2013年全国各地中考数学考点分类汇编--分式与分式方程
中考数学黄金知识点系列专题分式及分式方程
专题08 分式及分式方程聚焦考点☆温习理解 一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质 (1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bc adc d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;c b a c b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
名师点睛☆典例分类考点典例一、分式的值【例1】(2016江苏苏州第12题)当x= 时,分式x-22x+5的值为0.【答案】2. 【解析】试题分析:∵x-22x+5的值为0,∴x-2=0且2x+5≠0,解得x=2. 考点:分式.【点睛】使分式的值为零必须满足分子等于0分母不等于零这两个条件. 【举一反三】1.(2016四川甘孜州第2题)使分式11x-有意义的x的取值范围是()A.x≠1 B.x≠﹣1 C.x<1 D.x>1 【答案】A.考点:分式有意义的条件.2.若分式211xx-+的值为0,则x=【答案】1 【解析】试题分析:根据题意可知这是分式方程,211xx-+=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解. 答案为1.考点:分式方程的解法 考点典例二、分式的化简【例2】(2016黑龙江绥化第9题)化简2(1)1a a a -+-的结果是( ) A .11a - B .11a -- C .211a a -- D .211a a --- 【答案】A . 【解析】试题分析:原式=22(1)1a a a ---=11a -,故选A .考点:分式的加减法.【点睛】观察所给式子,能够发现是异分母的分式减法。
分式方程篇(解析版)--中考数学必考考点总结+题型专训
知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。
2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。
3.解分式方程。
具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。
把分式方程化成整式方程。
②解整式方程。
③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。
若公分母不为0,则未知数的值即是原分式方程的解。
若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。
1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
分式与分式方程总结
分式与分式方程总结分式(即有理式)是指由整式构成的比。
它是整式的除法运算,可以用于表示多种数学问题和实际生活中的实际情况。
一、分式分式的一般形式为$$\frac{p(x)}{q(x)}$$,其中$p(x)$和$q(x)$都是整式,且$q(x)\neq 0$。
分子$p(x)$表示分式的被除式,分母$q(x)$表示分式的除式。
可以将分式看作是两个整式的比。
例如,$\frac{2x^2-5x+3}{x-2}$就是一个分式,其中分子为$2x^2-5x+3$,分母为$x-2$。
分式可以进行各种运算,如加法、减法、乘法、除法等。
但需要注意的是,在进行运算时需要满足一定的条件,比如分母不能为0。
二、分式方程分式方程是指带有分式的方程。
其一般形式为$$\frac{p(x)}{q(x)}=r(x)$$,其中$p(x)$、$q(x)$和$r(x)$都是整式,且$q(x)\neq 0$。
分式方程中含有未知数$x$,需要通过解方程求出$x$的值。
分式方程的解即是满足等式的$x$的值。
例如,$\frac{2x+1}{3}=\frac{x-2}{4}$就是一个分式方程,需要找到满足等式的$x$的值。
解分式方程的方式与解一元一次方程类似,可以根据方程的性质进行变形、合并同类项等操作,使方程变为更简单的形式,最终得到$x$的值。
三、分式与分式方程的应用分式及分式方程在数学问题和实际生活中的应用非常广泛。
在数学中,分式可以用于表示多种比例关系,如物体的扩大和缩小、速度的计算等。
分式方程则常用于求解实际问题,如比例问题、图形问题等。
在实际生活中,分式及分式方程也有很多应用。
比如在金融领域,分式方程可以用于计算利率、折扣、股票交易等。
在工程领域,分式方程可以用于计算物体的测量、建模等。
总之,分式与分式方程是数学中重要的概念,具有广泛的应用。
理解和掌握分式及分式方程的知识,对于解决数学问题和应用数学知识于实际生活中都具有重要的意义。
分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)
专题07分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解分式方程----------------------------------------------------------------------------------------------------------------------------1二、考点02分式方程的解-----------------------------------------------------------------------------------------------------------------------11三、考点03分式方程的应用-------------------------------------------------------------------------------------------------------------------16考点01解分式方程一、考点01解分式方程1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川泸州·中考真题)分式方程322x x-=--的解是()A .73x =-B .=1x -C .53x =D .3x =1362x -+=-,39x -=-,3x =,经检验3x =是该方程的解,故选:D .3.(2024·四川德阳·中考真题)分式方程153x x =+的解是()A .3B .2C .32D .344.(2023·辽宁大连·中考真题)解方程311x x x+=--去分母,两边同乘(1)x -后的式子为()A .133(1)x x +=-B .13(1)3x x +-=-C .133x x -+=-D .13(1)3x x+-=【答案】B【分析】本题考查了解分式方程时去分母,找到分式方程的公分母是解题的关键.根据分式方程的解法,两侧同乘(1)x -化简分式方程即可.【详解】解:分式方程的两侧同乘(1)x -得:13(1)3x x +-=-.故选:B .5.(2023·海南·中考真题)分式方程115x =-的解是()A .6x =B .6x =-C .5x =D .5x =-【答案】A【分析】先去分母将分式方程化为整式方程,解方程得到x 的值,再检验即可得到答案.【详解】解:去分母得:15x =-,解得:6x =,检验,当6x =时,510x -=≠,∴原分式方程的解是6x =,故选:A .