2016年广东省中山市数学中考模拟试卷【答案】
2016年广东省中考数学模拟试卷及答案(二)
2016年广东省初中毕业生学业考试数学模拟试卷(二) 一、选择题(本大题共10小题,每小题3分,共30分)1.在12,2,4,-2这四个数中,互为相反数的是( )A.12与2 B.2与-2 C.-2与12 D.-2与42.下列四个几何体中,俯视图是圆的几何体共有( )A.1个 B.2个 C.3个 D.4个3.计算(-1)2+20-|-3|的值等于( )A.-1 B.0 C.1 D.54.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2 D.a-m<a-n5.植树造林可以净化空气、美化环境.据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为( )A.196×103 B.19.6×104 C.1.96×105 D.0.196×1066.如图M21是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A.22℃ B.22.5℃ C.23℃ D.23.5℃图M21图M22图M237.如图M22,a∥b,∠3+∠4=110°,则∠1+∠2的度数为( )A.60° B.70° C.90° D.110°8.如图,下列四个图形中,既是轴对称图形又是中心对称图形的有( )9.不等式组⎩⎨⎧x -1≥1,2x -5<1的解集在数轴上表示为( )A.B.C.D.10.如图M23,已知直线AB 与反比例函数y =-2x 和y =4x 交于A ,B 两点,与y 轴交于点C ,若AC =BC ,则S △AOB =( )A .6B .7C .4D .3 二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:a 3-4a 2b +4ab 2=________.12.已知|a -1|+2a +b -5=0,则a b 的值为________.13.一个多边形的每个外角都等于72°,则这个多边形的边数为________.14.如图M24,在△ABC 中,D ,E 分别为AB ,AC 的中点,延长DE 到F ,使EF =DE ,若AB =10,BC =8,则四边形BCFD 的周长=________.图M24 图M25 图M26 15.如图M25,△ABC 的顶点都在正方形网格的格点上,则cos C =________.16.如图M26,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是________(结果保留π). 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17.解方程组⎩⎨⎧x -2y =8, ①2x +y =1. ②18.先化简,再求值:⎝ ⎛⎭⎪⎫2x +1x 2+6x +9-13+x ÷x -2x 2+3x ,其中x =3-3.19.如图,在△ABC 中,AB =AC ,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母. ①作∠CAM 的平分线AN ;②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?21.某市某校在推进体育学科新课改的过程中,开设的选修课有A:篮球;B:排球;C:羽毛球;D:乒乓球.学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出B,D所在扇形的圆心角的度数和;(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?22.如图,已知矩形ABCD,动点E从点B沿线段BC向点C运动,连接AE,DE,以AE为边作矩形AEFG,使边FG过点D.(1 )求证:△ABE∽△AGD;(2)求证:矩形AEFG与矩形ABCD的面积相等;(3)当AB=2 3,BC=6时,①求BE为何值时,△AED为等腰三角形?②直接写出点E从点B运动到点C时,点G所经过的路径长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,二次函数y=12x2+bx+c的图象交x轴于A,D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.已知:AD,BC是⊙O的两条互相垂直的弦,垂足为点E,点H是弦BC的中点,AO是∠DAB的平分线,半径OA交弦CB于点M.(1)如图1,延长OH交AB于点N,求证:∠ONB=2∠AON;(2)如图2,若点M是OA的中点,求证:AD=4OH;(3)如图3,延长HO交⊙O于点F,连接BF,若CO的延长线交BF于点G,CG⊥BF,CH=3,求⊙O的半径长.图1 图2 图325.操作:如图,将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A,P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.2016年广东省初中毕业生学业考试数学模拟试卷(二) 1.B 2.B 3.A 4.D 5.C 6.B 7.B 8.B 9.C 10.D 11.a (a -2b )212.1 13.5 14.26 15.2 55 16.2π17.解:由①+②×2得5x =10,即x =2.把x =2代入①得y =-3.则方程组的解为⎩⎨⎧x =2,y =-3.18.解:原式=⎣⎢⎡⎦⎥⎤2x +1()x +32-1x +3·x ()x +3x -2=2x +1-x -3()x +32·x ()x +3x -2=x -2()x +32·x ()x +3x -2=xx +3. 当x =3-3时,原式=1- 3.19.解:(1)作∠MAC 的角平分线AN ,作AC 的中垂线得到AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD ,如图D169.图D169(2)四边形ABCD 是平行四边形,理由如下:∵AB =AC ,∴∠ACB =∠ABC . ∵AN 平分∠MAC , ∴∠MAN =∠CAN .∵∠MAC =∠ABC +∠ACB ,∴∠ACB =∠CAD . ∴BC ∥AD . ∵AC 的中点是O ,∴AO =CO . 在△BOC 和△DOA 中, ⎩⎨⎧∠OCB =∠OAD ,OC =OA ,∠BOC =∠AOD .∴△BOC ≌△DOA .∴BC =AD ,且BC ∥AD . ∴四边形ABCD 是平形四边形. 20.解:(1)设该品牌电动自行车销售量的月均增长率为x ,根据题意列方程150(1+x )2=216. 解得x 1=-220%(不合题意,舍去),x 2=20%. 答:该品牌电动自行车销售量的月均增长率20%. (2)二月份的销量:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800-2300)×(150+180+216)=500×546=273 000(元). 21.解:(1)如图D170,该班的总人数:12÷24%=50(人).E 科目的人数:50×10%=5(人).A 科目的人数:50-9-16-11-5=9(人). 答:该班学生的总数为50人.图D170(2)B ,D 所在扇形的圆心角的度数和:360°×7+950=115.2°. 答:B ,D 所在扇形的圆心角的度数和为115.2°.(3)选修乒乓球的学生大约有3000×950=540(人).答:该校大约有540人选修乒乓球. 22.(1)证明:∵四边形ABCD 和四边形AEFG 是矩形,∴∠B =∠G =∠BAD =∠EAG =90°. 又∵∠BAE +∠EAD =∠EAD +∠DAG =90°,∴∠BAE =∠DAG .∴△ABE ∽△AGD .(2)证明:∵△ABE ∽△AGD ,∴AB AG =AEAD . ∴AB ·AD =AG ·AE . ∴矩形AEFG 与矩形ABCD 的面积相等.(3)解:①若△AED 是等腰三角形,有以下三种情况.当AE =AD =6时,AB 2+BE 2=AE 2,即(2 3)2+BE 2=62,解得BE =2 6; 当AE =ED 时,BE =12AD =12BC =3;当AD =ED =6时,同第一种情况可得EC =2 6,则BE =6-2 6; 综上所述,当BE =2 6或3或6-2 6时,△AED 是等腰三角形;②点G 经过的路径是以AD 的中点为圆心,半径是3,圆心角是120°的弧,则路径长是120π×3180=2π.23.解:(1)把A (2,0),B (8,6)代入y =12x 2+bx +c ,得⎩⎪⎨⎪⎧12×4+2b +c =0,12×64+8b +c =6.解得⎩⎨⎧b =-4,c =6.∴二次函数的解析式为y =12x 2-4x +6.(2)由y =12x 2-4x +6=12(x -4)2-2,得二次函数图象的顶点坐标为(4,-2). 1(3)二次函数的对称轴上存在一点C ,使得△CBD 的周长最小.连接CA ,如图D171,图D171∵点C 在二次函数的对称轴x =4上,∴x C =4,CA =CD .∴△CBD 的周长=CD +CB +BD =CA +CB +BD ,根据“两点之间,线段最短”,可得当点A ,C ,B 三点共线时,CA +CB 最小,此时,由于BD 是定值,因此△CBD 的周长最小.设直线AB 的解析式为y =mx +n ,把A (2,0),B (8,6)代入y =mx +n ,得⎩⎨⎧ 2m +n =0,8m +n =6.解得⎩⎨⎧ m =1,n =-2.∴直线AB 的解析式为y =x -2. 当x =4时,y =4-2=2, ∴二次函数的对称轴上存在点C 的坐标为(4,2)使△CBD 的周长最小.24.(1)证明:∵点H 是弦BC 的中点,AD ⊥BC . ∴∠DEB =90°.∴∠OHB =∠DEB .∴OH ∥AD . ∴∠DAO =∠AOH . ∵∠DAO =∠OAN ,∴∠OAN =∠NOA . ∴∠ONB =∠NAO +∠NOA =2∠AON . ∴∠ONB =2∠AON .(2)证明:如图D172,过点O 作OP ⊥AD ,可证四边形OHEP 是矩形,则OH =EP ,图D172 图D173∵点M 是OA 的中点,在△OHM 和△AEM 中, ⎩⎨⎧ ∠OMH =∠AME ,OM =AM ,∠OHM =∠AEM ,∴△OHM ≌△AEM .∴OH =AE .∴EP =AE ,即AP =2AE =2OH .∵OP ⊥AD ,∴AD =2AP . ∴AD =2AP =2×2OH =4OH .∴AD =4OH .(3)解:如图D173,延长FN 交⊙O 于点K ,连接BK ,∵FK 是⊙O 的直径,∴∠KBF =90°.∵CG ⊥BF ,∴∠CGF =90°.∴CG ∥BK . ∴∠CON =∠OKB .又∵∠COK =2∠CBK ,∴∠OKB =2∠CBK . 在Rt △HKB 中,∠CBK +∠OKB =90°,∴∠CBK =30°.∴∠COK =2∠CBK =60°.在Rt △OCH 中,OC =CHsin 60°=332=2.∴⊙O 的半径为2.25.(1)证明:过点P 作MN ∥BC ,分别交AB ,CD 于点M ,N ,如图D174,则四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰三角形,∴NP =NC =MB . ∵∠BPQ =90°,∴∠QPN +∠BPM =90°,且∠BPM +∠PBM =90°.∴∠QPN =∠PBM . 在△QNP 和△PMB 中, ⎩⎨⎧ ∠QPN =∠PBM ,NP =MB ,∠QNP =∠PMB ,∴△QNP ≌△PMB (ASA).∴PQ =PB .(2)解:由(1)知△QNP ≌△PMB ,得NQ =MP .设AP =x ,则AM =MP =NQ =DN =22x ,BM =PN =CN =1-22x ,∴CQ =CD -DQ =1-2×22x =1-2x . ∴S △PBC =12BC ·BM =12×1×⎝ ⎛⎭⎪⎫1-22x =12-24x .S △PCQ =12CQ ·PN =12×(1-2x )⎝⎛⎭⎪⎫1-22x =12-3 24x +12x 2. ∴S 四边形PBCQ =S △PBC +S △PCQ =12x 2-2x +1,即y =12x 2-2x +1⎝ ⎛⎭⎪⎫0≤x <22.(3)△PCQ 可能成为等腰三角形.①当点Q 在边DC 上,由PQ 2=CQ 2得⎝ ⎛⎭⎪⎫1-22x 2+⎝ ⎛⎭⎪⎫22x 2=(1-2x )2,解得x 1=0,x 2=2(舍去). ②当点Q 在边DC 的延长线上时,如图D175,由PC =CQ 得2-x=2x -1,解得x =1.图D174 图D175③当点Q 与C 点重合,△PCQ 不存在.综上所述,x =0或1时,△PCQ 为等腰三角形.。
中山市2015-2016第一学期初三期中考模拟卷
2015-2016第一学期初三期中考试模拟卷考试范围:21至24章;考试时间:120分钟;第I卷(选择题)评卷人得分一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形,又是轴对称图形的是()2.把抛物线y=(x+1)2向下平移2个单位长度,再向右平移1个单位长度,所得到的抛物线是()A.y=x2-2 B.y=x2+2 C.y=(x+2)2-2 D.y=(x+2)2+23.关于x的一元二次方程22-++-=的根为0,则a的值为()a x x a(1)10A.1 B.-1 C.1或-1 D.124.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35° B.55° C.65° D.70°5.如果a,b是一元二次方程x2-2x-4=0的两个根,那么a3b-2a2b的值为()A.-8 B.8 C.-16 D.166.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…从上表可知,下列说法正确的个数是()①物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y随x增大而增大.A .1B .2C .3D .47.如图,已知⊙O 的直径AB=12,E 、F 为AB 的三等分点,M 、N 为弧AB 上两点,且∠MEB=∠NFB=60°,则EM+FN=( )A 、332 B 、33 C 、233 D 、338.将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90°至△A′OB′的位置,点B 的横坐标为2,则点A′的坐标为( )A .)1,1(B .)1,1(-C .)1,1(-D .)2,2(-9.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是( )A .35°B .55°C .65°D .70°10.已知:二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b )(m≠1的实数);④(a+c )2<b 2;⑤a>1.其中正确的项是( )A .①⑤B .①②⑤C .②⑤D .①③④第II 卷(非选择题)评卷人得分 二、填空题(每小题4分,共26分)11.已知关于x 的方程24(3)(21)0m m m x m m ---++-=是一元二次方程,则m= .12.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,设道路宽为x 米,根据题意可列出的方程为 .13.把二次函数y=x 2+6x+4配方成y=a (x-h )2+k 的形式,得y=___,它的顶点坐标是___.14.用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为 度.15.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,根据图象可知:方程ax 2+bx+c=k 有两个不相等的实数根,则k 的取值范围为 .16.如图,线段AB 是半径为6.5的⊙O 的直径,点C 是弧AB 的中点,点M 、N 在线段AB 上,MN=6,若∠MCN=45°,线段AM 的长度为 .评卷人得分 三、解答题一(每小题6分,共18分)17.计算:()()3022014832112+-⨯⎪⎭⎫ ⎝⎛-+----π18.先化简,再求值:22444()222x x x x x x ++-÷---,其中x 是方程x 2-2x=0的根.19.已知关于x 的一元二次方程240x x k -+=有两个实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程240x x k -+=与210x m x +-=有一个相同的根,求常数m 的值.评卷人得分四、解答题三(每小题9分,共27分)20.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。
2016年广东省初中毕业生学业考试数学模拟试卷(一)试题、答题卡、参考答案及解析
机密★启用前2016年广东省初中毕业生学业考试模拟考试(一)数 学 试 卷说明:1.全卷共6页,满分为100分,考试用时为120分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑. 1.下面有理数中,最大的数是 A.21B.0C.-1D.-32.﹣的倒数的相反数等于A .﹣2B .C .﹣D .23.2015年春节“黄金周”某市接待游客总数为833100人次,833100用科学记数法表示为A .0.833×106B .83.31×105C .8.331×105D .8.331×1044. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这五个数据的众数和中位数分别是A .9,8B .9,7C .8,9D .9,9 5.(﹣2x 2)3的结果是A .﹣2x 5B .﹣8x 6C .﹣2x 6D .﹣8x 56.若关于y 的一元二次方程ky 2﹣7y ﹣7=0有实根,则k 的取值范围是A .k >﹣B .k≥﹣且k ≠0C .k≤﹣D .k >﹣且k≠07.三角形两边的长分别是4和10,则此三角形第三边的长可能是 A.5 B.6 C.11 D.168.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5. 从中随机摸出一个小球,其标号大于2的概率为 A. 15B. 25C. 35D. 459.如右下图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,若y 关于x 的图象如图所示,则ABC ∆的面积是 A.10 B.16 C.18 D.2010.如题10图,、是⊙O的两条互相垂直的直径,点从点O出发,沿的路线匀速运动,设(单位:度),那么与点运动的时间(单位:秒)的关系图是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 12.不等式组的解集是 .故答案为:﹣1<x≤2.13.如右图,正方形ABCD 中,M ,N 分别为BC ,CD 的中点,连接AM ,AC 交BN 与点E ,F ,则EF : FN 的值是__________.14.点A (﹣2,3)关于x 轴的对称点A ′的坐标为 . 15.如图,半圆的直径10=AB ,P 为AB 上一点,点C ,D 为半圆的三等分点,则图中阴影部分的面积等于 .图1图216.如果记y==f (x ),并且f (1)表示当x=1时y 的值,即f (1)==;f ()表示当x=时y 的值,即f ()==,那么f (1)+f (2)+f ()+f (3)+f()+…+f(n )+f ()= .(结果用含n 的代数式表示,n 为正整数). 三、解答题(一)(本大题共3小题,每小题6分,共18分)170114cos30(21)()2-+-.18、先化简,再求值:1)111(2-÷-+a aa ,其中.3-=a19.从△ABC(CB <CA )中裁出一个以AB 为底边的等腰△ABD,并使得△ABD 的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明) (2)若AB=2,∠CAB=30°,求裁出的△ABD 的面积.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴某市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(2)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.21.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D 是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.24. AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.25.如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD 于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?2016年广东省初中毕业生学业考试模拟考试(一)数学试卷参考答案及评分说明一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本大题6小题,每小题4分,共24分)11.11 . 12.﹣1<x≤213.答案:试题分析:设EF=x,FN=y,正方形ABCD的边长为a,根据正方形的性质、M、N分别为BC、CD的中点及勾股定理即可得到关于x、y、a的方程组,从而求得结果.设EF=x,FN=y,正方形ABCD的边长为a,由题意得,解得则EF:FN的值是.点评:正方形的性质的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.1415.答案:16.答案:三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解:原式=1231-=-……………4分3323121-+-=-……………6分18.解:原式 =aa a a a a 1)1)(1(1)1)(1(-⋅-++-+……………3分=aa a a a 1)1)(1(2-⋅-+……………4分 =1+a a…………………………5分 把3-=a 代入上式,得23133=+--……………6分19.【考点】作图—复杂作图.【分析】(1)直接利用线段垂直平分线的性质作出AB 的垂直平分线,交AC 于点D ,进而得出△ABD ;(2)利用锐角三角形关系得出DE 的长,进而利用三角形面积求法得出答案. 【解答】解:(1)如图所示,△ABD 即为所求............................2分(2)∵MN 垂直平分AB ,AB=2m ,∠CAB=30°,∴AE=1m ,……………3分则tan30°==,……………4分 解得:DE=.……………5分故裁出的△ABD 的面积为:×2×=(m 2).……………6分【点评】此题主要考查了复杂作图以及线段垂直平分线的性质与作法、三角形面积求法、锐角三角函数关系等知识,熟练应用线段垂直平分线的性质是解题关键四、解答题(二)(本大题共3小题,每小题7分,共21分) 20. 解:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);……1分 则第五组人数为:50﹣4﹣8﹣20﹣14=4(名); 根据题意得:考试成绩评为“B ”的学生大约有:×1500=420(名); ……………3分如图:……………4分(2)画树状图得:……………7分点评: 此题考查了树状图法与列表法求概率的知识以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)证明:∵ 四边形ABCD 是矩形∴ CD AB =, ︒=∠=∠90C A ............................1分 由折叠可得 CD ED =, ︒=∠=∠90C E∴ ED AB =, ︒=∠=∠90E A ............................2分 又∵ EFD AFB ∠=∠∴ ABF ∆≌EDF ∆............................3分(2)解: 四边形BMDF 是菱形。
2016年广东省中山市中考数学模拟试卷(解析版)
A.
