高三数学总复习第22讲
高考数学复习考点知识讲解课件22 三角函数的图象与性质
— 返回 —
— 14 —
(新教材) 高三总复习•数学
— 返回 —
[解析] 由 2x+π6≠π2+kπ(k∈Z),得 x≠π6+k2π(k∈Z),故函数 f (x)的定义域为 x|x≠π6+k2π,k∈Z.故选 D.
— 15 —
(新教材) 高三总复习•数学
— 返回 —
2.(2022·东北师大附中月考)函数 f (x)=3sin2x-π6在区间0,π2上的值域为( B )
(2)∵f (x)为偶函数, ∴-π3+φ=π2+kπ,k∈Z,得 φ=56π+kπ,k∈Z. 又 φ∈(0,π),∴φ=56π. ∴f (x)=3sin2x+π2=3cos2x. 由 2x=π2+kπ,k∈Z,得 x=π4+k2π,k∈Z, ∴f (x)图象的对称中心为π4+k2π,0,k∈Z.
— 返回 —
— 23 —
(新教材) 高三总复习•数学
— 返回 —
(1)三角函数周期的一般求法 ①公式法. ②不能用公式求周期的函数时,可考虑用图象法或定义法求周期. (2)对于可化为 f (x)=Asin(ωx+φ)(或 f (x)=Acos(ωx+φ))形式的函数,如果求 f (x)的对 称轴,只需令 ωx+φ=π2+kπ(k∈Z)(或令 ωx+φ=kπ(k∈Z)),求 x 即可;如果求 f (x)的对 称中心的横坐标,只需令 ωx+φ=kπ(k∈Z)或令ωx+φ=π2+kπk∈Z,求 x 即可.
— 9—
(新教材) 高三总复习•数学
3.函数 f (x)=cosx+π6(x∈[0,π])的单调递增区间为( C ) A.0,56π B.0,23π C.56π,π D.23π,π
— 返回 —
[解析] 由 2kπ-π≤x+π6≤2kπ,k∈Z,解得 2kπ-76π≤x≤2kπ-π6,k∈Z,∵x∈[0, π],∴56π≤x≤π,∴函数 f (x)在[0,π]的单调递增区间为56π,π,故选 C.
新高考数学复习基础知识专题讲义22 回归方程和2×2联表(解析版)
新高考数学复习基础知识专题讲义 知识点22 回归方程和2×2联表知识理解 一.线性关系 1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系. (2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关. 2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程: 是两个具有线性相关关系的变量的一组数据的回归方程,其中是待定参数. 的计算公式.注意:回归方程必过样本中心(x,y),这也是做小题的依据和检验所求回归方程是否正确。
(3)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性. 二.独立性检验y bx a =+1122()()()n n x y x y x y ,,,,,,a b 、a b 、1122211()()()()nni i i ii i n ni ii i x x y y x y nx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑(1)2×2列联表设X ,Y 为两个变量,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)如下:(2)独立性检验利用随机变量K 2(也可表示为χ2)的观测值22n(ad bc)K (a b)(c d)(a c)(b d)-=++++(其中n =a +b +c +d 为样本容量)来判断“两个变量有关系”的方法称为独立性检验.考向一 一次线性关系【例1-1】(2021·山东高三专题练习)某工厂的每月各项开支x 与毛利润y (单位:万元)之间有如下关系,y 与x 的线性回归方程 6.5y x a =+,则a =( )A .17.5B .17C .15D .15.5 【答案】A【解析】由题意,根据表中的数据,可得2456855x ++++==,3040605070505y ++++==,即样本中心为(5,50),代入y 与x 的线性回归方程为 6.5y x a =+,解得17.5a =.故选:A . 【例1-2】(2021·全国高三专题练习)西尼罗河病毒(WNV )是一种脑炎病毒,WNV 通常是由鸟类携考向分析带,经蚊子传播给人类.1999年8-10月,美国纽约首次爆发了WNV 脑炎流行.在治疗上目前尚未有什么特效药可用,感染者需要采取输液及呼吸系统支持性疗法,有研究表明,大剂量的利巴韦林含片可抑制WNV 的复制,抑制其对细胞的致病作用.现某药企加大了利巴韦林含片的生产,为了提高生产效率,该药企负责人收集了5组实验数据,得到利巴韦林的投入量x (千克)和利巴韦林含片产量y (百盒)的统计数据如下:由相关系数r 可以反映两个变量相关性的强弱,||[0.75,1]r ∈,认为变量相关性很强;||[0.3,0.75]r ∈,认为变量相关性一般;||[0,0.25]r ∈,认为变量相关性较弱. (1)计算相关系数r ,并判断变量x 、y 相关性强弱;(2)根据上表中的数据,建立y 关于x 的线性回归方程ˆˆˆybx a =+;为了使某组利巴韦林含片产量达到150百盒,估计该组应投入多少利巴韦林? 25.69≈.参考公式:相关系数()()niix x y y r--=∑ˆˆˆybx a =+中,()()()121niii ni i x x y y b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)0.97r =≈,x 与y 具有很强的相关性;(2)54.2千克. 【解析】(1)1(12345)35x =⨯++++=,()11620232526225y =⨯++++=, ()()51(13)(1622)(23)(2022)(33)(2322)ii i xx y y x =--=-⨯-+--+-⨯-∑(43)(2522)(53)(2622)25+-⨯-+-⨯-=,()52222221(13)(23)(33)(43)(53)10i i x x =-=-+-+-+-+-=∑,()522221(1622)(2022)(2322)i i y y =-=-+-+-∑22(2522)(2622)66+-+-=,则()()50.97iix x y y r --==≈∑ 所以x 与y 具有很强的相关性.(2)由(1)得,()()()5152125ˆ 2.510iii i i x x y y bx x ==--===-∑∑, ˆˆ22 2.5314.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. 当150y =(百盒)时,54.2x =(千克)故要使某组利巴韦林含片产量达到150百盒,估计该组应投入54.2千克利巴韦林. 【举一反三】1.(2021·全国高三专题练习)某工厂某产品产量x (千件)与单位成本y (元)满足回归直线方程77.36 1.82y x =-,则以下说法中正确的是( )A .产量每增加1000件,单位成本约下降1.82元B .产量每减少1000件,单位成本约下降1.82元C .当产量为1千件时,单位成本为75.54元D .当产量为2千件时,单位成本为73.72元 【答案】A【解析】令()77.36 1.82f x x =-,因为(1)()77.36 1.82(1)77.36 1.82 1.82f x f x x x +-=-+-+=-, 所以产量每增加1000件,单位成本约下降1.82元.2.(2021·安徽省六安中学高三开学考试)“关注夕阳、爱老敬老”—某马拉松协会从2013年开始每年向敬老院捐赠物资和现金.下表记录了第x 年(2013年是第一年)与捐赠的现金y (万元)的对应数据,由此表中的数据得到了y 关于x 的线性回归方程ˆ0.35ymx =+,则预测2019年捐赠的现金大约是( )A .5万元B .5.2万元C .5.25万元D .5.5万元 【答案】C【解析】由已知得,3456 2.534 4.54.5, 3.544x y ++++++====,所以样本点的中心点的坐标为(4.5,3.5),代入ˆ0.35ymx =+, 得3.5 4.50.35m =+,即0.7m =,所以ˆ0.70.35yx =+, 取7x =,得ˆ0.770.35 5.25y=⨯+=, 预测2019年捐赠的现金大约是5.25万元.3.(2021·全国高三专题练习)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验、某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:(1)请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;(2)求y关于x的线性回归方程,并预测该公司2020年2月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的A、B两款车型报废年限各不相同,考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据、如果你是该公司的负责人,你会选择采购哪款车型?参考数据:621()17.5ii x x =-=∑,61()()35i i i x x y y =--=∑36.5≈参考公式:相关系数C ;回归直线方程为ˆˆˆybx a =+,其中121()()ˆ()niii nii x x y y b x x ==--=-∑∑,ˆˆay bx =- 【答案】(1)散点图见解析,可用线性回归模型拟合两变量之间的关系;(2)ˆ29y x =+,23%;(3)应选择B 款车型.【解析】(1)散点图如图所示,111316152021166y +++++==,∴621()76i i y y =-=∑,∴()()350.9636.5niix x y y r --====≈∑,∴两变量之间具有较强的线性相关关系, 故可用线性回归模型拟合两变量之间的关系;(2)121()()35217.5()ˆniii ni i x x y y bx x ==--===-∑∑,又1234563.56x +++++==, ∴ˆˆ162 3.59ay bx =-=-⨯=,∴回归直线方程为ˆ29y x =+; ∴2020年2月的月份代码7x =,∴27923y =⨯+=, ∴估计2020年2月的市场占有率为23%;(3)用频率估计概率,A 款单车的利润X 的分布列为:∴()5000.100.35000.410000.2350E X =-⨯+⨯+⨯+⨯=(元),B 款单车的利润Y 的分布列为:∴()3000.152000.47000.3512000.1400E Y =-⨯+⨯+⨯+⨯=(元), 以每辆单车产生利润的期望值为决策依据,故应选择B 款车型.4.(2021·全国高三专题练习)近年来,“双11”网购的观念逐渐深入人心.某人统计了近5年某网站“双11”当天的交易额,,统计结果如下表:(1)请根据上表提供的数据,用相关系数r 说明y 与x 的线性相关程度,线性相关系数保留三位小数.(统计中用相关系数r 来衡量两个变量之间线性关系的强弱.若相应于变量x 的取值i x ,变量y 的观测值为i y (1i n ≤≤),则两个变量的相关系数的计算公式为:.统计学认为,对于变量,如果[]1,0.75r -∈-,那么负相关很强;如果[]0.751r ∈,,那么正相关很强;如果(]0.75,0.30r ∈--或[)0.30,0.75r ∈,那么相关性一般;如果[]0.25,0.25r ∈-,那么相关性较弱);(2)求出关于x 的线性y 回归方程,并预测2020年该网站“双11”当天的交易额.参考公式:121()()()ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-43.1≈. 【答案】(1)0.998;变量y 与x 的线性相关程度很强;(2)ˆ 4.3 4.1yx =+;29.9百亿元. 【解析】(1)由题意,根据表格中的数据, 可得:1(12345)35x =++++=,1(912172126)175y =++++=,则1()()(13)(917)(53)(2617)43niii x x y y =--=--++--=∑,43.1=≈,所以()()430.99843.1niix x y y r --==≈∑ 所以变量y 与x 的线性相关程度很强.(2)由(1)可得3x =,17y =,1()()43niii x x y y =--=∑,又由2221222(13)(23)(3(3)(43)(53)1)0nii x x ==-+-+-+-+-=-∑,所以121()()43 4.30)ˆ1(niii ni i x x y y bx x ==--===-∑∑,则ˆˆ17 4.33 4.1a y bx=-=-⨯=, 可得y 关于x 的线性回归方程为ˆ 4.3 4.1y x =+ 令6x =,可得ˆ 4.36 4.129.9y=⨯+=, 即2020年该网站“双11”当天的交易额29.9百亿元.考向二 独立性检验【例2】(2021·江苏泰州市·高三期末)2021年是脱贫攻坚的收官之年,国务院扶贫办确定的贫困县全部脱贫摘帽,脱贫攻坚取得重大胜利,为确保我国如期全面建成小康社会,实现第一个百年奋斗目标打下了坚实的基础在产业扶贫政策的大力支持下,西部某县新建了甲、乙两家玩具加工厂,加工同一型号的玩具质监部门随机抽检了两个厂的各100件玩具,在抽取中的200件玩具中,根据检测结果将它们分成“A ”、“B ”、“C ”三个等级,A 、B 等级都是合格品,C 等级是次品,统计结果如下表所示:(表一)(表二)在相关政策扶持下,确保每件合格品都有对口销售渠道,但从安全起见,所有的次品必须由原厂家自行销.(1)请根据所提供的数据,完成上面的2×2列联表(表二),并判断是否有95%的把握认为产品的合格率与厂家有关?(2)每件玩具的生产成本为30元,A 、B 等级产品的出厂单价分别为60元、40元.另外已知每件次品的销毁费用为4元.若甲厂抽检的玩具中有10件为A 等级,用样本的频率估计概率,试判断甲、乙两厂能否都能盈利,并说明理由.附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【答案】(1)列联表答案见解析,没有95%的把握认为产品的合格率与厂家有关;(2)甲厂能盈利,乙不能盈利,理由见解析. 【解析】(1)2×2列联表如下()2220075352565 2.38 3.84110010014060K ⨯⨯-⨯=≈<⨯⨯⨯,∴没有95%的把握认为产品的合格率与厂家有关.(2)甲厂10件A 等级,65件B 等级,25件次品, 对于甲厂,单件产品利润X 的可能取值为30,10,34-.X 的分布列如下:()3010341010204E X ∴=⨯+⨯-⨯=>, ∴甲厂能盈利,对于乙厂有10件A 等级,55件B 等级,35件次品, 对于乙厂,单位产品利润Y 的可能取值为30,10,34-,Y 分布列如下:()30103401020205E Y ∴=⨯+⨯-⨯=-<,乙不能盈利. 【举一反三】1.(2021·山东高三专题练习)共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2021年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22⨯列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表(2)将(1)中频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.参考数据:独立性检验界值表其中,22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++【答案】(1)列联表见解析,有85%的把握可以认为经常使用共享单车与年龄有关;(2)分布列见解析,数学期望为0.3.【解析】(1)补全的列联表如下:于是100a =,20b =,60c =,20d =,∴22200(100206020) 2.083 2.0721208016040K ⨯⨯-⨯=≈>⨯⨯⨯,即有85%的把握可以认为经常使用共享单车与年龄有关. (2)由(1)的列联表可知,经常使用共享单车的“非年轻人”占样本总数的频率为20100%10%200⨯=, 即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1, ∵~(3,0.1)X B ,0,1,2,3X =∴3(0)(10.1)0.729P X ==-=,(1)0.243P X ==(2)0.027P X ==,3(3)0.10.001P X ===,∴X 的分布列为E X=⨯=.∴X的数学期望()30.10.3【举一反三】1.(2021·全国高三专题练习)某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21 改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36 (1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?(2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T天(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(以120天计)内的维护方案:T=30,k=1,2,3,4.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.附:22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)见解析,有99%的把握认为技术改造前后的连续正常运行时间有差异.(2)见解析;均值为2.275万元. 【解析】(1)列联表为:()224055151510 6.63520202020K ⨯-⨯∴==>⨯⨯⨯∴有99%的把握认为技术改造前后的连续正常运行时间有差异.(2)由题知,生产周期内有4个维护周期,一个维护周期为30天,一个维护周期内,生产线需保障维护的概率为14P =. 设一个生产周期内需保障维护的次数为ξ,则1~4,4B ξ⎛⎫⎪⎝⎭;一个生产周期内的正常维护费为0.542⨯=万元,保障维护费为()()20.210.10.12ξξξξ⨯+=+万元.∴一个生产周期内需保障维护ξ次时的生产维护费为()20.10.12ξξ++万元.设一个生产周期内的生产维护费为X ,则X 的所有可能取值为2,2.2,2.6,3.2,4.()4181214256P X ⎛⎫==-= ⎪⎝⎭ ()31411272.214464P X C ⎛⎫==-= ⎪⎝⎭ ()222411272.6144128P X C ⎛⎫⎛⎫==-=⎪ ⎪⎝⎭⎝⎭ ()3341133.214464P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭ ()41144256P X ⎛⎫=== ⎪⎝⎭所以,X 的分布列为()2 2.2 2.6 3.242566412864256E X ∴=⨯+⨯+⨯+⨯+⨯ 162237.6140.438.44582.4 2.275256256++++===∴一个生产周期内生产维护费的均值为2.275万元.2.(2021·四川成都市·高三一模)一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:(1)根据列联表判断是否有95%的把握认为“网红乡土直播员”与性别有关系?(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.设被选中的2名“乡土直播推广大使”中男性人数为ξ,求ξ的分布列和期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)分布列见解析;期望为23. 【解析】(1)由题中22⨯列联表,可得()2210010302040 4.762 3.84150503070K ⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系. (2)在“网红乡土直播员”中按分层抽样的方法抽取6人, 男性人数为106230⨯=人;女性人数为206430⨯=人. 由题,随机变量ξ所有可能的取值为0,1,2.