【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,注意要检验.6.(2023·黑龙江哈尔滨·中考真题)方程231x x =+的解为()A .1x =B .=1x -C .2x =D .2x =-7.(2023·湖南·中考真题)将关于x 的分式方程21x x =-去分母可得()A .332x x -=B .312x x -=C .31x x -=D .33x x-=8.(2023·甘肃兰州·中考真题)方程213x =+的解是()A .1x =B .=1x -C .5x =D .5x =-【答案】B【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得解.【详解】解:去分母得:23x =+,解得=1x -,经检验=1x -是分式方程的解.故选:B .【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.9.(2023·上海·中考真题)在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=10.(2024·浙江·中考真题)若11x =-,则x =【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:21x =-,移项合并得:3x -=-,解得:3x =,经检验,3x =是分式方程的解,故答案为:311.(2024·北京·中考真题)方程11023x x+=的解为.12.(2024·四川宜宾·中考真题)分式方程301x x +-=的解为.13.(2023·江苏·中考真题)方程1121x -=+的解是.故答案为:2x =-【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法.14.(2023·北京·中考真题)方程31512x x=+的解为.【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.15.(2023·江苏苏州·中考真题)分式方程123x x +=的解为x =.【答案】3-【分析】方程两边同时乘以3x ,化为整式方程,解方程验根即可求解.【详解】解:方程两边同时乘以3x ,()312x x +=解得:3x =-,经检验,3x =-是原方程的解,故答案为:3-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.16.(2023·重庆·中考真题)若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是.17.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y的值是2,则输入x的值是.18.(2022·四川成都·中考真题)分式方程144x x x-+=的解是.19.(2024·福建·中考真题)解方程:122x x +=+-.20.(2024·陕西·中考真题)解方程:2111x x +=--.【答案】3x =-【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.21.(2024·广东广州·中考真题)解方程:x x=.2522.(2023·西藏·中考真题)解分式方程:1-=.11x x23.(2023·山西·中考真题)解方程:1122x x +=.24.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【点睛】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.25.(2022·江苏苏州·中考真题)解方程:311x x x+=.二、考点02分式方程的解26.(2024·四川遂宁·中考真题)分式方程2111m x x =---的解为正数,则m 的取值范围()A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-27.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程01m x x -=+的解是负数,那么实数m 的取值范围是()A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠-【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的28.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程233x x -=--无解,则k 的值为()A .2k =或1k =-B .2k =-C .2k =或1k =D .1k =-29.(2023·山东淄博·中考真题)已知1x =是方程322x x -=--的解,那么实数m 的值为()A .2-B .2C .4-D .430.(2023·黑龙江·中考真题)已知关于x 的分式方程122x x +=--的解是非负数,则m 的取值范围是()A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-31.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-1332.(2024·黑龙江牡丹江·中考真题)若分式方程311x mx x x =-的解为正整数,则整数m 的值为.33.(2024·重庆·中考真题)若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是.34.(2024·四川达州·中考真题)若关于x 的方程122x x --=无解,则k 的值为.35.(2023·四川巴中·中考真题)关于x 的分式方程322x x ++=有增根,则m =.三、考点03分式方程的应用36.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A .200B .300C .400D .50037.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30B.90,120C.60,90D.90,6038.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件.可列方程为()A.120120301.2x x-=B.120120301.2x x-=C.120120301.260x x-=D.120120301.260x x-=39.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.240240102x x-=+B.240240102x x-=-C.240240102x x-=D.240240102x x-=40.(2023·山东青岛·中考真题)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x满足的分式方程为.41.(2023·内蒙古呼和浩特·中考真题)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h,则江水的流速为km/h.42.(2023·湖北武汉·中考真题)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.43.