五年级数学最大公约数最小公倍数练习含答案
小学五年级数学最大公约数和最小公倍数 应用题
小学五年级数学最大公约数和最小公倍数应用题1.一张长方形纸,长96厘米,宽60厘米,如果把它裁成同样大小且边长为整厘米的最大正方形,且保持纸张没有剩余,每个正方形的边长是多少厘米?每个正方形的面积是多少平方厘米?可以裁多少个这样的正方形?解:首先求出96和60的最大公约数,即24.所以可以将纸张裁成4行和2列,每个小正方形的边长为24厘米,面积为576平方厘米。
一共可以裁10个这样的正方形。
2.把若干个长12厘米、宽9厘米的长方形拼成一个正方形,正方形边长至少是多少厘米?至少需要多少个这样的长方形?解:首先求出12和9的最大公约数,即3.所以每个小长方形的面积为108平方厘米。
要拼成正方形,每条边的长度必须相等,因此正方形的面积为若干个小长方形的面积之和。
设正方形边长为x,则有x^2 = n × 108,其中n为至少需要的小长方形个数。
将108分解质因数得到2^2 × 3^3,则x^2 = 2^2 × 3^3 × n。
因为x是整数,所以n必须是完全平方数,且至少为4.因此n的取值为4、9、16、25.对应的x分别为12、18、24、30.因为要求正方形的边长至少是多少,所以取最小值,即正方形边长为18厘米,需要9个小长方形。
3.___、___都爱在图书馆看书,___每4天去一次,___每6天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?解:___和___在相遇时,一定是在他们各自的“第几次去图书馆”的倍数相同的那一天相遇的。
设这个倍数为k,则___去图书馆的次数为4k,___去图书馆的次数为6k。
下一次相遇时,他们各自去图书馆的次数又必须是相同的倍数。
因此,下一次相遇时,___去图书馆的次数为8k,___去图书馆的次数为12k。
两次相遇之间的时间间隔为8k-4k=4k天。
因为要求至少再过多少天他们又可以在图书馆相遇,所以k的取值应该是大于1的最小整数。
五年级数学思维《最大公约数与最小公倍数》专题训练 参考答案
五年级数学思维《最大公约数与最小公倍数》专题训练参考答案一、填空题(每小题6分,共60分)1.某年级学生人数在200~300之间,若3人一组余1人,若5人一组余2人,若7人一组余3人,该年级有 262 名学生。
解析:被3除余1的自然数有4、7、10、13、16、19...,其中被5除余2的自然数有7、22、...,其中被7除余3的自然数有52...,因为52是被3除余1,被5除余2,被7除余3的最小的一个,又3、5、7的最小公倍数是105,所以符合上述条件的任意整数写成105n+52的形式,由此计算可得200-300之间的数是262,即该年级有262名学生。
(找一个数的倍数的方法[数的认识-数与代数])2.若a=b-l(a、b都是自然数,且a≠0),则a和b的最大公约数是1 ,最小公倍数是 ab 。
解析:因为a=b-1,所以a和b是两个相邻数,两个相邻数互质,所以最大公因数是1,最小公倍数是它们的乘积。
3.两个自然数的和是50,它们的最大公约数是5,这两个自然数的差是 5和45或15和35 。
4.某次聚会时,每两人合用一只饭碗,三人合用一只菜碗,四人合用一只汤碗,这次聚会共用了65只碗,那么参加聚会的有60人。
解析:5.现有252个红球,396个蓝球,468个黄球,把它们装在n个袋子里,要求每个袋子里都有红、黄、蓝三种颜色的球,而且每个袋子里红球数相等,黄球数、蓝球数也都相等,则n的最大值是36。
解析:252、396和468的最大公因数是36,所以n的最大值是36。
6.用长5厘米、宽4厘米、高3厘米的长方体木块叠成一个大的正方体,至少需要3600个这样的长方体木块。
解析:5、4、3的最小公倍数是60,所以拼成的这个正方体的棱长最小是60厘米,(60÷5)×(60÷4)×(60÷3)=3600块。
7.用一个数去除30、60、75都能整除,则这个数最大是15。
(完整版)最大公因数与最小公倍数应用题练习
(完整版)最大公因数与最小公倍数应用题练习1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=12 12-1=114、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人)24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分)12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360 360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人) 56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘)24÷8=3(个)32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
