Y_【人教版】2019年数学八下:第18章《平行四边形》全章名师教案(含解析)
人教版数学八年级下册第18章18.1.1平行四边形的性质(教案)
一、教学内容
人教版数学八年级下册第18章18.1.1《平行四边形的性质》:
1.平行四边形的定义及表示方法;
2.平行四边形的基本性质:对边平行且相等,对角相等,对角线互相平分;
3.平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;
举例:讲解平行四边形性质时,通过具体图形和实例,强调性质的应用,如通过性质推导出平行四边形对角线相等的一半定理。
2.教学难点
-理解对角线互相平分的性质:学生往往难以直观理解对角线互相平分的概念,需要通过图形演示和实际操作来加强认识。
-平行四边形的判定方法的应用:在具体问题中,学生可能难以识别哪些边是平行的,需要训练学生观察图形和分析问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行四边形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状类似窗户的平行四边形的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是四边形的一种,其对边平行且相等,对角相等,对角线互相平分。它在几何图形中具有重要地位,广泛应用于建筑、设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个实际图形,展示平行四边形性质在实际中的应用,以及如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
人教版八年级数学下册第十八章《平行四边形》同步教学设计
(二)讲授新知
1.教学活动:教师引导学生通过观察、实践,总结平行四边形的性质。接着,教师以讲解、举例等形式,向学生介绍平行四边形的判定方法、面积计算等知识。
2.设计意图:通过学生自主探究和教师讲解相结合的方式,让学生掌握平行四边形的性质、判定方法和面积计算,提高学生的几何图形分析能力。
4.培养学生遵守数学规范,养成良好的学习习惯,提高他们的思维品质和道德素养。
在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,引导学生主动思考、积极探究,使他们在掌握知识的同时,提高解决问题的能力。通过本章节的学习,使学生全面了解平行四边形的性质和判定方法,为后续学习特殊平行四边形打下坚实基础。
在整个教学过程中,教师要以学生为中心,关注学生的参与度和学习效果,适时调整教学策略。同时,注重启发式教学,引导学生主动探究、积极思考,使他们在掌握平行四边形知识的同时,提高解决问题的能力。
五、作业布置
为了巩固学生对平行四边形知识的掌握,提高他们的应用能力和创新能力,特布置以下作业:
1.基础知识巩固:
(1)研究特殊平行四边形(矩形、菱形、正方形)的性质和判定方法,尝试总结它们之间的关系。
(2)探索平行四边形与三角形、圆等其他几何图形的结合,发现新的性质或规律。
4.小组合作:
(1)以小组为单位,共同完成一道综合性的平行四边形问题,要求分工合作,共同探讨,提交一份详细的解题报告。
(2)小组内开展“平行四边形知识竞赛”,互相提问、解答,提高团队合作能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已具备一定的几何图形识别和性质分析能力。在本章节学习平行四边形之前,他们已经掌握了三角形、四边形的基本性质和判定方法,为学习平行四边形奠定了基础。然而,学生在面对复杂的几何问题时,可能会出现分析能力不足、解题思路不清晰等问题。因此,在本章节教学中,教师需关注以下几点:
【人教版】数学八下:第18章《平行四边形》全章名师教学设计
【人教版】数学八下:第18章《平行四边形》全章名师教学设计一. 教材分析人教版数学八下第18章《平行四边形》是学生在学习了四边形的性质和分类之后的内容,本章主要引导学生探究平行四边形的性质,并学会运用这些性质解决实际问题。
本章内容包括平行四边形的定义、性质、判定以及平行四边形的应用。
通过本章的学习,学生能进一步理解和掌握四边形的分类,提高解决几何问题的能力。
二. 学情分析学生在学习本章之前,已经掌握了四边形的性质和分类,具备一定的几何思维能力。
但部分学生对几何图形的理解和操作能力仍需提高,因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和辅导。
三. 教学目标1.理解平行四边形的定义和性质,掌握平行四边形的判定方法。
2.能够运用平行四边形的性质解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力、逻辑思维能力和团队合作能力。
四. 教学重难点1.平行四边形的定义和性质的理解与运用。
2.平行四边形的判定方法的掌握。
3.实际问题中平行四边形性质的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结等方式主动学习。
2.利用多媒体课件和实物模型,直观展示平行四边形的性质和判定,增强学生的空间想象能力。
3.注重个体差异,实施分层教学,针对不同水平的学生给予适当的辅导和指导。
4.小组合作学习,培养学生的团队合作能力和沟通能力。
六. 教学准备1.多媒体课件和教学软件,用于展示平行四边形的性质和判定。
2.实物模型和教具,用于直观展示平行四边形的性质。
3.练习题和实际问题,用于巩固和拓展学生的知识。
4.教学计划和教学反思表,用于指导教学过程和评价教学效果。
七. 教学过程1.导入(5分钟)利用多媒体课件展示平行四边形的图片,引导学生回顾四边形的分类,激发学生对平行四边形的学习兴趣。
2.呈现(10分钟)介绍平行四边形的定义和性质,通过实物模型和教具直观展示平行四边形的性质,引导学生理解和掌握。
八年级下册第18章-平行四边形-全章教案
第十八章平行四边形18.1.1 平行四边形及其性质(一)教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.重点、难点4.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.5.难点:运用平行四边形的性质进行有关的论证和计算.教学过程一.温故知新:1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。
2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。
