二次根式知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式(基础)
【学习目标】
1、理解二次根式的概念,了解被开方数是非负数的理由.
2、理解并掌握下列结论: a ≥0,(a ≥0),
(a ≥0),(a ≥0),并利用它们进行计算和化简.
【要点梳理】
要点一、二次根式及代数式的概念
1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“
”称为二次根号. 要点诠释: 二次根式的两个要素:①根指数为2;②被开方数为非负数.
2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质
1.a ≥0,(a ≥0);
2. (a ≥0);
3.
. 要点诠释:
1.二次根式(a ≥0)的值是非负数。一个非负数可以写成它的算术平方根的形式,
即2()(0a a a =≥).
2.2a 与2()a 要注意区别与联系:1).a 的取值范围不同,2()a 中a ≥0,2a 中a 为任意值。
2).a ≥0时,2()a =2a =a ;a <0时,2()a 无意义,2a =a -.
【典型例题】
类型一、二次根式的概念
1(2015春?潍坊期中)下列各式中
,一定是二次根式的有( )个.
.3 C
【答案】 B
【解析】2231x +-,B .
【总结升华】0.
举一反三:
【变式】下列式子中二次根式的个数有( ).
(1)13;(2)3-; (3)21x -+;(4)38; (5)21()3
-;(6)1x -(1x >) A .2 .3 C
【答案】B.
2. x 取何值时,下列函数在实数范围内有意义
(1)1y x =
-; (2)y=2+x -x 23-;
【答案与解析】 (1)1x -Q ≥0,所以x ≥1.
(2)2x +Q ≥0,32x -≥0,所以2-≤x ≤32
; 【总结升华】重点考查二次根式的概念:被开方数是正数或零.
举一反三:
【变式】下列格式中,一定是二次根式的是( ).
A. 23-
B.
()20.3- C. 2- D. x
【答案】B.
类型二、二次根式的性质
3. 计算下列各式: (1)23
2()4
--2(3.14)π- 【答案与解析】(1) 33=-2=-42
⨯原式. (2) =3.14-=-3.14ππ原式.
【总结升华】 二次根式性质的运用.
举一反三:
【变式】(1)2)2
52(-=_____________. (2)2)2(2a a ---=_____________.
【答案】(1) 10;(2) 0.
4. (2015春?孝南区月考)已知实数a ,b ,c 在数轴上的位置如图所示, 化简:22||()||a a c c b b -++---|.
【解析】解:由图可知,a <0,c <0,b >0,且|c|<|b|,
所以,a+c <0,c ﹣b <0,
22||()||a a c c b b ++--=﹣a+a+c+b ﹣c ﹣b=0.
【总结升华】根据数轴判断出a 、b 、c 的正负性,根据二次根式的性质与化简、绝对值的性质,正确进行计算即可.
举一反三:
【变式】若整数m 2(1)1,5m m m +=+<
且则m 的值是___________. 【答案】m =0或m =-1.