()022426620155CC P C ξ====,()1124268115C C P C ξ===,()2024261215C C P C ξ===, ∴ξ的分布列为∴ξ的数学期望()28110201251515153E ξ=⨯+⨯+⨯==. 考向三 非一次性回归方程【例3-1】(2021·全国高三专题练习)在一项调查中有两个变量x 和y ,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y 关于x 的回归方程的函数类型是( )A .y a bx =+B .y c =+C .2y m nx =+D .xy p qc =+(0q >)【答案】B【解析】散点图呈曲线,排除A 选项,且增长速度变慢,排除选项C 、D ,故选B .【例3-2】.(2021·全国高三专题练习)根据公安部交管局下发的通知,自2021年6月1日起,将在全国开展“一盔一带”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔,为的就是让大家重视交通安全.某地交警部门根据某十字路口的监测数据,从穿越该路口的骑行者中随机抽查了200人,得到如图所示的列联表:(1)是否有97.5%的把握认为自觉带头盔行为与性别有关?(2)通过一定的宣传和相关处罚措施出台后,交警在一段时间内通过对某路口不带头盔的骑行者统计,得到上面的散点图和如下数据:观察散点图,发现两个变量不具有线性相关关系,现考虑用函数y ax=+对两个变量的关系进行拟合,通过分析得y与1有一定的线性相关关系,并得到以下参考数据(其中1w=):请选择合适的参考数据,求出y关于x的回归方程.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++.) 2k对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为:1221ˆni i i ni i u v nuvunu β==-=-∑∑,ˆˆv u αβ=-. 【答案】(1)没有;(2)100ˆ10yx=+. 【解析】(1)由列联表计算22200(30701090)754.68755.024120804016016K ⨯⨯-⨯===<⨯⨯⨯.故没有97.5%的把握认为骑行者自觉带头盔行为与性别有关. (2)由1w x =,则by a x =+可转化为y a bw =+,又306516y ==, 得6162216173.860.415148.34ˆ1001.49260.16810.48346i ii ii w y wybww ==--⨯⨯====-⨯-∑∑,则ˆˆ511000.4110ay bw =-=-⨯=. 故y 关于x 的回归方程为100ˆ1010010yw x=+=+ 【举一反三】1.(2021·河南周口市·高三月考)已知变量y 关于变量x 的回归方程为0.5ˆbx ye -=,其一组数据如下表所示:若9.1ˆye =,则x =( ) A .5B .6C .7D .8 【答案】B【解析】由0.5ˆbx ye -=,得n 0ˆl .5ybx =-,令ln z y =,则0.5z bx =-,由题意,12342.54x +++==,1346 3.54z +++==,因为(),x z 满足0.5z bx =-,所以3.5 2.50.5b =⨯-,解得 1.6b =, 所以 1.60.5z x =-,所以 1.60.5ˆx ye -=,令 1.60.59.1x e e -=,解得6x =.故选:B.2.(2021·全国高三专题练习)近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:表:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内y a bx =+与xy c d =⋅(c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断,不必说明理由); (2)根据(1)的判断结果及表中的数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠,预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要()*n n N ∈年才能开始盈利,求n 的值.参考数据:其中lg i i v y =,7117ii v v ==∑ 参考公式:对于一组数据(),i i u v ,()22,u v ,…,(),n n u v ,其回归直线v a u β=+的斜率和截距的最小二乘估计公式分别为:1221ni i i n i i u v nuv u nuβ==-=-∑∑,a v u β=-.【答案】(1)xy c d =⋅;(2)0.253.4710x y =⨯,347;(3)7.【解析】(1)因为散点近似在指数型函数的图象上,所以xy c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型:(2)∵xy c d =⋅,两边同时取常用对数得:()lg lg lg lg xy c dc xd =⋅=+;设lg y v =,∴lg lg v c x d =+,∵4x =, 1.54v =,721140i i x ==∑, ∴717221750.1274 1.547lg 0.25140716287i i i ii x v xv d x x ==--⨯⨯====-⨯-∑∑,把样本中心点()4,1.54代入lg 0.25v c x =+,得:lg 0.54c =,∴0540.25v x =+,∴lg 0.540.25y x =+,∴y 关于x 的回归方程式:0.540.250.540.250.25101010 3.4710x x x y +==⨯=⨯; 把8x =代入上式:∴0.2583.4710347y ⨯=⨯=; 活动推出第8天使用扫码支付的人次为347;(3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4;()20.1P Z ==;()11.80.30.152P Z ==⨯=;()11.60.60.30.73P Z ==+⨯=;()11.40.30.056P Z ==⨯= 所以,一名乘客一次乘车的平均费用为:20.1 1.80.15 1.60.7 1.40.05 1.66⨯+⨯+⨯+⨯=(元), 由题意可知:1.661120.6612800n n ⨯⨯⋅-⨯⋅->,203n >,所以,n 取7;估计这批车大概需要7年才能开始盈利. 3.(2021·全国高三专题练习)某公司研发了一种帮助家长解决孩子早教问题的萌宠机器人.萌宠机器人语音功能让它就像孩子的小伙伴一样和孩子交流,记忆功能还可以记住宝宝的使用习惯,很快找到宝宝想听的内容.同时提供快乐儿歌、国学经典、启蒙英语等早期教育内容,且云端内容可以持续更新.萌宠机器人一投放市场就受到了很多家长欢迎.为了更好地服务广大家长,该公司研究部门从流水线上随机抽取100件萌宠机器人(以下简称产品),统计其性能指数并绘制频率分布直方图(如图1):产品的性能指数在[)50,70的适合托班幼儿使用(简称A 类产品),在[)70,90的适合小班和中班幼儿使用(简称B 类产品),在[]90,110的适合大班幼儿使用(简称C 类产品),A ,B ,C ,三类产品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的性能指数位于各区间的频率代替产品的性能指数位于该区间的概率. (1)求每件产品的平均销售利润;(2)该公司为了解年营销费用x (单位:万元)对年销售量y (单位:万件)的影响,对近5年的年营销费用i x ,和年销售量()1,2,3,4,5i y i =数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中ln i i u x =,ln i i y υ=,5115i i u u ==∑,5115i i υυ==∑.根据散点图判断,by a x =⋅可以作为年销售量y (万件)关于年营销费用x (万元)的回归方程.(i )建立y 关于x 的回归方程;(ii )用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大? (收益=销售利润-营销费用,取 4.15964e =). 参考公式:对于一组数据()()()1122,,,,,,n n u u u υυυ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i nii uu uuυυβ==--=-∑∑,ˆˆu αυβ=-. 【答案】(1)每件产品的平均销售利润为4元(2)(i )1464y x =(ii )该厂应投入256万元营销费. 【解析】(1)设每件产品的销售利润为ξ元,则ξ的所有可能取值为1.5,3.5,5.5, 由直方图可得,A ,B ,C 三类产品的频率分别为0.15、0.45、0.4, 所以,()1.50.15P ξ==,()3.50.45P ξ==,()5.50.4P ξ==, 所以随机变量ξ的分布列为:所以, 1.50.15 3.50.45 5.50.44E ξ=⨯+⨯+⨯=, 故每件产品的平均销售利润为4元;(2)(i )由by a x =⋅得,()ln ln ln ln by a xa b x =⋅=+,令ln u x =,ln y υ=,ln c a =,则c bu υ=+,由表中数据可得,()()()515210.41ˆ0.251.61ii i ii uu buuυυ==--===-∑∑, 则24.8716.30ˆˆ0.25 4.15955cbu υ=-=-⨯=, 所以,ˆ 4.1590.25u υ=+,即14.1594ˆln 4.1590.25ln ln y x e x ⎛⎫=+=⋅ ⎪⎝⎭, 因为 4.15964e =,所以14ˆ64y x =, 故所求的回归方程为1464y x =;(ii )设年收益为z 万元,则()14256z E y x x x ξ=⋅-=-, 设14t x =,()4256f t t t =-,则()()332564464f t t t'=-=-,当()0,4t ∈时,()0f t '>,f t 在()0,4单调递增, 当()4t ,∈+∞时,()0f t '<,ft 在()4,+∞单调递减,所以,当4t =,即256x =时,z 有最大值为768,即该厂应投入256万元营销费,能使得该产品一年的收益达到最大768万元.1.(2021·全国高三专题练习)给出下列说法:①回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,且至少过一个样本点; ②两个变量相关性越强,则相关系数||r 就越接近1; ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程ˆ20.5y x =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位. 其中说法正确的是( )A .①②④B .②③④C .①③④D .②④ 【答案】B【解析】对于①中,回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,但不一定过一个样本点,所以不强化练习正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程ˆ20.5y x =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的. 故选:B.2.(2021·全国高三专题练习)对两个变量x 、y 进行线性相关检验,得线性相关系数10.7859r =,对两个变量u 、v 进行线性相关检验,得线性相关系数20.9568r =-,则下列判断正确的是( ) A .变量x 与y 正相关,变量u 与v 负相关,变量x 与y 的线性相关性较强 B .变量x 与y 负相关,变量u 与v 正相关,变量x 与y 的线性相关性较强 C .变量x 与y 正相关,变量u 与v 负相关,变量u 与v的线性相关性较强D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强 【答案】C【解析】由线性相关系数10.78590r =>知x 与y 正相关, 由线性相关系数20.95680r =-<知u 与v 负相关,又12r r <,所以,变量u 与v 的线性相关性比x 与y 的线性相关性强, 故选:C.3.(2021·河南新乡市·高三一模)2020年的“金九银十”变成“铜九铁十”,全国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区2019年11月至2020年11月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码113分别对应2019年11月2020年11月)根据散点图选择y a =+ln y c d x =+两个模型进行拟合,经过数据处理得到的两个回归方程分别为0.9369y =+0.95540.0306ln y x =+,并得到以下一些统计量的值:注:x 是样本数据中x 的平均数,y 是样本数据中y 的平均数,则下列说法不一定成立的是( ) A .当月在售二手房均价y 与月份代码x 呈正相关关系B .根据0.9369y =+2021年2月在售二手房均价约为1.0509万元/平方米C .曲线0.9369y =+0.95540.0306ln y x =+的图形经过点(),x yD .0.95540.0306ln y x =+回归曲线的拟合效果好于0.9369y =+ 【答案】C【解析】对于A ,散点从左下到右上分布,所以当月在售二手房均价y 与月份代码x 呈正相关关系,故A 正确;对于B ,令16x =,由0.9369 1.0509y =+=,所以可以预测2021年2月在售二手房均价约为1.0509万元/平方米,故B 正确; 对于C ,非线性回归曲线不一定经过(),x y ,故C 错误; 对于D ,2R 越大,拟合效果越好,故D 正确.故选:C.4.(2021·全国高三专题练习)对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .24310r r r r <<<<B .42130r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<< 【答案】A【解析】由给出的四组数据的散点图可以看出,题图1和题图3是正相关,相关系数大于0, 题图2和题图4是负相关,相关系数小于0,题图1和题图2的点相对更加集中,所以相关性更强,所以1r 接近于1,2r 接近于1-, 由此可得24310r r r r <<<<. 故选:A .5.(2021·邵阳市第二中学高三其他模拟(文))某种产品的广告费支出x 与销售额y (单位:万元)。
高三数列总复习
高三数学总复习讲义——等差数列1、等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。
用递推公式表示为或。
2、等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。
3、等差中项的概念:如果,,成等差数列,那么叫做与的等差中项。
其中4、等差数列的前和的求和公式:。
5、等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是,如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则;说明:设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①奇偶;②;(Ⅱ)若项数为奇数,设共有项,则①偶奇;②。
6、数列最值(1),时,有最大值;,时,有最小值;(2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。
练习1.(01天津理,2)设S n是数列{a n}的前n项和,且S n=n2,则{a n}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列2.(06全国I)设是公差为正数的等差数列,若,,则()A. B. C. D.3.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项4.(01全国理)设数列{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1B.2C.4D.65.(06全国II)设S n是等差数列{a n}的前n项和,若=,则=A. B. C. D.6.(00全国)设{a n}为等差数列,S n为数列{a n}的前n项和,已知S7=7,S15=75,T n为数列{}的前n项和,求T n。
高三总复习讲义概率
高三数学总复习讲义--概率第一讲:随机事件的概率随机事件:在一定条件下可能发生也可能不发生的事件。
必然事件:在一定条件必然要发生的事件。
不可能事件:在一定条件下不可能发生的事件。
事件A的概率:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。
由定义可知,必然事件的概率是1,不可能事件的概率是0。
等可能事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成。
如果试验中可能出现的结果有n个(即此试验由n个基本事件组成,而且所有结果出现的可能性相等,那么每个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率。
在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,从集合的角度看,事件A的概率是子集A的元素个数与集合I的元素个数的比值:(古典概型)这样就建立了事件与集合的联系,从排列组合的角度看,m,n实际上就是事件的排列数或组合数。
题型一:与排列组合综合例1.某班委会由4名男生和3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是____________________;练习1.将7人(含甲、乙两人)分成三组,一组3人,另两组各2人,不同的分组数为________________;甲、乙分在同一组的概率P=________________。
题型二:与两个计数原理综合例2.先将一个棱长为3的正方体木块的六个面分别涂上六种颜色,再将正方体均匀切割成棱长为1的小正方体,从切好的小正方体中任选一个,所得正方体的六个面均没有涂色的概率是________________;练习2.由数字0、1、2、3、4、5组成没有重复数字的五位数,所得数是大于20000的偶数的概率是________________;题型三:有、无放回抽样问题例3.从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有1件次品的概率。
高三总复习数学课件 导数与函数的单调性
02
考点 分类突破 课堂讲练
理解透 规律明 变化究其本
证明(判断)函数的单调性
(2021·全国乙卷)已知函数f(x)=x3-x2+ax+1. (1)讨论f(x)的单调性; (2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标. [解] (1)由题意知f(x)的定义域为R ,f′(x)=3x2-2x+a,对于f′(x)=0,Δ
答案:BC
2.(易错题)函数f(x)=x-ln x的单调递减区间为
()
A.(0,1)
B.(0,+∞)
C.(1,+∞)
D.(-∞,0),(1,+∞)
解析:函数的定义域是(0,+∞),且f′(x)=1-1x=x-x 1,令f′(x)<0,
得0<x<1,故f(x)的单调递减区间为(0,1).
答案:A
[记结论] 1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不 必要条件.
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:f(x)在区间上单调递增,则f′(x)≥0且不恒为零,故答案为充分不必要
条件.
答案:A
2.若y=x+ax2(a>0)在[2,+∞)上是增函数,则a的取值范围是________. 解析:由y′=1-ax22≥0,得x≤-a或x≥a.∴y=x+ax2的单调递增区间为 (-∞,-a],[a,+∞).∵函数在[2,+∞)上单调递增,∴[2,+∞)⊆ [a,+∞),∴a≤2.又a>0,∴0<a≤2.