二.学习新知:1.自学课本P83~P84,填空:平行四边形的性质(1)边:_________________________________________________________(2)角:_________________________________________________________ 例:□ABCD 中,如果AB ∥CD ,那么AB =______,BC =______,∠A =______,∠B =______. 三.释疑提高:1.□ABCD 中,两邻角之比为1∶2,则它的四个内角的度数分别是____________.2.□ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长是__________.3.如图,在□ABCD 中,M 、N 是对角线BD 上的两点,BN=DM ,请判断AM 与CN 有怎样的数量关系,并说明理由.它们的位置关系如何呢?4.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60°,BE =2cm ,DF =3cm ,求□ABCD 的周长和面积.若问题改为CF =2cm ,CE =3cm ,求□ABCD 的周长和面积.四.小结归纳: 五.巩固检测NMDCBAFEDCBA18.1.1 平行四边形的性质(二)教学目标:1、理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3、培养学生的推理论证能力和逻辑思维能力. 重点、难点重点:平行四边形对角线互相平分的性质,以及性质的应用. 难点:综合运用平行四边形的性质进行有关的论证和计算. 教学过程 一.温故知新:1.平行四边形的定义是:_______________________________________________.2.所学平行四边形的性质有:平行四边形的对边______________,平行四边形的对角______________.3.如图,在□ABCD 中,BC=2AB ,M 是AD 的中点,则∠BMC =___________. 二.学习新知:1.自学课本P 85~86内容,填空:平行四边形的又一个性质是:______________________________,当图形中没有平行四边形的对角线时,往往需作出对角线. 由此得到平行四边形的性质有:(1)边:_____________ (2)角:_____________ (3)对角线:MD CBA_____________ 三.释疑提高:1.在□ABCD 中,AC 、BD 交于点O ,已知AB =8cm ,BC =6cm ,△AOB 的周长是18cm ,那么△AOD 的周长是_____________.2. □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________.3. □A BCD 的周长为60cm ,对角线交于点O ,△BOC 的周长比△AOB 的周长小8cm ,则AB =______cm ,BC =_______cm .4. □ABCD 中,对角线AC 和BD 交于点O ,若AC =8,AB =6,BD =m ,那么m 的取值范围是____________.5. □ABCD 中,E 、F 在AC 上,四边形DEBF 是平行四边形.求证:AE=CF .6.如图,田村有一口四边形的池塘,在它的四角A 、B 、C 、D 处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.四.小结归纳: 五.巩固检测ODCBAFE DCBADCBA18.1.2 平行四边形的判定(一)教学目标:在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.会综合运用平行四边形的判定方法和性质来解决问题. 培养用类比、逆向联想及运动的思维方法来研究问题. 重点、难点重点:平行四边形的判定方法及应用.难点:平行四边形的判定定理与性质定理的灵活应用. 教学过程 一.温故知新1.如图在平行四边形ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于E ,则∠BCE = .2.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,已知AE =4,AF =6,□ABCD 的周长为40,试求□ABCD 的面积。
八年级数学下册 第十八章 平行四边形教案 (新版)新人教版
第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的性质(1)理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.重点平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.一、复习导入1.师:我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象.生:平行四边形.师:平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?生:自动伸缩门、挂衣服的简易衣钩等.师:你能总结出平行四边形的定义吗?(小组讨论,教师总结)(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“▱”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.①∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC(性质).2.探究.师:平行四边形是一种特殊的四边形,它除了具有四边形的性质和两组对边分别平行的性质外,还有什么特殊的性质呢?我们一起来探究一下.(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.如图,已知:▱ABCD.求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.由上面的证明可知:∠1=∠3,∠2=∠4,∴∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形的性质1 平行四边形的对边相等.平行四边形的性质2 平行四边形的对角相等.二、新课教授【例】教材第42页例1师:距离是几何中的重要度量之一,前面我们已经学习了点与点之间的距离、点到直线的距离.在此基础上,我们结合平行四边形的概念和性质,介绍平行线之间的距离.如图1,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.也就是说,两条平行线之间的任何两条平行线段都相等.从上面的结论可以知道,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.如图2,a∥b,A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.三、巩固练习1.▱ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60°B.80°C.100°D.120°【答案】C2.在下列图形的性质中,平行四边形不一定具有的是( )A.对角相等B.对角互补C.邻角互补D.内角和是360°【答案】B3.在▱ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有( )A.4个B.6个C.8个D.9个【答案】D四、课堂小结1.两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:对边平行;对边相等;对角相等我在设计本节课时先让学生看图形,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质.因为本章课标明确要求学生能够规范地写出说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程.第2课时平行四边形的性质(2)理解并掌握平行四边形对角线互相平分的性质.重点平行四边形对角线互相平分的性质以及性质的应用.难点综合运用平行四边形的性质进行有关的论证和计算.一、复习导入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是360°);②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.