最大公约数和最小公倍数试题
最大公约数和最小公倍数试题一、选择题:1. 24和36的最大公约数是:A. 12B. 6C. 24D. 182. 36和54的最小公倍数是:A. 108B. 72C. 216D. 543. 15和25的最大公约数是:A. 3B. 5C. 15D. 14. 48和60的最小公倍数是:B. 240C. 120D. 6005. 若a和b的最大公约数为12,最小公倍数为180,则a和b的值分别为:A. 72, 180B. 12, 180C. 12, 15D. 72, 15二、填空题:1. 12和18的最大公约数为______。
2. 15和20的最小公倍数为______。
3. 64和96的最大公约数为______。
4. 25和30的最小公倍数为______。
5. 35和42的最大公约数为______。
三、解答题:1. 某村庄的居民用木材修建了一条长廊,长度为96米。
其中,每隔16米处设有一个支撑柱。
这条长廊最少需要多少根支撑柱?为什么?我们需要找到长廊长度96米和每隔16米一个支撑柱之间的最大公约数。
首先,96除以16得到6,所以96和16的最大公约数为16。
因此,长廊最少需要16根支撑柱,每隔16米放置一根。
这是因为16是96的因数,用16米长度去测量96米长的长廊时,可以整除,无需额外的支撑柱。
2. 小明家有3盒糖和4盒巧克力,小红家有5盒糖和6盒巧克力。
小明和小红想平分这些糖和巧克力,每个人得到的数量应该是最多的。
他们至少需要多少盒糖和巧克力?答:我们需要找到3、4、5、6这几个数字的最小公倍数。
首先,我们可以列出它们的倍数:3的倍数:3, 6, 9, 12, 15, 18, ...4的倍数:4, 8, 12, 16, 20, ...5的倍数:5, 10, 15, 20, 25, ...6的倍数:6, 12, 18, 24, 30, ...从中可以看到,它们的最小公倍数是12。
所以小明和小红至少需要12盒糖和12盒巧克力,每个人平分得到3盒糖和3盒巧克力。
最大公约数与最小公倍数练习题
最大公约数与最小公倍数练习题最大公约数和最小公倍数练题一、填空题3.所有自然数的公约数为1.4.如果m和n是互质数,那么它们的最大公约数是1,最小公倍数是m×n。
5.在4、9、10和16这四个数中,4和9是互质数,4和10是互质数,9和16是互质数。
6.用一个数去除15和30,正好都能整除,这个数最大是15.7.两个连续自然数的和是21,这两个数的最大公约数是1,最小公倍数是21.8.两个相邻奇数的和是16,它们的最大公约数是1,最小公倍数是48.9.某数除以3、5、7时都余1,这个数最小是106.10.根据下面的要求写出互质的两个数。
1)两个质数:3和5.2)连续两个自然数:4和5.3)1和任何自然数:1和6.4)两个合数:4和9.5)奇数和奇数:3和5.6)奇数和偶数:1和2.二、判断题1.错误。
互质的两个数可以是质数,也可以不是质数。
2.正确。
两个不同的奇数一定没有公因数,因此是互质数。
3.错误。
最小的质数是2,而2是所有偶数的最大公约数。
4.正确。
如果两个数有公约数1,那么它们没有其他公因数,因此是互质数。
三、直接说出每组数的最大公约数和最小公倍数26和13:最大公约数是13,最小公倍数是26.13和6:最大公约数是1,最小公倍数是78.4和6:最大公约数是2,最小公倍数是12.5和9:最大公约数是1,最小公倍数是45.29和87:最大公约数是1,最小公倍数是2523.30和15:最大公约数是15,最小公倍数是30.13、26和52:最大公约数是13,最小公倍数是52.2、3和7:最大公约数是1,最小公倍数是42.四、求下面每组数的最大公约数和最小公倍数(三个数的只求最小公倍数)45和60:最大公约数是15,最小公倍数是180.36和60:最大公约数是12,最小公倍数是180.27和72:最大公约数是9,最小公倍数是72.76和80:最大公约数是4,最小公倍数是380.42、105和56:最大公约数是7,最小公倍数是1680.24、36和48:最大公约数是12,最小公倍数是144.五、动脑筋,想一想:学校买来40支圆珠笔和50本练本,平均奖给四年级三好学生,结果圆珠笔多4支,练本多2本,四年级有10名三好学生,他们各得到4支圆珠笔和5本练本。
五年级数学最大公因数,最小公倍数练习题(含提高)
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。