(2022·江西·中考真题)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.44.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.答:D型车的平均速度为100km/h.45.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B 型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?46.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习47.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?48.(2023·山东济南·中考真题)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?49.(2023·辽宁沈阳·中考真题)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工8个这种零件.50.(2023·宁夏·中考真题)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:520175301.6x x=+,解得5x=,经检验5x=是原方程的解.乙:5201751.630x x=⨯-,解得65x=,经检验65x=是原方程的解.则甲所列方程中的x表示_______,乙所列方程中的x表示_______;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?51.(2023·山东·中考真题)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.52.(2023·贵州·中考真题)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.53.(2023·广东·中考真题)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.54.(2023·重庆·中考真题)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?。
中考数学知识点梳理第7讲分式方程
中考数学知识点梳理第7讲分式方程分式方程是指方程中含有分式表达式的方程。
分式方程在中考中占有一定的比重,是考查学生对分式的理解和运用的重要途径。
下面将梳理中考数学中与分式方程相关的知识点。
一、分式的定义和性质分式是指整数与整数之间用斜线分隔的写法,如a/b。
其中,a称为分子,b称为分母,a称为真分数,当a<b时。
分式的性质:1.当分子为0时,分式的值为0。
2.当分母为1时,分式的值等于分子。
3.分子和分母同时乘以一个非零数,分式的值不变。
4.分子和分母同时除以一个非零数,分式的值不变。
二、分式方程的解法1.消去分母法消去分母法是分式方程的基本解法。
其基本思路是通过两边同时乘以分母的公倍数,去除分母并化简方程。
2.交叉相乘法交叉相乘法适用于分式方程中含有两个分式的情况。
其基本思路是将两个分式相乘并等于0,然后将原分式方程化为两个整式方程,再求解。
3.增加分母法增加分母法适用于分式方程中含有分式的情况。
其基本思路是通过增加分母使得方程化为整式方程,再求解。
三、分式方程的典型题型1.分式方程的基本题型(1)形如a/b+c/d=e/f的方程,其中a、b、c、d、e、f都是已知的实数。
(2)形如(a/b)/(c/d)=(e/f)/(g/h)的方程,其中a、b、c、d、e、f、g、h都是已知的实数。
2.均分问题均分问题是指把一个数量等分成若干份的问题。
通常可以建立如下的分式方程:若等分成n份,则每份的数量为总数量除以n,即总数量/n。
3.速度问题速度问题是指涉及速度、时间和路程的问题。
通常可以建立如下的分式方程:速度=路程/时间。
四、分式方程的实际应用1.定理的运用在实际应用中,可以通过定理的运用将问题转化为分式方程,并求解。
2.误差的计算在实际测量中,经常需要进行误差的计算。
可以通过分式方程的运算将实际测量值与真实值进行对比。
3.比例的计算在实际应用中,经常涉及到比例的计算。
可以通过分式方程进行比例的计算。
分式及分式方程知识点总结
分式及分式方程知识点总结分式(Fraction)是由两个整数构成的比值,其中一个是分子(Numerator),另一个是分母(Denominator)。
分式可以表示为 a/b,其中 a 是分子,b 是分母。
分式可以是一个整数、一个小数、或者是两个整数的比值。
分式可以用于表示实际问题中的比例、率、百分比等。
在数学中,分式经常被用于代替除法运算,因为分式的形式更加简洁。
在处理分式时,有几个关键概念和知识点需要了解。
一、分式的简化与等价分式2.等价分式:如果两个分式的值相等,那么它们是等价的。
可以通过将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,化简两个分式,然后判断它们的值是否相等,确定它们是否等价。
二、分式的加减乘除2.分式的乘除:两个分式的乘积等于它们的分子乘积作为新分子,分母乘积作为新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数作为新分子,第一个分式的分母乘以第二个分式的分子作为新分母。
三、分式方程分式方程(Fractional Equation)是包含一个或多个分式的方程。
解分式方程的关键是找到合适的方法将方程转化为整式方程。
1.方法一:通分2.方法二:消去如果分式方程中有一个分式,可以通过消去(Cancellation)或者消去因子(Cancellation Factor)的方式将分母消去,得到一个整式方程。
3.方法三:代入如果分式方程比较复杂,无法通过通分或者消去的方法解得,可以通过代入(Substitution)的方法,将一个变量用另一个变量的表达式代入,然后去掉分式,得到一个整式方程进行求解。
需要注意的是,在解分式方程时,需要验证得到的解是否满足原方程,因为有时候方程中的一些值可能导致分母为零,从而使分式无解。
四、常见的分式及分式方程1.比例和比例方程:比例是两个分式的等价形式,比例方程是一个或多个比例的方程。
2.百分比和百分比方程:百分比是分数的一种特殊形式,百分比方程是包含百分比的方程。
2013-2014中考数学复习 第九讲 分式方程(含详细参考答案)
2013-2014学年度数学中考二轮复习专题卷-分式方程学校:___________姓名:___________班级:___________考号:___________一、选择题1.方程2x 40x 2-=-的解为A .2-B .2C .2±D .12- 2.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=- C .()()2x 231 x -+=- D .()()2x 23x 1-+=-3.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 4.甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度。