探究:请学生在纸上画两个全等的平行四边形ABCD和平行四边形EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将四边形ABCD绕点O旋转180°,观察它是否还是和四边形EFGH重合.你能从中看出前面所提到的平行四边形的边、角关系吗?你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.二、新课教授【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.证明:在▱ABCD中,AB∥CD,∴∠1=∠2,∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(AAS).∴OE=OF,AE=CF(全等三角形的对应边相等).∵四边形ABCD是平行四边形,∴AB=CD(平行四边形的对边相等).∴AB-AE=CD-CF,即BE=FD.引申:若例1中的条件都不变,将EF转动到图①的位置,那么例1的结论是否成立?若将EF向两边延长与平行四边形的两条对边的延长线分别相交(图②和图③),例1的结论是否成立?说明你的理由.解略.【例2】教材第44页例2三、巩固练习1.▱ABCD中,∠A的余角与∠B的和是120°,则∠A=________,∠B=________.分析:平行四边形的邻角互补.【答案】75°105°2.平行四边形的周长等于56 cm,两邻边的长的比为3∶1,那么这个平行四边形较长的边长为________.分析:平行四边形的对边相等.【答案】21 cm3.▱ABCD的周长为60 cm,对角线交于点O,△AOB的周长比△BOC的周长大8 cm,则AB,BC的长分别是________.分析:平行四边形的对边相等,对角线互相平分.【答案】19 cm,11 cm4.▱ABCD的周长为50 cm,AB=15 cm,∠A=30°,则此平行四边形的面积为________.分析:平行四边形的对边相等,面积等于边与该边上的高的乘积.【答案】75 cm2四、课堂小结定义:两组对边分别平行的四边形是平行四边形.性质:(1)边的性质:对边平行且相等;(2)角的性质:对角相等,邻角互补;(3)对角线的性质:对角线互相平分.课堂中,我通过让学生说一说、找一找等多种活动,在同桌合作、小组合作等活动交流中,让学生充分感知四边形的特征,培养了学生的合作意识、交流的能力和动手操作的能力.在作业方面,让学生以小组为单位,在校园中寻找我们身边的四边形,让学生感受数学在生活中的应用,感受数学真正就在我们身边.18.1.2平行四边形的判定第1课时平行四边形的判定(1)使学生掌握用平行四边形的定义判定一个四边形是否是平行四边形的方法.重点平行四边形的判定方法及应用.难点平行四边形的判定定理与性质定理的灵活应用.一、复习导入1.什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2.将以上的性质定理分别用命题的形式叙述出来.(即用“如果……那么……”的形式)根据平行四边形的定义,我们研究了平行四边形的其他性质,那么如何判定一个四边形是否是平行四边形呢?除了定义,还有什么方法?平行四边形性质定理的逆命题是否成立?可以证明,这些逆命题都成立,于是得到平行四边形的判定定理:平行四边形的判定方法1 两组对边分别相等的四边形是平行四边形.平行四边形的判定方法2 两组对角分别相等的四边形是平行四边形.平行四边形的判定方法3 对角线互相平分的四边形是平行四边形.下面我们以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明.如图,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD,求证:四边形ABCD是平行四边形.证明:∵OA=OC,OB=OD,∠AOD=∠COB,∴△AOD≌△COB,∴∠OAD=∠OCB,∴AD∥BC,同理AB∥DC,∴四边形ABCD是平行四边形.二、新课教授【例1】教材第46页例3【例2】已知:如图,E,F分别为平行四边形ABCD的两边AD,BC的中点,连接BE,DF.求证:∠1=∠2.证明:在△ABE和△CDF中,∠A=∠C,AB=CD,AE=CF,∴△ABE≌△CDF,∴BE=DF.又∵DE=BF,∴四边形BFDE是平行四边形,∴∠1=∠2.三、巩固练习1.下列条件中,能判断四边形是平行四边形的是( )A.对角线互相垂直B.对角线相等C.对角线互相垂直且相等D.对角线互相平分【答案】D2.已知:如图,▱ABCD中,点E,F分别在CD,AB上,DF∥BE,EF交BD于点O.求证:EO=OF.【答案】证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴DE∥BF.又DF∥BE,∴四边形DEBF为平行四边形,∴EO=OF.四、课堂小结1.平行四边形的三个判定定理.2.会用四边形的三个判定定理解决简单的问题.在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识.第2课时平行四边形的判定(2)理解并掌握平行四边形的判定定理.重点理解并掌握平行四边形的判定定理,做到熟练应用.难点理解并掌握平行四边形的判定定理,体会几何推理的思维方法.一、复习导入1.平行四边形的定义是什么?2.平行四边形具有哪些性质?3.平行四边形是如何判定的?教师板书,并画出一个平行四边形,如图.(帮助理解)学生活动:踊跃发言,相互讨论,回顾平行四边形的性质与判定定理.二、讲授新课师:通过前面的学习,我们知道,如果一个四边形是平行四边形,那么它的任意一组对边平行且相等.那么反过来,一组对边平行且相等的四边形是平行四边形吗?下面我们就来证明这个结论是否正确.如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:连接AC.∵AB∥CD,∴∠1=∠2.又AB=CD,AC=CA,∴△ABC≌△CDA,∴BC=DA,∴四边形ABCD的两组对边分别相等,它是平行四边形.于是我们又得到平行四边形的一个判定定理:一组对边平行且相等的四边形是平行四边形.三、例题讲解【例1】教材第47页例4【例2】已知:如图,在▱ABCD中,AE,CF分别是∠DAB,∠BCD的平分线.求证:四边形AFCE是平行四边形.证明:∵四边形ABCD是平行四边形,∴∠DAB=∠BC D.∵AE,CF分别平分∠DAB,∠BCD,∴∠DAE=∠BCF.又∵∠D=∠B,AD=BC,∴△DAE ≌△BCF,∴DE=BF,AE=FC,∴EC=AF,∴四边形AFCE是平行四边形.【例3】已知:如图,▱ABCD中,E,F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF.∵BE⊥AC于E,DF⊥AC于F,∴BE∥DF,且∠BEA=∠DFC=90°.∴△ABE≌△CDF(AAS).∴BE=DF.∴四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形).四、巩固练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形.( )(2)两组对角分别相等的四边形是平行四边形.( )(3)一组对边平行,另一组对边相等的四边形是平行四边形.( )(4)一组对边平行且相等的四边形是平行四边形.( )(5)对角线相等的四边形是平行四边形.( )(6)对角线互相平分的四边形是平行四边形.( )【答案】(1)√(2)√(3)×(4)√(5)×(6)√2.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO =BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.