B.
C. )
D.
7. (3 分)下列计算错误的是(
A.a•a=a2 B.2a+a=3a C. (a3)2=a5
D.a3÷a﹣1=a4
8. (3 分)如图,矩形 ABCD 的对角线 AC 和 BD 相交于点 O,过点 O 的直线分别 交 AD 和 BC 于点 E、F,AB=2,BC=3,则图中阴影部分的面积为( )
注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额. “速算扣除数”是为快捷简便计算个人所得税而设定的一个数. 例如:按原个人所得税法的规定,某人去年 3 月的应纳税额为 2600 元,他应缴 税款可以用下面两种方法之一来计算: 方法一: 按 1~3 级超额累进税率计算, 即 500×5%+1500×10%十 600×15%=265 (元) . 方法二: 用“月应纳税额 x 适用税率一速算扣除数”计算, 即 2600×15%一 l25=265 (元) . (1)甲去年 3 月缴了个人所得税 1060 元,若按“新税法”计算,则他应缴税款多 少元? (2)乙今年 3 月按“新税法”缴了个人所得税 2 千多元,比去年 3 月按“原税法” 所缴个人所得税少了 155 元(今年与去年收入不变) ,那么乙今年 3 月所缴税款 的具体数额为多少元? 23. (9 分)已知矩形纸片 OABC 的长为 4,宽为 3,以长 OA 所在的直线为 x 轴, O 为坐标原点建立平面直角坐标系; 点 P 是 OA 边上的动点 (与点 O、 A 不重合) ,
D.若点 A(0.5,y1)是该抛物线上一点.则 y1<﹣2.5 10. (3 分)如图,正方形 ABCD 内接于⊙O,点 P 在劣弧 AB 上,连接 DP,交 AC 于点 Q.若 QP=QO,则 的值为( )
2016年广东省初中毕业学业考试数学模拟试卷1及答案
2013年初中毕业生学业考试模拟试题数学说明:1.全卷共 4 页,满分120 分,考试时间 100分钟; 2. 答案务必填写在答卷相应位置上,否则无效。
一、选择题(每小题3分,共30分)1. -31的倒数是( )A -3B 3C -31D 312. 下列运算中,正确的是( )A x 3-x 2=xB (x -y) 2=x 2-y 2C x 2·x 3=x 6D (x 3)2=x 63. 用配方法解方程时,方程x 2-2x -3=0变形正确的是( )A (x -1)2=2B (x -1)2=4C (x -1)2=1D (x -1)2=74. 函数y=21x 中,自变量x 的取值范围是:( )A x > 2B x <2C x ≠ 2D x ≠ -2 5. 不等式2-3x ≥2x -8的非负整数解有:( )A 1 个B 2个C 3个D 4个6. 在围棋盒中有4颗黑色棋子和a 颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是53,则a =( )A 6B 4C 3D 2 7. 如图,已知A B ∥CD,BE 平分∠ABC ,∠CDE =1500,则∠C 的度数是:( ) A 1000 B 1100 C 1200 D 1500 8. 如图,在△ABC 中,∠C =900,AD 是BC 边上的中线,BD =4,AD =25则tan ∠CAD 的值是( ) A 2 B 3 C 5 D 29. 如图,AB 是⊙O 的直径,弦C D ⊥AB ,垂足为E ,如果AB =10,CD =8,那么,sin ∠OCE=( ),A 34B 53C 54D 4310. 如图,两块相同的直角三角形完全重合在一起,∠A =300,AC =10,把上面一块绕直角顶点B 逆时针旋转到△A ′B ′C ′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D =( ) A 2.5 B 2 C 32 D235二、填空题(每小题4分,共24分) 11.分解因式:2x 2-8=12.化简:x 1-11-x =13.若关于x 的方程ax 2+2 (a+2)x+a=0有实数解,那么实数a 的取值范围是 . 14.不等式组⎩⎨⎧+≤〉-53412x x xx 的解集是 .15.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D 的大小是 .16如图,在矩形ABCD 中,AB =3,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 .三.解答题(一)(每小题5分,共15分)17.计算:12-(-2013)0+(21)-1 +31- 18.已知一次函数y=2x+1的图象分别与坐标轴相交于A 、B 两点(如图所示)与反比例函数的图象相交于C 点,(1)写出A 、B 两点的坐标; (2)作CD ⊥x 轴,垂足为D ,如果OB 是△ACD是中位线,求反比例函数y=xk(k >0)的关系式.19.尺规作图:已知△ABC ,请用直尺和圆规作出△ABC 的外接圆O.(要求保留作图痕迹,不写作法.)三、解答题(二)(每小题8分,共24分)20.已知甲同学手中藏有三张分别标有数字21、41、1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b, (1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则,若所选出的a 、b 能使得方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜,请问这样的游戏规则公平吗?请你用概率知识解释。
广东省中山市2016年初中学业水平模拟数学试卷含答案
2016年初中学业水平考试模拟试题数学试卷(测试时间:100分钟,满分:120分)温馨提示:请将答案写在答题卡上,不要写在本试卷。
一、选择题(本大题10小题,每小题3分,共30分) 1. 2016-的倒数是( )A .2016B .2016-C .12016D . 12016-2. 如题2图,由几个大小相同的小正方体组成的几何图形,则它的俯视图是( )A .B .C .D .3. 据统计,今年某市中考报名确认考生人数是96200人,用科学记数法表示96200为( ) A .49.6210⨯B .50.96210⨯C .59.6210⨯D .396.210⨯4.x 的取值范围是( )A .2x ≠B .2x ≥C .2x >D .2x ≤ 5. 下列式子正确的是( )A .632a a a ÷=B .235a a a +=C .()222a b a b -=- D .()428aa =6. 不等式组⎩⎨⎧≥->+125523x x 的解集在数轴上表示为( )7. 关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则实数m 的取值范 围为( )A .1m> B .1m <C .1m =D .1m <- 8. 6名同学体能测试成绩如下:80,90,75,75,80,80.下列表述错误..的是( ) A .中位数是75 B .众数是80 C .平均数是80 D .方差是25题2图A .B .C .D .9. 如题9图,AB 是⊙O 的直径,点C 在⊙O 上,半径OD ∥AC ,如果BOD ∠=130︒,那么B ∠的度数为( )A .30︒B .40︒C .50︒D .60︒10.一次函数y kx k =-+与反比例函数(0)ky k x=≠的图象的形状大致是( )A .B .C .D .二、填空题(本大题6小题,每小题4分,共24分)11.分解因式:2288m m -+= .12.正多边形的一个外角是30°,则这个正多边形的边数是 . 13.已知两个相似三角形的面积比是1:9,则它们的周长比是 . 14.已知23523x y x y +=⎧⎨+=-⎩,则33x y +的值为15.如题15图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为 . 16. 如题16图,菱形ABCD 的两条对角线分别长4和6,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:0114(1)()2--+--题9图BA题16图 题15图FEDC BA18.先化简,再求值:)131(122+-÷--x x x,其中x =19.如题19图,在Rt ABC ∆中,︒=∠90B ,(1)用尺规作图的方法,作AC 的垂直平分线DE , 交AC 于点D ,交BC 于点E ;(不写作法,保留作图痕迹);(2)在(1)的条件下,连接AE ,直接写出图中所有相等的线段.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为发扬“前人种树,后人乘凉”的精神,某学校计划安排教师植树400棵.教师完成植树160棵后,学校全体团员加入植树活动,植树速度提高到原来的1.2倍,整个植树过程共用了3小时.求学校原计划每小时植树多少棵?21.我市某校在开展小组合作学习的过程中,李老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,李老师一共调查了 名同学; (2)将上面的条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好都是男同学的概率.22.如题22图,港口O 在观测站P 的正东方向,PO =60km .某商船从港口O 出发,沿北偏东15︒方向航行一段时间后到达A 处,此时从观测站P 测得该商船位于北偏东60︒的方向.(1)求PAO ∠的度数;(2)求该商船从港口O 到A 处航行的距离五、解答题(三)(本大题3小题,每小题9分,共27分) 15°OBA 题22图C BA题19图 题23图23.如题23图,二次函数的图象与x 轴分别交于A 、 B 两点,与y 轴交于点C ()0,3,它的顶点坐标为()1,4-,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)求二次函数的解析式;(2)结合函数图象求出使一次函数值大于二次函数值的x 的取值范围; (3)若一次函数的图象与y 轴的交点为E ,求△ADE 的面积.24.如题24图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 于点D ,E 是BC 的中点,连接DE . (1)求证:直线DE 是⊙O 的切线;(2)连接OC 交DE 于点F ,若DF =EF , 求证:四边形OECD 是平行四边形;(3)在(2)的条件下,求tan ∠ACO 的值.25. 如题25图,在平面直角坐标系中,Rt △ABC 和正方形GDEF的其中一条边都在x 轴上,其中点G 与原点O 重合,点D 与点B 重合,90C ∠=︒,4AC =,点A 、B 的坐标分别为()3,0-、()5,0,若将Rt △ABC 沿x 轴正方向以每秒一个单位长度平行移动,当顶点C 落在线段DE 上时停止移动.(1)如题25图,在没有开始移动Rt △ABC 时,求MBE ∠的值; (2)在移动Rt △ABC 的过程中,经过多少秒后顶点C 恰好落在正方形GDEF 的边上; (3)在移动Rt △ABC 的过程中,设Rt △ABC 与正方形GDEF 重叠部分的面积为S ,移动的时间为t (0t >)秒,求出S 与t 的函数关系式.2016年初中学业水平考试模拟试题x题24图ECBA题25图 x数学答案一、选择题1.D2.B3.A4.B5.D6.C7.B8.A9.B 10.D二、填空题11.22(m-2) 12.12 13.1:3 14.32三、解答题(一)17.解:原式4412=-+- …………………………………………………………4分 1=- …………………………………………………………………………6分18.解:原式 =2213()111x x x x x -+÷--++……………………………………………………1分 =22211x x x x --÷-+ ……………………………………………………………2分 =21(1)(1)2x x x x x -+⋅+-- ……………………………………………………3分 =11x - ………………………………………………………………………4分111x x ===-当, …………………………………………………6分 19.(1)图略 ………………………………………………………………………………4分 (2)AE =CE , AD =CD …………………………………………………………………6分 20.(1)设学校原计划每小时植树x 棵……………………………………………………1分依题意得,16024031.2x x+=………………………………………………………4分 解方程得,120x =………………………………………………………………5分, 经检验,120x =是原分式方程的解……………………………………………6分答:学校原计划每小时植树120棵。
广东省中山市中考数学模拟试题(含解析)
2016年广东省中山中考数学模拟试卷一、选择题1.下列各数中最小的是()A.1 B.﹣1 C.0 D.﹣2.如图是由3个完全相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.3.中山市田心森林公园位于五桂山主峰脚下,占地3400 多亩,约合2289000平方米,用科学记数法表示2289000为()A.2289×103B.2.289×103C.2.289×106D.2.289×1074.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(2,﹣3)C.(﹣2,3)D.(2,3)5.下列运算正确的是()A.(a2)3=a5B.(a﹣b)2=a2﹣b2C.2x﹣x=2 D. =﹣36.如图,把矩形ABCD绕点B顺时针旋转得到矩形EBGF,则图中与线段AC相等的线段有()条.A.1 B.2 C.3 D.47.若分式的值为0,则x的值为()A.0 B.±1 C.1 D.﹣18.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.9.如图,△ABC中,点D是边BC上一点,已知AB=AC=BD,AD=CD,则∠B=()A.30° B.36° C.45° D.50°10.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣2x+k2的图象大致为()A.B.C. D.二、填空题11.正六边形的一个内角是.12.因式分解:2m3﹣18m= .13.已知直线l∥m,将含有45°角的三角板如图放置,若∠1=25°,则∠2的度数为.14.计算: = .15.若抛物线y=ax2+x﹣与x轴有两个交点,则a的取值范围是.16.如图,将边长为a的正方形ABCD与边长为b的正方形ECGF(CE<AB)拼接在一起,使B、C、G三点在同一条直线上,CE在边CD上,连接AF,M为AF的中点,连接DM、CM,若ab=20,则图中阴影部分的面积为.三、解答题17.计算:.18.解不等式组.19.已知△ABC中,∠A=30°,AC=6.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)设⊙O与AB交于点D,连接CD,求⊙O的半径.四、解答题20.某校组织了主题为“我是青奥志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求一共抽取了多少份作品?(2)此次抽取的作品中等级为B的作品有份,并补全条形统计图;(3)扇形统计图中等级为D的扇形圆心角的度数为;(4)若该校共征集到800份作品,请估计等级为A的作品约有多少份?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠DAC,点E是AC上一点,且AE=AD (1)求证:AC⊥BD;(2)若AB=6,cos∠CAB=,求线段OE的长.22.火车站北广场将于2016年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排25人同时种植这两种花木,每人每天能种植A花木70棵或B花木60棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?五、解答题23.如图,已知点A(k+1,﹣k﹣3)、B在反比例函数y=(|k|>3)上,作等腰直角三角形△BCD,点F为斜边BD的中点,连FC并延长交y轴于点E.(1)求反比例函数的解析式;(2)△DCE的面积是多少?(3)若点A在直线BD上,请求出直线BD的解析式.24.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)若AC=6,BC=8,求线段PD的长.25.如图,Rt△ABC中,∠ACB=90°,BC=6,AC=8.D是斜边AB的中点,BF⊥CD于点E,交AC于点F.(1)请求出线段BE的长;(2)点P、Q以每秒1个单位的速度同时从点A出发,点P沿线段AB运动到B,点Q沿A→C→B运动到点B,其中一点运动到终点,则运动中止,设运动时间为t,△CPQ的面积为y.①△CPQ的面积是否存在最大值?若存在,请求出它的最大值;若不存在,请说明理由;②是否存在时间t,使△CPQ沿CP折叠后点Q落在线段CD上?若存在,请求出t的值;若不存在,请说明理由.2016年广东省中山一中中考数学模拟试卷参考答案与试题解析一、选择题1.下列各数中最小的是()A.1 B.﹣1 C.0 D.﹣【考点】有理数大小比较.【分析】先比较大小,再求出即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选B.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.如图是由3个完全相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,把从左边看到的图形画出来是解题关键.3.中山市田心森林公园位于五桂山主峰脚下,占地3400 多亩,约合2289000平方米,用科学记数法表示2289000为A.2289×103B.2.289×103C.2.289×106D.2.289×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2289000用科学计数法表示为:2.289×106.