正弦定理(2)
正弦定理(二)
解析: 在△ABC 中,C=120° ,故 A,B 都是锐角.据 sin A a 5 正弦定理sin B=b=3,故选 A.
• 答案: A
自我纠错
易错点:利用正弦定理解三角形易丢解或多解 用正弦定理解出一个角的正弦值,可得出对应的两个 角,此时可能有一个是不符合题意的,也有可能出现漏解 的情况. [错题展示] 30° ,求a. 在△ABC中,已知b=3,c=3 3,B=
1 .在ABC中,a, b, c为边长,A,B,C为a, a b c b, c所对的角,若 , sin B sin C sin A 试判断ABC的形状.
'''
2.在ABC中, a b b c c a 求证: 0. cos A cos B cos B cos C cos C cos A
在一个三角形中,各边和它所对角的正弦的比相等, 即 a b c sin A sin B sin C
变式:
a b b c c a 1 ; ; sin A sin B sin B sin C sin C sin A
2sin A : sin B : sin C a : b : c
本节小结:
1.结构:正弦定理
正弦定理的证明 正弦定理的应用 解三角形
2.方法、技巧、规律
(1)正弦定理揭示了任意三角形边角之间的关系, 是解三角形的重要工具;
(2)两类问题:一类已知两角和一边; 另一类是已知两边和一边的对角;
(3)注意正弦定理的变式;
(4)注意内角和为 180的应用,以及角之间的转化.
A为锐角
A为钝角或直角
图 形
关系 式 解的 个数
①a= bsinA ②a≥b 一解
余弦定理、正弦定理课件-高一下学期数学人教A版(2019)必修第二册
,c=2,C=30°,那么此三角形 B.有两解 D.解的个数不确定
C 解析 由正弦定理和已知条件,得s4in 3B=sin230°, ∴sin B= 3>1,
∴此三角形无解.故选C.
高中数学 必修第二册 RJ·A
5.在△ABC中,a=5,b=5 3,A=30°,则B=____6_0_°或__1_2_0_°_.
二 已知两边及其中一边的对角解三角形
例 2 在△ABC 中,已知 c= 6,A=45°,a=2,解三角形.
解
∵sina A=sinc C,∴sin C=csian A=
6sin 2
45°=
23,
∵0°<C<180°,∴C=60°或C=120°.
当 C=60°时,B=75°,b=cssiinnCB= s6isnin607°5°= 3+1; 当 C=120°时,B=15°,b=cssiinnCB= s6insi1n2105°°= 3-1. ∴b= 3+1,B=75°,C=60°或 b= 3-1,B=15°,C=120°.
高中数学 必修第二册 RJ·A
反思感悟
(1)正弦定理实际上是三个等式:
a =b ,b = c ,a = c sin A sin B sin B sin C sin A sin C
,每个等式涉及四个元素,所以只要知道其中的三个就可以求另外一个.
(2)因为三角形的内角和为180°,所以已知两角一定可以求出第三个角.
知识点 正弦定理
条件
结论
文字叙述
在△ABC中,角A,B,C所对的边分别为a,b,c
a=b=c sin A sin B sin C
在一个三角形中,各边和它所对角的 正弦 的比相等
苏教版数学必修五同步讲义:1.1正弦定理(2)
1.1 正弦定理(2)1.了解正弦定理及其变式的结构特征和功能.2.理解三角形面积公式及解斜三角形.3.掌握把实际问题转化成解三角形问题., [学生用书P3])1.三角形中常用的结论 (1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中,大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边. 2.三角形面积公式(1)S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12bc sin A =12ac sin B .1.在△ABC 中,A =30°,AB =2,BC =1,则△ABC 的面积为________. 解析:由BC sin A =ABsin C ,知sin C =1,则C =90°,所以B =60°,从而S △ABC =12AB ·BC ·sin B =32.★答案★:322.若△ABC 中,cos A =13,cos B =14,则cos C =________.解析:由cos A =13得sin A =223;由cos B =14得sin B =154.所以cos C =cos[π-(A +B )]=-cos(A +B )=-()cos A cos B -sin A sin B=-⎝⎛⎭⎫13×14-223×154=230-112.★答案★:230-1123.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 解析:由于S △ABC =3,BC =2,C =60°, 所以3=12×2·AC ·32,所以AC =2,所以△ABC 为正三角形, 所以AB =2. ★答案★:2三角形面积公式的应用[学生用书P4]在△ABC 中,已知B =30°,AB =23,AC =2.求△ABC 的面积. 【解】 由正弦定理,得sin C =AB ·sin B AC =32,又AB ·sin B <AC <AB ,故该三角形有两解:C =60°或120°,所以当C =60°时,A =90°, S △ABC =12AB ·AC =23;当C =120°时,A =30°, S △ABC =12AB ·AC ·sin A = 3.所以△ABC 的面积为23或 3.把本例中的B =30°改为B =45°,AB =2 3 改为AB =3,其他条件不变,求△ABC 的面积.解:由正弦定理c sin C =bsin B ,得AB sin C =AC sin B ,则sin C =64, 又AC >AB ,故该三角形有一解,且C 为锐角,cos C =104,由sin A =sin[π-(B +C )]=sin(B +C )=sin B cos C +cos B sin C =22×104+22×64=5+34,则S △ABC =12AB ·AC ·sin A =12×3×2×5+34=3+154.三角形的面积公式是在解三角形中经常用到的一个公式,其应用关键是根据题目条件选择合适的两边及其夹角.1.在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于________.解析:b =a sin B sin A =2×sin 105°sin 30°=6+2,所以S △ABC =12ab sin C =(6+2)×22=3+1.★答案★:3+1正弦定理在几何图形中的运用[学生用书P4]如图所示,D 是直角三角形ABC 的斜边BC 上的一点,且AB =AD ,记∠CAD=α,∠ABC =β.(1)求证:sin α+cos 2β=0; (2)若AC =3DC ,求β的值.【解】 (1)证明:因为AB =AD ,所以∠ADB =∠ABD =β.又因为α=π2-∠BAD =π2-(π-2β)=2β-π2,所以sin α=sin ⎝⎛⎭⎫2β-π2=-cos 2β, 即sin α+cos 2β=0.(2)在△ADC 中,由正弦定理得DC sin α=ACsin ∠ADC, 即DC sin α=ACsin (π-β), 即DC sin α=3DCsin β,所以sin β=3sin α. 由(1)知sin α=-cos 2β,所以sin β=-3cos 2β=-3(1-2sin 2β), 即23sin 2β-sin β-3=0. 解得sin β=32或-33.因为0<β<π2,所以sin β=32,所以β=π3.(1)先找出α与β之间的关系,再取正弦即得要证明的结论.(2)利用正弦定理先找出三角函数之间的关系,再利用(1)的结论将其化简,最后求得sin β的值,从而求出角β.2.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连结EC ,ED ,则sin ∠CED =________.解析:由题意得EB =EA +AB =2,则在Rt △EBC 中,EC =EB 2+BC 2=4+1= 5.在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin ∠CED sin ∠EDC =DC EC =15=55, 所以sin ∠CED =55·sin ∠EDC =55·sin 3π4=1010. ★答案★:1010正弦定理的实际应用[学生用书P5]为了求底部不能到达的水塔AB 的高,如图,在地面上引一条基线CD =a ,这条基线延长后不过塔底,若测得∠ACB =α,∠BCD =β,∠BDC =γ,求水塔AB 的高.【解】 在△BCD 中,BC sin γ=a sin ∠CBD =asin (β+γ),所以BC =a sin γsin (β+γ),在Rt △ABC 中,AB =BC ·tan α=a sin γ·tan αsin (β+γ).