc
2018/06/10一.选择题(共15小题)1.(2016•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=03.已知函数y=3x+1,当自变量x增加m时,相应函数值增加()A.3m+1 B.3m C.m D.3m﹣14.在一次函数y=kx+b中,k为()A.正实数B.非零实数 C.任意实数 D.非负实数5.(2017•台湾)如图的坐标平面上有四直线L1、L2、L3、L4.若这四直线中,有一直线为方程式3x﹣5y+15=0的图形,则此直线为何?()A.L1B.L2C.L3D.L46.(2017•清远)一次函数y=x+2的图象大致是()A .B .C .D .7.(2017•滨州)关于一次函数y=﹣x+1的图象,下列所画正确的是()A .B .C .D .8.(2016•台湾)如图,有四直线L1,L2,L3,L4,其中()是方程式13x﹣25y=62的图象.A.L1B.L2C.L3D.L49.(2016•贵阳)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0 B.x<0 C.x>2 D.x<210.(2015•芜湖)关于x的一次函数y=kx+k2+1的图象可能正确的是()A .B .C .D .11.(2017•乐山)若实数k,b满足kb<0且不等式kx<b的解集是x >,那么函数y=kx+b的图象只可能是()A .B .C .D .12.(2015•江津区)已知一次函数y=2x﹣3的大致图象为()1A. B.C.D.13.(2014•河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.14.(2017•达州)函数y=kx+b的图象如图所示,则当y<0时x的取值范围是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣115.(2016•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.二.填空题(共10小题)16.(2017•丽水)已知一次函数y=2x+1,当x=0时,函数y的值是_________.17.已知一次函数y=(k﹣1)x|k|+3,则k=_________.18.当m=_________时,函数y=(m﹣3)x2+4x﹣3是一次函数.19.已知2x﹣3y=1,若把y看成x的函数,则可表示为_________.20.已知函数y=(m﹣1)+1是一次函数,则m=_________.21.若函数y=(m﹣)+m是一次函数,则m的值是_________.22.已知函数是一次函数,则m=_________,此函数图象经过第_________象限.23.根据图中的程序,当输入数值x为﹣2时,输出数值y为_________.24.在函数y=﹣2x﹣5中,k=_________,b=_________.25.购某种三年期国债x元,到期后可得本息和为y元,已知y=kx,则这种国债的年利率为(用含k的代数式表示)_________.三.解答题(共5小题)26.已知函数是一次函数,求k和b的取值范围.27.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?28.已知是y关于x的一次函数,并且y的值随x值的增大而减小,求m的值.29.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.30.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.答案与评分标准一.选择题(共15小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数函数及其图像单元测试卷函数及其图像单元测试卷
(满分:100分时间:120分钟)
班级姓名成绩
一、选择题(每小题4分,共20分)
1.已知 -2 < m < 1/3 ,则点P(-m-2,3m-1)位于 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.若P点到原点的距离等于它到y轴的距离,则点P在 ( )
A.x轴上
B.y轴上
C. 平行于x轴的直线上
D.平行于y轴的直线上
3.已知函数y=2x-1与y=3x+2的图像相交于点P,则点P的坐标是 ( )
A.(-7,-3)
B.(3,-7)
C.(-3,-7)
D.(-3,7) 4.在平面直角坐标系内,点P(1-2a,a-2)在第三象限且a 为整数,则a等于 ( )
A.-3
B.1
C.-1
D.0
5.已知等边三角形AOB的边长为2,O是坐标原点,点B在坐标轴上,点A在第四象限,则A点的坐标为 ( )
33 A.(1,-) B.( ,-1)
3333C((,,,)或(,,,) ,((,,,)或(,,,)
二、填空题(每小题4分,共28分)
1.如果点P(a,2)和P,(-1,b)关于y轴对称,则a= ,b= .
2.已知点A(-5,2m-1)关于原点到对称点位于第一象限,则m的取值范围
是 .
3.已知点A关于y轴的对称点位A,(-2,3),则点B(3,-2)到直线AA’的距离
是 .
4.已知点P(m,n)到x轴的距离为5, 到y轴的距离为3,且m+n>0,mn<0,
则m= ,n= .
5.函数y=-3x+6的图像与x轴的交点的坐标为 ,与y轴的交点的坐标为 .
6.已知点P(-2m,m-6),当m=-1时,点P在第象限,当点P在x轴上时,m= ,当点P在一三象限的两坐标轴的平分线上时,m= ,当P在第三象限时,m的取值范围是 .
7.已知点A的坐标为(2,-1),AB=4,AB//x轴,则点B的坐标是 . 三、解答题(1、2每小题10分,3、4每小题16分,共52分) 1.下面给出四个一次函
数:(1)y=-x+5,(2)y=1-2/3x,(3)y=-3(x+3)+x+15,(4)y=-2(x-1),
根据你所学过的一次函数的知识,说出它们的相同点.
2服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N
两种型号的时装共80套,已知做一套M型号的时装需要A种布料0.6米,B种布
料0.9米,可获利45元,做一套N型号的时装需要用A种布料1.1米,B种布料0.4米,可获利50元,若设生产N型的时装的套数为x,用这批布料生产的这两种型号的时装所获的总利润为y元,
(1)求y与x之间的函数关系式,并求自变量x的取值范围;
(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获得的利润最大,最
大的利润是多少,
3一个反比例函数在第二象限的图像如图17—20所示,点A是图像上任意一
点,AM,x轴
如果三角形AOM的面积为3,求反比例函数的解析式. 于M,
4.已知直线y=-1/3x+1与x轴,y轴分别交于A,B两点,过点C(1,0)的直线把三角形ABC的面积分成面积比为1:3的两部分,且与直线AB的相交于点Q,求点Q的坐标.
一、
1.C
2.A
3.C
4.B
5.C
二、
1.1,2
2. m<1/2
3.5
4.-3,5
5.(2,0),(0,6)
6.四,6,2,0<m<6
7.(-2,-1),(6,-1)
三、
1.(1)k<0 (2)y随着x的增大而减小
(3)经过第一二四象限 (4)函数图像均为直线
2.y=-6/x(x<0)
3.(1)y=5x+3600,x=40,41,42,43,44
(2)x=44时,y有最大值3820
4.(9/4,1/4),(3/4,3/4)。