故选C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(2,﹣3)C.(﹣2,3)D.(2,3)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选:C.【点评】此题主要考查了关于y轴对称点的性质,正确记忆平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系是解题关键.5.下列运算正确的是()A.(a2)3=a5B.(a﹣b)2=a2﹣b2C.2x﹣x=2 D. =﹣3【考点】幂的乘方与积的乘方;立方根;合并同类项;完全平方公式.【分析】结合幂的乘方与积的乘方、完全平方公式和立方根等知识点的概念进行求解即可.【解答】解:A、(a2)3=a6≠a5,本选项错误;B、(a﹣b)2=a2+b2﹣2ab≠a2﹣b2,本选项错误;C、2x﹣x=x≠2,本选项错误;D、=﹣3,本选项正确.【点评】本题考查了幂的乘方与积的乘方、完全平方公式以及立方根的知识,解答本题的关键在于熟练掌握各知识点的概念.6.如图,把矩形ABCD绕点B顺时针旋转得到矩形EBGF,则图中与线段AC相等的线段有()条.A.1 B.2 C.3 D.4【考点】旋转的性质;矩形的性质.【分析】由矩形的性质可知AC=BD,由旋转的性质可知矩形ABCD和矩形BGFE全等,则可求得答案.【解答】解:∵四边形ABCD为矩形,∴AC=BD,∵矩形ABCD绕点B顺时针旋转得到矩形EBGF,∴BF=GE=AC,∴与线段AC相等的线段有3条,故选C.【点评】本题主要考查旋转的性质和矩形的性质,掌握矩形的对角线相等是解题的关键.7.若分式的值为0,则x的值为()A.0 B.±1 C.1 D.﹣1【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零但分母不等于零.【解答】解:依题意得 x2﹣1=0且x﹣1≠0,解得 x=﹣1.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与征征和舟舟选到同一社团的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,征征和舟舟选到同一社团的有3种情况,∴征征和舟舟选到同一社团的概率是: =.故选:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,△ABC中,点D是边BC上一点,已知AB=AC=BD,AD=CD,则∠B=()A.30° B.36° C.45° D.50°【考点】等腰三角形的性质.【分析】AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.10.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣2x+k2的图象大致为()A.B.C. D.【考点】反比例函数的图象;二次函数的图象.【分析】由反比例函数的图象可得到k<0,则可得出二次函数的开口方向、对称轴及与y轴的交点位置,则可得出答案.【解答】解:∵反比例函数y=的图象在第二、四象限,∴k<0,∵当x=﹣1时,y>1,∴﹣k>1,即k<﹣1∴2k<0,∴二次函数开口向下,∵对称轴为x=﹣=,∴﹣<<0,∴二次函数对称在x=﹣1的右侧,且在y轴的左侧,故选D.【点评】本题主要考查函数图象的位置,利用反比例函数求得k的取值范围是解题的关键,注意数形结合的应用.二、填空题11.正六边形的一个内角是120°.【考点】多边形内角与外角.【分析】利用多边形的内角和公式180°(n﹣2)计算出六边形的内角和,然后再除以6即可.【解答】解:由题意得:180°(6﹣2)÷6=120°,故答案为:120°.【点评】此题主要考查了多边形的内角,关键是掌握多边形内角和公式.12.因式分解:2m3﹣18m= 2m(m+3)(m﹣3)..【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2m,再利用平方差进行分解即可.【解答】解:原式=2m(m2﹣9)=2m(m+3)(m﹣3).故答案为:2m(m+3)(m﹣3).【点评】此题主要考查了提公因式法与公式法分解因式,一般先提取公因式,再考虑运用公式法分解.13.已知直线l∥m,将含有45°角的三角板如图放置,若∠1=25°,则∠2的度数为20°.【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20.故答案是:20.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.14.计算: = ﹣1﹣.【考点】分母有理化.【专题】计算题;实数.【分析】原式分子分母乘以1+,计算即可得到结果.【解答】解:原式==﹣1﹣,故答案为:﹣1﹣【点评】此题考查了分母有理化,熟练掌握分母有理化法则是解本题的关键.15.若抛物线y=ax2+x﹣与x轴有两个交点,则a的取值范围是a>﹣1且a≠0 .【考点】抛物线与x轴的交点.【专题】数形结合.【分析】根据二次函数的定义得到a≠0,再利用△=b2﹣4ac决定抛物线与x轴的交点个数得到1﹣4a×(﹣)>0,然后求出两不等式的公共部分即可.【解答】解:根据题意得,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.【点评】本题考查了抛物线与x轴的交点:二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△=b2﹣4ac决定抛物线与x轴的交点个数,△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.也考查了二次函数的定义.16.如图,将边长为a的正方形ABCD与边长为b的正方形ECGF(CE<AB)拼接在一起,使B、C、G 三点在同一条直线上,CE在边CD上,连接AF,M为AF的中点,连接DM、CM,若ab=20,则图中阴影部分的面积为a2.【考点】正方形的性质.【分析】连接DF,CF,利用三角形的面积公式解得S△ADF和S△ACF,再利用等底同高的三角形面积相等,可得阴影部分的面积.【解答】解:连接DF,CF,∵四边形ABCD与四边形EFCG均为正方形,∴∠ACD=45°,∠FCE=45°,∴∠ACF=90°,∴S△ADF==∵M为AF的中点,∴S△ADM=S△ADF=a(a﹣b)S△ACF===ab,∵M为AF的中点,∴S△ACM=S△ACF=ab,∴S阴影==a2,故答案为: a2.【点评】本题主要考查了正方形的性质,作出恰当的辅助线,利用等底同高的三角形面积相等是解答此题的关键.三、解答题17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算绝对值、零次幂、负整数指数幂、特殊角的三角函数,然后再计算有理数的乘法,最后计算有理数的加减即可.【解答】解:原式=2﹣+1﹣2﹣2×,=2﹣+1﹣2﹣,=1﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解不等式组.【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集.【解答】解:由①得:x<﹣1;由②得:x<﹣6故原不等式组的解集是:x<﹣6.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取较大,同小取较小,大小小大中间找,大大小小找不到(无解).19.已知△ABC中,∠A=30°,AC=6.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)设⊙O与AB交于点D,连接CD,求⊙O的半径.【考点】作图—复杂作图;三角形的外接圆与外心.【分析】(1)直接利用线段垂直平分线的性质作出AC的垂直平分线,进而得出圆心的位置;(2)利用圆周角定理以及结合锐角三角函数关系得出AD的长,进而得出答案.【解答】解:(1)如图所示:⊙O,即为所求;(2)连接DC,∵AD是⊙O的直径,∴∠ACD=90°,∵∠A=30°,AC=6,∴cos30°===,解得:AD=4,故⊙O的半径为:2.【点评】此题主要考查了复杂作图以及三角形的外心,正确掌握圆周角定理是解题关键.四、解答题20.某校组织了主题为“我是青奥志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求一共抽取了多少份作品?(2)此次抽取的作品中等级为B的作品有48 份,并补全条形统计图;(3)扇形统计图中等级为D的扇形圆心角的度数为18°;(4)若该校共征集到800份作品,请估计等级为A的作品约有多少份?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用共抽取作品数=C等级数÷对应的百分比求解即可,(2)求出抽取的作品中等级为B的作品数,即可作图,(3)利用等级为D的扇形圆心角的度数=等级为D的扇形圆心角的百分比×360°求解即可,(4)利用该校共征集到800份作品乘等级为A的作品的百分比即可.【解答】解:(1)30÷25%=120(份).答:一共抽取了120份作品.(2)此次抽取的作品中等级为B的作品数120﹣36﹣30﹣6=48份,如图,故答案为:48.(3)×360°=18°.故答案为:18°.(4)答:估计等级为A级的作品约有240份.【点评】本题主要考查了条形统计图,扇形统计图及用样本估计总体,解题的关键是读懂统计图,能从统计图中获得准确的信息.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠DAC,点E是AC上一点,且AE=AD (1)求证:AC⊥BD;(2)若AB=6,cos∠CAB=,求线段OE的长.【考点】平行四边形的性质;解直角三角形.【分析】(1)只要证明DA=DC,推出四边形ABCD是菱形即可解决问题.(2)在Rt△OAB中,求出OA即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCA=∠CAB,∵∠DAC=∠CAB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形,∴AC⊥BD.(2)解:在Rt△AOB中,∵cos∠OAB==,AB=6,∴OA=4,∵AE=AD=AB=6,∴OE=AE﹣OA=6﹣4=2.【点评】本题考查平行四边形的性质、菱形的判定和性质、解直角三角形等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.22.火车站北广场将于2016年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排25人同时种植这两种花木,每人每天能种植A花木70棵或B花木60棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【考点】二元一次方程组的应用.【分析】(1)首先设A种花木的数量为x棵,B种花木的数量为y棵,根据题意可得等量关系:①A、B两种花木共6600棵;②A花木数量=B花木数量的2倍﹣600棵,根据等量关系列出方程,再解即可得A、B两种花木的数量;(2)设应安排a人种植A花木,则安排(25﹣a)人种植B花木,由题意可等量关系:种植A花木所用时间=种植B花木所用时间,根据等量关系列出方程,再解即可判断.【解答】解:(1)设A种花木的数量为x棵,B种花木的数量为y棵,由题意得:,解得:,答:A种花木的数量为4200棵,B种花木的数量为2400棵;(2)设安排a人种植A花木,由题意得: =,解得:a=15,经检验:a=15是原分式方程的解,26﹣a=26﹣15=11,答:应安排15人种植A花木和11人种植B花木,才能确保同时完成各自的任务.【点评】此题主要考查了二元一次方程组和分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.五、解答题23.如图,已知点A(k+1,﹣k﹣3)、B在反比例函数y=(|k|>3)上,作等腰直角三角形△BCD,点F为斜边BD的中点,连FC并延长交y轴于点E.(1)求反比例函数的解析式;(2)△DCE的面积是多少?(3)若点A在直线BD上,请求出直线BD的解析式.【考点】反比例函数与一次函数的交点问题;等腰直角三角形.【分析】(1)把A(k+1,﹣k﹣3)代入y=(|k|>3),即可求得k的值,从而求得反比例函数的解析式;(2)设B(a,﹣),根据反比例函数系数k的几何意义和等腰直角三角形的性质求得DC=BC=﹣,OE=OC=﹣a,然后根据三角形面积公式求得即可;(3)求得A的坐标,根据等腰直角三角形求得直线BD的斜率,设直线BD为y=x+b,代入A的坐标,即可求得b的值.【解答】解:(1)∵点A(k+1,﹣k﹣3)在反比例函数y=(|k|>3)上,∴﹣k﹣3=,解得:k1=﹣1,k2=﹣6,∵|k|>3,∴k=﹣6,∴反比例函数的解析式为y=﹣;(2)∵△BCD是等腰直角三角形,点F为斜边BD的中点,∴CF平分∠BCD,∴∠DCF=45°,∴∠ECO=∠DCF=45°,∴△COE是等腰直角三角形,∴OE=OC,设B(a,﹣),∴DC=BC=﹣,OE=OC=﹣a,∴△DCE的面积为=DC•OE=×(﹣)×(﹣a)=3;(3)∵k=﹣6,∴A(﹣2,3),∵△BCD是等腰直角三角形,∴直线BD的斜率为1,设直线BD为y=x+b,∵点A在直线BD上,∴3=﹣2+b,解得b=5,∴直线BD的解析式为y=x+5.【点评】本题考查了反比例函数系数k的几何意义,等腰直角三角形的性质,解决本题的关键是证明△COE是等腰直角三角形.24.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)若AC=6,BC=8,求线段PD的长.【考点】切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.【专题】证明题;压轴题.【分析】(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)根据圆周角定理易得∠ADE+∠BDF=90°=∠FBD+∠BDF=90°,从而得到∠FBD=∠ADE,易得AD=BD,从而得出△ADE≌△DBF,得到BF=DE,AE=DF,从而得出结论BF﹣AE=EF.(3)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD.【解答】(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB为等腰直角三角形,∴DO⊥AB,∵PD为⊙O的切线,∴OD⊥PD,∴DP∥AB;(2)答:BF﹣AE=EF,证明如下:∵AB是⊙O的直径,∴∠ADB=∠ADE+∠BDF=90°,∵AE⊥CD,BF⊥CD,∴∠AED=∠BFD=90°,∴∠FBD+∠BDF=90°,∴∠FBD=∠ADE,∵∠AOD=∠BOD,∴AD=BD,在△ADE和△DBF中∴△ADE≌△DBF(AAS),∴BF=DE,AE=DF,∴BF﹣AE=DE﹣DF,即BF﹣AE=EF.[问题二法2:∠ACD=∠CAE=45°,所以AE=CE,∠DCB=∠FBC=45°,所以BF=CF,CF=CE+EF=AE+EF 所以AE+FE=BF](3)解:在Rt△ACB中,AB==10,∵△DAB为等腰直角三角形,∴AD===5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵∠PDA=∠PCD,∠P=∠P,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD,而PC=PA+AC,∴PD+6=PD,∴PD=.【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.25.如图,Rt△ABC中,∠ACB=90°,BC=6,AC=8.D是斜边AB的中点,BF⊥CD于点E,交AC于点F.(1)请求出线段BE的长;(2)点P、Q以每秒1个单位的速度同时从点A出发,点P沿线段AB运动到B,点Q沿A→C→B运动到点B,其中一点运动到终点,则运动中止,设运动时间为t,△CPQ的面积为y.①△CPQ的面积是否存在最大值?若存在,请求出它的最大值;若不存在,请说明理由;②是否存在时间t,使△CPQ沿CP折叠后点Q落在线段CD上?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)利用直角三角形的性质得出∠A=∠ACD,再用同角或等角的余角相等得出∠A=∠CBF,从而得出tan∠CBF=tan∠A=,即可设出CE,BE,用勾股定理求出BE;(2)①分点Q在线段AC和BC上,用三角形的面积公式求出函数关系式,再确定出面积最大值,②分三种情况,利用角平分线定理求出t的值,和CD≥CQ的时间t即可.【解答】解:(1)∵D是斜边AB的中点,∴CD=AD=AB,∴∠A=∠ACD,∵∠ACD+∠BCD=90°,∴∠A+∠BCD=90°,∵BF⊥CD,∴∠BCD+∠CBF=90°,∴∠A=∠CBF,在Rt△ABC中,tan∠A==,∴tan∠CBF=,在Rt△CBE中,设CE=3x,BE=4x,根据勾股定理得,CE2+BE2=BC2,∴(3x)2+(4x)2=36,∴x=﹣(舍)或x=,∴BE=4x=.(2)①如图1,,当0<t≤8时,由(1)知,tan∠A=,∴AP=t,AQ=t,∴PG=t,CQ=8﹣t∴y=S△CPQ=CQ×PG=(8﹣t)×=﹣,当t=4时,y最大=,②如图2,当8<t<10时,由(1)知,tan∠A=,∴AP=t,AQ=t,∴AG=t,CQ=t﹣8,∴PH=AG=8﹣t,∴y=S△CPQ=CQ×PH=(t﹣8)×(8﹣t)=﹣(t﹣9)2+,当t=9时,y最大=,即:当t=4时,y最大=;(3)存在时间t,使△CPQ沿CP折叠后点Q落在线段CD上;①如图3,当点P在线段AD上,点Q在AC上时,即:0<t≤5,由(1)知,AQ=AP=t,∴DP=AD﹣AP=5﹣t,CQ=8﹣t∵△CPQ沿CP折叠后点Q落在线段CD上,∴∠ACP=∠DCP,∴且DC≥CQ,∴且5≥8﹣t,∴t=且t≥3∴t=时,△CPQ沿CP折叠后点Q落在线段CD上;②当点P在线段DB上,点Q在AC上时,即:5<t≤8,此时点P和点Q在线段CD两侧,所以△CPQ沿CP折叠后点Q不可能落在线段CD上;③当点P在线段DB上,点Q在线段CB上时,即:8<t≤10,由(1)知,AP=t,CQ=t﹣8,∴BP=10﹣t,DP=t﹣5,∵△CPQ沿CP折叠后点Q落在线段CD上;∴且CD≥CQ,∴且5≥t﹣8,∴t=且t≤13,∵8<t≤10,∴t=,不满足条件,即:当t=时,△CPQ沿CP折叠后点Q落在线段CD上.【点评】此题是几何变换综合题,主要考查了直角三角形的性质,锐角三角函数,三角形的面积公式,二次函数的极值的确定,折叠的性质,角平分线定理,解本题的关键是建立方程求解,难点是分类讨论,要考虑全面,不要漏解.。