根据具体问题画出符合题意的示意图,把角、距离在示意图中表示出来,借助图形审题.在三角形中,利用正弦定理解决问题.3.在埃及,有许多金字塔,经过几千年的风化蚀食,有不少已经损坏了.考古人员在研究中测得一座金字塔的三角形横截面如图所示(顶部已经坍塌了),A =50°,B =55°,AB =120 m ,则此金字塔的高约为________米.(sin 50°≈0.766,sin 55°≈0.819,精确到1米)解析:先分别从A ,B 出发延长断边,确定交点C , 则C =180°-A -B =75°,AC =AB sin C ·sin B =120sin 75°×sin 55°≈101.7.设高为h ,则h =AC ·sin A =101.7×sin 50°≈78米.★答案★:781.三角形中的诱导公式sin(A +B )=sin C ,cos(A +B )=-cos C , tan(A +B )=-tan C ,sin A +B 2=cos C2,cos A +B 2=sin C2.2.三角形中边角转化的等价关系 a >b >c ⇔A >B >C ⇔sin A >sin B >sin C . 3.三角形面积公式S =12(a +b +c )r (r 为三角形内切圆半径).在△ABC 中,若C =3B ,求cb 的取值范围.[解] 由正弦定理可知c b =sin 3B sin B =sin B cos 2B +cos B sin 2B sin B =cos 2B +2cos 2B =4cos 2B -1.又因为A +B +C =180°,C =3B , 所以0°<B <45°,22<cos B <1, 所以1<4cos 2B -1<3, 故1<c b<3.即cb的取值范围是(1,3).(1)错因:在解决有关三角形问题时,经常因忽视三角形中的隐含条件而出现解题错误.本题隐含条件0°<4B<180°,即0°<B<45°.(2)防范:①注意隐含条件,记住三角形中的常用结论,理清三角形中基本量的关系,②将要求最值或取值范围的量表示成某一变量的函数(三角函数),从而转化为求函数的值域或最值的问题.1.在△ABC中,B=60°,b=76,a=14,则A=________.解析:由正弦定理得sin A=2 2,所以A=45°或135°,又B=60°,b>a,所以B>A,即A<60°,故A=45°.★答案★:45°2.如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,则圆O的面积等于________.解析:因为2R=4sin 45°=42,所以R=2 2.所以S=πR2=8π.★答案★:8π3.在△ABC中,a=2b cos C,则△ABC的形状为________三角形.解析:由已知,可得2R sin A=2·2R sin B·cos C,即sin(B+C)=2sin B cos C,所以sin B cos C-cos B sin C=0,sin(B-C)=0,所以B=C,即△ABC为等腰三角形.★答案★:等腰,[学生用书P71(单独成册)])[A 基础达标]1.在△ABC 中,A ∶B ∶C =4∶1∶1,则a ∶b ∶c 等于________. 解析:由条件知A =2π3,B =C =π6,a ∶b ∶c =sin A ∶sin B ∶sin C =3∶1∶1.★答案★:3∶1∶12.在△ABC 中,已知B =45°,c =22,b =433,则A 的值是________.解析:由正弦定理,得sin C =32,从而C =60°或120°,故A =15°或75°. ★答案★:15°或75°3.在△ABC 中,c b =cos Ccos B ,则此三角形为________三角形.解析:由正弦定理得c b =sin Csin B ,所以sin C sin B =cos C cos B.所以sin B cos C -sin C cos B =0. 所以sin(B -C )=0. 所以B =C .所以△ABC 为等腰三角形. ★答案★:等腰4.△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,且cos 2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于________.解析:由题意得cos 2B -3cos B +2=0, 即2cos 2B -3cos B +1=0,解得cos B =12或cos B =1(舍去),所以sin B =32,由正弦定理得c sin C =b sin B =332=2. ★答案★:25.如图,△ABC 是半径为R 的⊙O 的内接正三角形,则△ABC 的边长为________,△OBC 的外接圆半径为________.解析:因为ABsin 60°=2R ,所以AB =3R .设△OBC 外接圆半径为x ,BC sin 120°=2x ,x =3R2·32=R .★答案★:3R R6.在△ABC 中,若a =c sin A ,sin C =2sin A sin B ,则△ABC 的形状为________三角形. 解析:由已知,2R sin A =2R sin C sin A , 因为sin A ≠0,所以sin C =1,C =90°,又sin C =2sin A sin B =2sin A cos A , 所以sin 2A =1,2A =90°,A =45°, 即△ABC 为等腰直角三角形. ★答案★:等腰直角7.海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是________.解析:如图,在△ABC 中,C =180°-(B +A )=45°,由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里). ★答案★:5 6 海里8.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是________.解析:因为c sin C =a sin A =403,所以c =403sin C .所以0<c ≤403.★答案★:⎝⎛⎦⎤0,403 9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b c =233,A +3C =π.(1)求cos C 的值;(2)若b =33,求△ABC 的面积.解:(1)因为A +B +C =π,A +3C =π, 所以B =2C .又由正弦定理b sin B =csin C ,得b c =sin B sin C ,233=2sin C cos C sin C,化简得,cos C =33. (2)由(1)知B =2C ,所以cos B =cos 2C =2cos 2C -1=2×13-1=-13.又因为C ∈(0,π), 所以sin C =1-cos 2C =1-13=63. 所以sin B =sin 2C =2sin C cos C =2×63×33=223. 因为A +B +C =π.所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×33+⎝⎛⎭⎫-13×63=69. 因为b c =233,b =33,所以c =92.所以△ABC 的面积S =12bc sin A =12×33×92×69=924.10.在△ABC 中,已知2B =A +C ,b =1,求a +c 的范围.解:由已知,B =60°,b =1, 所以△ABC 外接圆半径R =12sin 60°=33.a +c =2R (sin A +sin C ) =2R [sin A +sin(120°-A )] =2×33×3sin(A +30°) =2sin(A +30°). 因为0°<A <120°,所以a +c 的取值范围为(1,2].[B 能力提升]1.已知锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A 、B 满足2sin(A +B )-3=0,则△ABC 的面积=______.解析:因为a ,b 是方程x 2-23x +2=0的两根,根据根与系数的关系得ab =2,由2sin(A +B )-3=0得sin(A +B )=32.因为△ABC 为锐角三角形,所以A +B =120°,C =60°.所以S △ABC =12ab sin C =12×2sin 60°=32.★答案★:322.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). ★答案★:100 63.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,c cos A =b ,则△ABC 的形状为________.解析:因为c cos A =b , 所以sin C cos A =sin B .而sin B =sin(A +C )=sin A cos C +cos A sin C , 所以sin A cos C =0.因为0°<A <180°,所以sin A >0, 所以cos C =0,且0°<C <180°.所以C =90°,即△ABC 是角C 为直角的直角三角形. ★答案★:直角三角形4. (选做题)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km 处不能收到手机信号,检查员抽查青岛市一考点,在考点正西约 3 km 有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12 km 的速度沿公路行驶,问最长需要多少分钟,检查员开始收不到信号,并至少持续多少时间该考点才算合格?解:如图,考点为A ,检查开始处为B ,设公路上C 、D 两点到考点的距离为1 km.在△ABC 中,AB =3,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =sin 30°AC ·AB =32, 所以∠ACB =120°(∠ACB =60°不合题意),所以∠BAC =30°,所以BC =AC =1, 在△ACD 中,AC =AD ,∠ACD =60°, 所以△ACD 为等边三角形,所以CD =1. 因为BC12×60=5(min),所以在BC 上需5 min ,CD 上需5 min.最长需要5 min 检查员开始收不到信号,并至少持续5 min 才算合格.。