a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
五年级最大公因数和最小公倍数专项练习(有答案)
五年级最大公因数和最小公倍数专项练习(有答案)一. 填空题。
1. a b和的最大公因数是(),最小公倍数是()。
和都是自然数,如果a b÷=10,a b2. 甲=⨯⨯237,甲和乙的最大公因数是()×()=(),235,乙=⨯⨯甲和乙的最小公倍数是()×()×()×()=()。
3. 所有自然数的公因数为()。
4. 如果m和n是互质数,那么它们的最大公因数是(),最小公倍数是()。
5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6. 用一个数去除15和30,正好都能整除,这个数最大是()。
子*7. 两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。
*8. 两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。
**9. 某数除以3、5、7时都余1,这个数最小是()。
10. 根据下面的要求写出互质的两个数。
(1)两个质数()和()。
(2)连续两个自然数()和()。
(3)1和任何自然数()和()。
(4)两个合数()和()。
(5)奇数和奇数()和()。
(6)奇数和偶数()和()。
二. 判断题。
1. 互质的两个数必定都是质数。
()2. 两个不同的奇数一定是互质数。
()3. 最小的质数是所有偶数的最大公约数。
()4. 有公约数1的两个数,一定是互质数。
()5. a是质数,b也是质数,a b m⨯=,m一定是质数。
()三. 直接说出每组数的最大公约数和最小公倍数。
26和13()13和6()4和6()5和9()29和87()30和15()13、26和52()2、3和7()四. 求下面每组数的最大公因数和最小公倍数。
(三个数的只求最小公倍数)45和6036和60 27和7276和8042、105和5624、36和48五. 动脑筋,想一想:1、学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?2、小军每4天去一次少年宫,小华每6天去一次少年宫。
最大公因数和最小公倍数练习题(1)
最大公因数和最小公倍数练习题(1)最大公因数和最小公倍数是数学中常见的概念。
下面分别介绍几个例子。
例1:有三根铁丝,长度分别为18米、24米和30米。
现在要把它们截成同样长的小段,每段最长可以有多少米?一共可以截成多少段?解:首先求出它们的最大公因数,即6米。
然后分别将每根铁丝截成6米长的小段,可以得到每根铁丝可以截成3、4、5段。
因此,一共可以截成12段。
例2:一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?解:首先求出它的最大公因数,即12厘米。
然后将长方形纸分别截成12厘米长和12厘米宽的小长方形,可以得到每个小长方形的面积是432平方厘米。
因此,正方形的边长为12厘米,能截成15个正方形。
例3:用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?解:首先求出它们的最大公因数,即24朵花。
然后将红玫瑰花和白玫瑰花分别每24朵一束,可以得到最多可以做4个花束。
每个花束里至少要有4朵红玫瑰花和3朵白玫瑰花。
例4:公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?解:首先求出它们的最小公倍数,即300分钟。
然后分别计算每路车需要等待的时间,第一路车需要等待295分钟,第二路车需要等待290分钟,第三路车需要等待294分钟。
因此,三路汽车最少需要过290分钟再同时发车。
例5:某厂加工一种零件要经过三道工序。
第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。
要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?解:首先分别求出每个工序的最小公倍数,分别为60、12和15.然后分别计算每个工序需要多少个工人,第一道工序需要至少20个工人,第二道工序需要至少5个工人,第三道工序需要至少4个工人。
五年级下册数学专项训练 奥数第四讲 最大公约数和最小公倍数 _ 全国版 (含答案)
第四讲最大公约数和最小公倍数本讲重点解决与最大公约数和最小公倍数有关的另一类问题——有关两个自然数.它们的最大公约数、最小公倍数之间的相互关系的问题。