2016年广东中考数学真题卷含答案解析
2016年广东省初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-2的相反数是( )A.2B.-2C.12D.-122.如图所示,a与b的大小关系是( )A.a<bB.a>bC.a=bD.b=2a3.下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27 700 000人,将27 700 000用科学记数法表示为( )A.0.277×107B.0.277×108C.2.77×107D.2.77×1085.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为( )A.√2B.2√2C.√2+1D.2√2+16.某公司的拓展部有五个员工,他们每月的工资分别是3 000元,4 000元,5 000元,7 000元和10 000元,那么他们工资的中位数是( )A.4 000元B.5 000元C.7 000元D.10 000元7.在平面直角坐标系中,点P(-2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cos α的值是( )A.34B.43C.35D.459.已知方程x-2y+3=8,则整式x-2y的值为( )A.5B.10C.12D.1510.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )第Ⅱ卷(非选择题,共90分)二、填空题(本大题6小题,每小题4分,共24分) 11.9的算术平方根是 . 12.分解因式:m 2-4= .13.不等式组{x -1≤2-2x ,2x 3>x -12的解集是 .14.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC,已知圆锥的高h 为12 cm,OA=13 cm,则扇形AOC 中AC⏜的长是 cm(计算结果保留π).15.如图,矩形ABCD 中,对角线AC=2√3,E 为BC 边上一点,BC=3BE.将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的B'处,则AB= .16.如图,点P 是四边形ABCD 外接圆☉O 上任意一点,且不与四边形顶点重合.若AD 是☉O 的直径,AB=BC=CD,连接PA,PB,PC.若PA=a,则点A 到PB 和PC 的距离之和AE+AF= .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:|-3|-(2 016+sin 30°)0-(-12)-1.18.先化简,再求值:a+3a·6a 2+6a+9+2a -6a 2-9,其中a=√3-1.19.如图,已知△ABC 中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E,并连接DE(保留作图痕迹,不要求写作法); (2)在(1)的条件下,若DE=4,求BC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某工程队修建一条长1 200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米;(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1 500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(三)(本大题3小题,每小题9分,共27分)(x>0)相交于点P(1,m).23.如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=2x(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( );),求该抛物线的函数解析式,并求出抛物线的对(3)若过P、Q二点的抛物线与y轴的交点为N(0,53称轴方程.24.如图,☉O是△ABC的外接圆,BC是☉O的直径,∠ABC=30°.过点B作☉O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E.过点A作☉O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=√3,求DE的长;4(3)连接EF,求证:EF是☉O的切线.25.如图,BD是正方形ABCD的对角线,BC=2.边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.答案全解全析:一、选择题1.A -2的相反数是2,故选A.评析 本题考查相反数的概念,属简单题.2.A 因为数轴上右边的点表示的数总是比左边的点表示的数大,所以由题图可知b>a,故选A. 评析 本题考查由数轴上的点的位置比较相应数的大小.3.B 由中心对称图形旋转180°后与原图形重合,可知直角三角形、正五边形和正三角形都不是中心对称图形,只有平行四边形是中心对称图形.故选B.4.C 27 700 000=2.77×107 ,故选C.5.B 如图,连接BD,由题可知BC=CD=1, ∴BD=√2.∵E,F 分别为BC,CD 的中点, ∴EF=12BD=√22,∴正方形EFGH 的周长为2√2. 故选B.评析 本题考查正方形的性质,三角形的中位线等.6.B 将数据由小到大排列,最中间的数据是5 000,∴他们工资的中位数是5 000元,故选B. 评析 本题考查中位数,求中位数时,易忽略排序而导致错误.7.C ∵点P 的横坐标与纵坐标都是负数, ∴点P 在第三象限.8.D 过点A 作AB 垂直x 轴于B,则AB=3,OB=4. 由勾股定理得OA=5. ∴cos α=OB OA =45.故选D.9.A 把x-2y 看成一个整体,移项得x-2y=8-3=5.评析 本题主要考查整体思想,整体代入法是解决此类问题的常用方法,属容易题.10.C 设正方形的边长为a,则当点P 在AB 上时,y=12·AP ·CB=12·x ·a=12ax,显然y 是x 的正比例函数,且12a>0,排除A 、B 、D,故选C. 二、填空题 11.答案 3解析 9的算术平方根为3. 12.答案 (m+2)(m-2)解析 m 2-4=m 2-22=(m+2)(m-2). 评析 本题考查因式分解、平方差公式. 13.答案 -3<x ≤1解析 解x-1≤2-2x,得x ≤1. 解2x 3>x -12,得x>-3.所以原不等式组的解集为-3<x ≤1.14.答案 10π解析 根据勾股定理可知,圆锥的底面半径为√132-122=5 cm.所以扇形AOC 中AC⏜的长为2π×5=10π cm. 15.答案 √3解析 由折叠和矩形的性质,可知BE=B'E,∠AB'E=∠ABE=90°,∴∠EB'C=90°.∵BC=3BE,∴EC=2BE=2B'E,∴∠ACB=30°,∴AB=12AC.∵AC=2√3,∴AB=√3.评析 本题考查折叠和矩形的性质等知识.属中档题.16.答案 1+√32 a解析 如图,连接OB 、OC,∵AB=BC=CD,∴AB⏜=BC ⏜=CD ⏜. 又∵AD 是☉O 的直径,∴∠AOB=∠BOC=∠COD=60°,∴∠CPB=∠APB=30°,∴AE=12PA=12a,∠APC=60°,Rt △APF 中,AF=APsin 60°=√32a,∴AE+AF=1+√32 a.评析 本题主要考查圆的有关性质与锐角三角函数.三、解答题(一)17.解析 原式=3-1-(-2)(3分)=2+2(5分)=4.(6分)评析 本题主要考查绝对值、零指数幂和负整数指数幂的相关计算.18.解析 原式=a+3a ×6(a+3)2+2(a -3)(a+3)(a -3)(2分)=6a (a+3)+2a+3=6a (a+3)+2aa (a+3)(3分)=2a .(4分)当a=√3-1时,原式=√3-1=√3+1.(6分)评析 本题主要考查分式的化简、求值、因式分解和分母有理化运算.19.解析 (1)如图.(2分)E 点,DE 即为所求.(3分)(2)∵DE 是△ABC 的中位线,且DE=4,∴BC=2DE=2×4=8.(6分)评析 本题主要考查平面几何中尺规作图的基本方法(中点的作法),以及三角形中位线的性质.四、解答题(二)20.解析 (1)设原计划每天修建道路x m,则实际平均每天修建道路为(1+50%)x m.(1分)由题意得,1 200x -1 200(1+50%)x =4.(2分)解得x=100.经检验,x=100是原方程的解.(3分)答:这个工程队原计划每天修建道路100米.(4分)(2)设实际平均每天修建道路的工效比原计划增加y,由题意得,100(1+y)(1 200100-2)=1 200.解得y=0.2,即y=20%.(6分)答:如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加20%.(7分) 评析 本题主要考查分式方程、一元一次方程的解法和应用,考查运用方程思想解决实际问题的能力.21.解析 ∵Rt △ABC 中,∠B=30°,∠ACB=90°,∴∠A=60°.(1分)∵CD ⊥AB,∴∠ADC=90°,∠ACD=30°.(2分)∵AC=a,∴Rt △ADC 中,AD=12AC=a 2,CD=√3AD=√32a.(4分)同理可得,Rt △DFC 中,DF=12CD=√34a,CF=√3DF=34a.(5分)Rt △FHC 中,FH=12CF=38a,CH=√3FH=3√38a,(6分)Rt △CHI 中,CI=√3CH=98a.(7分) 评析 本题考查直角三角形的基本性质与运算.22.解析 (1)250.(1分)(2)图形正确得满分.(3分)(3)108.(5分)(4)480.(7分)评析 本题主要考查条形统计图和扇形统计图的相关计算,以及通过样本推算总体的数据分析能力.五、解答题(三)23.解析 (1)把P(1,m)代入y=2x ,得m=21=2,(1分)∴P(1,2).把P(1,2)代入y=kx+1,得2=k+1,∴k=1.(2分)(2)(2,1).(4分)(3)由N (0,53),可设抛物线的函数解析式为y=ax 2+bx+53,(5分) 把P(1,2)和Q(2,1)代入上式可得{2=a +b +53,1=4a +2b +53.(6分)解得{a =-23,b =1.(7分) ∴抛物线的解析式为y=-23x 2+x+53.(8分) 对称轴方程为x=-b 2a =-1-43=34.(9分) 评析 本题考查一次函数、反比例函数和二次函数的图象及性质,考查待定系数法和函数方程思想的运用能力.24.解析 (1)证明:∵BC 是☉O 的直径,∴∠BAC=∠BAD=90°.∵∠ABC=30°,OA=OB=OC,∴∠OAB=∠OBA=30°,∴∠OAC=∠OCA=∠AOC=60°,∴∠ACF=∠DAE=120°.(1分)∵AF 是☉O 的切线,∴OA ⊥AF,∴∠OAF=90°,∴∠CAF=90°-∠OAC=90°-60°=30°.(2分)∵BD 是☉O 的切线,∴∠D=90°-∠BCD=90°-60°=30°,∴∠D=∠CAF,∴△ACF ∽△DAE.(3分)(2)设OC=r,∵△OAC 是等边三角形,∴S △AOC =12·r ·√32r=√34r 2,(4分)∴√34r 2=√34,∴r=1或r=-1(舍去),∴OC=1.∴AB=√3,BD=2√3.(5分)∵∠BEO=180°-∠DAE-∠D=180°-120°-30°=30°,∴∠BEO=∠BAO,∴BE=AB=√3,∴DE=BD+BE=3√3.(6分)(3)证明:过点O 作OG ⊥EF,垂足为G.∵∠AFB=∠ACB-∠CAF=30°,∴AC=FC=1.∴BF=3,OF=2.(7分)在Rt △BEF 中,EF=√BE 2+BF 2=√(√3)2+32=2√3,∵∠EBF=∠OGF=90°,∠OFG=∠EFB,∴Rt △OFG ∽Rt △EFB,(8分)∴OG EB =OF EF , ∴√3=2√3,∴OG=1,∴OG=OC,∴EF 是☉O 的切线.(9分)评析 本题考查直角三角形、等腰三角形、等边三角形及圆的相关知识.25.解析 (1)四边形APQD 是平行四边形.(1分)(2)OA=OP 且OA ⊥OP.证明如下:①当BC 向右平移时,如图,∵四边形ABCD 是正方形,∴AB=BC,∠ABD=∠CBD=45°.∵PQ=BC,∴AB=PQ.∵QO ⊥BD,∴∠BOQ=90°,∴∠BQO=90°-∠CBD=45°,∴∠BQO=∠CBD=∠ABD=45°,∴OB=OQ.在△ABO 和△PQO 中,{AB =PQ ,∠ABO =∠PQO ,OB =OQ ,∴△ABO ≌△PQO(SAS).(3分)∴OA=OP,∠AOB=∠POQ.∵∠POQ+∠BOP=∠BOQ=90°,∴∠AOB+∠BOP=90°,即∠AOP=90°.∴OA ⊥OP,∴OA=OP 且OA ⊥OP.(4分)②当BC 向左平移时,如图,同理可证,△ABO ≌△PQO(SAS).∴OA=OP,∠AOB=∠POQ,∴∠AOP+∠POB=∠POB+∠BOQ,∴∠AOP=∠BOQ=90°,∴OA ⊥OP,∴OA=OP 且OA ⊥OP.(5分)(3)过点O 作OE ⊥BC 于E.在Rt △BOQ 中,OB=OQ,∴OE=12BQ.①当BC 向右平移时,如图,(6分)BQ=BP+PQ=x+2,∴OE=12(x+2).∵y=S △OPB =12BP ·OE=12x ·12(x+2),∴y=14x 2+12x(0≤x ≤2).当x=2时,y 有最大值2.(7分)②当BC 向左平移时,如图,BQ=PQ-PB=2-x,∴OE=12(2-x).∵y=S △OPB =12BP ·OE =12x ·12(2-x),∴y=-14x 2+12x(0≤x ≤2). 当x=1时,y 有最大值14.(8分)综上所述,线段BC 在其所在直线平移过程中,△OPB 的面积能够取得最大值,最大值为2(参考下图).(9分)评析 本题考查对正方形、直角三角形和平行四边形基本性质的理解与应用,考查数形结合思想和分类讨论思想.。
2016年中山中学中考数学模拟试卷
B .C .D .A .图2EOCDAB2016年中山中学中考模拟试卷一、精心选一选(本大题共10小题,每小题4 分,共40分)1、-2015的相反数是…………………………………………………( )A 、-2015B 、2015C 、20151 D 、-201512、在我国南海某海域探明可燃冰储量约有194亿立方米,数字19 400 000 000用科学记数法表示正确的是( )A .1.94×1010,B .0.194×1010,C .19.4×109,D .1.94×109 3、如图,把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE=125°,则∠DBC 的度数为( ) A 、135° B 、65° C 、125° D 、55°4.下图的几何体是由三个同样大小的正方体搭成的,其左视图为( ).5.下列运算正确的是( )A.632a a a =⋅ B.55a a a ÷= C.()236aa =D.33y y x x ⎛⎫= ⎪⎝⎭6、某地区5月3日至5月9日这7天的日气温最高值统计图如图所示.从统计图看,该地区这7天日气温最高值的众数与中位数分别是( )A .23,25B .24,23C .23,23D 、23,247.若函数y =kx ﹣b 的图象如图所示,则关于x 的不等式k (x ﹣3)﹣b >0的解集为( ) A . x <2B . x >2C . x <5D . x >58、如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6 cm ,则AB 的长为( ) A. 4 cm B.62cm C. 32cm D. 23cm正面X9.如图,在平面直角坐标系xOy 中,直线经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CB D .若点B 的坐标为(2,0),则点C 的坐标为( )A .(﹣1,) B .(﹣2,) C .(,1) D .(,2)10、已知二次函数y =ax 2+b x+c (a ≠0)的图象如下图所示,且关于x 的一元二次方程ax 2+bx +c -m =0没有实数根,有下列结论:①b 2-4ac >0;②abc <0;③m >2.其中,正确结论的个数是( ) (A )0(B )1(C )2(D )3二、 细心填一填:(本题共6小题,每题4分,共24分) 11.函数y =x +2中,自变量x 的取值范围是 . 12、分解因式:a 2b -2ab +b = .13、在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、角,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是 。
2016广东中考数学试题与参考答案解析