【答案】略五、课堂小结平行四边形性质判定⎩⎪⎨⎪⎧⎩⎪⎨⎪⎧两组对边分别平行两组对边分别相等一组对边平行且相等角——两组对角分别相等对角线——两条对角线互相平分经过这两节课的学习,学生基本掌握了几何证明题的解题方法,能应用平行四边形的性质和判定方法解决问题.在以后的学习过程中最主要的任务是让学生落实到笔头上,要让学生学会反思做完的每一道题.第3课时 平行四边形的判定(3)1.理解并掌握三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线的性质进行有关的证明和计算.重点掌握并运用三角形中位线的性质解决问题. 难点三角形中位线性质的证明.(辅助线的添加方法)一、复习导入创设情境:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的? 二、讲授新课师:在前面学习平行四边形时,常把它分成几个三角形,利用三角形全等的性质研究平行四边形的有关问题.下面我们利用平行四边形来研究三角形的有关问题.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,连接DE ,像DE 这样,连接三角形两边中点的线段,我们称之为三角形的中位线,我们猜想,DE ∥BC ,DE =12BC.下面我们对它进行证明.如图,D ,E 分别是△ABC 的边AB ,AC 的中点.求证:DE∥BC,且DE =12BC.分析:本题既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一条线段长的一半,将DE 延长一倍后,可以将证明DE =12BC 转化为证明延长后的线段与BC相等.又由于E 是AC 的中点,根据对角线互相平分的四边形是平行四边形构造一个平行四边形,利用平行四边形的性质进行证明.证明:如图,延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF. ∵AE =EC ,DE =EF ,∴四边形ADCF 是平行四边形, ∴CF 綊DA. ∴CF 綊BD∴四边形DBCF 是平行四边形, ∴DF 綊BC. 又DE =12DF ,∴DE ∥BC ,且DE =12BC.通过上述证明,我们可以得到三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半. 三、例题讲解【例】已知:如图,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.证明:连接AC ,在△DAC 中, ∵AH =HD ,CG =GD ,∴HG ∥AC ,HG =12AC(三角形中位线的性质).同理EF∥AC,EF =12AC.∴HG ∥EF ,且HG =EF. ∴四边形EFGH 是平行四边形.此题可得结论:顺次连接四边形四条边的中点,所得的四边形是平行四边形. 四、巩固练习1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC 和BC的中点M,N.如果测得MN=20 m,那么A,B两点的距离是________m,理由是________________________.【答案】40 MN是△ABC的中位线2.如图,△ABC中,D,E,F分别是AB,AC,BC的中点.(1)若EF=5 cm,则AB=________cm;若BC=9 cm,则DE=________cm;(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想.【答案】(1)10 4.5 (2)AF与DE互相平分,证明略五、课堂小结三角形中位线定理:三角形两边中点的连线是三角形的中位线;三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线是三角形中一条重要的线段,三角形中位线定理在许多计算及证明中都要用到.在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣.在问题情境中引出三角形的中位线,导入本节学习的课题;同时,为证明三角形的中位线定理埋下伏笔,也是有助于用运动的思想来思考数学问题.此时教学体现的是人人都能获得必需的数学.三角形的中位线的性质定理的简单应用,学生都能掌握,这个定理在实际生活中的应用是非常广泛的.18.2特殊的平行四边形18.2.1矩形第1课时矩形(1)掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.重点矩形的性质.难点矩形的性质的灵活应用.一、复习导入1.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动的过程,如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本节课题及矩形的定义.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如门窗框、书桌面、教科书的封面、地砖等都有矩形的形象.探究:在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质: 矩形的性质1 矩形的四个角都是直角. 矩形的性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC ,BD 相交于点O ,由性质2有AO =BO =CO =DO =12AC=12BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.二、新课教授【例1】教材第53页例1【例2】已知:如图,矩形ABCD 中,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A 到BD 的距离AE 的长.分析:因为矩形的四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:设AD =x cm ,则对角线长(x +4) cm ,在Rt △ABD 中,由勾股定理,得x 2+82=(x +4)2,解得x =6,即AD =6 cm .由AE·DB=AD·AB,解得AE =4.8 cm .三、巩固练习1.矩形的两条对角线的夹角为60°,对角线的长为15 cm ,较短边的长为( )A.12 cm B.10 cmC.7.5 cm D.5 cm【答案】C2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A,∠B的度数.【答案】∠A=60°,∠B=30°四、课堂小结1.掌握矩形的定义及性质.2.会用矩形的性质求相关的角的度数.本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,培养学生的学习能力及运用所学知识解决问题的能力,促进学生发展.第2课时矩形(2)通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的探究过程,掌握矩形的三种判定方法,并会运用它们解决相关问题.重点矩形的判定.难点矩形的判定定理及性质的综合应用.一、复习提问,引入新课师:什么叫做平行四边形?什么叫做矩形?生:两组对边分别平行的四边形叫做平行四边形.有一个角是直角的平行四边形叫做矩形.师:矩形有哪些性质?生:矩形的四个角都是直角,矩形的对角线相等.师:矩形是有一个角是直角的平行四边形,判定一个四边形是不是矩形,首先要看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”来判定是最重要和最基本的判定方法.