为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确..的是【 】 A .110100x 2x =+ B .110100x x 2=+ C .110100x 2x =- D .110100x x 2=- 5.分式方程12x x 3=+的解是【 】A .x =﹣2B .x =1C .x =2D .x =3 6.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为A .2300230033x 1.3x += B .2300230033x x 1.3x +=+ C .2300460033x x 1.3x +=+ D .4600230033x x 1.3x+=+7.分式方程210x 2x-=-的根是【 】A .x 1=B .x 1=-C .x 2=D .x 2=-8.分式方程12x x 1=+的解为 A .x =3 B .x =2 C .x =1 D .x =﹣1 9.关于x 的分式方程7m3x 1x 1+=--有增根,则增根为【 】 A .x =1 B .x =-1 C .x =3 D .x =-3 10.分式方程53x 2x=-的解是【 】 A .x=3 B .x=﹣3 C .3x 4= D .3x 4=- 11.解分式方程x 213x 2x-=++时,去分母后可得到 A .()()x 2x 23x 1+-+= B .()x 2x 22x +-=+ C .()()()()x 2x 23x 2x 3x ++=++- D .()x 23x 3x -+=+ 12.关于x 的分式方程m1x 1=-+的解是负数,则m 的取值范围是 A .m >﹣1 B .m >﹣1且m ≠0 C .m ≥﹣1 D .m ≥﹣1且m ≠0 13.已知关于x 的方程的解为x =1,则a 等于( ) A . 0.5 B .2 C .﹣2D . ﹣0.514.方程23x 1x=-的解是 A .3 B .2 C .1 D .0 15.方程130x 2x-=-的解为 A .x =2 B .x =-2C .x =3D .x =-316.方程111-=-x x x ( ) A 、解为x=1 B 、无解C 、解为任何实数D 、解为x ≠1的任何实数17.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm .依题意,下面所列方程正确的是 A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 18.周末,几名同学包租一辆面包车前往“黄岗山”游玩,面包车的租价为180元,出发时,又增加了2名学生,结果每个同学比原来少分担3元车费,设原来参加游玩的同学为x 人,则可得方程( )A 、180x -1802x +=3 B 、1802x +-180x =3 C 、180x -1802x -=3 D 、1802x --180x =319.方程1712112-=-++x x x 的根是( ) A.x =1 B.x =-1 C.x =83D.x =220.已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为 A .内含B .内切C .相交D .外切二、填空题21.方程15x 12x 1=-+的解为 . 22.分式方程120x-=的解不 。
2013届中考数学试题分类汇编:分式与分式方程(含解析)
(2013•郴州)函数y=中自变量x的取值范围是()(2013•郴州)化简的结果为()﹣2013•郴州)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.)•(2013•衡阳)计算:= a﹣1 .(2013•湘西州)吉首城区某中学组织学生到距学校20km的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.,﹣=(2013•益阳)化简:= 1 .(2013,永州)已知0a b a b +=,则abab的值为(2013•株洲)计算:= 2 .=(2013•巴中)先化简,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.×++=(2013,成都)要使分式1-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1(2013,成都)化简112)(22-+-÷-a a a a a a(2013•达州)如果实数x 满足2230x x +-=,那么代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值为_ _. 答案:5解析:由知,得22x x +=3,原式=2222(1)221x x x x x x ++⨯+=+++=5。
(2013•德州)先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中12-=a . (2013•德州)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3? (2013•广安)解方程:﹣1=,则方程的解是 x=﹣ .,(2013•广安)先化简,再求值:(﹣)÷,其中x=4.﹣)÷×,﹣. (2013•乐山)甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米。
2013年中考数学考前热点拨《分式方程及其应用 》
2x 3 6.解分式方程: - =2. x+ 2 x- 2
解:方程两边都乘(x+2)(x-2),得 2x(x-2)-3(x+2)=2(x2-4), 2 解得x= . 7 2 检验:当x= 时,(x+2)(x-2)≠0. 7 2 ∴x= 是原方程的解. 7
考点3
分式方程的应用
列分式 步骤 审、设、列、解、验、答 方程 关键 找出等量关系 解应用 在解所列分式方程时,必 易错点 题 须验根
考点2
分式方程的解法
解分式方程 ①去分母化成整式方程;②解整式方程求出 增根 的步骤 未知数的值;③检验根是否是______ 去分母时两边乘最简公分母,会出现使 原因 分式方程 分式分母为零的根 的增根 将解整式方程所得根代入 验根 最简公分母 或原方程检验 _____________
3.要把分式方程 可同时乘( D ) A.2x+4 C.x+2
[解析] (1)求的是工效, 工作时间较明显, 一定是根据工作总 量来列等量关系,本题的关键描述语是:甲、乙两队合作,则 12 天可以完成.等量关系为:甲 12 天的工作量+乙 12 天的工 作量=1;(2)按甲独做,乙独做,甲、乙合作所需工程费比较.
解: (1)设甲队单独完成这项工程需要 x 天, 则乙队单独完成此项工程 需要 2x 天. 12 12 由题意得 + =1,解得 x=18. x 2x 经检验,x=18 是原方程的解且符合题意.2x=36. 答:甲队单独完成这项工程需要 18 天,乙队单独完成此项工程需要 36 天.
解:(1)李明同学的解答过程中第③步不正确,应为:甲每分 3000 3000 钟打字 x = =60(个),乙每分钟打字60-12=48(个). 50 答:甲每分钟打字为60个,乙每分钟打字为48个. (2)设乙每分钟打字为x个,则甲每分钟打字为(x+12)个.根 3000 2400 据题意得 = x ,解得x=48.经检验x=48是原方程的 x+12 解.且符号实际意义甲每分钟打字x+12=48+12=60(个). 答:甲每分钟打字为60个,乙每分钟打字为48个.