2015年中考数学试卷及参考答案一、选择题(本大题10小题,每小题3分,共30分) 1.2-=( ) A.2 B.2- C.12 D.12- 2.据国家统计局2014年12月4日发布消息,2014年省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( ) A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=( )A.28x -B.28xC.216x -D.216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C. 0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值围是( ) A.2a ≥ B.2a ≤ C.2a > D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)11. 正五边形的外角和等于 (度). 12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .13. 分式方程321x x=+的解是 . 14. 若两个相似三角形的周长比为2:3,则它们的面积比是 .15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2) 求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1) 求k的值;(2) 求点C的坐标;(3) 在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.24. ⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1) 如题24﹣1图;若D是线段OP的中点,求∠BAC的度数;(2) 如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点 运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)2015年省初中毕业生学业考试参考答案一、选择题1.【答案】A.2.【答案】B.3.【答案】B.4.【答案】C.5.【答案】A.6.【答案】D.7. 【答案】B.8.【答案】C.9.【答案】D. 【略析】显然弧长为6,半径为3,则16392S =⨯⨯=扇形. 10.【答案】D.二、填空题11. 【答案】360. 12.【答案】6. 13.【答案】2x =. 14.【答案】4:9.15.【答案】1021. 16.【答案】4.【略析】由中线性质,可得AG =2GD , 则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17.【答案】解:(1)(2)0x x --=∴10x -=或20x -=∴11x =,22x =18. 【答案】解:原式=1(1)(1)x x x x x-⋅+-=11x + 当21x =+时,原式=122211=-+. 19. 【答案】(1) 如图所示,MN 为所作; (2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2.四、解答题(二)20. 【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB ,由折叠的性质可知AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF ,∴∠AFG =∠B ,又AG =AG ,∴△ABG ≌△AFG ;(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 【答案】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元;(2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥ 答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 【答案】(1) ∵A (1,3),∴OB =1,AB =3,又AB =3BD ,∴BD =1,∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,得333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为(33,3);(3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则3331k b k b ⎧+=⎪⎨⎪-+=⎩,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-,当x =0时,y =232-, ∴点M 的坐标为(0,232-).24. 【答案】(1) ∵AB 为⊙O 直径,»»BPPC =, ∴PG ⊥BC ,即∠ODB =90°,∵D 为OP 的中点,∴OD =1122OP OB =, ∴cos ∠BOD =12OD OB =, ∴∠BOD =60°,∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACB =∠ODB ,∴AC ∥PG ,∴∠BAC =∠BOD =60°;(2) 由(1)知,CD =BD ,∵∠BDP =∠CDK ,DK =DP ,∴△PDB ≌△CDK ,∴CK =BP ,∠OPB =∠CKD ,∵∠AOG =∠BOP ,∴AG =BP ,∴AG =CK∵OP =OB ,∴∠OPB =∠OBP ,又∠G =∠OBP ,∴AG ∥CK ,∴四边形AGCK 是平行四边形;(3) ∵CE =PE ,CD =BD ,∴DE ∥PB ,即DH ∥PB∵∠G =∠OPB ,∴PB ∥AG ,∴DH ∥AG ,∴∠OAG =∠OHD ,∵OA =OG ,∴∠OAG =∠G ,∴∠ODH =∠OHD ,∴OD =OH ,又∠ODB =∠HOP ,OB =OP ,∴△OBD ≌△HOP ,∴∠OHP =∠ODB =90°,∴PH ⊥A B.25.【答案】(1) 26;22; (2) 如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°,∴sin 15°=FC NC ,又NC =x , ∴624FC x -=, ∴NE =DF =62224x -+. ∴点N 到AD 的距离为62224x -+cm ; (3) ∵sin 75°=FN NC,∴624FN x +=, ∵PD =CP =2,∴PF =6224x -+, ∴162621162(26)(22)(26)2(2)244224y x x x x x +--=+-+--⨯-+·。
2016广东中考数学模拟试卷(有答案和评分标准)
数学模拟试卷(一) 第1页 共4页 2016年广东中考模拟考试数 学 科 试 卷说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.计算 23+- 的结果是( )A .1B .1-C . 5D . 5-2.下列计算正确的是( )A .3362x x x +=B .236x x x ⋅=C .632x x x ÷=D .326()x x -= 3.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这六次数学测验成绩的众数和中位数分别为( )A .91,88B .85,88C .85,85D .85,84.54.下列交通标志图案是轴对称图形的是( )A .B .C .D .5.一条排水管的截面如图所示,已知排水管的截面圆半径OB =5,截面圆圆心O 到水面的距离OC 是3,则水面宽AB 是( )A .3B .4C .5D .86.二元一次方程组⎩⎨⎧=-=+521y x y x 的解是( ) A .⎩⎨⎧=-=21y x B .⎩⎨⎧-==12y x C .⎩⎨⎧==12y x D .⎩⎨⎧=-=32y x 7.如图,AB 是⊙O 的直径,若10=AB ,6=BC ,则CAB ∠cos 的值为( ) A . 54 B .34 C .53 D .43第5题图 C O A B A B CO 第7题图数学模拟试卷(一) 第2页 共4页 8.要使式子x -2有意义,则x 的取值范围是( )A .0>xB .2-≥xC .2≤xD .2≥x9.如图,已知 ABCD 的周长是20cm ,若△ADC 的周长是16cm ,则对角线AC 的长为( )A .6 cmB .4 cmC .3 cmD .无法计算10.在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:=-1232x .12.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).13.如图3所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为BC 边的中点,菱形ABCD 的周长为24 cm ,则OE 的长等于 cm .14.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为___________(结果保留π)15.若点A(a ,6)在一次函数y =-5x+1的图象上,则a 的值为_________.16.如下图,用同样大小的黑色棋子按如图所示的规律摆放:则第5个图形有________颗黑色棋子,第________图形有2013颗黑色棋子。
2016年广东省中山市初三中考数学真题试卷及答案
2016年广东省中山市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a3.(3分)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形4.(3分)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107B.0.277×108C.2.77×107D.2.77×1085.(3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH 的周长为()A.B.2C.+1D.2+16.(3分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元7.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.9.(3分)已知方程x﹣2y+3=8,则整式x﹣2y的值为()A.5B.10C.12D.1510.(3分)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)9的算术平方根是.12.(4分)分解因式:m2﹣4=.13.(4分)不等式组的解集是.14.(4分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).15.(4分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.16.(4分)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD 是⊙O的直径,AB=BC=CD.连接P A、PB、PC,若P A=a,则点A到PB和PC的距离之和AE+AF=.三、解答题(共3小题,每小题6分,满分18分)17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.18.(6分)先化简,再求值:•+,其中a=﹣1.19.(6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.四、解答题(共3小题,每小题7分,满分21分)20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD 为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(共3小题,每小题9分,满分27分)23.(9分)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m).(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q();(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O 的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接P A、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.2016年广东省中山市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【分析】根据数轴判断出a,b与零的关系,即可.【解答】解:根据数轴得到a<0,b>0,∴b>a,故选:A.【点评】此题是有理数大小的比较,主要考查了识别数轴上的点表示的数,也是解本题的难点.3.【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将27700000用科学记数法表示为2.77×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.6.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)8.【分析】利用勾股定理列式求出OA,再根据锐角的余弦等于邻边比斜边列式即可.【解答】解:由勾股定理得OA==5,所以cosα=.故选:D.【点评】本题考查了锐角三角函数的定义,坐标与图形性质,勾股定理,熟记概念并准确识图求出OA的长度是解题的关键.9.【分析】根据等式的性质1:等式两边同时加上﹣3,可得x﹣2y=5.【解答】解:由x﹣2y+3=8得:x﹣2y=8﹣3=5,故选:A.【点评】本题考查了等式的性质,非常简单,属于基础题;熟练掌握等式的性质是本题的关键,也运用了整体的思想.10.【分析】分P在AB、BC、CD、AD上四种情况,表示出y与x的函数解析式,确定出大致图象即可.【解答】解:设正方形的边长为a,当P在AB边上运动时,y=ax;当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2;当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2;当P在AD边上运动时,y=a(4a﹣x)=﹣ax+2a2,大致图象为:故选:C.【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(共6小题,每小题4分,满分24分)11.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.【点评】本题考查了数的算术平方根,解题的关键是牢记算术平方根为非负.12.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.13.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.【分析】根据的长就是圆锥的底面周长即可求解.【解答】解:∵圆锥的高h为12cm,OA=13cm,∴圆锥的底面半径为=5cm,∴圆锥的底面周长为10πcm,∴扇形AOC中的长是10πcm,故答案为:10π.【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长,难度不大.15.【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.16.【分析】如图,连接OB、OC.首先证明∠AOB=∠BOC=∠COD=60°,推出∠APB =∠AOB=30°,∠APC=∠AOC=60°,根据AE=AP•sin30°,AF=AP•sin60°,即可解决问题.【解答】解:如图,连接OB、OC.∵AD是直径,AB=BC=CD,∴==,∴∠AOB=∠BOC=∠COD=60°,∴∠APB=∠AOB=30°,∠APC=∠AOC=60°,在Rt△APE中,∵∠AEP=90°(AE是A到PB的距离,AE⊥PB),∴AE=AP•sin30°=a,在Rt△APF中,∵∠AFP=90°,∴AF=AP•sin60°=a,∴AE+AF=a.故答案为a.【点评】本题考查圆周角定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用直角三角形解决问题,属于中考常考题型.三、解答题(共3小题,每小题6分,满分18分)17.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1的值是多少即可.【解答】解:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1=3﹣1+2=2+2=4.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a ﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.18.【分析】原式第一项约分后两项通分并利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•+=+==,当a=﹣1时,原式===+1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.【分析】(1)作线段AC的垂直平分线即可.(2)根据三角形中位线定理即可解决.【解答】解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.【点评】本题考查基本作图、三角形中位线定理等知识,解题的关键是掌握线段垂直平分线的作法,记住三角形的中位线定理,属于中考常考题型.四、解答题(共3小题,每小题7分,满分21分)20.【分析】(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.【分析】本题介绍两种方法:①在Rt△ACD中,利用30度角的性质和勾股定理求CD的长;同理在Rt△ECD中求FC的长,在Rt△FCG中求CH的长;最后在Rt△HCI中,利用30度角的性质和勾股定理求CI的长.②在Rt△DCA中,利用30°角的余弦求CD,同理依次求CF、CH、CP,最后利用正弦求CI的长.【解答】解:解法一:在Rt△ACB中,∠B=30°,∠ACB=90°,∴∠A=90°﹣30°=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,在Rt△ACD中,AC=a,∴AD=a,由勾股定理得:CD==,同理得:FC=×=,CH=×=,在Rt△HCI中,∠I=30°,∴HI=2HC=,由勾股定理得:CI==,解法二:∠DCA=∠B=30°,在Rt△DCA中,cos30°=,∴CD=AC•cos30°=a,在Rt△CDF中,cos30°=,CF=×a=a,同理得:CH=cos30°CF=×a=a,在Rt△HCI中,∠HIC=30°,tan30°=,CI=a÷=a;答:CI的长为.