[逐点清]
1.(多选)(选择性必修第二册86页例2改编)如图是函数y=f(x)的导函数y=f′(x)的
2022高三总复习数学 利用空间向量求空间角(含解析)
利用空间向量求空间角A 级——基础达标1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A .3030 B .3015 C .3010D .1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A .33535 B .277 C .33D .24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·DC 1―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴DC 1―→,n=DC 1―→·n | DC 1―→||n |=33535,∴DC 1与平面D 1EC 所成的角的正弦值为33535. 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12B .23C .33D .22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.4.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A .35B .56C .3310D .3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1,GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在直三棱柱ABC -A 1B 1C 1中,AA 1=2,二面角B -AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为________.解析:由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在△ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4,AB 1―→,BC 1―→=AB 1―→·BC 1―→|AB 1―→||BC 1―→|=24,故AB 1―→,BC 1―→=7.答案:76.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a ,∴n =(-a,0,1), ∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.(2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解:(1)证明:因为M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA ―→的方向为x 轴正方向,|MB ―→|为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形,故PM =232,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC . 作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设Q (a,0,0),则NQ = 4-⎝⎛⎭⎫233-a 2, B 1⎝ ⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E ―→=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E ―→|=2103.又n =(0,-1,0)是平面A 1AMN 的法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E ―→〉=cos 〈n ,B 1E ―→〉=n ·B 1E ―→|n |·|B 1E ―→|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.8.(2021·贵阳市第一学期监测考试)如图,在四棱锥P -ABCD中,底面ABCD 是菱形,∠BAD =60°,Q 为AD 的中点,PQ ⊥平面ABCD ,PA =PD =AD =2,M 是棱PC 上一点,且PM PC =13.(1)证明:PA ∥平面BMQ ; (2)求二面角B -MQ -C 的余弦值.解:(1)证明:如图,连接AC ,交BQ 于N ,连接MN ,∵底面ABCD 是菱形,∴AQ ∥BC ,∴△ANQ ∽△CNB , ∴AQ BC =AN NC =12,∴AN AC =13,又PM PC =13,∴PM PC =AN AC =13,∴MN ∥PA ,又MN ⊂平面BMQ . PA ⊄平面BMQ ,∴PA ∥平面BMQ .(2)连接BD ,∵底面ABCD 是菱形,且∠BAD =60°,∴△BAD 是等边三角形,又Q 为AD 的中点,∴BQ ⊥AD .由PQ ⊥平面ABCD ,得PQ ⊥AD .以Q 为坐标原点,QA ,QB ,QP 所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则Q (0,0,0),A (1,0,0),B (0,3,0),D (-1,0,0),P (0,0,3),由AC ―→=AD ―→+AB ―→=(-2,0,0)+(-1,3,0)=(-3,3,0),可得点C (-2,3,0), 设平面PQC 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·QP ―→=0,n ·QC ―→=0,即⎩⎪⎨⎪⎧3z =0,-2x +3y =0,令x =3,得y =23,z =0, ∴n =(3,23,0),|n |=21.设平面BMQ 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ m ·QB ―→=0,m ·MN ―→=0,∵MN ∥PA ,∴⎩⎪⎨⎪⎧m ·QB ―→=0,m ·PA ―→=0,即⎩⎪⎨⎪⎧3y 1=0,x 1-3z 1=0,令x 1=3,则z 1=1,y 1=0, ∴m =(3,0,1)是平面BMQ 的一个法向量. 设二面角B -MQ -C 的平面角的大小为θ, 则cos θ=m ·n |m ||n |=3714, 即二面角B -MQ -C 的余弦值为3714.B 级——综合应用9.如图所示,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值的大小.解:(1)证明:因为四边形ABCD 是菱形,所以BD ⊥AC . 因为AE ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥AE . 又因为AC ∩AE =A ,AC ,AE ⊂平面ACFE .所以BD ⊥平面ACFE . (2)以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴,过点O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF ―→=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB ―→=0,n ·OE ―→=0,即⎩⎪⎨⎪⎧3y =0,x +2z =0,令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF ―→,n 〉|=|OF ―→·n ||OF ―→||n |=|2+a |a 2+1·5=22, 解得a =3或a =-13(舍去).所以OF ―→=(-1,0,3),BE ―→=(1,-3,2),cos 〈OF ―→,BE ―→〉=-1+610×8=54,故异面直线OF 与BE 所成角的余弦值为54. 10.(2021·贵州贵阳适应性考试)如图是一个半圆柱与多面体ABB 1A 1C 构成的几何体,平面ABC 与半圆柱的下底面共面,且AC ⊥BC ,P 为弧A 1B 1上(不与A 1,B 1重合)的动点.(1)证明:PA 1⊥平面PBB 1;(2)若四边形ABB 1A 1为正方形,且AC =BC ,∠PB 1A 1=π4,求二面角P -A 1B 1-C 的余弦值.解:(1)证明:在半圆柱中,BB 1⊥平面PA 1B ,所以BB 1⊥PA 1. 因为A 1B 1是直径,所以PA 1⊥PB 1.因为PB 1∩BB 1=B 1,PB 1⊂平面PBB 1,BB 1⊂平面PBB 1,所以PA 1⊥平面PBB 1. (2)以C 为坐标原点,分别以CB ,CA 所在直线为x 轴,y 轴,过C 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系C -xyz ,如图所示.设CB =1,则C (0,0,0),B (1,0,0),A (0,1,0),A 1(0,1,2),B 1(1,0,2),P (1,12),所以CA 1―→=(0,1,2),CB 1―→=(1,0,2).平面PA 1B 1的一个法向量n 1=(0,0,1).设平面CA 1B 1的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧y +2z =0,x +2z =0,令z =1,则⎩⎪⎨⎪⎧y =-2,x =-2,z =1,所以可取n 2=(-2,-2,1).所以cos 〈n 1,n 2〉=11×5=55.由图可知二面角P -A 1B 1-C 为钝角,所以所求二面角的余弦值为-55.。
高中数学第22课教案
高中数学第22课教案
一、教学目标
1. 知道正弦、余弦、正切三角函数的周期性和奇偶性。
2. 掌握正弦、余弦、正切三角函数的图像特点。
3. 掌握利用三角函数的性质解题。
二、教学重点
1. 正弦、余弦、正切三角函数的周期性和奇偶性。
2. 正弦、余弦、正切三角函数的图像特点。
三、教学难点
1. 利用三角函数的性质解题。
四、教学准备
1. 教材、课件。
2. 黑板、彩色粉笔。
3. 试题纸、学生纸。
五、教学过程
1. 引入:通过一个实际生活中的例子引入三角函数的周期性和奇偶性的概念,引导学生了解三角函数的概念。
2. 讲解:通过讲解正弦、余弦、正切三角函数的周期性和奇偶性,让学生掌握这些函数的基本特点。
3. 练习:让学生分组进行练习,练习解题过程中运用三角函数的性质。
4. 总结:总结本节课的重点难点,强调三角函数的性质在解题中的应用。
5. 作业:布置相关作业,督促学生掌握三角函数的性质及解题方法。
六、板书设计
1. 正弦函数:周期性、奇函数。
2. 余弦函数:周期性、偶函数。
3. 正切函数:周期性。
七、教学反思
本节课主要针对三角函数的性质展开教学,通过实际例子引入,让学生了解三角函数的概念;通过讲解和练习,让学生掌握正弦、余弦、正切函数的周期性和奇偶性,以及运用这些性质解题的方法。
通过板书设计和总结,加深学生对本课内容的理解和记忆。
希望学生能在课后认真完成作业,巩固所学知识。
数列的概念与简单表示法-高考数学复习
高考一轮总复习 • 数学
返回导航
[解析] (1)符号可通过(-1)n或(-1)n+1调节,其各项的绝对值的排 列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为an =(-1)n(6n-5).
(2)观察各项的特点:每一项都比2的n次幂多1,所以an=2n+1. (3)将原数列改写为59×9,59×99,59×999,…,易知数列 9,99,999,…
第六章 数列
高考一轮总复习 • 数学
返回导航
5.(选修 2P9T5 改编)已知数列{an}的前 n 项和为 Sn=nn+ +12,则 a5+ 1
a6=___2_4___.
[解析] a5+a6=S6-S4=66+ +12-44+ +12=78-56=214.
第六章 数列
高考一轮总复习 • 数学
返回导航
2n .
(5)将原数列改写为32,55,170,197,…,对于分子 3,5,7,9,…,是序
号的 2 倍加 1,可得分子的通项公式为 bn=2n+1,对于分母 2,5,10,17,…,
联想到数列 1,4,9,16,…,即数列{n2},可得分母的通项公式为 cn=n2+1,
故可得原数列的一个通项公式为 an=2nn2++11.
第六章 数列
返回导航
考点突破 · 互动探究
高考一轮总复习 • 数学
返回导航
由数列的前几项求数列的通项公式——自主练透
根据数列的前几项,写出下列各数列的一个通项公式an. (1)-1,7,-13,19,…; (2)3,5,9,17,33,…; (3)5,55,555,5 555,…; (4)1,0,13,0,15,0,17,0,…; (5)32,1,170,197,….
2023年高考数学一轮复习精讲精练(新高考专用)专题22:常见数列的通项求法(讲解版)
专题22:常见数列的通项求法精讲温故知新一、知能要点1、求通项公式的方法:(1)观察法:找项与项数的关系,然后猜想检验,即得通项公式a n ;(2)利用前n 项和与通项的关系a n =⎩⎪⎨⎪⎧ S 1S n -S n -1n =1,n ≥2;(3)公式法:利用等差(比)数列求通项公式;(4)累加法:如a n +1-a n =f (n ), 累积法,如a n +1a n =f (n );(5)转化法:a n +1=Aa n +B (A ≠0,且A ≠1). 一,观察法求通项例1:(2021·广东·普宁市普师高级中学模拟预测)数列1-,3,5-,7,9-,,的一个通项公式为( ) A .21n a n =-B .(1)(12)nn a n =--C .(1)(21)nn a n =--D .1(1)(21)n n a n +=--【答案】C 【解析】 【分析】根据数列每项的绝对值组成等差数列进行求解即可. 【详解】∵数列{an }各项值为1-,3,5-,7,9-,,∴各项绝对值构成一个以1为首项,以2为公差的等差数列,∴|an |=2n ﹣1 又∵数列的奇数项为负,偶数项为正,∴an =(﹣1)n (2n ﹣1). 故选:C 举一反三(2022·陕西咸阳·三模(文))观察下列等式111341359135716=+=++=+++=⋅⋅⋅⋅⋅⋅照此规律,第n 个等式为______.【答案】()213521n n +++⋅⋅⋅+-=【解析】由已知等式结合等差数列的定义写出左侧表达式,再由右侧与行数的关系写出右侧表达式,即可确定第n 个等式. 【详解】由已知等式,对于第n 行有:左侧是首项为1,公差为2的等差数列前n 项和,左侧可写为1...(21)n ++-, 右侧随行数n 增大依次为2222211,42,93,164,...,n ====, 所以第n 个等式为21...(21)n n ++-=. 故答案为:21...(21)n n ++-= 二,公式法求通项1、等差数列公式 ()11n a a n d=+-推论公式:例2:(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 举一反三1.(2022·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.【答案】2 【解析】 【分析】转化条件为()112+226a d a d =++,即可得解. 【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2.2、等比数列公式11n n a a q -=推论公式:例3:(2022·全国·高考真题(文))已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14 B .12C .6D .3【答案】D 【解析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解. 【详解】解:设等比数列{}n a 的公比为,0q q ≠, 若1q =,则250a a -=,与题意矛盾, 所以1q ≠,则()31123425111168142a q a a a qa a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩, 所以5613a a q ==.故选:D . 举一反三(2022·上海交大附中模拟预测)已知各项均为正数的等比数列{}n a ,若4562a a a -=,则23S a 的值为___________. 【答案】6 【解析】 【分析】根据等比数列的通项公式,将题中所给的条件转化为关于首项和公比的关系式,化简求值,得到12q =,之后将待求式子转化为关于q 的关系式,代入求得结果. 【详解】可知3452111122102a q a q a q q q q -=⇒+-=⇒=, 则211223116S a a q qa a q q ++===;故答案为:6. 三:累加法求通项 )(1n f a a n n +=+ (解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
第四章第22讲解三角形(正弦定理与余弦定理)课件高三数学一轮复习
对于D,因为a cos B+b cos A=a,所以sin A cos B+sin B cos A=sin A,即sin (A+B) =sin A,则sin C=sin A,又因为A,C∈(0,π),所以A=C或A+C=π(舍去),所以 △ABC为等腰三角形,故D正确.
【答案】BD
变式 在△ABC 中,a,b,c 分别是内角 A,B,C 所对的边,且满足coas C=cocs A,
余弦定理 a2=____b_2+__c_2_-__2_b_c_c_o_s_A____; b2=____a_2+__c_2_-__2_a_c_c_o_s_B____; c2=___a_2_+__b_2_-__2_a_b_c_o_s_C____
定理
正弦定理
余弦定理
①a=__2_R_s_i_n_A__,b=__2_R__s_in__B__,c=__2_R__s_in__C__;
变式 在△ABC 中,角 A,B,C 所对的边分别是 a,b,c.已知 a= 39,b=2,A=
120°. (1) 求 sin B 的值;
【解答】
正弦定理 a = b ,得 sin A sin B sin
39 = 2 ,解得 120° sin B
sin
B=
1133.
(2) 求c的值;
【解答】 由余弦定理 a2=b2+c2-2bc cos A,得 39=4+c2-2×2×c×-12,解得 c=5
cos A
(2)
若a a
cos cos
B-b B+b
cos cos
AA-bc=1,求△ABC
的面积.