列方程解应用题(分式方程)
2013中考全国100份试卷分类汇编列方程解应用题(分式方程)1、(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( ) A . B .C .D .2、(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )B3、(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x 天.则可列方程为( ) A .+=1.+8(+)=1 ﹣爸爸立即去追小朱,且在距离学校60米的地方追上了他。
已知爸爸比小朱的速度快100米/分,求小朱的速度。
若设小朱速度是x 米/分,则根据题意所列方程正确的是( ) A.1014401001440=--x x B. 1010014401440++=x xC.1010014401440+-=x x D. 1014401001440=-+xx 5、(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为 6、(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产 台机器.7、(2013•湘西州)吉首城区某中学组织学生到距学校20km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.8、(2013安顺)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?9、列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务。
2013全国中考数学试题分类汇编 一次函数
(2013•衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是 108 元; (2)第二档的用电量范围是 180<x ≤450 ; (3)“基本电价”是 0.6 元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?解得:1. 一次函数{ EMBED Equation.DSMT4 |0)y kx b k =+≠(的图象如图所示,当时,的取值范围是()A. B. C. D.(2013,永州).已知一次函数的图象经过A(),B()两点,则0(填“”或“”)2013•株洲)已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.P=.故答案为:(2013•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?)依题意,有.b(2013•内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y (万元)与修建天数x (天)之间在30≤x≤120,具有一次函数的关系,(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费. ABCD解得:(2013•内江)如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为(884736,0).y=xNM=2委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.k<2(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.考点:一次函数图象与系数的关系.专题:探究型.分析:先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.解答:解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.(2013•大连)如图,一次函数y = - x + 4的图象与x轴、y轴分别相交于点A、B。
2013届全国中考数学3年中考2年模拟之专题突破:2.2分式方程pdf版
能力要求 会利用分式方程的定义判断分式方 能利用最简公分母将分式方程化为
用去分母法或换元法解简单的分式方程
整式方程, 会利用换元思想解分式方 程. 会利用检验思想判断分式是否存在 增根. 会利用分式方程解决实际问题, 并且 注意求出的方程的解是否存在实际 意义.
犪- 1 比原计划每天的运煤量多 0 结果提前 2 天完成了任 9 . 4 万吨, 已知关于 狓 的分式方程 =1 有增 .( 2 0 1 2· 黑龙江龙东 ) 狓+ 2 务, 问实际每天运煤多少万吨?若设实际每天运煤狓 万吨, 则 则犪= . 根, 依据题意列出的方程为( . ) ·广东广州) 方程 1 = 3 的解是 . 0 .( 2 0 1 1 1 1 6 1 6 1 6 1 6 狓 狓+ 2 = 2 B . - = A. - 2 狓 狓+ 0 . 4 狓- 0 . 4 狓 3的值 分式狓+ ·内蒙古呼和浩特) 当狓= 时, 1 1 .( 2 0 1 1 1 6 1 6 1 6 1 6 狓- 1 - = = 2 2 D. - C. 狓+ 0 . 4 狓 狓 狓- 0 . 4 等于 2 . ·四川内江) 甲车行驶3 2 .( 2 0 1 2 0千米与乙车行驶4 0千米所用 1 ·山东青岛 ) 某市为治理污水, 需要铺设一段全长为 2 .( 2 0 1 0 时间相同, 已知乙车每小时比甲车多行驶 1 设甲车的 5 千米, 铺设 1 为了尽量减少施工 3 0 0m 的污水排放管道. 2 0m 后, 速度为狓 千米 / 小时, 依据题意列方程正确的是( . ) 后来每天的工效比原计划增加 对城市交通所造成的影响, 3 0 4 0 0 3 0 4 B . = A. = , 结果共用3 天完成这一任务. 求原计划每天铺设管道 2 0 % 0 狓 狓- 1 5 狓- 1 5 狓 的长度. 如果设原计划每天铺设狓m 管道, 那么根据题意, 可 3 0 4 0 3 0 4 0 C. = D. = 得方程 . 狓 狓+ 1 5 狓+ 1 5 狓
中考数学 分式及分式方程
分式及分式方程一、知识讲解要点1 分式的概念:形如B A (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子, B 叫做分式的分母.要点2 在分式中,分母的值不能是零,如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0要点3 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) 要点41、分式的值为0分式的值若想为零,必须保证分式有意义,所以要求分子为零而分母不为零。
2.若分式的值为正,则分子、分母同号(同为正或同为负),即: 若0a b >,则00a b >⎧⎨>⎩或00a b <⎧⎨<⎩3.若分式的值为负,则分子、分母异号(一正一负),即:若0a b <,则00a b >⎧⎨<⎩或00a b <⎧⎨>⎩要点5:分式的运算分式的乘法法则分式的乘法法则:两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母. 符号表示:.说明: (1)分式与分式相乘时,若分子和分母都是多项式,则先分解因式,看能否约分,然后再相乘。
(2)整式与分式相乘,可以直接把整式(整式的分母看作1)与分式的分子相乘作为C B C A B A ⋅⋅=CB C A B A ÷÷=积的分子,分母不变,当然能约分的要约分。
分式的除法法则分式的除法法则:两个分式相除,把除式的分子、分母颠倒位置后,与被除式相乘.符号表示:.分式的乘方几个相同分式的积的运算叫做分式的乘方。
法则:分式的乘方,等于把分式的分子、分母分别乘方。
符号表示:(为正整数)。
同分母分式的加减法则同分母分式相加减,分母不变,把分子相加减;符号表示:.异分母分式的加减法则异分母分式相加减,先通分,变为同分母的分式,再加减.符号表示:要点5分式方程的定义:分母中含有未知数的方程叫做分式方程。
中考数学专题复习四--分式方程和不等式(组)
中考数学专题复习四--分式方程和不等式(组)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。
初三中考数学复习-分式与分式方程
典例 3
把分式
x
,
x y
y x y
,
2 x2 y2
的分母化为 x2-y2 后,各分式的分子之和是
A.x2+y2+2 C.x2+2xy−y2+2
B.x2+y2-x+y+2 D.x2−2xy+y2+2
3.下列分式中,是最简分式的是
xy A. x2
x y C. x2 y2
B. 2 2x 2y
D. 2x x2
典例 5 某工厂生产一种零件,计划在 20 天内完成,若每天多生产 4 个,则 15 天完成且还多生产 10 个.设 原计划每天生产 x 个,根据题意可列分式方程为
7
A.