除此之外,还有其他几种判定矩形的方法,下面我们就来研究这些方法.二、提出疑问,引导探索师:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来了两根长度相同的长木条和两根长度相同的短木条制作.你有什么方法可以检测他做的相框是否为矩形?生:可以用量角器量一下它的一个内角,若是90°,则这个相框为矩形.师:对,这是根据矩形的定义得到的,定义法突出是在平行四边形的基础上添加了一个条件(有一个角是直角),观察矩形和平行四边形,除了角的特性外,边和对角线还有特性吗?生:“边”没有特性,“对角线”是相等的.师:我们是否可以利用这一特性来判定四边形是不是矩形呢?请把这个判定用命题的形式写出来.生:对角线相等的平行四边形是矩形.师:这个命题是否正确?(分析命题的题设和结论,写出已知和结论,分析证明过程)证明过程由学生板书完成.师(归纳板书):定理:对角线相等的平行四边形是矩形.师:对角线相等的四边形是矩形吗?生:不一定是矩形.师:画出反例,如下图所示的四边形,对角线相等,但它不是矩形(先画两条相等但不互相平分的相交线段,再顺次连接各端点得四边形).师生讨论,归纳矩形的判定方法:定义:有一个角是直角的平行四边形是矩形.定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.(除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.)三、例题讲解【例1】教材第54页例2【例2】如图,在△ABC中,AB=AC,点D是AC的中点,AE∥BC,过点D作直线EF∥AB,分别交AE,BC于E,F.求证:四边形AECF是矩形.证明:∵点D是AC的中点,∴AD=CD.∵AE∥BC,∴∠EAD=∠DCF.∴△ADE≌△CDF,∴AE=FC.∵AE∥BF,AB∥EF.∴四边形ABFE和四边形AFCE是平行四边形,∴AB=EF,又∵AB=AC,∴EF=AC,∴平行四边形AFCE是矩形.四、课堂练习已知:O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,AE=BF=CG=DH.求证:四边形EFGH为矩形.【答案】证明:∵四边形ABCD 为矩形, ∴AC =BD.∵AC ,BD 互相平分于O , ∴AO =BO =CO =DO. ∵AE =BF =CG =DH , ∴EO =FO =GO =HO.∴四边形EFGH 是平行四边形且HF =EG , ∴四边形EFGH 为矩形. 五、课堂小结⎭⎪⎬⎪⎫一个角是直角的平行四边形对角线相等的平行四边形有三个角是直角的四边形是矩形本节课在引入时,我先提出一个实际生活问题,激发学生的求知欲望,再引导学生逆向思考问题,从而让学生提出“对角线相等的平行四边形是矩形”这一结论,最后通过逻辑推理证明命题的正确性,为以后学习其他特殊的四边形的判定打下了基础. 18.2.2 菱 形第1课时 菱 形(1)1.探索并掌握菱形的概念和它所具有的特殊性质,会进行简单的推理和运算. 2.能推导出菱形的面积等于它的两条对角线长的积的一半的性质.重点菱形的概念及性质. 难点菱形性质的灵活应用.一、创设情境,导入新课 活动:(四人一个小组)将一张硬纸片对折后再对折,然后剪成一个三角形,打开观察并讨论. 师:这是一个什么样的图形?为什么?(学生独立操作,教师演示) 生:是平行四边形,因为它的对角线是互相平分的.师:再观察一下,这个平行四边形的邻边之间有什么关系?为什么?生:是相等的,因为它们是重合的.师(板书):菱形的定义:我们把有一组邻边相等的平行四边形叫做菱形.(强调菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等)二、探索研究,归纳性质活动:菱形具有什么性质呢?你能发现吗?1.折叠:上下对折,左右对折,你有什么发现?2.旋转.结合学生探索、讨论、交流的情况,必要时教师对知识做适当梳理,板书菱形的性质.菱形的性质1:菱形的四条边都相等.菱形的性质2:菱形的对角线互相垂直,并且每条对角线平分一组对角.菱形是轴对称图形,两条对角线所在的直线都是它的对称轴.师:这些性质我们是通过折叠、旋转观察得到的.如何用逻辑推理的方法证明它呢?已知:如图,在菱形ABCD中,AC,BD相交于O.求证:AC⊥BD,AC平分∠BAD和∠BCD.证明:∵AB=AD,BO=OD,∴AC⊥BD,AC平分∠BAD(等腰三角形三线合一).同理:AC平分∠BCD,BD平分∠ABC和∠ADC.三、继续探索,深化提高师:菱形的对角线将菱形分成几个三角形?它们都是什么三角形?有什么关系?生:是四个全等的直角三角形.师:如果已知菱形的对角线的长度,能求出一个三角形的面积吗?生:可以求出.师:进而就可以求出菱形的面积.试说明菱形的面积等于它的两条对角线线长的积的一半.已知:在菱形ABCD中,对角线AC,BD相交于O点.求证:在菱形ABCD 中,S 四边形ABCD =12AC×BD.证明:在菱形ABCD 中,AC ,BD 是对角线, ∴AC ⊥BD ,OB =OD =12BD ,S 四边形ABCD =S △ABC +S △ACD =12AC×OB+12AC×OD =12AC×(OB+OD) =12AC×BD. 即菱形的面积等于它的两条对角线长的积的一半. 师:菱形是特殊的平行四边形,所以它的面积公式有两个. 菱形的面积=底×高;菱形的面积=12ab(a ,b 是两条对角线的长度).四、例题讲解【例1】菱形ABCD 的两条对角线AC ,BD 的长度分别为4 cm ,3 cm ,求菱形ABCD 的面积和周长.分析:用勾股定理可求得边长,进而求得周长. 解:如图,由题可知AO =2,BO =32,∴AB =AO 2+BO 2=52,∴菱形ABCD 的周长为4×52=10(cm ),面积为12×4×3=6(cm 2).【例2】教材第56页例3 五、课堂练习1.菱形的两条对角线的长分别为6 cm 和8 cm ,那么菱形的面积是________. 【答案】24 cm 22.一菱形的周长为52 cm ,其中一条对角线长10 cm ,则其另一条对角线的长为________.【答案】24 cm。
人教版八年级数学下册第十八章《平行四边形》教学设计
五、作业布置
为了巩固学生对平行四边形性质的理解和应用,以及提高他们解决实际问题的能力,特布置以下作业:
1.请学生完成课本第十八章相关练习题,特别是涉及到平行四边形性质和判定方法的题目,要求学生独立完成,并在作业中体现解题思路和过程。
5.针对不同层次的学生,布置分层次的作业,使每个学生都能在作业中找到适合自己的挑战点。例如:
-基础层次:完成基本的性质和判定题目;
-提高层次:解决实际问题,如计算平行四边形面积、周长等;
-拓展层次:研究特殊平行四边形的性质和应用,或探索平行四边形与其他几何图形的关系。
6.要求学生在完成作业后进行自我检查,对错误进行反思和总结,以便在下次课堂中得以纠正和巩固。
二、学情分析
八年级学生在前两年的学习中,已经积累了丰富的几何图形知识,对三角形、四边形等基本图形有了较为深入的了解。在此基础上,学生对平行四边形的认识处于一个关键阶段。他们已经能够把握平行四边形的基本概念,但对于其性质和判定方法的理解尚需加强。此外,学生在解决实际问题时,可能存在将理论知识与实际问题相结合的困难。因此,在教学过程中,应注重引导学生从生活实例中发现平行四边形的性质,提高他们运用几何知识解决实际问题的能力。同时,针对学生个体差异,关注不同层次学生的学习需求,激发他们的学习兴趣,帮助他们建立自信,使全体学生都能在原有基础上得到提高。
-特殊平行四边形有哪些性质和应用?