定理1 两个自然数分别除以它们的最大公约数,所得的商互质.即如果(a,b)=d,那么(a÷d,b÷d)=1。
证明:设a÷d=a1,b÷d=b1,那么a=a1d,b=b1d。
假设(a1,b1)≠1,可设(a1,b1)=m(m>1),于是有a1=a2m,b1=b2m.(a2,b2是整数)所以a=a1d=a2md,b=b1d=b2md。
那么md是a、b的公约数。
又∵m>1,∵md>d。
这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)≠1的假设是不正确的.所以只能是(a1,b1)=1,也就是(a÷d,b÷d)=1。
定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)下面我们就应用这些知识来解决一些具体的问题。
例1 甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数.解法1:由甲数×乙数=甲、乙两数的最大公约数×两数的最小公倍数,可得36×乙数=4×288,乙数=4×288÷36,解出乙数=32。
答:乙数是32。
解法2:因为甲、乙两数的最大公约数为4,则甲数=4×9,设乙数=4×b1,且(b1,9)=1。
因为甲、乙两数的最小公倍数是288,则288=4×9×b1,b1=288÷36,解出b1=8。
所以,乙数=4×8=32。
答:乙数是32。
例2 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?解:要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b。
五年级数学最大公因数,最小公倍数练习题(含提高)
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。
五年级数学上册最大公因数和最小公倍数训练习题
五年级数学上册最大公因数和最小公倍数训练习题一、我会填:1、写出下列各组数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最小公倍数是;(2) 9和3的最大公因数是;最小公倍数是;(3) 9和18的最大公因数是;最小公倍数是;(4) 11和44的最大公因数是;最小公倍数是;(5) 8和11的最大公因数是;最小公倍数是;(6) 1和9的最大公因数是;最小公倍数是;(7) 已知A=2×2×3×5, B=2×3×7,那么A、B的最大公因数是;最小公倍数是;(8)已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是;最小公倍数是。
2、在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。
3、在20以内的质数中,()加上2还是质数。
4、如果有两个质数的和等于24,可以是()+(),()+()或()+()。
5、把330分解质因数是()。
6、一个能同时被 2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。
7、在50以内的自然数中,最大的质数是(),最小的合数是()。
8、既是质数又是奇数的最小的一位数是()。
二、判断题(对的打“√”,错的打“×”)1、两个质数相乘的积还是质数。
()2、成为互质数的两个数,必须都是质数。
()3、任何一个自然数,它的最大约数和最小倍数都是它本身。
()4、一个合数至少得有三个约数。
()5、在自然数列中,除2以外,所有的偶数都是合数。
()6、12是36与48的最大公约数。
()三、选择题1、15的最大因数是(),最小倍数是()。
①1 ②3 ③5 ④152、在14=2×7中,2和7都是14的()。
五年级上册奥数最大公约数和最小公倍数 (例题含答案)
五年级上册奥数最大公约数和最小公倍数(例题含答案)第三讲:最大公约数和最小公倍数一、基本概念和知识1.公约数和最大公约数几个数公有的约数,称为这几个数的公约数;其中最大的一个,称为这几个数的最大公约数。
例如:12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.12和18的公约数有1、2、3、6,其中6是12和18的最大公约数,记作(12,18)=6.2.公倍数和最小公倍数几个数公有的倍数,称为这几个数的公倍数;其中最小的一个,称为这几个数的最小公倍数。
例如:12的倍数有12、24、36、48、60、72、84……;18的倍数有18、36、54、72、90……。
12和18的公倍数有36、72……,其中36是12和18的最小公倍数,记作[12,18]=36.3.互质数如果两个数的最大公约数是1,那么这两个数称为互质数。