【解析】由
正
弦
定
理
可
得
a a
cos cos
高三数学第二轮复习专题讲座 人教版
高三数学第二轮复习专题讲座 人教版专题一 函数考点高考要求 1 映射的概念 了解 2 函数的概念 理解 3 函数的单调性的概念 了解 4 简单函数单调性的判断 掌握 5 函数的奇偶性 了解 6 反函数的概念了解 7 互为反函数的函数图象间的关系 了解 8 简单函数的反函数的求法 掌握 9 分数指数幂的概念 理解 10 有理数指数幂的运算性质 掌握 11 指数函数的概念、图象和性质 掌握 12 对数的概念 理解 13 对数的运算法制掌握 14 对数函数的概念、图象和性质 掌握 15运用函数的性质解决简单的实际问题掌握说明:1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用;2.理解和掌握:要求对所列知识内容有较为深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题;3.灵活和综合运用:要求系统的掌握知识的内在联系,能够运用所列知识分析和解决较为复杂的或综合性的问题.(以下两点分析主要针对的是2004年全国各地的高考试题,共15套) 二、高考考点分析:在2004年全国各地的高考题中,考查函数的试题或与函数有关的试题大约有56道,在150分中约占25分到30分.对函数,常常从以下几个方面加以考查.1知识点函数的解析式 定义域和值域(包括最大值和最小值) 函数的单调性 函数的奇偶性和周期性 函数的反函数 题量27335函数和一些分段函数,简单的函数方程为背景,难度以中等题和容易题为主,如: 例1.(重庆市)函数)23(log 21-=x y 的定义域是( D )A 、[1,)+∞B 、23(,)+∞C 、23[,1]D 、23(,1]例2.(天津市)函数123-=xy (01<≤-x )的反函数是( D )A 、)31(log 13≥+=x x yB 、)31(log 13≥+-=x x yC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y也有个别小题的难度较大,如 例3.(北京市)函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.2.对数形结合思想、函数图象及其变换的考查.对图象的考查有6道试题,也以小题为主,难度为中等. 例4.(上海市)设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时f (x )的图象如右图,则不等式f (x )<0的解是]5,2()0,2( -. 例5.(上海市)若函数y =f (x )的图象可由函数y =lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f (x )为( A ) A 、10-x-1 B 、10x-1 C 、1-10-xD 、1-10x3.对函数思想的考查.利用函数的图象研究方程的解;利用函数的单调性证明不等式(常常利用函数的导数来判断和证明函数的单调性);利用函数的最值说明不等式恒成立等问题.在全部考题中,有7道小题考查了用函数研究方程或不等式的问题,有14道大题考查了函数与方程、不等式、数列等的综合问题. 例6.(1)(浙江省)已知⎩⎨⎧≥<-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是]23,(-∞.(2)(全国卷3)设函数2(1),1,()41, 1,x x f x x x ⎧+<⎪=⎨--≥⎪⎩则使得f (x )≥1的自变量x 的取值范围为( A )A 、(-∞,-2][0,10]B 、(-∞,-2][0,1]C 、(-∞,-2][1,10] D 、[-2,0][1,10]例7.(上海市)已知二次函数y =f 1(x )的图象以原点为顶点且过点(1,1),反比例函数y =f 2(x )的图象与直线y =x 的两个交点间距离为8,f (x )= f 1(x )+ f 2(x ). (1)求函数f (x )的表达式;(2)证明:当a >3时,关于x 的方程f (x )= f (a )有三个实数解.解:(1)由已知,设f 1(x )=ax 2,由f 1(1)=1,得a =1,故f 1(x )= x 2.设f 2(x )=xk(k >0),它的图象与直线y =x 的交点分别为A (k ,k )、B (-k ,-k ) 由AB =8,得k =8,故f 2(x )=x 8.所以f (x )=x 2+x8. (2)证法一:由f (x )=f (a )得x 2+x 8=a 2+a 8, 即x 8=-x 2+a 2+a 8.在同一坐标系内作出f 2(x )=x 8和f 3(x )= -x 2+a 2+a8的大致图象,其中f 2(x )的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f 3(x )的图象是以(0,a 2+a8)为顶点,开口向下的抛物线.因此,,f 2(x )与f 3(x )的图象在第三象限有一个交点,即f (x )=f (a )有一个负数解. 又因为f 2(2)=4,,f 3(2)= -4+a 2+a8 当a >3时,f 3(2)-f 2(2)= a 2+a8-8>0, 所以当a >3时,在第一象限f 3(x )的图象上存在一点(2,f (2))在f 2(x )图象的上方. 所以f 2(x )与f 3(x )的图象在第一象限有两个交点,即f (x )=f (a )有两个正数解. 因此,方程f (x )=f (a )有三个实数解. 证法二:由f (x )=f (a ),得x 2+x 8=a 2+a 8, 即(x -a )(x +a -ax8)=0,得方程的一个解x 1=a . 方程x +a -ax8=0化为ax 2+a 2x -8=0,由a >3,∆=a 4+32a >0,得 x 2=a a a a 23242+--, x 3=aa a a 23242++-,因为x 2<0, x 3>0, 所以x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a =aa a a 23242++-,则3a 2=a a 324+, a 4=4a ,得a =0或a =34,这与a >3矛盾,所以x 1≠ x 3. 故原方程f (x )=f (a )有三个实数解. 例8.(福建高考题)已知f (x )=2324()3x ax x x +-∈R 在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=3312x x +的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.解:(Ⅰ)f '(x )=4+2,22x ax - ∵f (x )在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x )=x 2-ax -2,方法一:① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ ⇔-1≤a ≤1,∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.方法二:①⇔ ⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1或-1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0, ∴A ={a |-1≤a ≤1}. (Ⅱ)由,02,0,3123242332=--=+=-+ax x x x x x ax x 或得 ∵△=a 2+8>0,∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a . ∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt +(m 2-2),方法一:②⇔ g (-1)=m 2-m -2≥0且g (1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}. 方法二:当m =0时,②显然不成立;当m ≠0时,②⇔m >0,g (-1)=m 2-m -2≥0 或m <0,g (1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}.说明:本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力. 三、高考热点分析函数几乎贯穿了高中数学的始末,它与高中数学的每一部分内容几乎都有联系.对函数的认识,应该包含对函数的概念和性质的理解;对二次函数、指数函数、对数函数、三角函数等基本初等函数和分段函数的概念和性质的理解;函数图象的变换和应用;建立函数模型解决问题的意识等.在复习过程中,以下几点值得重视:1.重视对函数概念和基本性质的理解.包括定义域、值域(最值)、对应法则、对称性(包括奇偶性)、单调性、周期性、反函数、图象变换、基本初等函数(常常是载体)等.研究函数的性质要注意分析函数解析式的特征,同时要注意函数图象(形)的作用.对这部分知识的考查,除了一部分比较简单的小题直接考查函数某一方面的性质外,常常是对函数综合的类型较多(中等难度题,以小题和前三道大题为主),包括函数内部多种知识的综合,函数同方程、不等式、数列的综合.例1.(北京市)函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是( D )A . a ∈-∞(,]1B . a ∈+∞[,)2C . a ∈[,]12D . a ∈-∞⋃+∞(,][,)12 说明:涉及二次函数的单调性、反函数的概念、充分必要条件等知识.例2. (福建省)已知函数y =log 2x 的反函数是y =f —1(x ),则函数y = f —1(1-x )的图象是( C )例3.(全国高考题3)已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___-2_____.例4.(湖北省)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A 、41B 、21 C 、2 D 、4例5.(北京市)在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最大 值(填“大”或“小”),且该值为-3.例6.(湖南省)设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( C )A 、1B 、2C 、3D 、4例7.(江苏省)设k >1,f (x )=k (x -1)(x ∈R ) .在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,并且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于( B )A 、3B 、32C 、43D 、65例8.(上海市)记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1)求A ;(2)若B ⊆A , 求实数a 的取值范围. 解:(1)2-13++x x ≥0,得11+-x x ≥0, x <-1或x ≥1,即A =(-∞,-1) [1,+ ∞). (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.因为a <1,所以a +1>2a ,故B =(2a ,a +1). 因为B ⊆A ,所以2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, 所以21≤a <1或a ≤-2,故当B ⊆A 时,实数a 的取值范围是(-∞,-2] [21,1).例9.(2003年全国理科高考题)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数xc y =在R 上单调递减.10<<⇔c不等式|2|1|2| 1.x x c R y x x c +->⇔=+-R 的解集为函数在上恒大于 22,2,|2|2,2,1|2|2.|2|121.211,,0.,, 1.(0,][1,).22x c x c x x c c x c y x x c c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞R 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为 2.重视利用导数研究函数的单调性等性质,进而证明一些不等式或转化一些不等式恒成立问题. 例10.(全国高考题1)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 分析:函数13)(23+-+=x x ax x f 在R 上递减等价于0)(≤'x f 恒成立.解:函数f (x )的导数:.163)(2-+='x ax x f当0)(≤'x f (x ∈R )时,)(x f 是减函数.23610()ax x x +-≤∈R .3012360-≤⇔≤+=∆<⇔a a a 且所以,所求a 的取值范围是(].3,-∞-说明:这类问题在2004年全国各地的高考题中大量出现,需重视. 例11.(重庆市)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ;并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤成立,求a 的取值范围. 解:(1).)1(23)(2a x a x x f ++-='.0)(,;0)(,;0)(,:)())((3)(,,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(2)因故得不等式,0)()(21≤+x f x f :.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x ,代入前面不等式,两边除以(1+a ),并化简得.02522≥+-a a.0)()(,2,.)(212:21成立不等式时当因此舍去或解不等式得≤+≥≤≥x f x f a a a 例12.(2003年江苏高考题)已知n a ,0>为正整数. (Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意证明:(Ⅰ)因为nk knnC a x 0)(=∑=-k kn x a --)(,所以1)(--=-='∑k kn nk kn xa kC y nk n 0=∑=.)()(1111------=-n k k n k n a x n x a C (Ⅱ)对函数nn n a x x x f )()(--=求导数:nn n n n n n n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nx x f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1n n n n n a n n n a n n n n f --+>-+-++=+'+ ).()1())()(1(1n f n a n n n n n n n '+=--+>- 即对任意).()1()1(,1n f n n f a n n n '+>+'≥+四、二轮复习建议(正文用宋体五号字)1.进一步加强对基本概念、基础知识、基本方法的理解和训练(在函数性质和函数与其他知识的小综合上要多加训练,这是关键).2.在二轮复习过程中,做两件事情:一是分专题讲解“函数、导数与不等式”(重点)、“函数与数列”,二是在整个复习过程中,不断渗透函数的思想方法和数形结合的思想方法. 一些备选例题:1.(2000年春季)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( A )A 、b ∈(-∞,0)B 、 b ∈(0,1)C 、 b ∈(1,2)D 、 b ∈(2,+∞) 分析:显然,(想方程)方程f (x )=0的根为0、1、2,所以,可以设f (x )=ax (x -1)(x -2),与f (x )=ax 3+bx 2+cx +d 比较可得:b =-3a .(想不等式)又x >2时,有f (x )>0,于是有a >0,故b <0.2.(2000年上海)已知函数f (x )=xax x ++22,x ∈[)+∞,1.(1)当a =21时,求函数f (x )的最小值; (2)若对任意的x ∈[)+∞,1,f (x )>0恒成立,试求a 的取值范围.分析:本题考查求函数的最值的方法,以及等价变换和函数思想的运用.当a =21时,f (x )=221++xx ≥222212+=+⋅x x ,当且仅当22,21==x x x 即时等号成立,而[)∞+∉122,也就是说这个最小值是取不到的. 解:(1)当a =21时,f (x )=221++xx ,函数f (x )在区间[)+∞,1上为增函数(证明略),所以当x =1时,取到最小值f (1)=3.5.(2)解法一:f (x )>0恒成立,就是x 2+2x +a >0恒成立,而函数g (x )=x 2+2x +a 在[)+∞,1上增函数,所以当x =1时,g (x )取到最小值3+a ,故3+a >0,得:a >-3.解法二:f (x )>0恒成立,就是x 2+2x +a >0恒成立,即a >-x 2-2x 恒成立,这只要a 大于函数-x 2-2x 的最大值即可.而函数-x 2-2x 在[)+∞,1上为减函数,当x =1时,函数-x 2-2x 取到最大值-3,所以a >-3.说明:函数、方程不等式之间有着密切的联系,在解题时要重视这种联系,要善于从函数的高度理解方程和不等式的问题,也要善于利用方程和不等式的知识解决函数的问题.3.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W (吨)与时间t (小时,且规定早上6时t =0)的函数关系为W =100t .水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选择为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?分析:本题主要考查由实际问题建立函数关系式、并利用函数关系解决实际问题.解本题时, 在建立函数关系式后,根据题意应有0<y ≤300对t 恒成立(注意区分不等式恒成立和解不等式的关系). 解:设进水量选第x 级,则t 小时后水塔中水的剩余量为y =100+10xt -10t -100t ,且0≤t ≤16.根据题意0<y ≤300,∴0<100+10xt -10t -100t ≤300.0 1 2 xy由左边得x >1+10(t t11-)=1+10〔-2)211(-t +41〕, 当t =4时,1+10〔-2)211(-t +41〕有最大值3.5.∴x >3.5.由右边得x ≤t t 1020++1,当t =16时,tt 1020++1有最小值4.75,∴x ≤4.75. 综合上述,进水量应选为第4级.说明:a 为实数,函数f (x )定义域为D ,若a >f (x )对x D ∈恒成立,则a >f (x )的最大值;若a <f (x )对x D ∈恒成立,则a <f (x )的最小值.4.设()x f 是定义在[-1,1]上的偶函数,()x g 与()x f 的图象关于直线01=-x 对称.且当[]3,2∈x 时,()()()()为实数a x x a x g 32422---⋅=(1)求函数()x f 的表达式;(2)在(]6,2∈a 或()+∞,6的情况下,分别讨论函数()x f 的最大值,并指出a 为何值时,()x f 的图像的最高点恰好落在直线12=y 上.分析:(1)注意到()x g 是定义在区间[]3,2上的函数,因此,根据对称性,我们只能求出()x f 在区间[]0,1-上的解析式,()x f 在区间[]1,0上的解析式,则可以根据函数的奇偶性去求.简答:()⎪⎩⎪⎨⎧≤≤+-≤≤-+-=1024012433x ax x x ax x x f(2)因为()x f 为偶函数,所以,()x f (11≤≤-x )的最大值,必等于()x f 在区间[]1,0上的最大值.故只需考虑10≤≤x 的情形,此时,()ax x x f 243+-=.对于这个三次函数,要求其最大值,比较容易想到的方法是:考虑其单调性.因此,可以求函数()x f 的导数.简答:如果()+∞∈,6a 可解得:8=a ; 如果(]6,2∈a ,可解得:61833>=a ,与(]6,2∈a 矛盾.故当8=a 时,函数()x f 的图像的最高点恰好落在直线12=y 上.说明:(1)函数的单调性为研究最值提供了可能;(2)奇偶性可以使得我们在研究函数性质时,将问题简化到定义域的对称区间上. 5.已知函数3211()(1)32f x x b x cx =+-+ (b 、c 为常数),(Ⅰ) 若()f x 在x =1和x =3处取得极值,试求b 、c 的值;(Ⅱ)若()f x 在12(,),(,)x x x ∈-∞+∞上单调递增且在12(,)x x x ∈上单调递减,又满足211x x ->,求证:22(2)b b c >+;(Ⅲ) 在(Ⅱ)的条件下,若1t x <,试比较2t bt c ++与1x 的大小,并加以证明. 解: (Ⅰ)'2()(1)f x x b x c =+-+,由题意得:1和3是方程2(1)0x b x c +-+=的两根,113,1 3.b c -=+⎧∴⎨=⨯⎩解得3,3.b c =-⎧⎨=⎩ (Ⅱ)由题得:当12(,),(,)x x x ∈-∞+∞时,'()0f x >;12(,)x x x ∈时, '()0f x <.12,x x ∴是方程2(1)0x b x c +-+=的两根,则12121,,x x b x x c +=-=222121212212122212(2)24[1()]2[1()]4()41() 1.b bc b b cx x x x x x x x x x x x ∴-+=--=-+--+-=+--=--211x x ->,2221()10,2(2)x x b b c ∴-->∴>+.(Ⅲ) 在(Ⅱ)的条件下,由上一问知212(1)()(),x b x c x x x x +-+=-- 即212()(),x bx c x x x x x ++=--+所以2112112()()()(1),t bt c x t x t x t x t x t x ++-=--+-=-+-2121111,10,0,0,x x t t x t x t x >+>+∴+-<<<∴-<又 2121()(1)0,.t x t x t bt c x ∴-+->++>即。