20x 10 x4
15
C. 20x 10 15 x
B.
20x 10 x4
15
D. 20x 10 15 x
典例 6 元旦假期即将来临,某旅游景点超市用 700 元购进甲、乙两种商品 260 个,其中甲种商品比乙种商
品少用 100 元,已知甲种商品单价比乙种商品单价高 20%,那么乙种商品单价是
A. 2 元
B. 2.5 元
C. 3 元
D. 5 元
5.某单位向一所希望小学赠送 1080 本课外书,现用 A,B 两种不同的包装箱进行包装,单独使用 B 型包
装箱比单独使用 A 型包装箱可少用 6 个;已知每个 B 型包装箱比每个 A 型包装箱可多装 15 本课外书.若
②异分母的分式相加减法则:先通分,变为同分母的分 式,然后再加减.
用式子表示为: a c ad bc ad bc . b d bd bd bd
(2)分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.
山东省17市2013年中考数学试题分类解析汇编 专题03 方程(组)和不等式(组)
山东17市2013年中考数学试题分类解析汇编 专题03 方程(组)和不等式(组)一、选择题1. (2013年山东滨州3分)对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为【 】A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定2. (2013年山东滨州3分)若把不等式组2x 3x 12-≥-⎧⎨-≥-⎩的解集在数轴上表示出来,则其对应的图形为【 】A .长方形B .线段C .射线D .直线不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线3. (2013年山东东营3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含B .内切C .相交D .外切4. (2013年山东东营3分)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是【 】A. 5个B. 6个C. 7个D. 8个5. (2013年山东济宁3分)已知ab=4,若﹣2≤b≤-1,则a 的取值范围是【 】A .a≥-4B .a≥-2C .-4≤a≤-1D .-4≤a ≤-26. (2013年山东济宁3分)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多【 】A .60元B .80元C .120元D .180元7. (2013年山东莱芜3分)方程2x 40x 2-=-的解为【 】 A .2- B .2 C .2± D .12-8. (2013年山东聊城3分)不等式组3x 1>242x 0-⎧⎨-≥⎩的解集在数轴上表示为【 】A .B .C .D .10. (2013年山东临沂3分)不等式组x2>0x1x32-⎧⎪⎨+≥-⎪⎩的解集是【】A.x≥8 B.x>2 C.0<x<2 D.2<x≤811. (2013年山东青岛3分)一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有【 】个A 、45B 、48C 、50D 、5512. (2013年山东日照3分)已知一元二次方程2x x 30--=的较小根为x 1,则下面对x 1的估计正确的是【 】A.12<x <1--B. 13<x <2--C. 12<x <3D. 11<x <0-13. (2013年山东日照4分) 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是【 】A.8B.7C.6D.5【答案】A 。
【2年中考1年模拟,备战2014精品资料】全国各地中考试题分类汇编:分式与分式方程
1 m (m 2 1) 的结果是( 1 m
B. m 2m 1
2
) C. m 2m 1
2
D. m 1
2
3. (2013 四川南充市,8,3 分) 当 8、分式 (A)0 (B)1
x 1 的值为 0 时,x 的值是( x2(DΒιβλιοθήκη -2 ))(C)-1
1 a 4. (2013 浙江丽水,7,3 分)计算 – 的结果为( a-1 a-1 A. 1+a a-1 a B- a-1 C. -1
a 2 b2 2a 2b 8. (2013 山东聊城,15,3 分)化简: 2 =__________________. 2 a 2ab b ab
9. (2013 四川内江, 15, 5 分) 如果分式
3 x 2 27 的值为 0, 则 x 的值应为 x3
时,
.