(人教B版必修5)1.1.1正弦定理(2)学案(含答案)
1.1.1 正弦定理(二)自主学习知识梳理1.正弦定理:asin A =bsin B=csin C=2R的常见变形:(1)sin A∶sin B∶sin C=________;(2)asin A=bsin B=csin C=a+b+csin A+sin B+sin C=________;(3)a=__________,b=__________,c=____________;(4)sin A=________,sin B=________,sin C=________.2.三角形面积公式:S=______________=______________=____________.3.在Rt△ABC中,∠C=90°,则△ABC的外接圆半径R=________,内切圆半径r=____________.自主探究在△ABC中,(1)若A>B,求证:sin A>sin B;(2)若sin A>sin B,求证:A>B.对点讲练知识点一三角形面积公式的运用例1已知△ABC的面积为1,tan B=12,tan C=-2,求△ABC的各边长以及△ABC外接圆的面积.总结注意正弦定理的灵活运用,例如本题中推出S△ABC=2R2sin Asin Bsin C.借助该公式顺利解出外接圆半径R.变式训练1 已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A.1 B.2 C.12D.4知识点二利用正弦定理证明恒等式例2 在△ABC 中,求证:a -ccos B b -ccos A =sin B sin A.总结 正弦定理的变形公式使三角形的边与边的关系和角与角的关系之间的相互转化的功能更加强大,更加灵活.变式训练2 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,求证:a 2sin 2B +b 2sin 2A =2absin C.知识点三 利用正弦定理判断三角形形状例3 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a +c =2b ,且2cos 2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.变式训练3 已知方程x 2-(bcos A)x +acos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判定这个三角形的形状.1.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.2.在△ABC 中,有以下结论:(1)A +B +C =π;(2)sin(A +B)=sin C ,cos(A +B)=-cos C ;(3)A +B 2+C 2=π2; (4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tan C 2.课时作业一、选择题1.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若A∶B∶C=1∶2∶3,则a∶b∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶22.在△ABC 中,若a cos A =b cos B =c cos C,则△ABC 是( ) A .直角三角形 B .等边三角形C .钝角三角形D .等腰直角三角形3.在△ABC 中,(b +c)∶(a+c)∶(a+b)=4∶5∶6,则sin A∶sin B∶sin C 等于( )A .4∶5∶6B .6∶5∶4C .7∶5∶3D .7∶5∶64.在△ABC 中,a =2bcos C ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形5.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( )A .45°B .60°C .75°D .90°二、填空题6.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 7.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________. 8.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________. 三、解答题9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c =10,又知cos A cos B =b a =43,求a 、b 及△ABC 的内切圆半径.10.在△ABC 中,a 、b 、c 分别是三个内角A 、B 、C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.1.1.1 正弦定理(二)知识梳理1.(1)a∶b∶c (2)2R (3)2Rsin A 2Rsin B 2Rsin C(4)a 2R b 2R c 2R2.12absin C 12bcsin A 12casin B 3.c 2 a +b -c 2自主探究证明 (1)在△ABC 中,由大角对大边定理A>B ⇒a>b ⇒2Rsin A>2Rsin B ⇒sin A>sin B.(2)在△ABC 中,由正弦定理sin A>sin B ⇒a 2R >b 2R ⇒a>b ⇒A>B. 对点讲练例1 解 ∵tan B=12>0,∴B 为锐角. ∴sin B=55,cos B =255. ∵tan C=-2,∴C 为钝角.∴sin C=255,cos C =-55. ∴sin A=sin(B +C)=sin Bcos C +cos Bsin C=55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵S △ABC =12absin C =2R 2sin Asin Bsin C =2R 2×35×55×255=1. ∴R 2=2512,R =536.∴πR 2=2512π,即外接圆面积为2512π. ∴a=2Rsin A =3,b =2Rsin B =153,c =2Rsin C =2153. 变式训练1 A [设三角形外接圆半径为R ,则由πR 2=π,∴R=1,由S △=12absin C =abc 4R =abc 4=14,∴abc=1.] 例2 证明 因为a sin A =b sin B =c sin C=2R ,所以 左边=2Rsin A -2Rsin Ccos B 2Rsin B -2Rsin Ccos A =+-sin Ccos B +-sin Ccos A=sin Bcos C sin Acos C =sin B sin A=右边.所以等式成立. 变式训练2 证明 左边=4R 2sin 2 A·sin 2B+4R 2sin 2 B·sin 2A=8R 2sin 2 Asin Bcos B +8R 2sin 2 Bsin AcosA=8R 2sin Asin B(sin Acos B +cos Asin B)=8R 2sin Asin Bsin(A +B)=8R 2sin Asin Bsin C=2·(2Rsin A)·(2Rsin B)·sin C=2absin C =右边.∴等式成立.例3 解 ∵2cos 2B-8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =12或cos B =32(舍去). ∵0<B<π,∴B=π3.∵a+c =2b. 由正弦定理得sin A +sin C =2sin B =2sin π3= 3. ∴sin A+sin ⎝ ⎛⎭⎪⎫2π3-A =3, ∴sin A+sin 2π3cos A -cos 2π3sin A = 3. 