2022高三总复习数学 三角函数的图象与性质(含解析)
课时过关检测(二十二) 三角函数的图象与性质A 级——基础达标1.下列函数中,周期为2π的奇函数为( ) A .y =sin x 2cos x2B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D 都不正确,故选A .2.(2021·辽宁辽河模拟)已知函数f (x )=2cos 4x +1,则下列判断错误的是( ) A .f (x )为偶函数B .f (x )的图象关于直线x =π4对称C .f (x )的值域为[-1,3]D .f (x )的图象关于点⎝⎛⎭⎫-π8,0对称 解析:选D ∵f (-x )=1+2cos 4x =f (x ),∴f (x )为偶函数,A 判断正确;令4x =k π(k ∈Z ),得x =k π4(k ∈Z ),当k =1时,x =π4,则f (x )的图象关于直线x =π4对称,B 判断正确;∵2cos 4x ∈[-2,2],∴f (x )的值域为[-1,3],C 判断正确;f (x )的图象关于点⎝⎛⎭⎫-π8,1对称,D 判断错误.故选D.3.已知函数f (x )=2sin ⎝⎛⎭⎫π2x +π3,则f (x )在[-1,1]上的单调递增区间为( ) A .⎣⎡⎦⎤-13,13 B .⎣⎡⎦⎤-1,13 C .[]-1,1D .⎣⎡⎦⎤-π4,π4 解析:选B 令2k π-π2≤π2x +π3≤2k π+π2,k ∈Z ,得x ∈⎣⎡⎦⎤4k -53,4k +13,k ∈Z ,又x ∈[-1,1],所以f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-1,13. 4.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=( ) A .14B .13C .12D .32解析:选C 因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增,则f (x )max =f ⎝⎛⎭⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12. 5.(多选)(2021·郑州市高三联考)以下函数在区间⎝⎛⎭⎫0,π2上为单调递增函数的有( ) A .y =sin x +cos x B .y =sin x -cos x C .y =sin x cos xD .y =sin xcos x解析:选BD 对于A 选项,y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,当x ∈⎝⎛⎭⎫0,π2时,x +π4∈⎝⎛⎭⎫π4,3π4,所以,函数y =sin x +cos x 在区间⎝⎛⎭⎫0,π2上不单调;对于B 选项,y =sin x -cos x =2sin ⎝⎛⎭⎫x -π4,当x ∈⎝⎛⎭⎫0,π2时,x -π4∈⎝⎛⎭⎫-π4,π4,所以,函数y =sin x -cos x 在区间⎝⎛⎭⎫0,π2上单调递增;对于C 选项,y =sin x cos x =12sin 2x ,当x ∈⎝⎛⎭⎫0,π2时,2x ∈(0,π),所以,函数y =sin x cos x 在区间⎝⎛⎭⎫0,π2上不单调;对于D 选项,当x ∈⎝⎛⎭⎫0,π2时,y =sin xcos x =tan x ,所以,函数y =sin xcos x在区间⎝⎛⎭⎫0,π2上单调递增.故选B 、D. 6.(多选)若函数f (x )=cos x +|cos x |,x ∈R ,则函数f (x )( ) A .最小正周期为π B .是区间[0,1]上的减函数 C .图象关于点(k π,0)(k ∈Z )对称 D .是周期函数且图象有无数条对称轴解析:选BDf (x )=⎩⎨⎧2cos x ,-π2+2k π ≤x ≤π2+2k π,0,π2+2k π ≤x ≤3π2+2k π(k ∈Z ),对应图象如图.由图象知函数f (x )的最小正周期为2π,故A 错误;函数f (x )在⎣⎡⎦⎤0,π2上为减函数,故B 正确;函数f (x )的图象关于直线x =2k π(k ∈Z )对称,故C 错误;函数f (x )的图象有无数条对称轴,且周期是2π,故D 正确.故选B 、D.7.函数y =tan ⎝⎛⎭⎫x 2+π3的图象的对称中心是 .解析:由x 2+π3=k π2(k ∈Z ),得x =k π-2π3(k ∈Z ),即其对称中心为⎝⎛⎭⎫k π-2π3,0,k ∈Z . 答案:⎝⎛⎭⎫k π-2π3,0,k ∈Z 8.(2021·扬州中学高三模拟)已知f (x )=sin ⎣⎡⎦⎤π3(x +1)-3cos ⎣⎡⎦⎤π3(x +1),则f (x )的最小正周期为 ,f (1)+f (2)+…+f (2 020)= .解析:依题意可得f (x )=2sin π3x ,其最小正周期T =6,且f (1)+f (2)+…+f (6)=0,故f (1)+f (2)+…+f (2 020)=f (1)+f (2)+f (3)+f (4)= 3.答案:639.已知函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为直线x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .解析:由函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为直线x =π,可得ωπ-π6=k π+π2,k ∈Z , ∴ω=k +23,又ω∈(1,2),∴ω=53,∴函数f (x )的最小正周期为2π53=6π5. 答案:6π510.(2021·河北省中原名校联盟联考)若函数f (x )=3sin ⎝⎛⎭⎫x +π10-2在区间⎣⎡⎦⎤π2,a 上单调递减,则实数a 的最大值是 .解析:法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎡⎦⎤2π5,7π5上单调递减,所以a 的最大值为7π5.法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎣⎡⎦⎤π2,a 上单调递减,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5. 答案:7π511.已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎡⎦⎤0,π2上的单调性. 解:(1)∵f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4,且T =π,∴ω=2.于是,f (x )=2sin ⎝⎛⎭⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ),即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎡⎦⎤0,π2,所以令k =0,得函数f (x )在⎣⎡⎦⎤0,π2上的单调递增区间为⎣⎡⎦⎤0,3π8;同理,其单调递减区间为⎣⎡⎦⎤3π8,π2.12.(2021·山东泰安模拟)在①函数f ⎝⎛⎭⎫x -π3为奇函数;②当x =π3时,f (x )=3;③2π3是函数f (x )的一个零点这三个条件中任选一个,补充在下面问题中,并解答.已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2,f (x )的图象相邻两条对称轴间的距离为π, . (1)求函数f (x )的解析式;(2)求函数f (x )在[0,2π]上的单调递增区间.注:如果选择多个条件分别解答,按第一个解答计分.解:∵函数f (x )的图象相邻对称轴间的距离为π,∴T =2πω=2π,∴ω=1,∴f (x )=2sin(x +φ).选条件①.∵f ⎝⎛⎭⎫x -π3=2sin ⎝⎛⎭⎫x +φ-π3为奇函数, ∴φ-π3=k π,k ∈Z ,解得φ=π3+k π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫x +π3. (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z ,∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为⎣⎡⎦⎤0,π6,⎣⎡⎦⎤76π,2π. 选条件②.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3+φ=3,∴sin ⎝⎛⎭⎫π3+φ=32, ∴φ=2k π,k ∈Z 或φ=π3+2k π,k ∈Z ,(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫x +π3. (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z ,∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为⎣⎡⎦⎤0,π6,⎣⎡⎦⎤76π,2π. 选条件③.∵23π是函数f (x )的一个零点,∴f ⎝⎛⎭⎫23π=2sin ⎝⎛⎭⎫23π+φ=0,∴φ=k π-2π3,k ∈Z . (1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫x +π3. (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z ,∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为⎣⎡⎦⎤0,π6,⎣⎡⎦⎤76π,2π. B 级——综合应用13.(多选)(2021·全国统一考试模拟演练)设函数f (x )=cos 2x2+sin x cos x,则( )A .f (x )=f (x +π)B .f (x )的最大值为12C .f (x )在⎝⎛⎭⎫-π4,0单调递增 D .f (x )在⎝⎛⎭⎫0,π4单调递减 解析:选AD f (x +π)=cos 2(x +π)2+sin (x +π)cos (x +π)=cos 2x2+sin x cos x=f (x ),故A 正确;∵f (x )=cos 2x 2+sin x cos x =2cos 2x4+sin 2x,∴f ′(x )=(2cos 2x )′(4+sin 2x )-2cos 2x (4+sin 2x )′(4+sin 2x )2=-4(1+4sin 2x )(4+sin 2x )2,令f ′(x )=0,解得sin 2x =-14,cos 2x =±154.所以f (x )max =215>12,故B 错误; 当x ∈⎝⎛⎭⎫-π4,0时,2x ∈⎝⎛⎭⎫-π2,0, 此时-4sin 2x -1∈(-1,3),∴f ′(x )有正有负,f (x )在⎝⎛⎭⎫-π4,0上不单调,故C 错误; 当x ∈⎝⎛⎭⎫0,π4时,2x ∈⎝⎛⎭⎫0,π2,此时-4sin 2x -1∈(-5,-1),f ′(x )<0恒成立,f (x )在⎝⎛⎭⎫0,π4单调递减,故D 正确. 14.(2021·石家庄市质量检测)已知函数f (x )=sin ωx +3cos ωx (ω>0),x 1,x 2为函数图象与x 轴的两个交点的横坐标,若|x 1-x 2|的最小值为π2,则( )A .f (x )在⎝⎛⎭⎫-5π6,π6上单调递增 B .f (x )在⎝⎛⎭⎫-2π3,π3上单调递减 C .f (x )在⎝⎛⎭⎫-5π12,π12上单调递增D .f (x )在⎝⎛⎭⎫π6,2π3上单调递减解析:选C 因为f (x )=2sin ⎝⎛⎭⎫ωx +π3,且|x 1-x 2|的最小值为π2,所以f (x )的最小正周期为π,即2πω=π,所以ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x +π3,所以f (x )在区间⎝⎛⎭⎫-5π12,π12上单调递增,故选C .15.已知函数f (x )=sin 2x -3cos 2x ,x ∈R . (1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值; (3)当x ∈⎣⎡⎦⎤π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围. 解:(1)因为f (x )=sin 2x -3cos 2x =2⎝⎛⎭⎫12sin 2x -32cos 2x=2sin ⎝⎛⎭⎫2x -π3,故f (x )的最小正周期为T =2π2=π.(2)由(1)知h (x )=2sin ⎝⎛⎭⎫2x +2t -π3. 令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ), 得t =k π2+π3(k ∈Z ),又t ∈(0,π),故t =π3或t =5π6.(3)当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3, 所以f (x )∈[1,2].又|f (x )-m |<3,即f (x )-3<m <f (x )+3,所以2-3<m <1+3,即-1<m <4.故实数m 的取值范围是(-1,4).C 级——迁移创新16.(2021·全国卷联考节选)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫其中A >0,ω>0,|φ|≤π2的图象离原点最近的对称轴为直线x =x 0,若满足|x 0|≤π6,则称f (x )为“近轴函数”.若函数y=2sin(2x -φ)是“近轴函数”,求φ的取值范围.解:函数y =2sin 2x 的图象离原点最近的对称轴是直线x =±π4,函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -φ2满足|x 0|≤π6,当φ>0时,π4-π6≤φ2≤π4+π6,即π6≤φ≤5π6,又|φ|≤π2,∴π6≤φ≤π2;当φ<0时,-π6-π4≤φ2≤π6-π4,即-5π6≤φ≤-π6,又|φ|≤π2, ∴-π2≤φ≤-π6.综上所述,φ的取值范围是⎣⎡⎦⎤-π2,-π6∪⎣⎡⎦⎤π6,π2.。
高三数学总复习讲义——数列概念
高三数学总复习讲义——数列概念 知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如,数列①的通项公式是n a = n (n ≤7,n N +∈),数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
人教B版高考数学一轮总复习课后习题 第五章 三角函数、解三角形 课时规范练19
课时规范练19《素养分级练》P305基础巩固组1.(贵州贵阳高三开学考试)已知cos α+π2=35,-π2<α<0,则tanα=( ) A.43B.-43C.34D.-34答案:D 解析:由cos α+π2=35,可得sinα=-35,又因为-π2<α<0,则cosα=√1-sin 2α=45,所以tanα=sinαcosα=-34,故选D.2.(陕西西安高三一模)已知tan α+1tanα=4,α∈π,3π2,则sin α+cosα=( ) A.√62B.-√62C.√63D.-√63答案:B 解析:由tanα+1tanα=4可得sinαcosα+cosαsinα=4,即1sinαcosα=4,因此sinαcosα=14,2sinαcosα=12,于是(sinα+cosα)2=1+2sinαcosα=32.又因为α∈π,3π2,所以sinα<0,cosα<0,故sinα+cosα=-√62.3.(山东日照高三月考)cos (α+2π)tan (π+α)sin (-α)cos (-α)tan (π-α)=( )A.tan αB.cos αC.sin αD.-sin α答案:C 解析:cos (α+2π)tan (π+α)sin (-α)cos (-α)tan (π-α)=cosαtanα(-sinα)cosα(-tanα)=sinα,故选C.4.(山东潍坊高三月考)若sin α+2cos α=0,则sin 2α-sin 2α=( ) A.-35B.0C.1D.85答案:D解析:因为sinα+2cosα=0,所以tanα=-2,所以sin 2α-sin2α=sin 2α-2sinαcosαsin 2α+cos 2α=tan 2α-2tanαtan 2α+1=4-2×(-2)4+1=85,故选D.5.(浙江金华高三期中)已知π<θ<32π,tan θ-6tanθ=1,则sin θ+cos θ的值为( ) A.2√105 B.√105 C.-√105D.-2√105答案:D解析:因为tanθ-6tanθ=1,所以tan 2θ-tanθ-6=0,解得tanθ=3或tanθ=-2.因为π<θ<3π2,所以tanθ=3,又{tanθ=sinθcosθ=3,sin 2θ+cos 2θ=1,解得{sinθ=3√1010,cosθ=√1010(舍去)或{sinθ=-3√1010,cosθ=-√1010.所以sinθ+cosθ=-3√1010−√1010=-2√105,故选D.6.(甘肃兰州一中高三检测)若tan 2x-sin 2x=4,则tan 2x·sin 2x 的值等于( ) A.-4 B.4 C.-14D.14答案:B解析:由于tan 2x-sin 2x=4,所以tan 2x·sin 2x=tan 2x(1-cos 2x)=tan 2x-tan 2x·cos 2x=tan 2x-sin 2x=4. 7.(湖北武汉高三期中)已知sin αtan α=-32,且α∈(0,π),则sin α的值等于( ) A.√32B.-√32C.12D.-12答案:A 解析:由已知得sin 2αcosα=-32,所以2sin 2α+3cosα=0,即2-2cos 2α+3cosα=0,解得cosα=-12或cosα=2(舍去),又因为α∈(0,π),于是sinα=√1-cos 2α=√32. 8.(多选)(天津耀华中学高三月考)已知α∈(π,2π),sin α=tanα2=tan β2,则( )A.tan α=√3B.cos α=12C.tan β=4√3D.cos β=17答案:BD解析:因为sinα=tanαcosα=tanα2,所以cosα=12,又α∈(π,2π),所以sinα=-√32,tanα=-√3,故A 错误,B 正确.又tan β2=-√32,所以tanβ=2tanβ21-tan 2β2=-4√3,cosβ=cos 2β2-sin 2β2sin 2β2+cos 2β2=1-tan 2β21+tan 2β2=17,故C 错误,D 正确.故选BD. 9.已知cos (α-π)1+sin (π-α)=√3,则sin(α-3π2)1+sin (α+π)的值等于( )A.√33B.-√33C.√3D.-√3答案:B 解析:由cos (α-π)1+sin (π-α)=√3,可得cosα1+sinα=-√3.而sin(α-3π2)1+sin (α+π)=cosα1-sinα.由于cosα1+sinα·cosα1-sinα=cos 2α1-sin 2α=cos 2αcos 2α=1,又cosα1+sinα=-√3,所以cosα1-sinα=-√33.10.(山东淄博高三月考)已知θ∈(0,π),cos 5π6-θ=-1213,则tan θ+π6= . 答案:512解析:因为θ∈(0,π),所以-π6<5π6-θ<5π6,又因为cos5π6-θ=-1213,所以π2<5π6-θ<5π6,因此sin5π6-θ=√1-cos 2(5π6-θ)=513,所以tan5π6-θ=-512,故tan θ+π6=tan π-5π6-θ=-tan 5π6-θ=512.11.(辽宁大连高三模拟)已知sin α+cos α=1cosα,则tan α= .答案:0或1解析:由sinα+cosα=1cosα,得sinαcosα+cos 2α=1=sin 2α+cos 2α,则sinαcosα=sin 2α,tanα=tan 2α,所以tanα=0或tanα=1.综合提升组12.(多选)(福建泉州高三月考)已知角α是锐角,若sin α,cos α是关于和n 的关系式中一定成立的是( ) A.m 2-4n=0 B.m 2=2n+1 C.mn>0 D.m+n+1>0答案:BD解析:因为sinα,cosα不一定相等,如当α=π3时,sinα≠cosα,故A 错误;因为1=sin 2α+cos 2α=(sinα+cosα)2-2sinαcosα=m 2-2n,所以m 2=2n+1,故B 正确;因为α为锐角,所以sinα+cosα=-m>0,所以m<0,sinαcosα=n>0,所以mn<0,故C 错误;因为α是锐角,即α∈0,π2,α+π4∈π4,3π4,所以m=-(sinα+cosα)=-√2sin α+π4∈[-√2,-1),所以m+n+1=m+m 2-12+1=(m+1)22>0,故D 正确.故选BD.13.(河北石家庄高三期中)若sinαcos2αsinα-cosα=-25,α∈0,π2,则tanα= . 答案:13解析:由题意,sinαcos2αsinα-cosα=-sinα(sin 2α-cos 2α)sinα-cosα=-sinα(sinα+cosα)(sinα-cosα)sinα-cosα=-sin 2α+sinαcosαsin 2α+cos 2α=-tan 2α+tanαtan 2α+1=-25, 因为α∈0,π2,所以tanα>0,解得tanα=13.创新应用组14.(四川德阳高三一模)若sin θ+sin 2θ=1,则cos 2θ+cos 6θ+cos 8θ的值等于( ) A.0 B.1C.-1D.√5-12答案:B解析:因为sinθ+sin2θ=1,sin2θ+cos2θ=1,所以sinθ=cos2θ,所以原式=sinθ+sin3θ+sin4θ=sinθ+sin2θ(sinθ+sin2θ)=sinθ+sin2θ=1.。