【点评】本题考查了勾股定理和直角三角形含30°角的性质,在直角三角形中,30°角所对的直角边等于斜边的一半,这一性质经常运用,必须熟练掌握;同时在运用勾股定理和直角三角形含30°角的性质时,一定要书写好所在的直角三角形,尤其是此题多次运用了这一性质,此题也可以利用三角函数解决.22.【分析】(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用“篮球”人数占被调查人数的比例乘以360°即可;(4)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1)这次活动一共调查学生:80÷32%=250(人);(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),补全条形图如图:(3)选择篮球项目的人数所在扇形的圆心角为:×360°=108°;(4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人);故答案为:(1)250;(3)108;(4)480.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(共3小题,每小题9分,满分27分)23.【分析】(1)直接利用图象上点的坐标性质进而代入求出即可;(2)连接PO,QO,PQ,作P A⊥y轴于A,QB⊥x轴于B,于是得到P A=1,OA=2,根据点Q与点P关于直线y=x成轴对称,得到直线y=x垂直平分PQ,根据线段垂直平分线的性质得到OP=OQ,根据全等三角形的性质得到QB=P A=1,OB=OA=2,于是得到结论;(3)设抛物线的函数解析式为y=ax2+bx+c,把P、Q、N(0,)代入y=ax2+bx+c,解方程组即可得到结论.【解答】解:(1)∵直线y=kx+1与双曲线y=(x>0)交于点P(1,m),∴m=2,把P(1,2)代入y=kx+1得:k+1=2,解得:k=1;(2)连接PO,QO,PQ,作P A⊥y轴于A,QB⊥x轴于B,则P A=1,OA=2,∵点Q与点P关于直线y=x成轴对称,∴直线y=x垂直平分PQ,∴OP=OQ,∴∠POA=∠QOB,在△OP A与△OQB中,,∴△POA≌△QOB,∴QB=P A=1,OB=OA=2,∴Q(2,1);故答案为:2,1;(3)设抛物线的函数解析式为y=ax2+bx+c,∵过P、Q二点的抛物线与y轴的交点为N(0,),∴,解得:,∴抛物线的函数解析式为y=﹣x2+x+,∴对称轴方程x=﹣=.【点评】本题考查了一次函数和反比例函数的交点问题,全等三角形的判定和性质,解题需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,熟练掌握待定系数法求函数的解析式是解题的关键.24.【分析】(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;(2)根据S△AOC=,得到S△ACF=,通过△ACF∽△DAE,求得S△DAE=,过A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30°∴∠DAE=∠ACF=120°,∴△ACF∽△DAE;(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴=,∵△ACF∽△DAE,∴=()2=,∴S△DAE=,过A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DE•AH=וDE2=,∴DE=;(3)∵∠EOF=∠AOB=120°,在△AOF与△BOE中,,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,切线的判定和性质,圆周角定理,直角三角形的性质,证得△ACF∽△DAE是解题的关键.25.【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE =,∴y =וx,即y =(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE =,∴y =וx,即y =﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y 有最大值为;综上所述,∴当x=2时,y有最大值为2.【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质.第21页(共21页)。
广东省中山市2016届九年级下学期期中考试数学试卷
中山市2015—2016学年初三下学期质量调研数 学(本试卷满分120分,考试时间100分钟)第 I 卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列实数中,无理数是( ) A .B .πC .D .2.下列几何体的三视图中,左视图是圆的是( )A .①B .②C .③D .④3.必然事件的概率是( )A.0B.0.5C.1D.不能确定 4.下列几组线段能组成三角形的是( )A .3cm ,5cm ,8cmB .8cm ,8cm ,18cmC .0.1cm ,0.1cm ,0.1cmD .3cm ,4cm ,8cm 5.下列计算正确的是( )A .033110=⨯⎪⎭⎫ ⎝⎛-- B .1055x x x =+ C .428x x x =÷ D .623)(x x =- 6.若一个正多边形的每一个内角都等于120°,则它是( ) A .正八边形 B .正六边形 C .正五边形 D .正方形 7.如图,AB 是半圆的直径,AB=2,∠B=30°,则⋂BC 的长为( ) A .B .C .πD .π348.在小正方形的网格中,下列四个选项中的三角形,与如图所示的三角形相似的是( )A .B .C .D .9.某市为了加快城市建设力度.2014年市政府共投资2亿元人民币,预计到2016年底三年共累计投资9.5亿元人民币,若在这两年内每年投资的增长率都为x ,可列方程( )A .2x 2=9.5B .2+2(x+1)+2(x+1)2=9.5C .2(x+1)2=9.5D .2+(x+1)+(x+1)2=910.在平面直角坐标系中,点P (x ,0)是x 轴上一动点,它与坐标原点O 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .第 II 卷(非选择题 共90分) 二、填空题(本大题共6小题,每小题4分,共24分) 11.不等式4-x>1的正整数解是_____________.12.我市约有495万人口,用科学记数法表示为__________人. 13.因式分解:___________3313=-a a .14.某商品利润是32元,利润率为16%,则此商品的进价是_____________. 15.如图所示,反比例函数的图象经过点A ,那么k 的值是_________________.16.如图,如图,M 、N 分别是△ABC 的边AC 和AB 的中点,D 为BC 上任意一点,连接AD ,将△AMN 沿AD 方向平移到△A 1M 1N 1的位置,且M 1N 1在BC 边上,已知△AMN 的面积为7,则图中阴影部分的面积为__________________.第16题三、解答题(本大题共9小题,共66分,解答题写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:860cos 22212++---18.(本小题满分6分)化简分式:11132-÷⎪⎭⎫⎝⎛+--x x x x x x ,并选择一个你喜欢的x 的值求分式的值.19.(本小题满分6分)如图,已知钝角△ABC(1)过点A 作BC 边的垂线,交CB 的延长线于点D ; (尺规作图,保留作图痕迹,不要求写作法)(2)在(1)的条件下,若∠ABC =122°,BC=5,AD=4,求CD 的长.(结果保留到0.1,参考数据:sin32°=0.53, cos32°=0.85, tan32°=0.62.)20.(本小题满分7分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于点D ,点E 是⋂BD 的中点,连接AE 、OD ,过点D 作DP ∥AE 交BA 的延长线于点P . (1)求∠AOD 的度数;(2)求证:PD 是半圆O 的切线.第15题21.(本小题满分7分)已知:一次函数y=x-2与反比例函数)0(2≠=m xm y 。
【中考模拟】广东省中山市2016年中考数学三模试卷含答案
广东省中山市2016年中考数学三模试卷(解析版)一、选择题(本大题10个小题,每小题3分,共30分,请将正确的选项填涂在答题卡相应的位置)1.|﹣3|的相反数是()A.﹣3 B.3 C.D.﹣2.据广东省统计局2016年2月发布的信息,2015年全省实现地区生产总值(GDP)72800亿元,将72800亿用科学记数法表示为()A.72.8×1011B.7.28×1012C.0.728×1013D.7.28×10133.下列图形中,轴对称图形的是()A.B.C.D.4.下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10 D.(﹣ab)5÷(﹣ab)2=﹣a3b35.如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°6.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.C.D.17.不等式组的最小整数解是()A.﹣1 B.0 C.2 D.38.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形9.已知关于x的一元二次方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<2 B.m>2 C.m<2且m≠1 D.m<﹣210.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)11.因式分解:2﹣2a2=______.12.一个多边形的每个外角都是60°,则这个多边形边数为______.13.如图,AB∥DC,AC交BD于点O.已知,BO=6,则DO=______.14.分式方程的解是______.15.如图,AB为半圆O的直径,C、D是半圆上的三等分点,若⊙O的半径为1,E为线段AB上任意一点,则图中阴影部分的面积为______.16.如图,△ABC中、BC=a,若D1、E1分别是AB、AC的中点,则D1E1=a;若D2、E2分别是D1B、E1C的中点,则D2E2=a;若D3、E3分别是D2B、E2C的中点,则D3E3=a;…若D8、E8分别是D7B、E7C的中点,则D8E8=______.三、解答题(一)(本大题3个小题,每小题6分,共18分)17.计算:.18.先化简,再求值:,其中﹣1≤x≤2,且x是整数.19.如图,已知▱ABCD.(1)作∠B的平分线交AD于点E;(用尺规作图法,保留作图痕迹,不要求写作法)(2)若□ABCD的周长为20,CD=4,求DE的长.四、解答题(二)(本大题3个小题,每小题7分,共21分)20.如图,为了测量某建筑物BC的高度,小明先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地而上向建筑物前进了50m到达D处,此时遇到一斜坡,坡度i=1:,沿着斜坡前进20米到达E处测得建筑物顶部的仰角是45°,(坡度i=1:是(取=1.732,指坡面的铅直高度FE与水平宽度DE的比).请你计算出该建筑物BC的高度.结果精确到0.1m).21.商场销售某种商品,今年四月份销售了若干件,共获毛利润3万元(2016•中山市三模)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?五、解答题(三)(本大题3个小题,每小题9分,共27分)23.如图,在第一象限内,一次函数y=k1x﹣2的图象与反比例函数y=的图象相交于点A(4,a),与y轴、x轴分别相交于B,C两点,且BC=CA.(1)求反比例函数的解析式;(2)根据图象,试求出在第一象限内,一次函数的值小于反比例函数值的x的取值范围;(3)若M(m,n)(0<m<4)为反比例函数y=图象上一点,过M点作MN⊥x轴交一次函数y=k1x﹣2的图象于N点,若以M,N,A为顶点的三角形是直角三角形,求M点的坐标.24.如图,AB是⊙O的直径,D是的中点,DE⊥AB于E,交CB于点F.过点D作BC 的平行线DM,连接AC并延长与DM相交于点G.(1)求证:GD是⊙O的切线;(2)求证:GD2=GC•AG;(3)若CD=6,AD=8,求cos∠ABC的值.25.有一副直角三角板,在三角板ABC中,∠BCA=90°,BC=4cm,AC=4cm.在三角板DEF中,∠FDE=90°,DF=DE=4cm.将这副直角三角板按如图(1)所示位置摆放,点C 与点D重合,直角边BC与DE在同一条直线上.现固定三角板DEF,将三角板ABC沿射线DE方向以1cm/秒的速度平行移动,当点B运动到点E时停止运动.设运动的时间为t 秒.(1)如图(2),当三角板ABC运动到点C与点E重合时,设EF与BA交于点M,则=______;(2)如图(3),在三角板ABC运动过程中,当t为何值时,AB经过点F;(3)在三角板ABC运动过程中,设两块三角板重叠部分的面积为y,且0≤t≤4,求y与t的函数解析式,并求出对应的t的取值范围.2016年广东省中山市中考数学三模试卷参考答案与试题解析一、选择题(本大题10个小题,每小题3分,共30分,请将正确的选项填涂在答题卡相应的位置)1.|﹣3|的相反数是()A.﹣3 B.3 C.D.﹣【考点】相反数;绝对值.【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.2.据广东省统计局2016年2月发布的信息,2015年全省实现地区生产总值(GDP)72800亿元,将72800亿用科学记数法表示为()A.72.8×1011B.7.28×1012C.0.728×1013D.7.28×1013【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:72800亿=7280000000000=7.28×1012.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10 D.(﹣ab)5÷(﹣ab)2=﹣a3b3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项、幂的乘方与积的乘方、同底数幂的除法与乘法等知识点进行作答即可求得答案.【解答】解:A、a3•a2=a5,故A错误;B、(x3)3=x9,故B错误;C、x5+x5=2x5,故C错误;D、(﹣ab)5÷(﹣ab)2=﹣a5b5÷a2b2=﹣a3b3,故D正确.故选:D.【点评】本题考查了合并同类项,同底数的幂的除法与乘法,积的乘方等多个运算性质,需同学们熟练掌握.5.如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°【考点】三角形内角和定理;对顶角、邻补角;平行线的性质.【分析】设∠2的对顶角为∠5,∠1在l2上的同位角为∠4,结合已知条件可推出∠1=∠4=40°,∠2=∠5=75°,即可得出∠3的度数.【解答】解:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.【点评】本题主要考查三角形的内角和定理,平行线的性质和对顶角的性质,关键在于根据已知条件找到有关相等的角.6.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.C.D.1【考点】列表法与树状图法.【分析】列举出所有情况,看积是正数的情况数占总情况数的多少即可.【解答】解:共有6种情况,积是正数的有2种情况,故概率为,故选:B.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到积是正数的情况数是解决本题的关键.7.不等式组的最小整数解是()A.﹣1 B.0 C.2 D.3【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其最小整数解即可.【解答】解:不等式组的解集为﹣<x≤3,所以最小整数解为﹣1.故选:A.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形【考点】三角形中位线定理;菱形的判定.【分析】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【解答】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点评】本题主要考查对菱形的判定,三角形的中位线定理,平行四边形的判定等知识点的理解和掌握,灵活运用性质进行推理是解此题的关键.9.已知关于x的一元二次方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<2 B.m>2 C.m<2且m≠1 D.m<﹣2【考点】根的判别式;一元二次方程的定义.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于m的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(m﹣1)=8﹣4m>0,且m﹣1≠0,解得:m<2,且m≠1.故选:C.【点评】此题考查了根的判别式:△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及一元二次方程的定义,弄清题意是解本题的关键.10.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题(本大题6个小题,每小题4分,共24分)11.