1 1 x2 1 1 2 11. (2013 四川乐山 15,3 分)若 m 为正实数,且 m 3 , 则 m 2 = m m
1 2 2 ,其中 x=-2. x 1 x 1
.2. (2013 江苏扬州,19(2),4 分) (2) (1
1 x2 1 ) x x
2
x x 1 ( -2),其中 x=2. x 1 x a 3b a b 4. (2013 浙江衢州,17(2),4 分)化简: . a b a b
x2 2x 1 的值. x 1 x 1
(a﹣b﹢ 10. (2013 江苏泰州,19(2) ,4 分)
b2 ab ) ab a
a b 2ab b 2 (a ) 11. ( (2013 山东济宁,16,5 分)计算: a a
12. ( 2013 四川广安, 22 , 8 分)先化简 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1440 1440 − = 10 x − 100 x 1440 x 1440 + 10 x − 100
B.
1440 1440 = 10 + x x + 100
= C.
D.
1440 1440 − = 10 x + 100 x
2 / 41
2013 年全国各地中考数学考点分类汇编
【答案】B 【解析】 在距离学校 60 米的地方追上则说明他们父子所走的路程均为 1440 米。 设小朱的速 度是 x 米/分,则爸爸的速度是( x + 100 )米/分,小朱走完这 1440 米所用的时间 为
2 2
b a + a b
=
a 2 + b 2 (a + b) 2 − 2ab 6 2 - 2 × 4 =7 = = ab 4 ab
2
【方法指导】1.先观察两个方程的特点,从而确定出a,b是方程x -6x+4=0 的两个不等根. 如果条件是实数a、b是方程x -6x+4=0 的两个等根,那么还需要进行分类讨论,即a,b是两 个不等根和a,b是两个等根两种情况. 2.如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别是x 1 ,x 2,, 那么根与系数具有如下关 系:x 1+ x 2= 2
B.1<k<2
C.
D.
【解析】 :甲图中阴影部分面积为a2﹣b2, 乙图中阴影部分面积为 a(a﹣b) , 则 k= ∵a>b>0, ∴0<<1, 【方法指导】 本题考查了分式的乘除法, 会计算矩形的面积及熟悉分式的运算是解题的关键 = = =1+,
4 / 41
2013 年全国各地中考数学考点分类汇编
14. (2013 湖南郴州,2,3 分)函数 y= A.x>3 B.x<3 中自变量 x 的取值范围是( C.x≠3 )
D.x≠﹣3
考点: 函数自变量的取值范围. 分析: 根据分母不等于 0 列式计算即可得解. 解答: 解:根据题意得,3﹣x≠0, 解得 x≠3. 故选 C. 点评: 本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为 0; (3)当函数表达式是二次根式时,被开方数非负. 15. (2013 湖南郴州,5,3 分)化简 A.﹣1 B.1 C. 的结果为( ) D.
)
(A)x≠1 (B)x>1 (C)x<1 (D)x≠-1 【答案】A. 【解析】当分式的分母不为 0 时,分式有意义.即 x-1≠0,∴x≠1.故选 A. 【方法指导】分式为 0 的条件是:分子为 0 且分母不等于 0.分式有意义的条件只与分母有 关,而与分子无关. 8、 (2013 深圳,6,3 分)分式 A. x = −2 【答案】C 【解析】根据分式
x -3 x -5 + = 1, 解得x = 8. x x
【方法指导】 本题考查列分式方程解应用题, 但要注意解出后要检验根是不是原方程的根, 而且还要检验是不是符合题意。这是列分分式方程解应用题不可缺少的步骤。
6. (2013 广东湛江,9,4 分)计算
A.0 【答案】C. 【解析】 B.1
2 x − 的结果是( x−2 x−2
考点: 二次根式有意义的条件;分式有意义的条件. 分析: 根据被开方数大于等于 0,分母不等于 0 列式进行计算即可得解. 解答: 解:根据题意得,2x+1≥0 且 x﹣1≠0, 解得 x≥﹣且 x≠1. 故选 A. 点评: 本题考查的知识点为:分式有意义,分母不为 0;二次根式的被开方数是非负数. 17. (2013 江苏南京,2,2 分)计算a3.(
x2 − 4 的值为 0,则 x 的取值是 x+2
C. x = 2 D. x = 0
B. x = ±2
x2 − 4 = 0 A = 0 A ,故 ,知 x = 2 , = 0 的条件,需同时满足条件: B B ≠ 0 x + 2 ≠ 0
故 C 正确 【方法指导】本题考查了分式的值为 0 的条件。注意要兼顾考虑分式的分子和分母,答案要 不重不漏,但又要使分母有意义。 9、 (2013 深圳,8,3 分)小朱要到距家 1500 米的学校上学,一天,小朱出发 10 分钟后, 小朱的爸爸立即去追小朱,并且在距离学校 60 米的地方追上了他。已知爸爸比小朱的速度 快 100 米/分,求小朱的速度。若设小朱的速度是 x 米/分,则根据题意所列方程正确的是 A.