二、例题例1:用一个数去除30、60、75,都能整除,这个数最大是多少?分析:要求的数去除30、60、75都能整除,因此要求的数是30、60、75的公约数。
又因为要求符合条件的最大的数,因此就是求30、60、75的最大公约数。
解:(30,60,75)=5×3=15,这个数最大是15.例2:一个数用3、4、5除都能整除,这个数最小是多少?分析:由题意可知,要求的数是3、4、5的公倍数,且是最小的公倍数。
解:[3,4,5]=3×4×5=60,用3、4、5除都能整除的最小的数是60.例3:有三根铁丝,长度分别是120厘米、180厘米和300厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?分析:要截成相等的小段,且无剩余,因此每段长度必是120、180和300的公约数。
又因为每段要尽可能长,因此要求的每段长度就是120、180和300的最大公约数。
解:(120,180,300)=30×2=60,每小段最长60厘米。
最小公倍数和最大公约数练习题及答案
1.两个数的最大公因数是6,最小公倍数是144,这两个数的和是()。
2.2520,14850,819的最大公因数是(),最小公倍数是()。
3.三个数的和等于235,甲数比乙数多80,丙数比甲数少90,则这三个数的最大公因数和最小公倍数分别是()。
4.两数的最大公因数是3,最小公倍数是561,则这两个数是()。
5.有一个数,同时能被9,10,15整除,满足条件的最大三位数是()。
6.筐里装满了鸡蛋,已知这筐鸡蛋两个两个地数多一个,五个五个地数仍多一个,那么这筐鸡蛋至少有()个。
7.有336个苹果,252个橘子,210个梨,用这些果品最多可分成若干份同样的礼物,这时在每份礼物中,三种水果各有()。
8.有96多红花和72朵白花扎成花束,如果每个花束里红花的朵数相同,白花的朵数也相同,每个花束至少有()朵花。
9.鸭圈里有若干只鸭子,每只鸭子的重量均等,且是大于1的自然数,量得鸭子的总重量是20**公斤,卖掉一批后,剩下的鸭子的总重量是1575斤,每只鸭子重()公斤。
10.把一张长120厘米,宽80厘米的长方形的纸裁成正方形,不允许剩余,至少能裁多少张?11.已知两数的积是5766,他们的最大公因数是31,求这两个数。
12.已知两个自然数的最大公因数是12,()最小公倍数是72.求这两个数的积()满足已知条件的自然数有那几组?13.一筐梨,按每份2个梨分多一个,每份3个梨多两个,每份5个梨多四个,问筐里至少有多少个梨?14.甲乙丙三人环绕操场步行一周,甲要三分钟,乙要四分钟,丙要六分钟,三人同时同地同向出发,当他们三人第一次相遇时,甲乙丙三人分别有了多少周?15.仓库里装着整箱的洗衣粉20**袋,每箱洗衣粉的袋数相等,拿出几箱后还剩1839袋,则每箱洗衣粉最多有多少袋?16.五年级学生做好事,如果按每组三人,每组四人,每组五人,都能分成若干组,且没有剩余。
这个班至少有多少人?17.有一堆巧克力糖,两粒一数多一粒,三粒一数多两粒,五粒一数多四粒,七粒一数多六粒,这堆糖至少有多少粒?18.某港口停着四艘轮船,一天他们同时开出港口,已知甲船每隔两星期回港一次,乙船每隔四星期回港一次,丙船每隔六星期回港一次,丁船八星期回港一次,至少经过几星期后,这四只轮船再次在港口重新会合?试题答案一. 填空题。
小学数学最大公因数及最小公倍数专项练习(含答案)
小学数学最大公因数及最小公倍数专项练习(含答案)01一、填空。
1、把36分解质因数是(),把60分解质因数是()。
2、自然数a除以自然数b,商是15,那么a和b的最大公因数是()。
3、按要求,使填出的两个数只有公因数1。
①质数()和合数(),②质数()和质数(),③合数()和合数(),④奇数()和奇数(),⑤奇数()和偶数()。
4、18和24的公因数有(),18和24的最大公因数是()。
5、如果 a和b 是互质的自然数,那么a 和b 的最大公约数是(),最小公倍数是()。
6、三个质数的最小公倍数是42,这三个质数是()。
7、因为 15÷3=5,所以15和3的最大公因数是()。
8、有两个不同的自然数,它们的和是48,它们的最大公因数是6,这两个自然数是()和()。
二、选择题1.96是16和12的()。
①公倍数②最小公倍数③公约数2.几个质数的连乘积是()。
①合数②质数③最大公约数④最小公倍数3.甲是乙的15倍,甲和乙的最小公倍数是()。
①15②甲③乙④甲×乙4.12是24和36的()。
①约数②质因数③最大公约数5.A=2×2×5, B=2×3×5,那么A 、B 的最小公倍数是()①600②300③60④106、下列各数中与18只有公因数1是()。
①21②40③25④187、下列各组数中,两个数只有公因数1的是()。