因式分解:2﹣2a2=2(1+a)(1﹣a).【考点】提公因式法与公式法的综合运用.【分析】利用提公因式法与公式法,即可解答.【解答】解:2﹣2a2=2(1﹣a2)=2(1+a)(1﹣a),故答案为:2(1+a)(1﹣a).【点评】本题考查了提公因式法与公式法的综合应用,解决本题的关键是熟记提公因式法与公式法.12.一个多边形的每个外角都是60°,则这个多边形边数为6.【考点】多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.如图,AB∥DC,AC交BD于点O.已知,BO=6,则DO=10.【考点】相似三角形的判定与性质.【分析】由已知可得△AOB∽△COD,根据相似三角形的对应边的比等于相似比即可求得DO的长.【解答】解:∵AB∥DC∴△AOB∽△COD∴AO:CO=BO:OD∵,BO=6∴DO=10.【点评】本题用到的知识点为:相似三角形对应边的比等于相似比.14.分式方程的解是3.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.如图,AB为半圆O的直径,C、D是半圆上的三等分点,若⊙O的半径为1,E为线段AB上任意一点,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】根据同底同高的三角形面积相等,可知点E无论在哪一点都与在点O时的面积相等,根据C、D是半圆上的三等分点,可知△OCD是等边三角形,即阴影部分的面积就是一个圆心角为60度的扇形的面积.【解答】解:阴影部分的面积为==.【点评】本题的关键是看出阴影部分的面积就是一个圆心角为60度的扇形的面积.16.如图,△ABC中、BC=a,若D1、E1分别是AB、AC的中点,则D1E1=a;若D2、E2分别是D1B、E1C的中点,则D2E2=a;若D3、E3分别是D2B、E2C的中点,则D3E3=a;…若D8、E8分别是D7B、E7C的中点,则D8E8=a.【考点】梯形中位线定理;三角形中位线定理.【分析】在△ABC中、BC=a,若D1、E1分别是AB、AC的中点,根据中位线定理先分别求出D1E1,D2E2,D3E3,然后观察规律,从而得出D8E8的值.【解答】解:在△ABC中、BC=a,若D1、E1分别是AB、AC的中点,根据中位线定理得:D1E1=a=a,∵D2、E2分别是D1B、E1C的中点,∴D2E2=(+a)=a=a,∵D3、E3分别是D2B、E2C的中点,则a=a,…根据以上可得:D8E8=a= a故答案为:a.【点评】本题考查了梯形中位线定理,难度一般,关键是根据特殊找出一般的规律,进而得出答案.三、解答题(一)(本大题3个小题,每小题6分,共18分)17.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,特殊角的三角函数值,负整数指数幂法则,以及分母有理化运算法则计算即可得到结果.【解答】解:原式=﹣1﹣﹣1+2×﹣(﹣2)=﹣2+2=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中﹣1≤x≤2,且x是整数.【考点】分式的化简求值.【分析】先根据分式的除法法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=•=,∵﹣1≤x≤2,且x是整数,∴当x=2时,原式==1.【点评】本题考查的是分式的化简求值,在选取x的值时要保证分式有意义.19.如图,已知▱ABCD.(1)作∠B的平分线交AD于点E;(用尺规作图法,保留作图痕迹,不要求写作法)(2)若□ABCD的周长为20,CD=4,求DE的长.【考点】平行四边形的性质;作图—基本作图.【分析】(1)以点B为圆心,任意长为半径画弧,交AB,BC于两点,分别以这两点为圆心,大于这两点的距离为半径画弧,在△ABC内交于一点O,作射线BO,交AD于点E即可;(2)利用角平分线的性质以及平行线的性质求出∠ABE=∠AEB,得出AE=AB=4,再由平行四边形的周长求出AD,即可得出结果.【解答】解:(1)如图所示:(2)∵BE平分∠ABC,∴∠ABE=∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=4,AD=BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=4,∵▱ABCD的周长为20,∴AB+AD=10,∴AD=6,∴DE=AD﹣AE=6﹣4=2.【点评】本题考查了三角形的角平分线的画法以及角平分线的性质以及平行线的性质等知识,利用角平分线的性质得出AE=AB是解题关键.四、解答题(二)(本大题3个小题,每小题7分,共21分)20.如图,为了测量某建筑物BC的高度,小明先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地而上向建筑物前进了50m到达D处,此时遇到一斜坡,坡度i=1:,沿着斜坡前进20米到达E处测得建筑物顶部的仰角是45°,(坡度i=1:是指坡面的铅直高度FE与水平宽度DE的比).请你计算出该建筑物BC的高度.(取=1.732,结果精确到0.1m).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】过E作EF⊥AB于F,EG⊥BC与G,根据矩形的性质得到四边形EG=FB,EF=BG,设CG=x,根据已知条件得到∠EDF=30°及直角三角形得到DF=20cos30°=10,BG=EF=20sin30°=10,AB=50+10+x,BC=x+10,在Rt△ABC中,根据三角函数的定义列方程即可得到结论.【解答】解:过E作EF⊥AB于F,EG⊥BC与G,∵CB⊥AB,∴四边形EFBG是矩形,∴EG=FB,EF=BG,设CG=x米,∵∠CEG=45°,∴FB=EG=CG=x,∵DE的坡度i=1:,∴∠EDF=30°,∵DE=20,∴DF=20cos30°=10,BG=EF=20sin30°=10,∴AB=50+10+x,BC=x+10,在Rt△ABC中,∵∠A=30°,∴BC=AB•tan∠A,即x+10=(50+10+x),解得:x≈18.3,∴BC=28.3米,答:建筑物BC的高度是28.3米.【点评】本题考查了仰角与俯角的知识.此题难度适中,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.21.商场销售某种商品,今年四月份销售了若干件,共获毛利润3万元(2016•中山市三模)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D粽的人数?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢B粽的人数是60人,所占的比例是10%,据此即可求得调查的总人数;(2)利用总人数减去其它组的人数即可求得喜欢C种粽子的人数,从而补全直方图;(3)利用总人数8000乘以对应的百分比即可求得.【解答】解:(1)本次参加抽样调查的居民数是60÷10%=600(人);(2)C组的人数是:600﹣180﹣60﹣240=120(人).;(3)估计爱吃D粽的人数是:8000×40%=3200(人).答:爱吃D粽的人数是3200人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3个小题,每小题9分,共27分)23.如图,在第一象限内,一次函数y=k1x﹣2的图象与反比例函数y=的图象相交于点A(4,a),与y轴、x轴分别相交于B,C两点,且BC=CA.(1)求反比例函数的解析式;(2)根据图象,试求出在第一象限内,一次函数的值小于反比例函数值的x的取值范围;(3)若M(m,n)(0<m<4)为反比例函数y=图象上一点,过M点作MN⊥x轴交一次函数y=k1x﹣2的图象于N点,若以M,N,A为顶点的三角形是直角三角形,求M点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)过点A作AE⊥x轴于点E,通过证明△ACE≌△BCO得出AE=BO,再令一次函数y=k1x﹣2中x=0可得出线段BO的长度,从而得出点A的坐标,由点A的坐标利用待定系数法即可求出反比例函数的解析式;(2)由点A的坐标,结合两函数的图象即可找出在第一象限内,一次函数的值小于反比例函数值的x的取值范围;(3)由点M在反比例函数图象上可用m表示出n,再由点A的坐标利用待定系数法求出直线AB的解析式,由MN垂直x轴和直线AB的解析式即可得出点N的坐标,由△AMN 为直角三角形可得出关于m的一元二次方程,解方程即可求出m值,将其代入点M的坐标即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.∵AE⊥x轴,BO⊥OC,∴∠AEC=∠BOC=90°,在△ACE和△BCO中,,∴△ACE≌△BCO(AAS).∴AE=BO.令一次函数y=k1x﹣2中x=0,则y=﹣2,∴BO=AE=2.∴点A的坐标为(4,2),将点A(4,2)代入到反比例函数y=中,2=,解得:k2=8.∴反比例函数的解析式为y=.(2)观察函数图象可知:当0<x<4时,一次函数图象在反比例函数图象下方,∴在第一象限内,一次函数的值小于反比例函数值的x的取值范围为0<x<4.(3)∵点M(m,n)(0<m<4)为反比例函数y=图象上一点,∴n=.∵点A(4,2)在一次函数y=k1x﹣2的图象上,∴2=4k1﹣2,解得:k1=1,∴一次函数解析式为y=x﹣2.∵MN⊥x轴交一次函数y=x﹣2的图象于N点,∴点N的坐标为(m,m﹣2).∵以M,N,A为顶点的三角形是直角三角形,∴AM⊥AN,即=﹣1,∴m2﹣6m+8=(m﹣2)(m﹣4)=0,解得:m1=2,m2=4(舍去).∴点M的坐标为(2,4).【点评】本题考查了反比例函数与一次函数的交点问题、全等三角形的判定及性质、待定系数法求函数解析式以及垂直的性质,解题的关键是:(1)求出点A的坐标;(2)观察图象得出结论;(3)找出关于m的方程.本题属于中档题,难度不大,解决该题型题目时,利用全等三角形的性质找出点的坐标,再利用待定系数法求出函数解析式是关键.24.如图,AB是⊙O的直径,D是的中点,DE⊥AB于E,交CB于点F.过点D作BC 的平行线DM,连接AC并延长与DM相交于点G.(1)求证:GD是⊙O的切线;(2)求证:GD2=GC•AG;(3)若CD=6,AD=8,求cos∠ABC的值.【考点】圆的综合题.(1)连接OD,由垂径定理得出OD⊥BC,OD平分BC,由圆周角定理得出∠ACB=90°,【分析】证出DM⊥OD,即可得出GD是⊙O的切线;(2)由切割线定理即可得出结论;(3)由垂径定理得出BD=CD=6,BN=BC,由勾股定理求出AB==10,证明△CDH∽△ABH,得出对应边成比例=,由圆周角定理得出∠ACB=∠ADB=90°,求出BH,得出DH、AH、CH,求出BC的长,再由三角函数的定义即可得出结果.【解答】(1)证明:连接OD,如图所示:∵D是的中点,∴OD⊥BC,OD平分BC,∵AB是⊙O的直径,∴∠ACB=90°,即AG⊥BC,∵DM∥BC,∴DM⊥OD,∴GD是⊙O的切线;(2)证明:∵GD是⊙O的切线,AG是⊙O的割线,∴GD2=GC•AG;(3)解:∵D是的中点,∴BD=CD=6,∴BN=BC,AB===10,∵∠DCH=∠BAH,∠CHD=∠AHB,∴△CDH∽△ABH,∴==,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵,∴,∴BH=BD=×6=,∴DH=BH=,∴AH=AD﹣DH=8﹣=,∴CH=AH=,∴BC=BH+CH=+=,∴cos∠ABC===.【点评】本题是圆的综合题目,考查了切线的判定、垂径定理、圆周角定理、勾股定理、切割线定理、相似三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,特别是(3)中,需要证明三角形相似才能得出结果.25.有一副直角三角板,在三角板ABC中,∠BCA=90°,BC=4cm,AC=4cm.在三角板DEF中,∠FDE=90°,DF=DE=4cm.将这副直角三角板按如图(1)所示位置摆放,点C 与点D重合,直角边BC与DE在同一条直线上.现固定三角板DEF,将三角板ABC沿射线DE方向以1cm/秒的速度平行移动,当点B运动到点E时停止运动.设运动的时间为t 秒.(1)如图(2),当三角板ABC运动到点C与点E重合时,设EF与BA交于点M,则=;(2)如图(3),在三角板ABC运动过程中,当t为何值时,AB经过点F;(3)在三角板ABC运动过程中,设两块三角板重叠部分的面积为y,且0≤t≤4,求y与t的函数解析式,并求出对应的t的取值范围.【考点】三角形综合题.【分析】(1)根据平行线分线段成比例定理,列出比例式即可解决问题.(2)由DF∥AC,得=,求出BD,再求出CD即可解决问题.(3)分两种情形:①当0≤t≤4﹣,如图(4)中,重叠部分是梯形CDFM,②当4﹣<t≤4时,重叠部分是五边形DCMGH,分别计算即可.【解答】解:(1)如图(2)中,∵AC∥DF,∴===.故答案为.(2)如图(3)中,∵DF∥AC,∴=,∴=,∴BD=,∴CD=BC﹣BD=4﹣,∴t=(4﹣)÷1=4﹣.(3)①当0≤t≤4﹣,如图(4)中,重叠部分是梯形CDFM.y=(DF+CM)•CD=(4+4﹣t)•t═﹣t2+8.②当4﹣<t≤4时,重叠部分是五边形DCMGH,作DN⊥AC于N,设GN=NM=x,则AN=x,由题意x+x=4﹣(4﹣t),解得x=,y=S△ABC﹣S△BDH﹣S△AGM=8﹣(4﹣t)•(4﹣t)﹣•[4﹣(4﹣t)]•=﹣(4﹣t)2+2(4﹣t)+12﹣4.综上所述y=.【点评】本题考查相似三角形的性质、平行线分线段成比例定理、特殊三角形的性质等知识,解题的关键是灵活灵活应用这些知识解决问题,学会分类讨论,学会利用分割法求多边形面积,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年广东省中山市中考数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣2016的倒数是()A.2016 B.﹣2016 C.D.﹣2.(3分)由几个大小相同的正方形组成的几何图形如图,则它的俯视图是()A. B. C. D.3.(3分)据统计,今年北京市中考报名确认考生人数是96200人,用科学记数法表示96200为()A.9.62×104B.0.962×105C.9.62×105D.96.2×1034.(3分)要使代数式有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x>2 D.x≤25.(3分)一组数据,3,4,6,5,6,则这组数据的众数、中位数分别是()A.5,6 B.5,5 C.6,5 D.6,66.(3分)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.7.(3分)下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a48.(3分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A.6 B.3 C.2 D.19.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:根据表格提供的信息,下列说法错误的是()A.该抛物线的对称轴是直线x=﹣2B.该抛物线与y轴的交点坐标为(0,﹣2.5)C.b2﹣4ac=0D.若点A(0.5,y1)是该抛物线上一点.则y1<﹣2.510.(3分)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.二、填空题,本大题6小题,每小题4分,共24分11.(4分)在初三基础测试中,我学校的小明的6科成绩分别为语文118分,英语117分,数学117分,物理80分.政治83分,则他的成绩众数为分.12.(4分)在平面直角坐标系中,点A(a,1)与点B(5,b)关于原点对称,则ab=.13.(4分)礼堂第1排有a个座位,后面每一排都比前一排多1个座位,则a=18时,第17排的座位数为.14.(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15.(4分)如图,菱形ABCD的两条对角线分别长4和6,点P是对角线AC上的一个动点,点M,N分别是边AB,BC的中点,则PM+PN的最小值是.16.(4分)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).三、解答题17.(6分)计算:(x﹣2016)0+|2﹣|﹣+tan60°.18.(6分)如图,点E,F分别在四边形ABCD的边AD,BC的延长线上,且满足.若CD,FE的延长线相交于点G,△DEG的外接圆与△CFG的外接圆的另一个交点为点P,连接PA,PB,PC,PD.求证:(1);(2)△PAB∽△PDC.19.(6分)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AB=4.(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用尺规作图法,保留作图痕迹,不要求写作法和证明):(2)连接CE,求△BEC的周长.20.(7分)某学生为了描点作出函数y=ax2+bx+c(a≠0)的图象,取了自变量的7个值,x1<x2<…<x7且x2﹣x1=x3﹣x2=…=x7﹣x6,分别算出对应的y的值,列出如表;但由于粗心算出了其中一个y的值,请指出算错的是哪一个值?正确的值是多少?并说明理由.21.(7分)如图,四边形ABCD是矩形,△ABD沿AD方向平移得△A1B1D1,点A1在AD边上,A1B1与BD交于点E,D1B1与CD交于点F.(1)求证:四边形EB1FD是平行四边形;(2)若AB=3,BC=4,AA1=1,求B1F的长.22.(7分)十一届全国人大常委第二十次会议审议的个人所得税法自2011年9月1日正式实施,新税法将个人所得税的起征点由原来每月2000元提高到3500元,并将9级超额累进税率修改为7级,新旧两种征税方法的1~5级税率情况见下表注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按原个人所得税法的规定,某人去年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元).