2022高三总复习数学 复 数(含解析)
复 数A 级——基础达标1.(2021·广东省七校联考)已知复数z =2+i1-i(i 为复数单位),那么z 的共轭复数为( ) A.32+32i B .12-32iC.12+32i D .32-32i解析:选B 由题意知z =(2+i )(1+i )(1-i )(1+i )=2+2i +i -12=12+32i ,所以z =12-32i ,故选B.2.(2021·湖北八校第一次联考)设i 是虚数单位,若复数a +5i1+2i(a ∈R )是纯虚数,则a =( )A .-1B .1C .-2D .2解析:选C 由已知,得a +5i1+2i =a +5i (1-2i )(1+2i )(1-2i )=a +2+i ,由题意得a +2=0,所以a =-2.故选C.3.(2021·武昌区高三调研)已知复数z 满足zz -i=i ,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A 法一:设z =a +b i(a ,b ∈R ),因为zz -i =i ,所以a +b i a +(b -1)i =i ,所以a +b i =(1-b )+a i ,所以⎩⎪⎨⎪⎧a =1-b ,b =a ,解得a =b =12,所以z 在复平面内对应的点为⎝⎛⎭⎫12,12,位于第一象限,故选A.法二:因为z z -i =i ,所以z =11-i =1+i 2=12+12i ,所以z 在复平面内对应的点为⎝⎛⎭⎫12,12,位于第一象限,故选A.4.(2021·长沙市四校模拟考试)已知复数z =(1+i )2i (1-i ),则下列结论正确的是( )A .z 的虚部为iB .|z |=2C .z 的共轭复数z =-1+iD .z 2为纯虚数解析:选D z =(1+i )2i (1-i )=21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i ,则z 的虚部为1,所以选项A 错误;|z |=12+12=2,所以选项B 错误;z 的共轭复数z =1-i ,所以选项C 错误;z 2=(1+i)2=2i 是纯虚数,所以选项D 正确.故选D.5.(2021·江西五校联考)复数z 满足(z -2)·i =z (i 为虚数单位),z 为复数z 的共轭复数,则下列说法正确的是( )A .z 2=2iB .z ·z =2C .|z |=2D .z +z =0解析:选B 由题意,得z i -2i =z ,z (i -1)=2i ,z =2ii -1=2i (i +1)(i -1)(i +1)=2(i -1)-2=1-i ,则z 2=-2i ,z ·z =(1-i)(1+i)=2,|z |=2,z +z =1-i +1+i =2,故选B.6.(2021·广东省七校联考)设复数z 满足|z -1-i|=2,则|z |的最大值为( ) A. 2 B .2 C .2 2D .4解析:选C 复数z 满足|z -1-i|=2,故复数z 对应复平面上的点是以A (1,1)为圆心,2为半径的圆,|AO |=2(O 为坐标原点),故|z |的最大值为2+2=2 2. 7.(多选)下面是关于复数z =2-1+i 的四个命题,其中的真命题为( )A .|z |=2B .z 2=2iC .z 的共轭复数为1+iD .z 的虚部为-1解析:选BD ∵z =2-1+i =2(-1-i )(-1+i )(-1-i )=-1-i ,∴|z |=2,z 2=2i ,z 的共轭复数为-1+i ,z 的虚部为-1,故选B 、D. 8.(多选)下列命题正确的是( )A .若复数z 1,z 2的模相等,则z 1,z 2是共轭复数B .z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数C .复数z 是实数的充要条件是z =z (z 是z 的共轭复数)D .已知复数z =x +y i(x ,y ∈R )且|z -2|=3,则yx 的最大值为 3解析:选BCD 对于A ,z 1和z 2可能是相等的复数,故A 错误;对于B ,若z 1和z 2是共轭复数,则相加为实数,不会为虚数,故B 正确;对于C ,由a +b i =a -b i 得b =0,故C 正确;对于D ,∵|z -2|=(x -2)2+y 2=3,∴(x -2)2+y 2=3.由图可知⎝⎛⎭⎫y x max=31= 3.9.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是z 1,z 2,则|z 1-z 2|= .解析:由图象可知z 1=i ,z 2=2-i , 故|z 1-z 2|=|-2+2i|= (-2)2+22=2 2.答案:2 210.(2021·昆明市三诊一模)复数z 的共轭复数z 满足(2+i)z =|3+4i|,z = . 解析:法一:由(2+i)z =|3+4i|,得z =|3+4i|2+i =52+i =5(2-i )(2+i )(2-i )=2-i ,所以z =2+i.法二:设z =a +b i(a ,b ∈R ),则(2+i)(a -b i)=5,即2a +b +(a -2b )i =5,所以⎩⎪⎨⎪⎧ 2a +b =5,a -2b =0,解得⎩⎪⎨⎪⎧a =2,b =1,所以z =2+i. 答案:2+i11.(2021·福建省三明市高三模拟)若|z 1-z 2|=1,则称z 1与z 2互为“邻位复数”.已知复数z 1=a +3i 与z 2=2+b i 互为“邻位复数”,a ,b ∈R ,求a 2+b 2的最大值.解:由题意,|a +3i -2-b i|=1,故(a -2)2+(3-b )2=1, ∴点(a ,b )在圆(x -2)2+(y -3)2=1上, 而a 2+b 2表示点(a ,b )到原点的距离,故a 2+b 2的最大值为(22+(3)2+1)2=(1+7)2=8+27.12.(2021·张家口调研)已知复数z 满足:z 2=3+4i ,且z 在复平面内对应的点位于第三象限.(1)求复数z ;(2)设a ∈R ,且⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫1+z 1+z 2 021+a =2,求实数a 的值. 解:(1)设z =c +d i(c ,d ∈R 且c <0,d <0), 则z 2=(c +d i)2=c 2-d 2+2cd i =3+4i ,∴⎩⎪⎨⎪⎧c 2-d 2=3,2cd =4,解得⎩⎪⎨⎪⎧c =-2,d =-1或⎩⎪⎨⎪⎧c =2,d =1(舍去).∴z =-2-i.(2)∵z =-2+i ,∴1+z1+z =-1-i -1+i =1+i 1-i=(1+i )22=i ,∴⎝ ⎛⎭⎪⎪⎫1+z 1+z 2 021=i 2 021=i 2 020+1=i 505×4+1=i , ∴|a +i|=a 2+1=2,∴a =±3.B 级——综合应用13.(多选)(2021·全国统一考试模拟演练)设z 1,z 2,z 3为复数,z 1≠0,下列命题中正确的是( )A .若|z 2|=|z 3|,则z 2=±z 3B .若z 1z 2=z 1z 3,则z 2=z 3C .若z 2=z 3,则|z 1z 2|=|z 1z 3|D .若z 1z 2=|z 1|2,则z 1=z 2解析:选BC 设z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 3=a 3+b 3i ,若|z 2|=|z 3|,则a 22+b 22=a 23+b 23,此时z 2=±z 3不一定成立,故A 错误; 若z 1z 2=z 1z 3,则z 1(z 2-z 3)=0,又因z 1≠0,所以z 2=z 3,故B 正确; 若z 2=z 3,则a 2=a 3,b 2=-b 3,所以|z1z2|=(a1a2-b1b2)2+(a1b2+a2b1)2=(a1a2)2+(b1b2)2+(a1b2)2+(a2b1)2.|z1z3|=(a1a3-b1b3)2+(a1b3+a3b1)2=(a1a2+b1b2)2+(-a1b2+a2b1)2=(a1a2)2+(b1b2)2+(a1b2)2+(a2b1)2.所以|z1z2|=|z1z3|,故C正确;当z2=z1时,z1z2=|z1|2,此时z1=z2不一定成立,故D错误.14.已知集合M={1,m,3+(m2-5m-6)i},N={-1,3},若M∩N={3},则实数m 的值为.解析:∵M∩N={3},∴3∈M且-1∉M,∴m≠-1,3+(m2-5m-6)i=3或m=3,∴m2-5m-6=0且m≠-1或m=3,解得m=6或m=3,经检验符合题意.答案:3或615.(2021·高仿密卷)已知复数z=b i(b∈R),z-21+i是实数,i是虚数单位.(1)求复数z;(2)若复数(m+z)2所表示的点在第一象限,求实数m的取值范围.解:(1)因为z=b i(b∈R),所以z-21+i=b i-21+i=(b i-2)(1-i)(1+i)(1-i)=(b-2)+(b+2)i2=b-22+b+22i.又因为z-21+i是实数,所以b+22=0,所以b=-2,即z=-2i.(2)因为z=-2i,m∈R,所以(m+z)2=(m-2i)2=m2-4m i+4i2=(m 2-4)-4m i ,又因为复数(m +z )2所表示的点在第一象限,所以⎩⎪⎨⎪⎧m 2-4>0,-4m >0,解得m <-2,即m ∈(-∞,-2).C 级——迁移创新16.若虚数z 同时满足下列两个条件: ①z +5z 是实数;②z +3的实部与虚部互为相反数. 则z = .解析:设z =a +b i(a ,b ∈R 且b ≠0),则z +5z =a +b i +5a +b i =a +b i +5(a -b i )a 2+b 2=⎝ ⎛⎭⎪⎫a +5a a 2+b 2+⎝ ⎛⎭⎪⎫b -5b a 2+b 2i. ∵z +5z 是实数,∴b -5ba 2+b 2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数, ∴a +3+b =0.②联立①②得⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1,故z =-1-2i 或z =-2-i. 答案:-1-2i 或-2-i。
高考数学总复习历年考点知识与题型专题讲解22--- 幂函数(解析版)
高考数学总复习历年考点知识与题型专题讲解幂函数考点一 幂函数的判断【例1】(2020·全国高一课时练习)在函数21y x=,22y x =,2y x x =+,1y =中,幂函数的个数为( )A .0B .1C .2D .3【答案】B 【解析】因为221y x x -==,所以是幂函数; 22y x =由于出现系数2,因此不是幂函数; 2y x x =+是两项和的形式,不是幂函数;01y x ==(0x ≠),可以看出,常数函数1y =的图象比幂函数0y x =的图象多了一个点(0,1),所以常数函数1y =不是幂函数.故选:B .【举一反三 】1.(2019·广东揭阳.高一期末)下列函数中哪个是幂函数( )A .31y x -⎛⎫= ⎪⎝⎭ B .22x y -⎛⎫= ⎪⎝⎭C .3y =D .3(2)y x -=-【答案】A【解析】幂函数是y x α=,α∈R ,显然331y x x -⎛⎫== ⎪⎝⎭,是幂函数. 22x y -⎛⎫= ⎪⎝⎭,3y =,3(2)y x -=-都不满足幂函数的定义,所以A 正确.故选:A .2.(2019·滦南县第二高级中学高一期中)下列函数是幂函数的是 ( ) A .22y x = B .3y x x =+ C .3x y =D .12y x =【答案】D【解析】形如y x α=的函数称为幂函数,据此只有12y x =才符合幂函数的定义,故选择D.考点二 幂函数的三要素【例2-1】(2020·辽阳市第四高级中学高三月考)已知幂函数()af x k x =⋅的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则k a +=______.【答案】1.5【解析】因为函数()af x k x =⋅是幂函数,所以1k =,又因为幂函数的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,所以0.511222a ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以0.5a =所以 1.5k a +=,故答案为:1.5【例2-2】(2020·全国高一课时练习)(1)函数45y x =的定义域是_____,值域是_____;(2)函数45y x -=的定义域是____,值域是_____; (3)函数54y x =的定义域是______,值域是_____; (4)函数54y x -=的定义域是_____,值域是______.【答案】R [0,)+∞ {|0}x x ≠ (0,)+∞ [0,)+∞ [0,)+∞ (0,)+∞(0,)+∞【解析】(1)45y x =的定义域是R ,值域是[0,)+∞; (2)45451xy x-==的定义域是{|0}x x ≠,值域是(0,)+∞;(3)54y x =的定义域是[0,)+∞,值域是[0,)+∞;(4)54541xy x-==的定义域是(0,)+∞,值域是(0,)+∞;故答案为:R ;[0,)+∞;{|0}x x ≠;(0,)+∞;[0,)+∞;[0,)+∞;(0,)+∞;(0,)+∞.【举一反三】1(2020·上海高一开学考试)若幂函数图像过点(8,4),则此函数的解析式是y =________.【答案】23x【解析】设幂函数的解析式为y x α=,由于函数图象过点(8,4),故有48α=,解得23α=, 所以该函数的解析式是23y x =,故答案为:23x .2.(2019·银川唐徕回民中学高三月考(理))已知幂函数()y f x =的图象过点(,则()16f =______.【答案】4【解析】由题意令()a yf x x ,由于图象过点2a =,12a =12()y f x x ∴==12(16)164f ∴==故答案为:4.3.(2020·浙江高一课时练习)若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.【答案】9【解析】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.4.(2020·全国高一课时练习)讨论下列函数的定义域、值域. (1)4y x =;(2)14y x =;(3)3y x -=;(4)23y x =.【答案】(1)定义域为R ,值域为[0,)+∞;(2)定义域为[0,)+∞,值域为[0,)+∞;(3)定义域为(,0)(0,)-∞+∞,值域为(,0)(0,)-∞+∞;(4)定义域为R ,值域为[0,)+∞.【解析】(1)函数的定义域为R ,值域为[0,)+∞.(2)因为14y x ==[0,)+∞,值域为[0,)+∞.(3)因为331y x x-==,所以0x ≠,且0y ≠,所以函数的定义域为(,0)(0,)-∞+∞,值域为(,0)(0,)-∞+∞.(4)因为23y x ==R ,值域为[0,)+∞.考点三 幂函数的性质【例3】.(2020·福建南平.高一期末)已知幂函数()()22322nnf x n n x-=+-(n ∈Z )在()0,∞+上是减函数,则n 的值为( )A .3-B .1C .1-D .1和3-【答案】B【解析】因为函数是幂函数所以2221+-=n n 所以3n =-或1n =当3n =-时()18=f x x 在()0,∞+上是增函数,不合题意.当1n =时()2f x x -=在()0,∞+上是减函数,成立故选:B【举一反三】1.(2020·辽宁沈阳。
高三总复习数学课件 圆锥曲线中的定点、定值问题
题型二 定值问题 [典例] 已知点 A,B 分别为椭圆xa22+by22=1(a>b>0)的左、右顶点,过左焦点 F(-2,0)的直线 l 与椭圆 C 交于 P,Q 两点,当直线 l 与 x 轴垂直时,|PQ|=130. (1)求椭圆的标准方程; (2)设直线 AP,BQ 的斜率分别为 k1,k2,求证:kk12为定值.
(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式, 再利用题设条件化简、变形求得.
(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式 进行化简、变形即可求得.
[针对训练] 1.已知斜率为1的直线交抛物线C:y2=2px(p>0)于A,B两点,且弦AB中点
的纵坐标为2. (1)求抛物线C的标准方程; (2)记点P(1,2),过点P作两条直线PM,PN分别交抛物线C于M,N(M,N 不同于点P)两点,且∠MPN的平分线与y轴垂直,求证:直线MN的斜率为 定值.
[解]:(1)由题意,得 b2=1,c=1, 所以 a2=b2+c2=2. 所以椭圆 C 的方程为x22+y2=1. (2)证明:设 P(x1,y1),Q(x2,y2), 则直线 AP 的方程为 y=y1x-1 1x+1. 令 y=0,得点 M 的横坐标 xM=-y1x-1 1. 又 y1=kx1+t,从而|OM|=|xM|=kx1+x1t-1. 同理,|ON|=kx2+x2t-1.
解: (1)设 A(x1,y1),B(x2,y2),AB 的中点(x0,y0),则有 y21=2px1,y22=2px2, 两式相减得(y1+y2)(y1-y2)=2p(x1-x2), 所以 kAB=xy11- -yx22=22yp0=p2=1, 所以 p=2,抛物线方程为 y2=4x. (2)证明:设直线 MN 的方程为 x=my+n(由题意知直线 MN 的斜率一定不为 0), M(x3,y3),N(x4,y4), 联立yx2==m4xy+,n, 消去 x 得,y2-4my-4n=0, 由 Δ=16m2+16n>0 得 m2+n>0.