①17和51②52和91③24和25④ 11和22三、找出下面每组数的最大公因数和最小公倍数(短除法)。
12和1524和368和2434和5165和3948和108144和3628和98四、用最大公因数和最小公倍数的知识点解决实际问题。
1、五年级一班有48人,二班有54人,如果把两个班的学生都平均分成若干组,要使两个班每个小组的人数相等,每组最多有多少人?2、用96朵红花和72朵白花做花束,如果每个花束里的红花朵数都相等,每个花束里的白花的朵数也都相等.每个花束里最少有几朵花?3、将45厘米长的蓝带子、69厘米长的红带子剪成同样长的小段,结果都剩下5厘米。
最大公约数与最小公倍数练习题
最大公约数与最小公倍数练习题1. 寻找最大公约数(a)求下列数的最大公约数:i. 12, 18ii. 24, 36iii. 48, 64iv. 60, 72(b)求下列数的最大公约数:i. 15, 25ii. 40, 50iii. 72, 96iv. 80, 1202. 应用最大公约数(a)从以下数中,找出最大公约数。
i. 12, 18, 24ii. 16, 24, 32iii. 30, 45, 60iv. 36, 48, 72(b)在下列问题中,求出最适合的最大公约数。
i. 将24个苹果和30个橙子分成相等的一些篮子,每篮放若干个苹果和橙子,且篮子里的水果完全相同。
每篮里应放多少个苹果和橙子?ii. 一台农用拖拉机和一台混凝土搅拌机同时工作,它们各自工作的最小单位是多少时间?若同时工作24小时,它们何时再次同时停下来?3. 寻找最小公倍数(a)求下列数的最小公倍数:i. 3, 4ii. 5, 6iii. 8, 12iv. 10, 15(b)求下列数的最小公倍数:i. 9, 12ii. 14, 21iii. 20, 25iv. 30, 404. 应用最小公倍数(a)从以下数中,找出最小公倍数。
i. 6, 8, 12ii. 10, 15, 20iii. 18, 24, 30iv. 25, 35, 40(b)在下列问题中,求出最适合的最小公倍数。
i. 一位教师每10分钟出一道数学题,另一位教师每15分钟出一道相同的题,他们同时准备的题目何时重复?ii. 一辆汽车每20分钟经过一次收费站,另一辆汽车每25分钟经过一次相同的收费站,两辆汽车同时从同一个收费站出发,何时再次同时经过一个收费站?5. 混合应用题i. 小明和小红同时开始跑步,小明每8分钟跑一圈操场,小红每12分钟跑一圈操场。
当他们第一次同时回到起点的时候,两人各自各跑了几圈?ii. 甲、乙两人共同考试,甲每30秒做一道题,乙每50秒做一道完全相同的题。
(完整版)最大公因数与最小公倍数综合应用题练习及答案④
1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块?3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?4、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人?5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少?6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车?11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
这个年级至少有学生多少人?12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果?13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟?14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。
五年级数学最大公因数与最小公倍数练习题41683
五年级数学最大公因数与最小公倍数练习题一 .填空:姓名:1.如果自然数A除以自然数B商是17.那么A与B的最大公约数是().最小公倍数是()·2.最小质数与最小合数的最大公约数是().最小公倍数是()·能被5.7.16整除的最小自然数是()·3.()里写最大公因数.[ ]里写最小公倍数(1)(7.8)=(). [7.8 ] =()(2)(25.15)=(). [25.15 ]=()(3)(140.35)=(). [140.35 ]=()(4)(24.36)=(). [24.36 ]=()(5)(3.4.5)=(). [3.4.5 ]=()(6)(4.8.16)=(). [4.8.16 ]=()4.5和12的最小公倍数减去()就等于它们的最大公约数·91和13的最小公倍数是它们最大公约数的()倍·5.