(1)甲去年3月缴了个人所得税1060元,若按“新税法”计算,则他应缴税款多少元?(2)乙今年3月按“新税法”缴了个人所得税2千多元,比去年3月按“原税法”所缴个人所得税少了155元(今年与去年收入不变),那么乙今年3月所缴税款的具体数额为多少元?23.(9分)已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD 翻折,得到△PFD,使得直线PE、PF重合.(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值?(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ 是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.24.(9分)如图,在矩形ABCD中,AD=acm,AB=bcm,(a>b>4),半径为2cm 的⊙O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动.⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原路返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P从A→B→C→D,全程共移动了cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC 的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.25.(9分)如图,已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC(1)∠ABC的度数为;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在着点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.2016年广东省中山市中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣2016的倒数是()A.2016 B.﹣2016 C.D.﹣【解答】解:﹣2016的倒数是﹣.故选D.2.(3分)由几个大小相同的正方形组成的几何图形如图,则它的俯视图是()A. B. C. D.【解答】解:从上面看第一层右边一个,第二层三个正方形,故选:A.3.(3分)据统计,今年北京市中考报名确认考生人数是96200人,用科学记数法表示96200为()A.9.62×104B.0.962×105C.9.62×105D.96.2×103【解答】解:96200=9.62×104.故选:A.4.(3分)要使代数式有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x>2 D.x≤2【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故选B.5.(3分)一组数据,3,4,6,5,6,则这组数据的众数、中位数分别是()A.5,6 B.5,5 C.6,5 D.6,6【解答】解:将这组数据按从小到大排列为:3,4,5,6,6,∵数据6出现2次,次数最多,∴众数为:6;∵第三个数为5,∴中位数为5,故选C.6.(3分)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.【解答】解:从几何体的左边看可得.故选:C.7.(3分)下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【解答】解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;故选:C.8.(3分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A.6 B.3 C.2 D.1【解答】解:∵四边形ABCD是矩形,∴OB=OD,∠EDB=∠CBD;∵∠EOD=∠FOB,∴△EOD≌△FOB;∴S△BOF=S△DOE;∴S阴影=S△BOF+S△AOE+S△COD=S△AOE+S△EOD+S△COD=S△ACD;∵S△ACD=AD•CD=3;∴S阴影=3;故选B.9.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:根据表格提供的信息,下列说法错误的是()A.该抛物线的对称轴是直线x=﹣2B.该抛物线与y轴的交点坐标为(0,﹣2.5)C.b2﹣4ac=0D.若点A(0.5,y1)是该抛物线上一点.则y1<﹣2.5【解答】解:A、正确.因为x=﹣1或﹣3时,y的值都是0.5,所以对称轴是x=﹣2.B、正确.根据对称性,x=0时的值和x=﹣4的值相等.C、错误.因为抛物线与x轴有交点,所以b2﹣4ac>0.D、正确.因为在对称轴的右侧y随x增大而减小.故选C.10.(3分)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选D.二、填空题,本大题6小题,每小题4分,共24分11.(4分)在初三基础测试中,我学校的小明的6科成绩分别为语文118分,英语117分,数学117分,物理80分.政治83分,则他的成绩众数为117分.【解答】解:小明的6科成绩分别为语文118分,英语117分,数学117分,物理80分.政治83分,其中数据117分出现次数最多,所以小明的成绩众数为117分.故答案为:117.12.(4分)在平面直角坐标系中,点A(a,1)与点B(5,b)关于原点对称,则ab=5.【解答】解:∵点A(a,1)与点B(5,b)关于原点对称,∴a=﹣5,b=﹣1,∴ab=5,故答案为:5.13.(4分)礼堂第1排有a个座位,后面每一排都比前一排多1个座位,则a=18时,第17排的座位数为34.【解答】解:设第n排由y个位,由题意可知:y=a+(n﹣1)当a=18,n=17时,y=34故答案为:3414.(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为6.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.15.(4分)如图,菱形ABCD的两条对角线分别长4和6,点P是对角线AC上的一个动点,点M,N分别是边AB,BC的中点,则PM+PN的最小值是.【解答】解:如图:作ME⊥AC交AD于E,连接EN、BD,则EN就是PM+PN 的最小值,∵四边形ABCD是菱形,∴AB=BC=AD=DC,AC⊥BD,AO=AC=3,BO=BD=3,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,∴EN=AB,EN∥AB,而由题意可知,可得AB==,∴EN=AB=,∴PM+PN的最小值为.故答案为:.16.(4分)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).【解答】解:根据图示知,∠1+∠2=180°﹣90°﹣45°=45°,∵∠ABC+∠ADC=180°,∴图中阴影部分的圆心角的和是90°+90°﹣∠1﹣∠2=135°,∴阴影部分的面积应为:S==.故答案是:.三、解答题17.(6分)计算:(x﹣2016)0+|2﹣|﹣+tan60°.【解答】解:(x﹣2016)0+|2﹣|﹣+tan60°=1+2﹣﹣27+×=3﹣﹣27+2=﹣24﹣+218.(6分)如图,点E,F分别在四边形ABCD的边AD,BC的延长线上,且满足.若CD,FE的延长线相交于点G,△DEG的外接圆与△CFG的外接圆的另一个交点为点P,连接PA,PB,PC,PD.求证:(1);(2)△PAB∽△PDC.【解答】证明:(1)连接PE,PF,PG,∵∠PDG=∠PEG,∴∠PDC=∠PEF.又∵∠PCG=∠PFG,∴△PDC∽△PEF,即,∠CPD=∠FPE从而△PDE∽△PCF,∴=.又∵=,∴=;(2)由于∠PDA=∠PGE=∠PCB,结合(1)知,△PDA∽△PCB,从而有,∠DPA=∠CPB,∴∠APB=∠DPC,∴△PAB∽△PDC.19.(6分)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AB=4.(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用尺规作图法,保留作图痕迹,不要求写作法和证明):(2)连接CE,求△BEC的周长.【解答】解:(1)如图,DE为所作;(2)∵,∠C=90°,∠A=30°,AB=4.∴BC=AB=2,∵DE垂直平分AC,∴EC=EA,∴△BEC的周长=BE+EC+BC=BE+EA+BC=AB+BC=4+2=6.20.(7分)某学生为了描点作出函数y=ax2+bx+c(a≠0)的图象,取了自变量的7个值,x1<x2<…<x7且x2﹣x1=x3﹣x2=…=x7﹣x6,分别算出对应的y的值,列出如表;但由于粗心算出了其中一个y的值,请指出算错的是哪一个值?正确的值是多少?并说明理由.【解答】解;x6对应的y值错误,正确的值是551,理由是:通过表格可知,107﹣51=56,185﹣107=78,285﹣185=100,407﹣285=122,549﹣407=142,717﹣549=168,而78﹣56=22,100﹣78=22,122﹣100=22,142﹣122=20,故x6对应的y值错误,正确的结果为:407+122+22=551.21.(7分)如图,四边形ABCD是矩形,△ABD沿AD方向平移得△A1B1D1,点A1在AD边上,A1B1与BD交于点E,D1B1与CD交于点F.(1)求证:四边形EB1FD是平行四边形;(2)若AB=3,BC=4,AA1=1,求B1F的长.【解答】(1)证明:∵△A1B1D1是由△ABD平移所得,∴AB∥A1B1,BD∥B1D1,∵四边形ABCD是矩形,∴AB∥CD,∴A1B1∥CD,∴四边形EB1FD是平行四边形.(2)解:∵四边形ABCD是矩形,∴∠A=90°,AB=CD=3,AD=BC=4,∴BD==5,∵AA1=BB1=1,∴CB1=3,∵FB1∥BD,∴△CB1F∽△CBD,∴=,∴=,∴B1F=.22.(7分)十一届全国人大常委第二十次会议审议的个人所得税法自2011年9月1日正式实施,新税法将个人所得税的起征点由原来每月2000元提高到3500元,并将9级超额累进税率修改为7级,新旧两种征税方法的1~5级税率情况见下表注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按原个人所得税法的规定,某人去年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元).(1)甲去年3月缴了个人所得税1060元,若按“新税法”计算,则他应缴税款多少元?(2)乙今年3月按“新税法”缴了个人所得税2千多元,比去年3月按“原税法”所缴个人所得税少了155元(今年与去年收入不变),那么乙今年3月所缴税款的具体数额为多少元?【解答】解:(1)列出原征税方法和新征税方法月税额缴个人所得税y:设原工资为x元,因为1060元在第4税级,所以有20%x﹣375=1060,x=7175(元),7175+2000﹣3500=5675,所以,按“新税法”计算,应在第3级,5675×20%﹣555=580答:他应缴税款580元.(2)今年3月缴个人所得税2千多元的应缴税款必在第4级,去年3月按原税法征税若在第5级显然不可,则也在第4级,假设个人收入为k,刚有20%(k﹣2000)﹣375﹣155=25%(k﹣3500)﹣1005,解得:k=19000,所以乙今年3月所缴税款的具体数额为(19000﹣3500)×25%﹣1005=2870(元).23.(9分)已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD 翻折,得到△PFD,使得直线PE、PF重合.(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值?(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ 是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.【解答】解:(1)由题意知,△POC,△PAD均为等腰直角三角形,可得P(3,0),C(0,3),D(4,1),设过此三点的抛物线为y=ax2+bx+c(a≠0),则,∴,∴过P、C、D三点的抛物线的函数关系式为y=x2﹣x+3.(2)由已知PC平分∠OPE,PD平分∠APF,且PE、PF重合,则∠CPD=90°,∴∠OPC+∠APD=90°,又∠APD+∠ADP=90°,∴∠OPC=∠ADP.∴Rt△POC∽Rt△DAP.∴即∵y=x(4﹣x)=﹣x2+x=﹣(x﹣2)2+(0<x<4)∴当x=2时,y有最大值.(3)假设存在,分两种情况讨论:①当∠DPQ=90°时,由题意可知∠DPC=90°,且点C在抛物线上,故点C与点Q重合,所求的点Q为(0,3)②当∠QDP=90°时,过点D作平行于PC的直线DQ,假设直线DQ交抛物线于另一点Q,∵点P(3,0),C(0,3),∴直线PC的方程为y=﹣x+3,将直线PC向上平移2个单位与直线DQ重合,∴直线DQ的方程为y=﹣x+5.由,得或.又点D(4,1),∴Q(﹣1,6),故该抛物线上存在两点Q(0,3),(﹣1,6)满足条件.24.(9分)如图,在矩形ABCD中,AD=acm,AB=bcm,(a>b>4),半径为2cm 的⊙O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动.⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原路返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P从A→B→C→D,全程共移动了a+2b cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.【解答】解:(1)如图①,点P从A→B→C→D,全程共移动了(a+2b)cm;故答案为:a+2b;(2)∵圆心O移动的距离为2(a﹣4)cm,由题意,得a+2b=2(a﹣4)①,∵点P移动2秒到达B,即点P2s移动了bcm,点P继续移动3s到达BC的中点,即点P3秒移动了acm.∴=②由①②解得,∵点P移动的速度为与⊙O移动速度相同,∴⊙O移动的速度为==4cm(cm/s).这5秒时间内⊙O移动的距离为5×4=20(cm);(3)存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得===,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(20﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(20﹣x)2+102=x2,解得x=此时点P移动的距离为10+=(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=16cm,OO1=14cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为14cm,此时点P与⊙O移动的速度比为=,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(20﹣4)﹣14=18cm,∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.25.(9分)如图,已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC(1)∠ABC的度数为45°;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在着点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.【解答】解:(1)令x=0,则y=﹣m,C点坐标为:(0,﹣m),令y=0,则x2+(1﹣m)x﹣m=0,解得:x1=﹣1,x2=m,∵0<m<1,点A在点B的左侧,∴B点坐标为:(m,0),∴OB=OC=m,∵∠BOC=90°,∴△BOC是等腰直角三角形,∠ABC=45°;故答案为:45°;(2)如图1,作PD⊥y轴,垂足为D,设l与x轴交于点E,由题意得,抛物线的对称轴为:x=,设点P坐标为:(,n),∵PA=PC,∴PA2=PC2,即AE2+PE2=CD2+PD2,∴(+1)2+n2=(n+m)2+()2,解得:n=,∴P点的坐标为:(,);(3)存在点Q满足题意,∵P点的坐标为:(,),∴PA2+PC2=AE2+PE2+CD2+PD2,=(+1)2+()2+(+m)2+()2=1+m2,∵AC2=1+m2,∴PA2+PC2=AC2,∴∠APC=90°,∴△PAC是等腰直角三角形,∵以Q、B、C为顶点的三角形与△PAC相似,∴△QBC是等腰直角三角形,∴由题意可得满足条件的点Q的坐标为:(﹣m,0)或(0,m),①如图1,当Q点坐标为:(﹣m,0)时,若PQ与x轴垂直,则=﹣m,解得:m=,PQ=,若PQ与x轴不垂直,则PQ2=PE2+EQ2=()2+(+m)2=m2﹣2m+=(m﹣)2+∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵<,∴当m=,即Q点的坐标为:(﹣,0)时,PQ的长度最小,②如图2,当Q点的坐标为:(0,m)时,若PQ与y轴垂直,则=m,解得:m=,PQ=,若PQ与y轴不垂直,则PQ2=PD2+DQ2=()2+(m﹣)2=m2﹣2m+=(m﹣)2+,∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵<,∴当m=,即Q点的坐标为:(0,)时,PQ的长度最小,综上所述:当Q点坐标为:(﹣,0)或(0,)时,PQ的长度最小.。