化简得32sin A +32cos A =3,∴sin ⎝⎛⎭⎪⎫A +π6=1. ∵0<A<π,∴A+π6=π2. ∴A=π3,C =π3.∴△ABC 是等边三角形. 变式训练3 解 设方程的两根为x 1、x 2,由韦达定理得⎩⎪⎨⎪⎧x 1+x 2=bcos A x 1x 2=acos B , ∵x 1+x 2=x 1x 2,∴bcos A=acos B.由正弦定理得:2Rsin Bcos A =2Rsin Acos B ,∴sin Acos B-cos Asin B =0,sin(A -B)=0.∵A、B 为△ABC 的内角,∴0<A<π,0<B<π,-π<A -B<π.∴A-B =0,即A =B.故△ABC 为等腰三角形.课时作业1.D2.B [由正弦定理知:sin A cos A =sin B cos B =sin C cos C, ∴tan A=tan B =tan C ,∴A=B =C.] 3.C [设b +c =4k ,a +c =5k ,a +b =6k(k>0),三式联立可求得a =72k ,b =52k ,c =32k , ∴a∶b∶c=7∶5∶3,即sin A∶sin B∶sin C=7∶5∶3.]4.A [由正弦定理:sin A =2sin Bcos C ,∴sin(B+C)=2sin Bcos C∴sin Bcos C+cos Bsin C =2sin Bcos C ,∴sin(B-C)=0,∴B=C.]5.C [设C 为最大角,则A 为最小角,则A +C =120°,∴c a =sin C sin A =sin ()120°-A sin A =sin 120° cos A-cos 120°sin A sin A=32·cos A sin A +12=32+12, ∴cos A sin A =1.∴tan A=1,A =45°,C =75°.] 6.2 3解析 ∵cos C=13,∴sin C=223, ∴12absin C =43,∴b=2 3. 7.102 解析 ∵tan A=13,A∈(0,180°),∴sin A=1010. 由正弦定理知BC sin A =AB sin C, ∴AB=BC·sin C sin A =1×sin 150°1010=102. 8.12 6解析a +b +c sin A +sin B +sin C =a sin A =6332=12. ∵S △ABC =12absin C =12×63×12sin C=18 3. ∴sin C=12,∴c sin C =a sin A =12,∴c=6. 9.解 由正弦定理知sin B sin A =b a ,∴cos A cos B =sin B sin A. 即sin Acos A =sin Bcos B ,∴sin 2A=sin 2B.又∵a≠b,∴2A=π-2B ,即A +B =π2. ∴△ABC 是直角三角形,且C =90°, 由⎩⎪⎨⎪⎧ a 2+b 2=102b a =43,得a =6,b =8.故内切圆的半径为r =a +b -c 2=6+8-102=2. 10.解 因为cos B =2cos 2 B 2-1=35,故B 为锐角,sin B =45. 所以sin A =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210. 由正弦定理得c =asin C sin A =107, 所以S =12acsin B =12×2×107×45=87.。
正弦定理二
a b c 正弦定理: (1)正弦定理 = = = 2R sinA sinB sinC
(2)正弦定理解两种类型的三角问题: 正弦定理解两种类型的三角问题:
(1)已知两角和任意一边,可以求出其他两边和一角; 已知两角和任意一边,可以求出其他两边和一角; 已知两角和任意一边 (2)已知两边和其中一边的对角,可以求出三角形的其 已知两边和其中一边的对角, 已知两边和其中一边的对角 他的边和角. 他的边和角.
角 化 为 边
因此三角形为等腰直角三角形. 因此三角形为等腰直角三角形.
变形: 变形:sinA b = sinB a
cos A a = cos B b
cos A b = cos B a
已知 ABC 中,满足
(a 2 + b 2 ) sin( A B) = (a 2 b 2 ) sin( A + B ) ,试判断 ABC
b sin A 2 sin 30o sin B = = =1 a 1 π
C b A a=bsinA B
又 B ∈ (0, π ) ,所以 B = 所以 2 即三角形ABC有一解 有一解. 即三角形 有一解
(1)已知ABC 中,A= 30°,a=1,b=2,则 ( A ) ) ° , , A,有一解 B,有两解 C,无解 D,不能确定 , , , , (2)已知ABC中,A=30°, a= 2 ,b=2,则 ) ° , (B) A,有一解 B,有两解 C,无解 D,不能确定 , , , , 1 (3)已知ABC 中,A=30°, a= 2 ,b=2,则 ) ° , ( ) A,有一解 B,有两解 C,无解 D,不能确定 , , , , (4)已知 ABC 中,A=30°,a=m ,c=10,有两解, ) ° ,有两解, 则m范围是 范围是 . 由正弦定理得: 解:(2)由正弦定理得 2 由正弦定理得 又 B ∈ (0, π )且a<b π 3π 所以 B = 或
§1.1.1正弦定理(2)
第一章 1.1.1正弦定理(2)学习目标:加深对正弦定理的理解,熟练掌握正弦定理的应用。
1.正弦定理有哪几种变形?问题探究:探究问题(一)画图判断三角形的解的个数 (1)已知 △ABC 中,A= 30°,a=1,b=2,则 ( ) A 、有一解 B 、有两解 C 、无解 D 、不能确定 (2)已知△ABC 中,A=30°, a= 2,b=2,则 ( )A 、有一解B 、有两解C 、无解D 、不能确定(3)已知 △ABC 中,A=30°, a= 21,b=2,则 ( )A 、有一解B 、有两解C 、无解D 、不能确定总结:已知两边和其中一边的对角,求其他边和角时,三角形什么情况下有一解,二解,无解?探究问题(一)已知a, b 和A, 用正弦定理求B 时的各种情况: (1)若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,(b a bsinA )( bsinAasin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA(2)若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a说明:已知两边及其中一边的对角判断三角形解的个数的方法:①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数即为三角形的个数。
练习.画图判断满足下列条件的三角形的个数:(1)b=11, a=20, B=30o (2)c=54, b=39, C=120o (3)b=26, c=15, C=30o (4)a=2,b=6,A=30o探究问题(二) 利用正弦定理证明两个结论: 1、三角形内角平分线定理的证明:已知:如图,在ΔABC 中,∠A 的平分线AD 与边BC 相交于点D ,求证:BD ABDC AC=证明:如图在ΔABD 和ΔCAD 中,由正弦定理,得sin sin BD AB βα=,0sin sin(180)sin DC AC ACβαα==-,两式相除得BD ABDC AC = 三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。
正弦定理(2)
课题:正弦定理(2) 1.正弦定理及其变形(1)定理内容:asin A=bsin B=csin C=2R(R为外接圆半径).(2)正弦定理的常见变形:①sin A∶sin B∶sin C=a∶b∶c;②asin A=bsin B=csin C=a+b+csin A+sin B+sin C=2R;③a=2R sin_A,b=2R sin_B,c=2R sin_C;④sin A=a2R,sin B=b2R,sin C=c2R.2.对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情练习:在△ABC中,a=9,b=10,A=60°,判断三角形解的个数.3.三角形的面积公式任意三角形的面积公式为:(1)S△ABC=12bc sin A=12ac sin B=12ab sin C,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S△ABC=12ah,其中a为△ABC的一边长,而h为该边上的高的长.(3)S△ABC=12r(a+b+c)=12rl,其中r,l分别为△ABC的内切圆半径及△ABC的周长.课前自测1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.b c B.sin B sin A C.sin C c D.c sin C 3.