已知两个互质数的最小公倍数是153.这两个互质数是()和()·6甲数=2×3×5×7.乙数=2×3×11.甲乙两数的最大公约数是().最小公倍数是()·7.3个连续自然数的最小公倍数是60.这三个数是().()和()·8.被2.3.5除.结果都余1的最小整数是().最小三位整数是()·9.一筐苹果4个4个拿.6个6个拿.或者8个8个拿都正好拿完.这筐苹果 .最少有()个·10.三个连续偶数的和是42.这三个数的最大公约数是()·11.三个不同质数的最小公倍数是105.这三个质数是().()和()·12.自然数m和n.n= m+1.m和n的最大公约数是().最小公倍数是()·13.13.把自然数a与b分解质因数.得到a=2×5×7×m.b=3×5×m .如果a与b的最小公倍数是2730.那么m = ()·14.(273.231.117):().[273.231.117]:()15. 三个数的和是312.这三个数分别能被7.8.9整除.而且商相同·这三个数分别是().()和()·16.已知(A.40)=8.[A.40]=80.那么A=()·17.选一个自认为与众不同的数(三个方法)并说明选的理由:1.2.3.5.7.9.15列:选15.因为他的因数有;1.15.3.5;还有他是60的因数等等·1:选.因为2:选.因为3:选.因为18.按要求写互质数两个都是质数()和();两个都是合数()和();一个质数和一个奇数()和();一个5和一个合数()和();一个质数和一个合数()和();一个偶数和一个合数()和()·二.解决下列的问题:1.有一行数:1.1.2.3.5.8.13.21.34.55…….从第三个数开始.每个数都是前两个数的和.在前100个数中.偶数有多少个?2.一个长方形的长和宽都是自然数.面积是36平方米.这样的形状不同的长方形共有多少种?3.一种长方形的地砖.长24厘米.宽16厘米.用这种砖铺一个正方形.至少需多少块砖?4.有一个长80厘米.宽60厘米.高115厘米的长方体储冰容器.往里面装入大小相同的立方体冰块.这个容器最少能装多少数量冰块?5.已知某小学六年级学生超过100人.而不足140人·将他们按每组12人分组.多3人;按每组8人分.也多3人·这个学校六年级学生多少?6.有四个小朋友.他们的年龄一个比一个大一岁.四个人的年龄的乘积是360·他们中年龄最大是多少岁?7.汽车站内每隔3分钟发一辆公交车.4分钟发一辆中巴车.1小时共发了几辆汽车?其中有几辆中巴车?8.一块长方形铁皮.长96厘米.宽80厘米.要把它剪成同样大小的正方形且没有剩余.这种正方形的边长是多少?被剪成几块?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大公约数和最小公倍数练习题
一.填空题。
1.a b
和的最大公约数是(),最小公倍数是()。
和都是自然数,如果a b
÷=10,a b
2.甲=⨯⨯
237,甲和乙的最大公约数是()×()=(),甲和乙的最小235,乙=⨯⨯
公倍数是()×()×()×()=()。
3.所有自然数的公约数为()。
4.如果m和n是互质数,那么它们的最大公约数是(),最小公倍数是()。
5.在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6.用一个数去除15和30,正好都能整除,这个数最大是()。
*7.两个连续自然数的和是21,这两个数的最大公约数是(),最小公倍数是()。
*8.两个相邻奇数的和是16,它们的最大公约数是(),最小公倍数是()。
**9.某数除以3、5、7时都余1,这个数最小是()。
10.根据下面的要求写出互质的两个数。
(1)两个质数()和()。
(2)连续两个自然数()和()。
(3)1和任何自然数()和()。
(4)两个合数()和()。
(5)奇数和奇数()和()。
(6)奇数和偶数()和()。
二.判断题。
1.互质的两个数必定都是质数。
()
2.两个不同的奇数一定是互质数。
()
3.最小的质数是所有偶数的最大公约数。
()
4.有公约数1的两个数,一定是互质数。
()
5.a是质数,b也是质数,a b m
⨯=,m一定是质数。
()三.直接说出每组数的最大公约数和最小公倍数。
26和13()13和6()4和6()
5和9()29和87()30和15()
13、26和52 ()2、3和7()
四.求下面每组数的最大公约数和最小公倍数。
(三个数的只求最小公倍数)
45和60 36和60
27和72 76和80
42、105和56 24、36和48
**五.动脑筋,想一想:
学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?