2.各小组汇报讨论成果,其他小组进行补充和评价;
3.教师点评,总结讨论过程中的优点和不足,指导学生正确理解和掌握平行四边形的性质。
(四)课堂练习
1.设计具有梯度、层次的练习题,让学生巩固平行四边形的性质和判定方法;
人教版八年级下册第18章第1节平行四边形平行四边形的性质(教案)
通过典型例题,展示平行四边形性质的运用,培养学生解决问题的能力。
4.练习巩固
设计不同难度的练习题,让学生巩固所学知识,提高解题能力。
5.总结与拓展
a.对平行四边形的性质进行总结;
b.引导学生思考平行四边形在实际生活中的应用,激发学生Байду номын сангаас习兴趣。
三、教学评价
1.课堂问答
通过提问,了解学生对平行四边形性质的理解和应用情况。
-利用多媒体动画,展示平行四边形的动态形成过程,增强学生的空间感。
-布置一些需要动手操作的任务,如制作平行四边形模型,让学生在实践中加深理解。
1.核心素养目标
a.理解平行四边形的定义和性质,培养学生空间观念和推理能力;
b.学会运用平行四边形的性质进行推理和解决问题,提高学生的数学建模和数学抽象能力;
二、核心素养目标
1.培养学生的空间观念和几何直观,通过探究平行四边形的性质,使学生在图形的认识和操作中发展空间想象能力。
2.提高学生的逻辑推理能力,学会运用定义和性质进行严谨的证明和推理,培养演绎推理的思维习惯。
3.增强学生的数学应用意识,将平行四边形的性质应用于解决实际问题,提高解决问题的能力。
4.培养学生的合作意识和交流能力,通过小组讨论、合作探究平行四边形的性质,促进学生间的交流与合作。
c.通过实际操作和练习,使学生感受平行四边形在实际生活中的应用,增强学生的应用意识。
二、教学过程
1.引入新课
通过生活中的实例引入平行四边形,让学生初步感知平行四边形的特点和性质。
2.探索平行四边形的性质
a.学生通过观察、思考和讨论,发现平行四边形的性质;
b.教师引导学生运用几何画板等工具,验证平行四边形的性质。
(完整word版)人教版八年级下册数学18平行四边形教案
第一课时平行四边形的性质(1)一、教学目的1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点4.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.5.难点:运用平行四边形的性质进行有关的论证和计算.三、教学过程1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC 和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.四、例题分析例1(见教材例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.五、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.六、作业设计:第二课时平行四边形的性质(2)一、教学目的1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点4.重点:平行四边形对角线互相平分的性质,以及性质的应用.5.难点:综合运用平行四边形的性质进行有关的论证和计算.三、教学过程1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和360).是︒②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和EFGH重合吗?你能从子中看出前面所得︒到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.四、习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴ AB=CD(平行四边形对边相等).∴ AB—AE=CD—CF.即 BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.解略 例2已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD 的面积.分析:由平行四边形的对边相等,可得BC 、CD 的长,在Rt △ABC 中,由勾股定理可得AC 的长.再由平行四边形的对角线互相平分可求得OA 的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD 的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算五、随堂练习1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .六、作业设计:第三课时 平行四边形的判定(1)一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点重点:平行四边形的判定方法及应用.难点:平行四边形的判定定理与性质定理的灵活应用.三、教学过程(一)温故知新1.如图在平行四边形ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于E ,则∠BCE = .2.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,已知AE =4,AF =6,□ABCD 的周长为40,试求□ABCD 的面积。
人教版八年级数学下册第十八章平行四边形单元整体优秀教学案例
我注重引导学生通过问题来驱动学习,培养他们的问题意识和解决问题的能力。我会提出一系列问题,引导学生进行思考和讨论,激发他们的思维。例如,我可以提出问题:“平行四边形的性质有哪些?如何判定一个四边形是平行四边形?”通过这样的问题导向,学生能够更深入地理解平行四边形的性质和判定方法,提高他们的逻辑思维能力。
(四)总结归纳
在总结归纳环节,我会引导学生回顾本节课所学的平行四边形的性质和判定方法,并帮助他们进行归纳和总结。我会鼓励学生用自己的话来表述平行四边形的性质,并通过实际例子来说明如何运用这些性质解决实际问题。通过这样的总结归纳,学生能够更好地巩固所学的知识,并提高他们的总结能力。
(五)作业小结
在作业小结环节,我会布置一些与平行四边形相关的练习题,让学生在课后进行巩固和应用。我会提醒学生在做题时要注意审题,认真思考,并强调在做题过程中要注重逻辑思维和推理能力的培养。同时,我还会鼓励学生在课后进行自主学习,查找相关的学习资料,提高他们的自主学习能力。
四、教学内容与过程
(一)导入新课
在导入新课时,我会利用多媒体展示一些生活中的平行四边形图片,如电梯门、滑滑梯等,引导学生观察并思考这些图形的特点。接着,我会提出问题:“你们对这些图形有什么发现?它们有什么特殊的性质?”通过这样的导入方式,学生能够激发对平行四边形的兴趣,并引发他们对问题的思考。
(二)讲授新知
此外,我还注重培养学生的团队合作精神。通过小组合作,学生能够学会与他人合作,共同解决问题,从而培养他们的团队合作精神。通过这些教学目标,我希望学生能够全面发展,提高他们的数学素养和综合素质。
三、教学策略
(一)情景创设
在教学过程中,我注重情景创设,以激发学生的学习兴趣和积极性。我会利用实际问题情景,引导学生主动参与课堂,激发他们的思维。例如,我可以利用生活中的实际问题,如设计一个公园的绿化方案,让学生运用平行四边形的性质和判定方法来解决问题。通过这样的情景创设,学生能够更好地理解平行四边形的应用,提高他们的实践能力。
人教版八年级下数学精品教案:第十八章 平行四边形
18.1平行四边形创设情境,导入新课观察图形,引出平行四边形。
明晰概念,证实发现你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.范例点击,演练提高教材P42例1应用新知,练习巩固教材43页练习1,2题。
概念延伸,拓展训练在以上学习的基础上,向学生讲解两条平行线之间的距离的概念。
反思小结,观点提炼今天这节课你有什么收获?和小组内的同学交流一下。
八年级数学下册 第18章 平行四边形 18.1.1 平行四边形的性质(1)教案 (新版)新人教版
3、通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力。
情感态度与价值观
1、探索平行四边形性质的过程中,感受几何图形中呈现的数学美。
2、在进行探索的活动 过程中发展学生 的探究意识和合作交流的习惯。
教学重点难点
教学
2、欣赏生活中平行四边形图片。
(师生活动:学生欣赏,教师注意情感渗透)
2、探究新知
1、平行四边形定义;
2、猜想性质并证明
(师生活动:学生动手画图、猜想、并证明,教师引导并板书示范)
3、例题讲解
1、例题(见课件)
2、通过例题引出“两条平行线间的距离相等”
(师生活动:学生完成,教师巡视发现问题并讲解)
4、学生练测
1、完成课本43页练习1、2题;
2、练一练(补充检测,见课件):
(师生活动:教师以提问的方式,学生举手回答或板演)
5、课堂小结
1.概念;2.性质;3.两平行线的距离相等。
6、作业布置
习题18.1
必做:1、2、7题
选做:8题
通过生活中的有趣实例来激发学生本节课的学习兴趣
充分引导学生自主探究证明,培养学生良好的思维习惯 和形成意识,提高推理能力及独立解决 问题的能力。