在△ABC 中,A =30°,a =3,b =2,则这个三角形有( ) A .一解 B .两解 C .无解 D .无法确定4.在△ABC 中,若sin A a =cos Bb,则B 的值为________.三角形解的个数的判断【例1】 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.练习1.满足B =60°,AC =12,BC =k 的△ABC 恰有一个,则k 的取值范围是( ) A .k =83 B .0<k ≤12 C .k ≥12 D .0<k ≤12或k =83 三角形的面积【例2】 在△ABC 中,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .练习2.(1)在△ABC 中,若a =32,cos C =13,S △ABC =43,则b =________.(2)在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于________.正弦定理的综合应用【例3】 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,m u r=(sin A ,sin B ),n r =(cos B ,cos A ),m n •u r r=-sin 2C .(1)求C 的大小;(2)若c =23,A =π6,求△ABC 的面积.练习3.若a +c =2b ,2cos 2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状. 课堂练习1.判断正误(1)在△ABC 中,等式b sin A =a sin B 总能成立.( ) (2)在△ABC 中,若A =30°,a =2,b =23,则B =60°.( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解.( ) 2.满足a =4,b =3和A =45°的△ABC 的个数为( ) A .0 B .1 C .2 D .无数个3.在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,其中a =4,b =3,C =60°,则△ABC 的面积为( )A .3B .33C .6D .6 34.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =________,a =________.5.在△ABC 中,若a ∶b ∶c =1∶3∶5,求2sin A -sin Bsin C的值.班级 姓名 学号 成绩 一、选择题 1.在△ABC 中,b +c =2+1,C =45°,B =30°,则………………………………( )A .b =1,c =2B .b =2,c =1C .b =22,c =1+22D .b =1+22,c =222.在△ABC 中,若a =18,b =24,A =45°,则此三角形有…………………………( ) A .无解 B .两解 C .一解 D .解的个数不确定 3.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( )A. 3B.33C.63 D .-634.在△ABC 中,A =60°,a =13,则a +b +csin A +sin B +sin C等于……………………( )A.833B.2393C.2633D .2 35.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若B =π2,a =6,sin 2B =2sin A sinC ,则△ABC 的面积S =……………………………………………………………………( )A.32B .3 C.6 D .6 6.在△ABC 中,A =π3,BC =3,则△ABC 的两边AC +AB 的取值范围是……( )A .[33,6]B .(2,43)C .(33,43)D .(3,6]7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m u r =(3,-1),n r=(cos A ,sin A ),若m u r ⊥n r,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为…( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3 二、填空题8.下列条件判断三角形解的情况,正确的是________(填序号). ①a =8,b =16,A =30°,有两解;②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解;④a =40,b =30,A =120°,有一解. 9.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.11.在Rt △ABC 中,C =90°,且A ,B ,C 所对的边a ,b ,c 满足a +b =cx ,则实数x 的取值范围是________.12.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =________.三、解答题13.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .14.在△ABC 中,已知c =10,cos A cos B =b a =43,求a ,b 及△ABC 的内切圆半径.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C . (1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小.。
正弦定理(2)
在△ABC中,A=120°,AB=5,BC=7,求△ABC的面积.△ABC中,B=30°,AB=23,AC=2,则△ABC的面积是________.在△ABC中,A、B、C的对边分别为a、b、c,若b=a cos C,试判定△ABC的形状.若将条件“b=a cos C”换为“b cos A=a cos B”,试判断△ABC的形状.【解】∵b cos A=a cos B,∴sin B cos A=sin A cos B,∴sin(A-B)=0,∴A-B=0,∴A=B,∴△ABC为等腰三角形.台风中心位于某城市正东方向300 km处,并以40 km/h的速度向西北方向移动,距离台风中心250 km的范围内将会受其影响.如果台风风速不变,那么该城市在多长时间后开始受到台风的影响?这种影响将持续多长时间?(精确到0.1 h)甲船在A点发现乙船在北偏东60°的B点处,测得乙船以每小时a海里的速度向正北行驶.已知甲船的速度是每小时3a海里,则甲船应如何航行才能最快地与乙船相遇?判断三角形形状时忽略隐含条件而致误在△ABC中,(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),试判断△ABC的形状.1.△ABC中,a=5,b=3,C=120°,则sin A∶sin B=________.2.已知△ABC中,AB=6,A=30°,B=120°,则△ABC的面积为________.3.在相距2千米的A,B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A,C 两点之间的距离是________千米.4.在△ABC 中,已知a ,b ,c 分别是角A 、B 、C 的对边,若a b =cos Bcos A ,试判断△ABC的形状.一、填空题1.(2018·岳阳高二检测)在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶4,则A 、B 、C 分别所对边a ∶b ∶c =________.2.(2018·无锡检测)△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,∠A =60°,AC =23,S △ABC =92,则AB =________.3.(2018·南通检测)在三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin A cos C =sin B ,则ac=________.4.在△ABC 中,若a cos A 2=b cos B 2=ccos C 2,则△ABC 一定是________三角形.5.在△ABC 中,a =15,b =10,A =60°,则cos B =________.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,m =(a 2,b 2),n =(tan A ,tan B ),且m ∥n ,那么△ABC 一定是________三角形.7.(2018·德州高二检测)△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.8.在△ABC 中,A =π3,BC =3,则AC +AB 的取值范围是________.二、解答题9.(2018·如皋检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,B =π3,cos A =45,b = 3.(1)求sin C 的值; (2)求△ABC 的面积.10.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断三角形的形状.11.在△ABC 中,若C =3B ,求cb 的取值范围.12、在△ABC 中,求证a -c cos B b -c cos A =sin Bsin A .13、如图所示,D 是直角三角形ABC 的斜边BC 上的一点,且AB =AD ,记∠CAD =α,∠ABC =β. (1)求证sin α+cos 2β=0; (2)若AC =3DC ,求β的值.拓展三角形中的几个隐含条件1.A +B +C =π.2.sin A +B 2=cos C 2,cos A +B 2=sin C 2.3.sin(A +B )=sin C ,cos(A +B )=-cos C .4.任意两边之和大于第三边,任意两边之差小于第三边. 5.在△ABC 中,sin A >sin B ⇔A >B ⇔a >b ;A >B ⇔cos A <cos B .。