3 / 41
2
2013 年全国各地中考数学考点分类汇编
A.x=﹣2 B.x=1 C.x=2 D.x=3
考点: 解分式方程. 分析: 公分母为 x(x+3) ,去括号,转化为整式方程求解,结果要检验. 解答: 解:去分母,得 x+3=2x, 解得 x=3, 当 x=3 时,x(x+3)≠0, 所以,原方程的解为 x=3, 故选 D. 点评: 本题考查了解分式方程. (1)解分式方程的基本思想是“ 转化思想”,把分式方程转化 为整式方程求解, (2)解分式方程一定注意要验根. 12. (2013 广西钦州,9,3 分)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单 独完成这项工程需要 30 天, 若由甲队先做 10 天, 剩下的工程由甲、 乙两队合作 8 天完成. 问 乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要 x 天.则可列方程为 ( ) A. B.10+8+x=30 C. D. +=1 +8( +)=1 (1﹣ )+x=8
C.-1 D.x
)
2 x 2− x − == −1 x−2 x−2 x−2
【方法指导】 (1)在计算的时候,整式可以看作分母为 1 的分式; (2)分子、分母是多项式 的时候,先将多项式因式分解,便于约分和通分. (3)计算后的分式应是最简分式。
7.(2013 四川成都,3,3 分)要使分式
5 有意义,则 x 的取值范围是( x −1
1 a −1 【答案】A.
B.
1 a +1
C.
1 a −1
2
D.
1 a +1
2
【解析】原式=
a −1 a +1 a +1 a +1 ) = 1 ,故 A 正确. ×( )= ÷( 2 2 a −1 a 1 + ( 1 ) − a a −1 (a − 1)
【方法指导】 对于分式的化简要注意运算顺序, 另外对于分子或分母中能够因式分解的一定 要先因式分解,然后再化简. 【易错点分析】本题的出错点是后面的括号里面不知如何计算. 3. (2013 湖南益阳,3,4 分)分式方程 A.x = 3 【答案】 :B 【解析】两边都乘以 x( x − 2) ,得:5x=3(x-2),解得 x=-3,当 x=-3 时, x( x − 2) ≠ 0 , 所以 x=-3 是原方程的解。 【方法指导】解分式方程,一般是先通过方程两边都乘以最简公分母,把分式方程转化为整 式方程,然后求解,最后检验。 4. (2013 湖南益阳,10,4 分)化简: 【答案】 :1 【解析】 B.x = −3
2
则
b a + 的值是( a b
A.7 B.—7 C.11
) D.—11
【答案】A 【解析】 本题考查了一元二次方程的解、 根与系数的关系以及整体思想方法.先分析出实数a、 b是方程x -6x+4=0 的两个不等根,然后把所要求的代数式进行变形后利用根与系数的关系 即可求解.∵a,b是方程x -6x+4=0 的两个不等根∴a+b=6,ab=4∴
Байду номын сангаас
b ,x x c 1 • 2= . a a
3.利用根与系数的关系求代数式的值时,往往需要对代数式进行变形,变形为含有x 1+ x 2 ,x 1
• x 2的代数式,然后利用根与系数的关系,确定求出代数式的值,注意整体思想的运用.
【易错警示】分析不出a,b是方程x -6x+4=0 的两个不等根是易错的原因之一,之二就是对 所求代数式不会结合根与系数的关系进行变形. 11. (2013 白银,7,3 分)分式方程 的解是( )
5 3 = 的解是( x−2 x
C.x =
) D.x = −
3 4
3 4
x 1 = − x −1 x −1
.
x 1 x −1 − = =1 x −1 x −1 x −1
【方法指导】考查分式的运算,同分母的分式相加减,分母不变,分子相加减,最后约分。 如果是异分母的分式相加减,先通分,再用同分母分式加减法则运算。
考点: 由实际问题抽象出分式方程. 分析: 设乙工程队单独完成这项工程需要 x 天,由题意可得等量关系:甲 10 天的工作量+甲 与乙 8 天的工作量=1,再根据等量关系可得方程 10× +( +)×8=1 即可.
解答: 解:设乙工程队单独完成这项工程需要 x 天,由题意得: 10× +( +)×8=1.
2013 年全国各地中考数学考点分类汇编
分式与分式方程
一、选择题 1. (2013 重庆市(A),4,4 分)分式方程
2 1 − = 0 的根是( x−2 x
)
A.x=1 B.x=-1 C.x=2 D.x=-2 【答案】D. 【解析】在方程两边同乘以 x(x-2),得 2x-(x-2)=0,解得 x=-2.检验:当 x=-2 时, x(x-2)≠0.所以,原方程的解是 x=-2. 【方法指导】本题考查分式方程的解法.解分式方程,应先去分母,将分式方程转化为整式 方程求解.另外,由于本题是选择题,除了上面的解法外,还可以将四个选择支中的数分别 代入验证得以求解. 【易错警示】本题作为解答题时,易漏掉验根过程. a +1 2 ÷ (1 + ) 的结果是( 2. (2013 山东临沂,6,3 分)化简 2 ) a − 2a + 1 a −1 A.