新高考数学一轮复习考点知识专题讲解与练习 22 复数
新高考数学一轮复习考点知识专题讲解与练习考点知识总结22复数高考概览高考在本考点的常考题型为选择题,分值为5分,低难度考纲研读1.理解复数的基本概念2.理解复数相等的充要条件3.了解复数的代数表示法及其几何意义4.会进行复数代数形式的四则运算5.了解复数代数形式的加、减运算的几何意义一、基础小题1.(-1+i)(2i+1)=()A.1-i B.1+i C.-3-i D.-3+i答案C解析由题意,得(-1+i)(2i+1)=-2i-1-2+i=-3-i.故选C.2.复数z=21+i(i为虚数单位)在复平面上对应的点的坐标为()A.(1,1) B.(1,-1)C.(-1,1) D.(-1,-1)答案B解析 z =21+i =2(1-i )(1+i )(1-i )=1-i ,故复数z =21+i 在复平面内对应的点的坐标是(1,-1).故选B.3.已知复数z =(1+a i)(1-2i)(a ∈R )为纯虚数,则实数a =( ) A .2 B .-2 C.12 D .-12 答案 D解析 z =(1+2a )+(a -2)i ,由已知得1+2a =0且a -2≠0,解得a =-12.故选D. 4.若复数z =1-i ,则⎪⎪⎪⎪⎪⎪z 1-z =( )A .1 B. 2 C .2 2 D .4 答案 B解析 由z =1-i ,得z 1-z =1-i i =-1-i ,则⎪⎪⎪⎪⎪⎪z 1-z =|-1-i|= 2.5.已知复数z =i +i 2022,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 ∵i +i 2022=-1+i ,∴i +i 2022在复平面内对应的点的坐标为(-1,1),该点在第二象限.故选B.6.若复数z =i1+i (i 为虚数单位),则z z -=( )A.12i B .-14 C.14 D.12解析 解法一:∵z =i 1+i =i (1-i )2=1+i 2=12+12i ,∴z -=12-12i ,∴z z -=⎝ ⎛⎭⎪⎫12+12i ⎝ ⎛⎭⎪⎫12-12i =12.故选D. 解法二:∵z =i 1+i ,∴|z |=1|1+i|=22,∴z z -=|z |2=12.故选D.7. 如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,若z 1=zz 2,则z 的共轭复数z -=( )A.12+32iB.12-32I C .-12+32i D .-12-32i 答案 A解析 由题图可知z 1=1+2i ,z 2=-1+i ,所以z =z 1z 2=1+2i-1+i =(1+2i )(-1-i )(-1+i )(-1-i )=1-3i2,所以z -=12+32i.故选A.8.设复数z 满足|z -1+i|=1,z 在复平面内对应的点为P (x ,y ),则点P 的轨迹方程为( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .(x -1)2+(y +1)2=1解析 由题意得z =x +y i ,则由|z -1+i|=1得|(x -1)+(y +1)i|=1,即(x -1)2+(y +1)2=1,则(x -1)2+(y +1)2=1.故选D.9.(多选)设z 1,z 2,z 3为复数,z 1≠0,下列命题中正确的是( ) A .若|z 2|=|z 3|,则z 2=±z 3 B .若z 1z 2=z 1z 3,则z 2=z 3 C .若z -2=z 3,则|z 1z 2|=|z 1z 3| D .若z 1z 2=|z 1|2,则z 1=z 2 答案 BC解析 由复数模的概念可知,|z 2|=|z 3|不能得到z 2=±z 3,例如z 2=1+i ,z 3=1-i ,A 错误;由z 1z 2=z 1z 3可得z 1(z 2-z 3)=0,因为z 1≠0,所以z 2-z 3=0,即z 2=z 3,B 正确;因为|z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,而z -2=z 3,所以|z -2|=|z 3|=|z 2|,所以|z 1z 2|=|z 1z 3|,C 正确;取z 1=1+i ,z 2=1-i ,显然满足z 1z 2=|z 1|2,但z 1≠z 2,D 错误.故选BC.10.(多选)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.下列结论正确的是( )答案 ACD⎝ ⎛⎭⎪⎫22,22位于第一象限,正确;对于D ,e n πi =cos n π+isin n π,当n 为奇数时,e n πi=-1,|e n πi |=1,当n 为偶数时,e n πi =1,|e n πi |=1,故e n πi 的模为1,正确.故选ACD.二、高考小题11.(2022·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .2+i B .2-i C .1-i D .1+i 答案 D解析 由题意可得,z =21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i.故选D. 12.(2022·新高考Ⅱ卷)复数2-i1-3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 A解析 2-i 1-3i=(2-i )(1+3i )10=5+5i 10=1+i2,所以该复数在复平面内对应的点为⎝ ⎛⎭⎪⎫12,12,该点在第一象限.故选A. 13.(2022·新高考Ⅰ卷)已知z =2-i ,则z (z -+i)=( ) A .6-2i B .4-2i C .6+2i D .4+2i 答案 C解析 z (z -+i)=(2-i)(2+i +i)=(2-i)(2+2i)=4+4i -2i -2i 2=6+2i.故选C. 14.(2022·浙江高考)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a =( ) A .-1 B .1 C .-3 D .3 答案 C解析 解法一:因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3.故选C. 解法二:因为(1+a i)i =3+i ,所以1+a i =3+ii=1-3i ,所以a =-3.故选C. 15.(2022·全国甲卷)已知(1-i)2z =3+2i ,则z =( ) A .-1-32i B .-1+32i C .-32+i D .-32-i 答案 B解析 由(1-i)2z =3+2i ,得z =3+2i (1-i )2=3+2i -2i=3i -22=-1+32i.故选B. 16.(2022·全国乙卷)设2(z +z -)+3(z -z -)=4+6i ,则z =( ) A .1-2i B .1+2i C .1+i D .1-i答案 C解析 设z =a +b i(a ,b ∈R ),则z -=a -b i,2(z +z -)+3(z -z -)=4a +6b i =4+6i ,所以a =1,b =1,所以z =1+i.17.(2022·全国Ⅰ卷)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C. 2 D .2 答案 D解析 z 2=(1+i)2=2i ,则z 2-2z =2i -2(1+i)=-2,故|z 2-2z |=|-2|=2.故选D. 18.(2022·全国Ⅲ卷)复数11-3i 的虚部是( )A .-310B .-110 C.110 D.310 答案 D解析 因为11-3i =1+3i (1-3i )(1+3i )=110+310i ,所以复数11-3i的虚部为310.故选D.19.(2022·天津高考)i 是虚数单位,复数9+2i2+i=________. 答案 4-i 解析9+2i 2+i =(9+2i )(2-i )(2+i )(2-i )=20-5i5=4-i. 20.(2022·全国Ⅱ卷)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.答案 23解析 解法一:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,∵|z 1|=|z 2|=2,∴a 2+b 2=4,c 2+d 2=4,∵z 1+z 2=a +b i +c +d i =3+i ,∴a +c =3,b +d =1,∴(a +c )2+(b +d )2=a 2+c 2+2ac +b 2+d 2+2bd =4,∴2ac +2bd =-4,∵z 1-z 2=a +b i -(c +d i)=a -c +(b -d )i ,∴|z 1-z 2|=(a -c )2+(b -d )2 = a 2+c 2-2ac +b 2+d 2-2bd =a 2+b 2+c 2+d 2-(2ac +2bd )=4+4-(-4)=2 3.解法二:∵|z 1|=|z 2|=2,可设z 1=2cos θ+2sin θ·i ,z 2=2cos α+2sin α·i ,∴z 1+z 2=2(cos θ+cos α)+2(sin θ+sin α)i =3+i ,∴⎩⎨⎧2(cos θ+cos α)=3,2(sin θ+sin α)=1.两式平方作和,得4(2+2cos θcos α+2sin θsin α)=4,化简得cos θcos α+sin θsin α=-12.∴|z 1-z 2|=|2(cos θ-cos α)+2(sin θ-sin α)·i| =4(cos θ-cos α)2+4(sin θ-sin α)2=8-8(cos θcos α+sin θsin α)=8+4=2 3. 三、模拟小题21.(2022·山西五市联考)已知复数z 满足2z(1+i )2=1-i ,其中i 为虚数单位,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 由题意得z =(1-i )(1+i )22=(1-i)i =1+i ,即z 在复平面内所对应的点为(1,1),在第一象限.故选A.22.(2022·福州三中高三质量检测二)已知复数z =(1+2i)·i 2022,则z -=( ) A .-2-i B .-2+I C .2-i D .2+i 答案 A解析 z =(1+2i)·i2022=(1+2i)i =-2+i ,所以z -=-2-i.故选A.23.(2022·山东青岛自主检测)若复数z 1,z 2在复平面内对应的点关于虚轴对称,且z 1=2-i ,则复数z 1z 2=( )A .-1B .1C .-35+45i D.35-45i 答案 C解析 依题意可得z 2=-2-i ,所以z 1z 2=2-i -2-i =(2-i )(-2+i )5=-35+45i.故选C. 24.(2022·广东茂名五校第三次联合考试)已知(a +b i)(1-i)=2+i(a ,b ∈R ),则ab =( )A .-34B .-32 C.34 D.32 答案 C解析 因为(a +b i)(1-i)=(a +b )+(b -a )i ,所以⎩⎨⎧a +b =2,b -a =1,解得a =12,b =32,从而ab =34.故选C.25.(多选)(2022·湖北高三月考)设z 1,z 2是复数,则( ) A.z 1-z 2=z -1-z -2 B .若z 1z 2∈R ,则z 1=z -2 C .若|z 1-z 2|=0,则z -1=z -2D .若z 21+z 22=0,则z 1=z 2=0答案 AC解析 设z 1=a +b i ,z 2=x +y i ,a ,b ,x ,y ∈R ,z 1-z 2=(a -x )+(b -y )i =(a -x )-(b -y )i =a -b i -(x -y i)=z -1-z -2,A 成立;|z 1-z 2|=|(a -x )+(b -y )i|=0,则(a -x )2+(b -y )2=0,所以a =x ,b =y ,从而z 1=z 2,所以z -1=z -2,C 成立;对于B ,取z 1=i ,z 2=2i ,满足z 1z 2∈R ,但结论不成立;对于D ,取z 1=i ,z 2=1,满足z 21+z 22=0,但结论不成立.故选AC.26.(多选)(2022·江苏淮安高三入学考试)已知复数z =(m 2-1)+(m -3)(m -1)i(m ∈R ),则下列说法正确的是( )A .若m =0,则共轭复数z -=1-3i B .若复数z =2,则m =3 C .若复数z 为纯虚数,则m =±111 / 11 D .若m =0,则4+2z +z 2=0答案 BD解析 对于A ,m =0时,z =-1+3i ,则z -=-1-3i ,故A 错误;对于B ,若复数z =2,则满足⎩⎨⎧ m 2-1=2,(m -3)(m -1)=0,解得m =3,故B 正确;对于C ,若复数z 为纯虚数,则满足⎩⎨⎧m 2-1=0,(m -3)(m -1)≠0,解得m =-1,故C 错误;对于D ,若m =0,则z =-1+3i ,4+2z +z 2=4+2(-1+3i)+(-1+3i)2=0,故D 正确.故选BD.。
新高考数学一轮复习考点知识归类讲义 第22讲 任意角和弧度制及任意角的三角函数
新高考数学一轮复习考点知识归类讲义第22讲任意角和弧度制及任意角的三角函数1.角的概念(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.分类:按旋转方向,角可以分成三类:正角、负角和零角.(2)象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.2.弧度制的相关概念(1)1弧度的角:长度等于半径长的圆弧所对的圆心角. (2)弧度制:①定义:以弧度作为单位来度量角的单位制.②记法:弧度单位用符号rad 表示,读作弧度.如图,在单位圆O 中,AB ︵的长等于1,∠AOB 就是1弧度的角. (3)角度制和弧度制的互化:180°=π rad ,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°.(4)扇形的弧长公式:l =α·r ,扇形的面积公式:S =12lr =12α·r 2.其中r 是半径,α(0<α<2π)为弧所对圆心角.3.三角函数的概念三角函数正弦余弦正切定义设α是一个任意角,α∈R ,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx 叫做α的正切,记作tan α➢考点1 角的概念与表示1.(2022·全国·高三专题练习)下列说法中正确的是()A.第一象限角都是锐角B.三角形的内角必是第一、二象限的C.不相等的角终边一定不相同D.不论是用角度制还是弧度制度量一个角,它们与扇形的半径的大小无关【答案】D【解析】解:对于A,第一象限的角不一定是锐角,所以A错误;对于B ,三角形内角的取值范围是(0,)π,所以三角形内角的终边也可以在y 轴的非负半轴上,所以B 错误;对于C ,不相等的角也可能终边相同,如2π与52π,所以C 错误;对于D ,根据角的定义知,角的大小与角的两边长度大小无关,所以D 正确. 故选:D .2.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是( ) A .245k π+,k Z ∈B .93604k π⋅+,k Z ∈ C .360315k ⋅-,k Z ∈D .54k ππ+,k Z ∈【答案】C【解析】首先角度制与弧度制不能混用,所以选项AB 错误; 又与94π的终边相同的角可以写成92()4k k Z ππ+∈, 所以C 正确. 故选:C .3.(2022·全国·高三专题练习)角α的终边属于第一象限,那么3α的终边不可能属于的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】∵角α的终边在第一象限, ∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限, 当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限, 综上,角α的终边不可能落在第四象限, 故选:D. [举一反三]1.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为( ) A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.2.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈,则α的终边在( ) A .第一、三象限B .第一、二象限 C .第二、四象限D .第三、四象限 【答案】A【解析】解:因为18045,k k Z α=⋅+∈,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈,其终边在第三象限; 当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈,其终边在第一象限. 综上,α的终边在第一、三象限. 故选:A.3.(多选)(2022·江苏·高三专题练习)下列与角23π的终边不相同的角是( )A .113πB .2kπ-23π(k ∈Z )C .2kπ+23π(k ∈Z )D .(2k +1)π+23π(k ∈Z )【答案】ABD 【解析】与角23π的终边相同的角为22()3k k Z ππ+∈,其余三个角的终边与角23π的终边不同. 故选:ABD.4.(多选)(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为( ) A .90︒B .360︒C .450︒D .2330︒ 【答案】AC【解析】因为角α与角45γ+︒的终边相同,故45360k γα,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈, 故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确, 令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误. 故选:AC.5.(多选)(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是( )A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD【解析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知, 选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意; 选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称. 故选:BD.6.(多选)(2022·全国·高三专题练习)如果2θ是第四象限角,那么θ可能是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【答案】BD【解析】解:由已知得2222k k ππθπ-<<,k Z ∈,所以4k k ππθπ-<<,k Z ∈,当k 为偶数时,θ在第四象限,当k 为奇数时,θ在第二象限,即θ在第二或第四象限. 故选:BD .➢考点2 弧度制及其应用(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. [典例]1.(2022·广东广东·一模)数学中处处存在着美,机械学家莱洛发现的莱洛三角形就给人以对称的美感.莱洛三角形的画法:先画等边三角形ABC ,再分别以点A 、B 、C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角(如图所示).若莱洛三角形的周长为2π,则其面积是______.【答案】223π-【解析】由条件可知,弧长23BC A AB C π===,等边三角形的边长2323AB BC AC ππ====,则以点A 、B 、C 为圆心,圆弧,,AB BC AC 所对的扇形面积为1222233ππ⨯⨯=,中间等边ABC 的面积12332S =⨯⨯=所以莱洛三角形的面积是23232233ππ⨯-=-. 故答案为:223π-2.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =. 由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长2222290060C r l rl ππ=+≥=, 当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =, 所以()1152BD BD cm π+=, 所以()3152BD cm π=, 故()10BD cm π=. 故答案为:10π [举一反三]1.(2022·湖北·房县第一中学模拟预测)已知圆台形的花盆的上、下底面的直径分别为8和6,该花盆的侧面展开图的扇环所对的圆心角为2π,则母线长为( ) A .4B .8C .10D .16【答案】A【解析】如图,AD 弧长为6π,BC 弧长为8π,因为圆心角为2π,6122OA ππ==,8162OB ππ==,则母线16124AB =-=. 故选:A.2.(2022·山东济南·二模)济南市洪家楼天主教堂于2006年5月被国务院列为全国重点文物保护单位.它是典型的哥特式建筑.哥特式建筑的特点之一就是窗门处使用尖拱造型,其结构是由两段不同圆心的圆弧组成的对称图形.