人教A版必修第二册高中数学6.4.3余弦定理正弦定理(二)2.正弦定理-教案
《正弦定理》广东番禺中学周净【学习目标】1.能借助向量的运算,探索三角形边长与角度的关系.2.能用向量方法发现和证明正弦定理.3.会用正弦定理求解已知两边和其中一条边的对角、已知两角和夹边等解三角形问题.【学习重点】1.借助向量的运算,探索三角形边长与角度的关系,掌握正弦定理.2.运用正弦定理解三角形.【学习难点】1.正弦定理的证明.2.正弦定理在解三角形中的应用.【教学过程】教学环节教学内容设计意图环节一:情境引入探究问题:余弦定理及其推论分别给出了已知两边及其夹角、已知三边直接解三角形的公式.如果已知两角和一边,是否也有相应的直接解三角形的公式呢?在初中,我们得到了三角形中等边对等角的结论.实际上,三角形中还有大边对大角,小边对小角的边角关系.从量化的角度看,可以将这个边、角关系转化为:在ABC ∆中,设C 的对边为,a B 的对边为b ,求,,,b A B a 之间的定量关系.如果得出了这个定量关系,那么就可以直接解决“在ABC ∆中,已知“,A ,B a 求b ”的问题.我们从熟悉的直角三角形的边、角关系的分析入手.根据锐角三角函数,在R ABC ∆t 中(如图),有sin sin a b A B c c==,,这两个式子有共同元c ,利用它把两个式子联系起来,可得.sin sin a bc A B==又因为sin sin 901C == ,上式可以写成边与它的对角的正弦的比相等的形式,即sin sin sin a b cA B C==.从学生熟悉的余弦定理引入,激发学生的学习兴趣.环节二:探究新知在直角三角形中,有sin sin sina b cA B C==对锐角三角形和钝角三角形,以上关系是否任然成立?因为涉及三角形的边、角关系,所以仍然采用向量的方法来研究.我们希望获得ABC∆中的边,,a b c与它们所对角,,A B C的正弦之间的关系式.在向量运算中,两个向量的数量积与长度、角度有关,这就启示我们可以用向量的数量积来探究.让学生从初中已经掌握的锐角三函数入手,回顾如何利用锐角三角函数解决直角三角形中的边角关系;并提出问题让学生思考锐角三角形和钝角三角形中的情形,启发学生继续借助向量法进行边角关系的研究,加强向量在几何问题中的应用.思考1:向量的数量积运算中出现的是角的余弦,而我们需要的是角的正弦,如何实现转化?由诱导公式cos sin2παα⎛⎫-=⎪⎝⎭可知,我们可以通过构造角之间的互余关系,把边与角的余弦关系转化为正弦关系.下面先研究锐角三角形的情形.如图,在锐角ABC∆中,过点A作与AC垂直的单位向量j,则j与AB的夹角为2Aπ⎛⎫-⎪⎝⎭,j与CB的夹角为2Cπ⎛⎫-⎪⎝⎭.因为AC CB AB+=,所以(),AC CB AB⋅+=⋅j j由分配律,得AC CB AB,⋅+⋅=⋅j j j即||||cos||||cos()||||cos(),222AC CB C AB Aπππ⋅+⋅-=⋅-j j j也即sin sin,a C c A=所以.sin sina cA C=思考1引导学生通过构造角之间的互余关系.通过巧妙的构造单位向量j,描述j与AB及j与CB的夹角,应用向量数量积运算得到余弦关系,并通过诱导公式转为正弦关系,最终得到锐角三角形的正弦定理.同理,过C 作与CB垂直的单位向量m ,可得.sin sin c bC B=所以在锐角三角形中有:sin sin sin a b cA B C==.当ABC ∆是钝角三角形时,不妨设A 为钝角(如图).过点A 作与AC垂直的单位向量j ,则j 与AB 的夹角为2A π⎛⎫- ⎪⎝⎭,j 与CB 的夹角为2C π⎛⎫- ⎪⎝⎭.仿照上述方法,同样可得sin sin sin a b cA B C==.正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等,即sin sin sin a b cA B C==这个公式表达形式的统一性、对称性,不仅使结果更和谐优美,而且更突显了三角形边角关系的本质。
正弦定理(2)
a : b : c sin A : sin B : sin C
面积公式:
S 1 2 a b sin C 1 2 a c sin B 1 2 b c sin A
正弦定理的用途:
(1) 已知两角和任一边,解三角形 解唯一 (2) 已知两边和其中一边的对角,解三角形 解不唯一
结论:已知a,b,A 判断三角形的解的个数 ,求B 无 1.若 sin B > 1,则_____解
例 4 . 在 ABC 中, ( 1) A 60 , a 1, b c 2,解此三角形; ( 2) ab 60 , A cos B , S 15 ,求三角形三内角。 sin
cos A cos B
b a
4 3
, 且 b 8, 半径 .
求 a 及 ABC 的内切圆半径和外接圆
a b c 正弦定理的变形: 2R sin A sin B sin C abc sin A sin B sin C 2R
在 ABC 中, A B 是 sin A sin B 的充要条件。
正弦定理(二)
内容
正 弦 定
在一个三角形中,各边和它所 对角的正弦的比相等
数学表达式
理
a sin A
b sin B
c sin C
正弦定理
a sin A
在一个三角形中,各边和它所对角的 正弦的比相等。
b sin B c sin C
2 RABC外接圆的半径
变形: a 2 R sin A b 2 R sin B c 2 R sin C
解的情况(一解、两解 、无解)
(1 ) (2) (3) (4)
正弦定理(2)
(4) sin
a+b+c A+sin B+sin
=a C sin
=b A sin
=c B sin
. C
正弦定理的用途:
1、已知两角和任一边,求其他两边和一角;
1已知A、B、a. 求C、b、c.
2已知A、B、c.求a、b、C.
2、已知两边和其中一边的对角,求另一边的对角 及其他的边和角
3
2
(1)求 b 的值;(2)求 ABC 的面积.
2
【解析】(1)∵ 0 A ,∴ sin A
1 cos2 A
1
6 3
3, 3
又∵
B
A
2
,∴ sin
B
sin
A
2
cos
A
6, 3
由正弦定 理
a
b
,得 b a sin B 3
6 3
3
2;
sin A sin B
sin A
3
3
(2)
(1)a=10,b=20,A=80°; 解 (1)a=10,b=20,a<b,A=80°<90°, 讨论如下:∵bsin A=20sin 80°>20sin 60°=10 3, ∴a<bsin A,∴本题无解.
(2)a=2 3,b=6,A=30°.
(2)a=2 3,b=6,a<b,A=30°<90°, ∵bsin A=6sin 30°=3,a>bsin A, ∴bsin A<a<b,∴本题有两解.
2
当 B C π 时,由 A B C π, A 2B ,得 π ;
2
2
当 C π 时,由 A B C π, A 2B ,得 π .
正弦定理2
C、等腰直角三角形
D、不能确定
作业:在ABC中
(1)已知b 3 , c 1, B 60 , 求a, 和A,C;
(2)已知a 2 3, b 2 2 , B 45 , 求A。
(3)已知a 20, b 28, A 120 , 解这个三角形.
A、1:2:3
C、1: 3 :2 A、
B、 6
B、3:2:1
D、2:
2 C、 或 3 3
3 :1
练习2、在 ABC中,若 3a=2bsinA,则B=( C )
3
5 D、 或 6 6
练习 3.在ABC中, 若sin 2 A sin 2 B sin 2 C, 则ABC的形状是(B )
'''
b c, B 60 , C B, C为锐角, C 30,A 90
a
c b 2
2 2
(2) 已知a 2 3 , b 2 2 , B 45 , 求A.