试题答案
一.填空题。
1.a b
和的最大公约数是(b),最小公倍数是(a)。
和都是自然数,如果a b
÷=10,a b
2.甲=⨯⨯
237,甲和乙的最大公约数是(2)×(3)=(6),甲和乙的最235,乙=⨯⨯
小公倍数是(2)×(3)×(5)×(7)=(210)。
3.所有自然数的公约数为(1)。
4.如果m和n是互质数,那么它们的最大公约数是(1),最小公倍数是(mn)。
5.在4、9、10和16这四个数中,(4)和(9)是互质数,(9)和(10)是互质数,(9)和(16)是互质数。
6.用一个数去除15和30,正好都能整除,这个数最大是(15)。
*7.两个连续自然数的和是21,这两个数的最大公约数是(1),最小公倍数是(110)。
*8.两个相邻奇数的和是16,它们的最大公约数是(1),最小公倍数是(63)。
**9.某数除以3、5、7时都余1,这个数最小是(106)。
10.根据下面的要求写出互质的两个数。
(1)两个质数(2)和(3)。
(2)连续两个自然数(4)和(5)。
(3)1和任何自然数(1)和(9)。
(4)两个合数(9)和(16)。
(5)奇数和奇数(15)和(7)。
(6)奇数和偶数(7)和(4)。
二.判断题。
1.互质的两个数必定都是质数。
(×)
2.两个不同的奇数一定是互质数。
(×)
3.最小的质数是所有偶数的最大公约数。
(√)
4.有公约数1的两个数,一定是互质数。
(×)
5.a是质数,b也是质数,a b m
⨯=,m一定是质数。
(×)三.直接说出每组数的最大公约数和最小公倍数。
26和13(13、26)13和6(1、78)4和6(2、12)
5和9(1、45)29和87(29、87)30和15(15、30)
13、26和52 (13、52)2、3和7(1,42)
四.求下面每组数的最大公约数和最小公倍数。
(三个数的只求最小公倍数)
45和60 最大公约数15,最小公倍数180。
36和60 最大公约数是12,最小公倍数180。
27和72 最大公约数是9,最小公倍数216。
76和80 最大公约数是4,最小公倍数1520。
42、105和56 最小公倍数是840。
24、36和48 最小公倍数是144。
**五.动脑筋,想一想:
学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?
你是这样思考吗?
-=(支)
(1)圆珠笔多4支,也就是圆珠笔用了40436
(2)练习本多2本,也就是练习本用了50248-=(本)
(3)36和48的公约数是2,3,4,6,12。
因为40220÷=,2不满足条件
403131÷=……,3不满足条件
40410÷=,4不满足条件
4066450682
÷=÷=⎧⎨⎩…………,6满足条件 401234501242÷=÷=⎧⎨⎩
…………,12满足条件 所以,四年级的三好学生人数是6人或12人。
(4)当三好学生人数为6人时,他们每人6支圆珠笔,8本练习本; 当三好学生人数为12人时,他们每人3支圆珠笔,4本练习本。