及时归纳总 结,提升课堂效果
分层布置,不同层次学生达到共同提高
重点
探索平行四边形的性质。
教学
难点
平行四边形性质的理解。
教学媒体选择分析表
知识点
学习目标
媒体类型
占用时间
媒体来源
介绍
知识目标
图片
A
G
拓展知识
2分钟
人教版数学八年级下册教案:第18章 平行四边形的判定(二)
人教版数学八年级下册教案:第18章平行四边形的判定(二)一. 教材分析人教版数学八年级下册第18章《平行四边形的判定(二)》是在学生已经掌握了平行四边形的性质和判定方法的基础上进行教学的。
本章主要让学生进一步了解平行四边形的判定方法,能够运用这些方法解决实际问题,培养学生的空间想象能力和逻辑思维能力。
本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来帮助学生理解和掌握。
二. 学情分析学生在之前的学习中已经掌握了平行四边形的性质和判定方法,对于一些基本的判定方法有一定的了解。
但是,由于本节课的内容较为抽象,学生可能对于一些判定方法的理解不够深入,需要通过实例和练习来加深理解。
同时,学生的空间想象能力和逻辑思维能力还需要进一步培养,因此,在教学过程中需要注重培养学生的这些能力。
三. 教学目标1.让学生掌握平行四边形的判定方法,并能够运用这些方法解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.通过对平行四边形的判定方法的学习,培养学生的抽象思维能力。
四. 教学重难点1.重点:平行四边形的判定方法的运用。
2.难点:对于一些判定方法的理解和运用。
五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过实例和练习来帮助学生理解和掌握平行四边形的判定方法,培养学生的空间想象能力和逻辑思维能力。
六. 教学准备1.教案、课件、黑板等教学用具。
2.练习题、实例等教学素材。
七. 教学过程1.导入(5分钟)通过复习平行四边形的性质和判定方法,引导学生进入本节课的学习。
2.呈现(10分钟)通过课件或板书,呈现本节课的学习内容:平行四边形的判定方法。
引导学生关注判定方法的文字表述和图形表示,帮助学生建立起直观的认识。
3.操练(15分钟)通过讲解实例,让学生动手画图,引导学生运用判定方法进行判断。
在这个过程中,教师应及时给予反馈和指导,帮助学生正确理解判定方法。
4.巩固(10分钟)让学生独立完成练习题,检验学生对判定方法的掌握程度。
2019版八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.2菱形(第1课时)教案(新版)新人教版
309教育网
309教育资源库 18.2.2菱形
第1课时
【教学目标】
知识与技能:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质;会用这些性质进行有关的论证和计算,会计算菱形的面积.
过程与方法:
经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展思维意识,体会几何说理的基本方法.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
情感态度与价值观:
根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣.
【重点难点】
重点:掌握理解菱形的性质,会用菱形的性质进行计算或证明.
难点:掌握理解菱形的性质,会用菱形的性质进行计算或证明.
【教学过程】
一、创设情境,导入新课:
1.复习:什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.引入:我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,这就是菱形.
菱形是我们常见的图形,你还能举出菱形在生活中应用的例子吗?
你能总结出菱形的定义吗?菱形具有什么性质,这一节我们就来探究.。
2019版八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.2菱形(第2课时)教案(新版)新人教版
309教育网
309教育资源库 18.2.2菱形
第2课时
【教学目标】
知识与技能:
1.理解并掌握菱形的定义及两个判定方法.
2.会用这些判定方法进行有关的论证和计算.
过程与方法:
经历探索菱形判定方法的过程,领会菱形的概念以及应用方法,发展主动探究的思想和推理的基本方法.情感态度与价值观:
培养良好的思维意识以及合情推理的能力,感悟其应用价值及培养观察能力、动手能力及逻辑思维能力.【重点难点】
重点:掌握菱形的判定定理,会用判定定理进行计算或证明.
难点:掌握菱形的判定定理,会综合运用菱形的性质和判定定理进行计算或证明.
【教学过程】
一、创设情境,导入新课:
1.复习:
(1)菱形的定义:一组邻边相等的平行四边形是菱形.
(2)菱形的性质1:菱形的四条边都相等.
性质2:菱形的对角线互相垂直平分,并且每条对角线平分一组对角.
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.提出问题:要判定一个四边形是菱形,除根据定义判定外,还有其他的判定方法吗?
你能解答上面问题吗?这一节我们就来探究这一问题.
二、探究归纳
活动1:复习菱形的定义、性质:
(1)菱形的定义:一组邻边相等的平行四边形叫做菱形.
(2)菱形的性质:①菱形的四条边都相等.
②菱形的对角线互相垂直平分,并且每条对角线平分一组对角.
活动2:探究菱形的判定方法:
1.填空:如图,在平行四边形ABCD中,对角线AC,BD相交于点O.且AC⊥BD,那么△AOD≌△
AOB________.∴AD______AB,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是______.。
最新【人教版】2019年数学八下:第18章《平行四边形》全章名师教案(解析版)
第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课5课时时)18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳: 平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1 ,l2之间的距离是指什么? 指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1 ,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°. (2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l1∥l2,BE∥CF,BA⊥l1于点A,DC⊥l2于点C,有下面的四个结论;(1)AB=DC;(2)BE=CF;(3)S△ABE=S△DCF;(4)S四边形ABCD=S四边形BCFE.其中正确的有() A.4个 B.3个 C.2个 D.1个3.如图所示,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为()A.5B.7C.10D.144.如图所示,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.2B.4C.4D.85.如图所示,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),则顶点D的坐标为.7.如图所示,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.8.(2015·自贡中考)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H.求证CH=EH.9.如图所示,四边形ABCD是一个平行四边形,BE⊥CD于点E,BF⊥AD于点F.(1)请用图中的字母表示出平行线AD与BC之间的距离;(2)若BE=2 cm,求平行线AB与CD之间的距离.10.如图所示,在平行四边形ABCD中,AE⊥BC,交其延长线于点E,AF⊥CD于点F,∠EAF=30°,AE=4 cm,AF=3 cm,求平行四边形ABCD的周长.11.如图所示,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连接AC,CE,AB=AC.(1)求证△BAD≌△ACE;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在運用平行四邊形的性質和平行四邊形的判定方法及三角形的中位線定理的過程中,進一 步培養和發展學生自主學習能力及應用數學的意識,通過對平行四邊形判定方法的探究,提高學 生解決問題的能力. 2.通過類比、觀察、實驗、猜想、驗證、推理、交流等教學活動,進一步培養學生動手能力 及合情推理能力,使學生會將平行四邊形的問題轉化成三角形的問題,滲透轉化與化歸意識. 通過觀察、猜測、歸納、證明,培養學生類比、轉化的數學思想方法,鍛煉學生的簡單推理能 力和邏輯思維能力,滲透“轉化”的數學思想.