2 3 sin45 3 a sin B 解: sin A 2 b 2 2 a b, A C (大边对大角 )
(2)已知A 30 , B C 60 , a 2, 求c.
解:
A 30 , B C 60
B C 150 C 45
a c 又 , sin A sin C
a sin C 2 sin 45 c 2 2 sin A sin 30
B 180 ( A C ) 180 (45 30 ) 105 ,
c si nB 10si n105 b 5( 6 si nC si n30 1 S ABC bc sin A 2
正弦定理(二)课件-高一下学期数学人教A版(2019)必修第二册
由余弦定理,得b2=a2+c2-2accos B.
故 cos B=
2 又0°<B<180°,因此B=45°.
,
2
跟踪训练3
(2)若A=75°,b=2,求a,c的值.
解
sin A=sin (30°+45°)
2+ 6
=sin 30°cos 45°+cos 30°sin 45°= 4 .
正 弦 定 理 (二)
学习目标
1.利用正弦、余弦定理了解三角形中边与角的关系.
2.利用正弦、余弦定理判断三角形的形状.
3.掌握正弦、余弦定理的简单应用.
知 识 梳 理
1.余弦定理b2=a2+c2-2accos B,
a2=b2+c2-2bccos A,
c2=a2+b2-2abcos C,
a
b
c
2.正弦定理sin A=sin B=sin C=2R
3.常见误区:利用正弦定理进行边
形的形状.
和角的正弦相互转化时易出现不等
(3)正弦、余弦定理的综合应用.
价变形.
B=sin
2B·
tan
A,
注意边化角
sin B
sin A
即 sin 2A·
=sin 2B·
.
cos B
cos A
在△ABC中,因为0<A<π,0<B<π,所以sin A≠0,sin B≠0,
所以sin Acos A=sin Bcos B,即sin 2A=sin 2B,
注意正切化
两弦
例2
a2 tan A
2
A
A
A
A
3
必修五正弦定理,余弦定理(2节5课时)
人教A版高中数学必修5全册导学案目录1.1.1正弦定理(2)1.1.2余弦定理(2)1.2.1解三角形应用举例(一)1.2.2解三角形应用举例(二)1.2.3解三角形应用举例(三)1.2.3解三角形应用举例(四)2.1.1数列的概念与简单表示法(一)2.1.2数列的概念与简单表示法(二)2.2.1等差数列(一)2.2.2等差数列(二)2.3.1等差数列的前n项和(一)2.3.2等差数列的前项和(二)2.4.1等比数列(一)2.4.2等比数列(二)2.5.1等比数列的前n项和(一)2.5.2等比数列的前n项和(二)3.1.1不等关系与不等式(一)3.1.2不等关系与不等式(二)3.2.1 一元二次不等式及其解法(一)3.2.2一元二次不等式及其解法(二)3.2.3一元二次不等式及其及解法(三)3.3.1.1二元一次不等式(组)与平面区域(一)3.3.2.1简单的线性规划问题(一)3.3.2.2简单的线性规划问题(二)3.3.2.3简单的线性规划问题(三)3.3.2二元一次不等式(组)与平面区域(二)3.4.1基本不等式(一)3.4.2基本不等式(二)3.4.3基本不等式(三)学案序号: 1 \2 课型: 新授课 时间: 2018/8/ 禄丰一中高 二年级标题 §1.1.1正弦定理【学习目标】1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题. 【重难点】1、会运用正弦定理解斜三角形的两类基本问题.2、掌握正弦定理的证明方法 【自主学习指导】阅读教材第1页-第4页,思考下列问题: 1、 正弦定理还可以怎样推导? 2、 正弦定理用途有哪些?【学习过程】一、 新知:1、 正弦定理文字语言:在一个三角形中,各边和它所对角的 的比相等, 符号语言:sin sin a bA B =sin c C =. 2、 解三角形一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.注意:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c bC B =,sin a A =sin c C . 3、正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C = .二、典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升1. 正弦定理:sin sin a bA B =sin c C = 知识拓展sin sin a b A B =2sin cR C==,其中2R 为外接圆直径.2. 正弦定理的证明方法:①三角函数的定义, 还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角. 【当堂检测】1. 在ABC ∆中,若cos cos A bB a=,则ABC ∆是( ).A .等腰三角形B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定 4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a sin sin sin a b cA B C++++= .6. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.【知识构建】学案序号: 3\4课型: 新授课 时间:2018/8 禄丰一中高 二年级 班标题§1.1.2余弦定理【学习目标】学习目标1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题. 【重难点】1、运用余弦定理解决两类基本的解三角形问题. 【自主学习指导】复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.【学习过程】 一、新知阅读教材第5—7页内容,然后回答问题(余弦定理)<1>余弦定理及其推导过程?<2>余弦定理及余弦定理的应用?思考:已知两边及夹角,如何解此三角形呢?在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵AC = , ∴AC AC ∙=同理可得: 2222c o s a b c b c A =+-, 2222cos c a b ab C =+-. 余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , . [理解定理](1)若C =90︒,则cos C = ,这时222c ab =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角. 二、典型例题例1. 在△ABC 中,已知a =b =45B =,求,A C 和c变式:在△ABC 中,若AB,AC =5,且cos C =910,则BC =________.例2. 在△ABC 中,已知三边长3a =,4b =,c =,求三角形的最大内角.变式:在∆ABC 中,若222a b c bc =++,求角A .三、学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: ① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.※ 知识拓展在△ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角. 【当堂检测】(1)△ABC中,a =2c =,150B =,求b . (2)△ABC 中,2a =,b =,1c ,求A . 1. 已知ac =2,B =150°,则边b 的长为( ).A.B.C.D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60 B .75 C .120 D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ). A13x << B .13x <5 C . 2<x <5 D <x <54. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .6、在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.7、在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅的值.【知识构建】学案序号: 5课型: 习题课 时间:2018/8 禄丰一中高 二年级 班 标题正余弦定理【学习目标】1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形. 【自主学习指导】 复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理. 二、典型例题探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =② A =6π,a,b =A =6π,a =50,b =思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA试试:1. 用图示分析(A 为直角时)解的情况?2.用图示分析(A 为钝角时)解的情况?例1. 在∆ABC 中,已知80a =,100b =,45A ∠=︒,试判断此三角形的解的情况.变式:在∆ABC 中,若1a =,12c =,40C ∠=︒,则符合题意的b 的值有_____个.学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※知识拓展在∆ABC中,已知,,a b A,讨论三角形解的情况:①当A为钝角或直角时,必须a b>才能有且只有一解;否则无解;②当A为锐角时,如果a≥b,那么只有一解;如果a b<,那么可以分下面三种情况来讨论:(1)若sina b A>,则有两解;(2)若sina b A=,则只有一解;(3)若sina b A<,则无解.当堂检测(时量:5分钟满分:10分)计分:1. 已知a、b为△ABC的边,A、B分别是a、b的对角,且sin2sin3AB=,则a bb+的值=().A. 13B.23C.43D.532. 已知在△ABC中,sin A∶sin B∶sin C=3∶5∶7,那么这个三角形的最大角是().A.135°B.90°C.120°D.150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为().A.锐角三角形B.直角三角形C.钝角三角形D.由增加长度决定4. 在△ABC中,sin A:sin B:sin C=4:5:6,则cos B=.5. 已知△ABC中,cos cosb Cc B=,试判断△ABC的形状.一、选择题1.在中,已知角则角A的值是()A.15°B.75°C.105°D.75°或15°2.中,则此三角形有()A.一解 B.两解 C.无解 D.不确定3.若是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在中,已知则AD长为()A.B. C.D.5.在,面积,则BC长为()A.B.75 C.51 D.496.钝角的三边长为连续自然数,则这三边长为()A.1、2、3、B.2、3、4 C.3、4、5 D.4、5、67.在中,,则A等于()A.60°B.45° C.120°D.30°8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D.等边三角形9.在中,,则等于()A.B.C.D.10.在中,,则的值为()A.B.C.D.11.在中,三边与面积S的关系式为则角C为()A.30°B.45°C.60°D.90°12.在中,是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题13.在中,,则14.若的三个内角成等差数列,且最大边为最小边的2倍,则三内角之比为________。
正弦定理2
C
B
a
猜想:对其它三角形此结论是否成立?