如图2,AC 和BC 所在圆的圆心都在线段AB 上,若rad ACB θ∠=,AC b =,则AC 的长度为( )A .2sin 2b θθB .2cos 2bθθC .sin 2b θθD .2cos 2bθθ【答案】A【解析】过C 作CD AB ⊥,设圆弧AC 的圆心为O ,半径为R ,则AO CO R ==,在ACD △中,2ACD θ∠=,所以sin sin 22AD AC b θθ=⋅=,cos cos 22CD AC b θθ=⋅=,所以在直角三角形CDO 中,222CD DO CO +=,所以222cos sin 22b R b R θθ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,所以2sin2b R θ=,而cos2sin =2sin cos =sin 222sin2b CDCOD b COθθθθθ∠==, 所以COD θ∠=,所以2sin2b AC R θθθ==.故选:A.3.(2022·湖南·长郡中学高三阶段练习)2,母线长为2其侧面展开图扇形的圆心角为( ) A .4πB .34πC .2πD .π 【答案】C【解析】由题设,底面周长2l π=,而母线长为2 根据扇形周长公式知:圆心角2222ππθ=. 故选:C.4.(2022·广东·一模)为解决皮尺长度不够的问题,实验小组利用自行车来测量A ,B 两点之间的直线距离.如下图,先将自行车前轮置于点A ,前轮上与点A 接触的地方标记为点C ,然后推着自行车沿AB 直线前进(车身始终保持与地面垂直),直到前轮与点B接触.经观测,在前进过程中,前轮上的标记点C 与地面接触了10次,当前轮与点B 接触时,标记点C 在前轮的左上方(以下图为观察视角),且到地面的垂直高度为0.45m.已知前轮的半径为0.3m ,则A ,B 两点之间的距离约为( )(参考数值: 3.14π≈)A .20.10mB .19.94mC .19.63mD .19.47m 【答案】D【解析】解:由题意,前轮转动了1103⎛⎫+ ⎪⎝⎭圈, 所以A ,B 两点之间的距离约为11020.3 6.2 6.2 3.1419.47m 3ππ⎛⎫+⨯⨯=≈⨯≈ ⎪⎝⎭,故选:D.5.(2022·浙江绍兴·模拟预测)我国古代数学著作《九章算术》方田篇记载“宛田面积术曰:以径乘周,四而一”(注:宛田,扇形形状的田地:径,扇形所在圆的直径;周,扇形的弧长),即古人计算扇形面积的公式为:扇形面4⨯=径周.现有一宛田的面积为1,周为2,则径是__________.【答案】2【解析】根据题意,因为扇形面4⨯=径周,且宛田的面积为1,周为2,所以14径2⨯=,解得径是:2. 故答案为:2.6.(2022·湖南·雅礼中学二模)坐标平面上有一环状区域由圆223x y +=的外部与圆224x y +=的内部交集而成.某同学欲用一支长度为1的笔直扫描棒来扫描此环状区域的x轴上方的某区域R .他设计扫描棒黑、白两端分别在半圆()22130C x y y +=≥:、()22240C x y y +=≥:上移动.开始时扫描棒黑端在点()3,0A,白端在2C 的点B . 接着黑、白两端各沿着1C 、2C 逆时针移动,直至白端碰到2C 的点()2,0B '-便停止扫描,则B 坐标___________;扫描棒扫过的区域R 的面积为___________.【答案】 ()3,1B512π 【解析】由题意)3,0A ,1AB =,设(),B x y ,则点B 在()22240C x y y +=≥:上.则()()22224031x y y x y ⎧+=≥-+=,解得3,1x y == 所以()3,1B当白端B 在2C 上移动,碰到2C 的点()2,0B '-时,黑端在点A 在1C 上移动,设移动到点A '位置.则扫描棒扫过的区域R 为如图所示的阴影部分.设()00,A x y '则()()220022003021x y y A B x y ⎧+=≥⎪⎨=++=''⎪⎩,解得0033,22x y =-=,即332A ⎛'- ⎝⎭ 连接,A O OB ',在OA B ''△中,1,3,2A B OA OB ''''==满足222A B OA OB ''''+=,则2OA B π''∠=,所以11313222OA B SA B OA '''''=⨯=⨯⨯=由()()3,0,3,1AB,则OAB 为直角三角形,则11331222OABSOA AB =⨯⨯=⨯⨯=则30BOA ∠=︒,扇形OAC 与扇形OA C ''的面积为()23033604ππ⨯=区域R 的面积为OA B OABBB CC OA C OAC S SS SS ''''''--++-扇环扇形扇形()2215033523360422412ππππ︒⎡⎤=⨯-+-+-=⎢⎥⎣⎦︒故答案为:()3,1B ;512π➢考点3 三角函数的定义[名师点睛]1.利用三角函数的定义求三角函数值时,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.2.已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.1.(2022·山东潍坊·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,点()1,2A x ,()2,4B x 在角α的终边上,且121x x -=,则tan α=( ) A .2B .12C .2-D .12- 【答案】C【解析】由已知得,因为点()1,2A x ,()2,4B x 在角α的终边上,所以直线AB 的斜率为12242k x x -==--,所以,明显可见,α在第二象限,tan 2α.故选:C2.(2022·湖南·长沙一中高三阶段练习)若角α的终边过点P (8m ,3-),且3tan 4α=,则m 的值为( )A .12-B .12C .【答案】A 【解析】∵33tan 84m α-==,∴12m =-,故选:A.3.(2022·山东枣庄·高三期末)θ为第三或第四象限角的充要条件是( ). A .sin 0<θB .cos 0<θC .sin tan 0θθ<D .cos tan 0θθ< 【答案】D【解析】对于A :第三或第四象限角,以及终边在y 轴负半轴,故A 错误;对于B :第二或第三象限角,以及终边在x 轴负半轴,故B 错误; 对于C :第二或第三象限角,故C 错误; 对于D :第三或第四象限角,故D 正确. 故选:D [举一反三]1.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=( )A .2425-B .725-C .725D .2425【答案】A【解析】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-. 故选:A2.(2022·全国·高三专题练习)已知α是第四象限角,(3,)P y 是角α终边上的一个点,若3cos 5α=,则y =( ) A .4B .-4C .4±D .不确定 【答案】B【解析】依题意α是第四象限角,所以0y <,3cos 540y y α⎧==⎪⇒=-⎨⎪<⎩. 故选:B3.(2022·全国·高三专题练习)已知第二象限角θ的终边上有两点()1,A a -,(),2B b ,且cos 3sin 0θθ+=,则3a b -=( )A .7-B .5-C .5D .7 【答案】D【解析】由cos 3sin 0θθ+=得:sin 1tan cos 3θθθ==-, 由三角函数定义知:21tan 3a bθ=-==-,解得:13a =,6b =-,3167a b -=+=∴. 故选:D.4.(2022·江苏·高三专题练习)点P 从(1,0)点出发,沿单位圆221x y +=逆时针方向运动π3弧长到达Q 点,则Q 点坐标为( )A .12⎛ ⎝⎭B .12⎛⎫- ⎪ ⎪⎝⎭C .1,2⎛- ⎝⎭D .21⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题意可知1r =,根据三角函数的定义可知1cos32x r π==,sin 3y r π==所以点Q 的坐标是12⎛ ⎝⎭.故选:A5.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=( )A ..【答案】A【解析】因为α是第二象限角, 所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=. 故选:A.6.(2022·浙江·高三专题练习)若02πα-<<,则()sin ,cos Q αα所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵02πα-<<,∴cos 0,sin 0αα><,∴点()sin ,cos Q αα在第二象限. 故选:B .7.(2022·全国·高三专题练习)已知角α第二象限角,且coscos22αα=-,则角2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【答案】C【解析】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈, 所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角; 当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.; 综上所述:2α为第一象限角或第三象限角,因为cos cos 22αα=-,所以cos 02α≤,所以2α为第三象限角.故选:C .8.(2022·山东·德州市教育科学研究院二模)已知角θ的终边过点(3,)A y ,且()4sin 5πθ+=,则tan θ=____________. 【答案】43-【解析】角θ的终边过点(3,)A ysin θ∴=cos θ=()4sin 5πθ+=4sin 5θ∴-= 即4sin 05θ=-<∴点A 在第四象限, 22453yy ∴=-+ 解得:4y =(舍去)或4y =- 4tan 3y x θ∴==-. 故答案为:43-.9.(2022·福建·莆田二中模拟预测)在平面直角坐标系xOy 中,圆O 与x 轴的正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分∠AOC ,B (35,45),则点C 的横坐标为___________. 【答案】725-【解析】由题意可知圆O 2234155⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,设AOB BOC α∠=∠= ,由题意可知43sin ,cos 55αα== ,∴点C 的横坐标为271cos 212sin 25αα⨯=-=- ; 故答案为:725-. 10.(2022·全国·高三专题练习)设点P 是以原点为圆心的单位圆上的一个动点,它从初始位置0(0,1)P 出发,沿单位圆顺时针方向旋转角(0)2πθθ<<后到达点1P ,然后继续沿单位圆顺时针方向旋转角3π到达点2P ,若点2P 的纵坐标是12-,则点1P 的坐标是___________. 【答案】31()2【解析】解:初始位置0(0,1)P 在2π的终边上,1P 所在射线对应的角为2θπ-, 2P 所在射线对应的角为6πθ-,由题意可知,1sin()62πθ-=-, 又(,)636πππθ-∈-, 则66ππθ-=-,解得3πθ=,1P 所在的射线对应的角为26ππθ-=,由任意角的三角函数的定义可知,点1P 的坐标是(cos ,sin )66ππ,即1)2.故答案为:1)2。
第22讲 含有绝对值函数的取值范围问题 作业讲解
5. f (x) | x2 ax 3| 只有两个单调区间,a的取值范围是
解:由图像可知,y x2 ax 3的图像与x轴最多一个交点, 所以 =a2 12 0,所以a的取值范围为[ 2 3, 2 3]
6. f (x) x2 a | x | 3只有两个单调区间,a的取值范围是
6. f (x) x2 a | x | 3只有两个单调区间,a的取值范围是
所以f (1) |1 m | 2,f (2) | 2 m | 2,解得1 m 3.
所以极值点 m [1, 2],所以f ( m)= m2 2,所以1 m 2 2.
2
24
8.已知f (x) x2 1, g(x) a | x 1| . (1)关于x的方程 | f (x) | g(x)有两个不同解,求a的值. (2)若对任意x R, f (x) g(x)恒成立,求a的范围.
所 以 f ( x )min f (1010) 2(1 2 … …+1009)+1010 =1010
3.已知函数f (x) | x 1| | 2x a |的最小值为1,则a的值是
3.已知函数f (x) | x 1| | 2x a |的最小值为1,则a的值是
解:f (x) | x 1| | 2x a | = | x 1| | x a | | x a | | (x 1) (x a) | | x a | |1 a |
2. f (x) | x 1| | x 2 | | x 2020 |的最小值是
Hale Waihona Puke 2. f (x) | x 1| | x 2 | | x 2020 |的最小值是
解:对于函数f (x) | x 1| | x 2 | | x 2020 |, | x 1| | x 2020 | 在x [1, 2000]时最小, | x 2 | | x 2019 | 在x [2, 2019]时最小,…… 所以x [1010,1011]时最小,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第22讲:数列通项求法
一、累加法
1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,
则 21321(1)
(2)
()n n a a f a a f a a f n +-=-=-=
两边分别相加得 111()n
n k a a f n +=-=∑
例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例2 各项均是正数的数列{a n }的前n 项和S n 满足S 1>1且*6(1)(2),n n n S a a n N =++∈,求数列{a n }的通项公式.
二、累乘法
1.适用于: 1()n n a f n a += ----------这是广义的等比数列
累乘法是最基本的二个方法之二。
2.若1()n n a f n a +=,则31212(1)(2)()n n
a a a f f f n a a a +=== ,,, 两边分别相乘得,111
1()n n k a a f k a +==⋅∏ 例3.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它的通项公式是
n a =________.
三、待定系数法 适用于1()n n a qa f n +=+
基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
1.形如0(,1≠+=+c d ca a n n ,其中a a =1)型
(1)若c=1时,数列{n a }为等差数列;
(2)若d=0时,数列{n a }为等比数列;
(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.
待定系数法:设)(1λλ+=++n n a c a ,
得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得
d c =-λ)1(,所以)0(,1≠-=c c d λ所以有:)1
(11-+=-+-c d a c c d a n n 因此数列⎭
⎬⎫⎩⎨⎧
-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列, 所以 11)1(1-⋅-+=-+n n c c d a c d a 即:1
)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系d ca a n n +=+1化为)1(11-+=-+
+c d a c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1
(1111-++-=-+c d a c c d a n n 逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式. )(121a a c a a n n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.
例4已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
例5已知数列{}n a 的前n 项和为S n 满足:21(*)n n S a n n N +=+∈,求数列{}n a 的通项公式。
3.形如b kn pa a n n ++=+1 (其中k,b 是常数,且0≠k )
方法1:逐项相减法(阶差法)
方法2:待定系数法
通过凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-;
解题基本步骤:
1、确定f(n) =kn+b
2、设等比数列)(y xn a b n n ++=,公比为p
3、列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b
4、比较系数求x,y
5、解得数列)(y xn a n ++的通项公式
6、解得数列}{n a 的通项公式
例6. 在数列{n a }中,362,2
311-=-=
-n a a a n n ,求通项n a .(待定系数法)
例7 已知数列{b n }满足8,412361=⋅=-+b b b n n n ,求数列{b n }的通项公式。
例8.已知数列{}n a 满足1,3
42111=⋅+=-+a a a n n n ,求数列{}n a 的通项公式。
例9.数列{a n }的前n 项和为S n 满足14122333
n n n S a +=-⨯+(n ∈N*),求数列{}n a 的通项公式。
解:1142n n n a a ++=+两式相减整理得,1112144++++=n n n n n a a 可化为
42n n n a ⇒=-
5.形如21 n n n a pa qa ++=+时将n a 作为()f n 求解
分析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比较系数可求得λ,数列{}1n n a a λ++为等比数列。
例10 已知数列{}n a 满足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式。
例11 已知数列{}n a 满足2112562,1,2n n n a a a a a ++=-+==,求数列{}n a 的通项公式。
例12.设p 、q 为实数,α、β是方程x 2-px+q=0的两个实根。
数列{x n }满足:
21212,,(3,4,)n n n x p x p q x px qx n --==-=-=
{}(1), (2)n p q x αβαβ+==证明:;求数列的通项公式;{}1(3) 1 4
n n p q x n S ==若,,求的前项和
五、对数变换法 适用于1r n n a pa += (其中p,r 为常数)型 p>0,0n a >
例13. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{
}n a 的通项公式.
六、倒数变换法 适用于分式关系的递推公式,分子只有一项
例14. 已知数列{}n a 满足112,12
n n n a a a a +=
=+,求数列{}n a 的通项公式。
七、换元法 适用于含根式的递推关系
例15 已知数列{}n a 满足111(14116n n a a a +=
++=,,求数列{}n a 的通项公式。
八、数学归纳法 通过首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证明。
例16 已知数列{}n a 满足11228(1)8(21)(23)9
n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。
课后练习答案
一.填空选择题(每题10分)
1.已知数列}{n a 的首项为1,且*)(21N n n a a n n ∈+=+那么数列}{n a 的通项公式为 .
2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,那么此数列的通项公式为 . 3.已知1,111->-+=+a n na a n n ,那么数列}{n a 的通项公式为 . 4.已知数列}{n a 中,,2
121,211+==+n n a a a 那么数列}{n a 的通项公式为 。
5.数列n a 中,若2,821==a a ,且满足03412=+-++n n n a a a ,求n a . 6. 数列{}n a 中,11=a ,12-=n n a a (n ≥2),那么数列}{n a 的通项公式为 。
7.已知数列}{n a 满足)(133
,0*11N n a a a a n n n ∈+-==+,则20a =( )
A .0
B .3-
C .3
D .
23 8. 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.
9.设0a 为常数,且)(23
11N n a a n n n ∈-=--.证明对任意n ≥1,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-;
10.已知数列{}n a 中,11=a ;数列{}n b 中,01=b 。
当2≥n 时,)2(3111--+=n n n b a a ,)2(3
111--+=n n n b a b ,求n a ,n b .
11.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,… (Ⅰ)求a 1,a 2;
(Ⅱ){a n }的通项公式
12.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1
*≥∈--(,)+- (1)求数列{a n }的通项公式;
(2)证明:对于一切正整数n ,不等式a 1∙a 2∙……a n <2∙n !。