【重點】 理解和掌握平行四邊形、特殊的平行四邊形的定義、性質和判定,掌握三角形的 中位線定理,會應用平行四邊形和特殊的平行四邊形的相關知識以及三角形中位線定理解決一 些簡單的實際問題. 【難點】 分清平行四邊形與矩形、菱形、正方形之間的聯繫和區別,能夠靈活運用平行四 邊形、特殊平行四邊形的定義、性質和判定方法進行推理論證.
讓學生在觀察、合作、討論、交流中感受數學的實際應用價值,同時培養學生善於發現、積 極思考、合作學習的學習態度.
【重點】 平行四邊形的性質與判定方法的探究和運用,以及三角形中位線定理的理解和應 用. 【難點】 平行四邊形的判定與性質定理的綜合運用. 18.1.1 平行四邊形的性質
1.理解平行四邊形的概念. 2.探究並掌握平行四邊形的邊、角、對角線的性質. 3.利用平行四邊形的性質來解決簡單的實際問題.
18.1 平行四邊形 18.1.1 平行四邊形的性質(2 課時)
.
5 課時 18.1.2 平行四邊形的判定(3 課時) 18.2 特殊的平行四邊形 18.2.1 矩形(2 課時) 18.2.2 菱形(2 課時) 18.2.3 正方形(1 課時) 單元概括整合
5 課時 1 課時
18.1 平行四邊形
1.理解平行四邊形的概念,探究並掌握平行四邊形的邊、角、對角線的性質. 2.理解並掌握平行四邊形的判定條件,能利用平行四邊形的判定條件證明四邊形是平行四邊 形. 3.掌握三角形的中位線的概念和定理.
通過觀察、猜測、歸納、證明,培養學生類比、轉化的數學思想方法,鍛煉學生的簡單推理能 力和邏輯思維能力,滲透“轉化”的數學思想.
第十八章 平行四邊形
1.理解平行四邊形、矩形、菱形、正方形的概念,瞭解它們之間的關係. 2.探索並證明平行四邊形、矩形、菱形、正方形的性質定理和判定定理,並能運用它們進行 證明和計算. 3.瞭解兩條平行線之間距離的意義,能度量兩條平行線之間的距離. 4.探索並證明中位線定理.
1.通過經歷平行四邊形與各特殊平行四邊形之間的聯繫與區別,使學生進一步認識一般與特 殊的關係. 2.通過經歷平行四邊形和特殊的平行四邊形的性質和判定的探索、證明及相關計算的過程, 以及相關問題證明和計算的過程,進一步培養和發展學生合情推理、演繹推理的能力.
1.關於平行四邊形及特殊的平行四邊形概念之間從屬、種差、內涵與外延之間的關係. 本章概念比較多,概念之間聯繫非常密切,關係複雜.由於平行四邊形和各種特殊平行四邊形 的概念之間重疊交錯,容易混淆,因此弄清它們的共性、特性及其從屬關係非常重要.實際上,有
.ห้องสมุดไป่ตู้
時學生掌握了它們的特殊性質,而忽略了共同性質.如有的學生不知道正方形既是矩形,又是菱 形,也是平行四邊形,應用時常犯多用或少用條件的錯誤.教學時,不僅要講清矩形、菱形、正方 形的特殊性質,還要強調它們與平行四邊形的從屬關係和共同性質.也就是在講清每個概念特徵 的同時,強調它們的屬概念,弄清這些概念之間的關係.在原有屬概念基礎上附加一些條件(種差), 通過擴大概念的內涵、減少概念的外延的方式引出新的種概念;同時在原有屬概念的性質和判 定方法的基礎上,來研究種概念的性質和判定方法.弄清這些關係,最好是用圖示的辦法.在弄清 這些圖形之間關係的基礎上,還要進一步向學生說明概念的內涵與外延之間的反變關係,即內涵 越小,外延越大;反之外延越小,內涵越大.例如,正方形的性質中,包含四邊形、平行四邊形、矩 形、菱形所有的特徵,它的外延很小,而平行四邊形的外延很大.弄清了各種特殊平行四邊形的 概念,各種平行四邊形之間的從屬關係也就清楚了,它們的性質定理、判定定理也就不會用錯了. 2.進一步培養學生的合情推理能力和演繹推理能力. 從培養學生的推理論證能力的角度來說,本章處於學生初步掌握了推理論證方法的基礎上,進 一步鞏固和提高的階段.本章內容比較簡單,證明方法相對比較單一,學生前面已經進行了一些 推理證明的訓練.但這種訓練只是初步,要進一步鞏固和提高.教學中同樣要重視推理論證的教 學,進一步提高學生的合情推理能力和演繹推理能力.在推理與證明的要求方面,除了要求學生 對經過觀察、實驗、探究得出的結論進行證明以外,還要求學生直接由已有的結論對有些圖形 的性質通過推理論證得出.另外,為了鞏固並提高學生的推理論證能力,本章定理證明中,除了採 用嚴格規範的證明方法外,還有一些採用了探索式的證明方法.這種方法不是先有了定理再去證 明它,而是根據題設和已有知識,經過推理,得出結論.另外也有一些文字敘述的證明題,要求學 生自己寫出已知、求證,再進行證明.這些對學生的推理能力要求較高,難度也有增加,但能激發 學生的學習興趣,活躍學生的思維,對發展學生的思維能力有好處.教學中要注意啟發和引導,使 學生在熟悉“規範證明”的基礎上,推理論證能力有所提高和發展.
1.通過幾何問題的證明和計算,體驗證法和解法的多樣性,滲透轉化思想. 2.通過動手實踐,積極參與數學活動,對數學有好奇心和求知欲.
平行四邊形是特殊的四邊形,它與三角形一樣,既是幾何中的基本圖形,也是“空間與圖形” 領域主要的研究物件.本章內容也是在已經學過的多邊形、平行線、三角形的基礎上學習的,也 可以說是在已有知識的基礎上做出的進一步較系統的整理和研究,它是以後我們繼續學習其他 幾何知識的基礎.本章內容主要包括:平行四邊形、特殊的平行四邊形.其中平行四邊形主要探 索平行四邊形的性質和判定,特殊的平行四邊形主要介紹了矩形、菱形、正方形,並根據定義探 索它們的性質和判定.