当△ABC是锐角三角形时,设边AB上的高是 CD,由三角函数的定义,
C
CD=asinB, CD=bsinA
a
b
所以 asinB=bsinA
得到 a b , sinA sinB
B
D
A
同理,在ABC 中, c b sinC sinB
探究:
1、当△ABC是钝角三角形时,以上等式成立吗?
学以致用
例1、在△ABC中,已知A=32.00,B=81.80, a=42.9cm,解三角形。
你来试一试!
在△ABC中,已知c 10,A 45 ,C 30 . 求角B和边b.
解: B 180 (A C) 105
∵
bc B sinC
b csin B sin C
10sin105o sin30o
探究问题:
我们知道,在任意的三角形中有大边对 大角,小边对小角的边角关系。我们能否 得到这个边、角关系准确量化的表示呢?
直角三角形:已知一锐角和一边,求其余元素.
a
b
sinA= c sinB= c sinC= 1 。 A
所以
c=
a sin
A
c=
b sin B
c=
c sin C
b
c
结论: a b c sin A sin B sin C
A.
π 3
B.π6
C.
π 3
或 2π
3
D.π6
或
5π 6
练习3、在
ABC中,coasB
b cos A
,则
ABC的形状是
A.等腰三角形
B.直角三角形
正弦定理2
3、在 ABC中,b 3, B 60 , c 1, 求a和A, C
0
4
、
ABC中,c 6 , A 45 , a 2, 求b和B, C
0
正弦定理的应用
例题讲解
例3 在 ABC 中, B 45, C 60, a 2( 3 1) ,求
ABC 的面积S. 解:
a b c (1)正弦定理: 2R sin A sin B sin C
(2)正弦定理解两种类型的三角问题:
(1)已知两角和任意一边,可以求出其他两边和一角;唯一解 (2)已知两边和其中一边的对角,可以求出三角形的其他 的边和角。注意解的个数
(3)正弦定理的变形:
①
a 2R sin A, b 2R sin B, c 2R sin C
a b c 同样可证得: A sin B sin C sin
j A C
(1)已知 ABC 中,A= 30°,a=1,b=2,则 ( ) A、有一解 B、有两解 C、无解 D、不能确定
(2)已知ABC 中,A=30°, a= 2,b=2,则 ( ) A、有一解 B、有两解 C、无解 D、不能确定 (3)已知 ABC 中,A=30°, a= 1 ,b=2,则 ( ) 2 A、有一解 B、有两解 C、无解 D、不能确定 (4)已知 ABC 中,A=30°,a=m ,c=10,有两解,则m范围 是 。
注意解的情况(利用大边对大角、内角和定理等)
周五作业
1、根据已知条件判断△ABC解的情况. (1) b=1 ,a=2,B=30o (2)b=1, a=3,B=30o (3)b=1,a= 3,B=30o (4)b=1,a= 3 ,B=150o (5)b= 3 ,a=1,B=120o
1_1正弦定理(2)
1.1正弦定理(2)(时间: )1.正弦定理的教学要达到“记熟公式”和“运算准确”这两个目标;正弦定理的应用.正弦定理与三角形问题的结合.1.正弦定理:在△ABC 中,===CcB b A a sin sin sin R 2, 变形:(1)A R a sin 2=,_____________,________________.(2)RaA 2sin =,______________,________________.2.三角形的面积公式:C ab s sin 21==_______ __=_____ ____【例1】如图,某登山队在山脚A 处测得山顶B 的仰角为45︒,沿倾斜角为30︒的斜坡前进1000m 后到达D 处,又测得山顶的仰角为60︒,求山的高度BC .【例2】在ABC ∆中,已知CcB b A a cos cos cos ==,试判断ABC ∆的形状.ABCD E 603045【例3】在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=.【例4】(1)在ABC ∆中,已知150,3,2===C b a ,求ABC S ∆(2)在ABC ∆中,已知30,45,10===C A c ,求,b ABC S ∆。
变式训练:在ABC ∆中,已知135,5,4===A c b ,则ABC ∆的面积?: 本节课主要思想方法:1.根据以下条件,判断ABC ∆的形状: (1)C B A 222sin sin sin =+;(2)B b A a cos cos =.2.在ABC ∆中,若︒=60A ,3=a ,则=++++CB A cb a sin sin sin ________________.3.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B ,要测算出A ,B 两点间的距离,测量人员在岸边定出基线BC ,测得m BC 78=,︒=∠60B ,︒=∠45C ,试计算AB 的长.一、填空题 1.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于________.2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 的形状是________.3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是________.4.在△ABC 中,a =2b cos C ,则这个三角形一定是________三角形.5.如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的面积等于________.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为________.7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =___.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C = _.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.二、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.水平提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为________.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .1.1 正弦定理(二)答案作业设计 1. 7∶5∶3解析 ∵(b +c)∶(c +a)∶(a +b)=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k>0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72k b =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3. 2.等边三角形解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C.3.⎝⎛⎦⎤0,403 解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.等腰解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin (B +C)=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin (B -C)=0,∴B =C. 5.8π解析 ∵2R =4sin 45°=42,∴R =2 2.∴S =πR 2=8π.6.1解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc4=14,∴abc =1. 7.2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3.8.2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B ,∴sin B =12,故B =30°或150°.由a>b ,得A>B ,∴B =30°,故C =90°,由勾股定理得c =2. 9.7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.11.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B 2R sin B -2R sin C cos A =sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin Bsin A=右边.所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 13.75°解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A =sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.解 cos B =2cos 2 B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin (π-B -C)=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.。