大学物理(中国矿业大学出版社)第9-16章精简版答案

合集下载

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题答案-第九章————————————————————————————————作者:————————————————————————————————日期:习题精解9-1.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图9-1所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。

设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有2122()d xF k k x ma m dt=-+==化简得21220k k d x x dt m++= 令212k k mω+=则2220d x x dt ω+=所以物体做简谐振动,其周期1222mT k k ππω==+9-2 如图9.2所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。

若有一外界扰动使这对电荷偏过一微小角度,扰动消息后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。

试证明这种摆动是近似的简谐振动,并求其振动周期。

设电荷的质量皆为m ,重力忽略不计。

解 取逆时针的力矩方向为正方向,当电偶极子在如图9.2所示位置时,电偶极子所受力矩为sin sin sin 22l lM qE qE qEl θθθ=--=- 电偶极子对中心O 点的转动惯量为2221222l l J m m ml ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭由转动定律知2221sin 2d M qEl J ml dtθθβ=-==•化简得222sin 0d qEdt mlθθ+= 当角度很小时有sin 0θ≈,若令22qEmlω=,则上式变为222sin 0d dtθωθ+= 所以电偶极子的微小摆动是简谐振动。

而且其周期为222mlT qEππω== 9-3 汽车的质量一般支承在固定与轴承的若干根弹簧上,成为一倒置的弹簧振子。

大学物理第9章习题解答

大学物理第9章习题解答

第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。

考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±= (2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r rm G r q f f G e ππε氧 其净力是引力。

9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。

解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。

点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。

C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小.解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ?的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ?与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ?不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=?=?,θtg x y ?=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。

已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。

若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。

解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。

当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBv ?02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=??v v v其方向沿BA 方向。

大学物理标准答案(9、10、13、14、15、16章)

大学物理标准答案(9、10、13、14、15、16章)

P b a O xd xy9-5 一无限长均匀带电细棒被弯成如习题9-5图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零。

解: 设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强。

在圆弧上取一弧元 d s =R d φ所带的电量为 d q = λd s 在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε=== 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=方向沿着x 轴正向。

再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==;方向沿着x 轴负向当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1;因此 θ/2 = π/4,所以 θ = π/29-6 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如习题9-6图所示。

试求 平板所在平面内,离薄板边缘距离为a 的P 点处的场强。

解: 建立坐标系。

在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x 根据直线带电线的场强公式02E rλπε=得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-其方向沿x 轴正向。

由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰/20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+ ①场强方向沿x 轴正向。

大学物理习题答案第九章

大学物理习题答案第九章

[习题解答]9-3 两个相同的小球质量都是m ,并带有等量同号电荷q ,各用长为l 的丝线悬挂于同一点。

由于电荷的斥力作用,使小球处于图9-9所示的位置。

如果θ角很小,试证明两个小球的间距x 可近似地表示为.解 小球在三个力的共同作用下达到平衡,这三个力分别是重力m g 、绳子的张力T 和库仑力f 。

于是可以列出下面的方程式,(1),(2)(3)因为θ角很小,所以,.利用这个近似关系可以得到,(4). (5)将式(5)代入式(4),得图9-9,由上式可以解得.得证。

9-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.9-5氢原子由一个质子和一个电子组成。

根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29⨯10-11m。

质子的质量M = 1.67⨯10-27kg,电子的质量m = 9.11⨯10-31kg,它们的电量为±e =1.60⨯10-19C。

(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。

解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.9-6 边长为a的立方体,每一个顶角上放一个电荷q。

(1)证明任一顶角上的电荷所受合力的大小为.(2) F的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。

对于任一顶角上的电荷,例如B角上的q B,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。

图9-10由图9-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,f1的方向与x轴的夹角为45︒。

对的作用力f2的大小为,f2的方向与x轴的夹角为0︒。

大学物理参考答案第9章

大学物理参考答案第9章

第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( )(A )(B )(C )(D )分析与解 9-3 (A ) (B ) (C ) (D ) *9-4 子将( (A ) (B ) (C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21e ,中子电量为10-21e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为 二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20m),中子内的两个下夸克之间相距2.60×10-15m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力. 9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q解 9-8 (2) 分析 P 的电场强度为(1) 若点(2) 若点P 的证 (1) E L/-L/P =⎰(2) 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有 积分得 02/π004d cos sin 2εδθθθεδ⎰==E9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩解2 由于代入得(-+rx2029-11 的电场强度场力.分析 (1) (2) 由即:F =λE .生作用力.解 (1) (2) 设F +显然有F +=9-12 .分析 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有 依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理地球表面电荷面密度 单位面积额外电子数9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布. 解 依照上述分析,由高斯定理可得R r <时, 32π4π4r E r ρ=R r >时, 9-15 λ.求离轴线为r 分析 .解 r <R 1 , R 1<r <R 2r >R 2, 9-16 分析 W ′=-W .(1)其中E (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.9-17 已知均匀带电长直线附近的电场强度近似为其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明. 解 (1) 由于电场力作功与路径无关,若沿径向积分,则有 (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 势.解 q 2=2q 1 9-19 分析 .解 9-20 (2) 分析 方法(1势..(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为 在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有 当R 1 ≤r ≤R 2 时,有 当r ≥R 2 时,有(2) 两个球面间的电势差解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则 若该点位于两个球面之间,即R 1≤r ≤R 2 ,则若该点位于两个球面之外,即r ≥R 2 ,则 (2) 两个球面间的电势差9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理可求得电场分布E (r ),再根据电势差的定义并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时得当r ≥R 时得当r ≤R 时 当r ≥R 时9-22 (2) 分析 解 (11)(2) i i E ⎥⎦⎢⎣+-=-=22012d x R εx (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得 当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 根据电势差的定义有解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相-15分析 解 (1由k021E =(2) 得9-25 都用来使0 耗的能量为解 (1即可融化约(2) 9-26 已知水分子的电偶极矩p =6.17×10-30C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度. 分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题9-27。

大学物理第9章习题答案

大学物理第9章习题答案

⼤学物理第9章习题答案第4篇电磁学第9章静电场9.1 基本要求1掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。

掌握电势与电场强度的积分关系。

能计算⼀些简单问题中的电场强度和电势。

了解电场强度与电势的微分关系。

2理解静电场的规律:⾼斯定理和环路定理。

理解⽤⾼斯定理计算电场强度的条件和⽅法。

3了解导体的静电平衡条件,了解介质的极化现象及其微观解释。

了解各向同性介质中D和E之间的关系。

了解介质中的⾼斯定理。

4了解电容和电能密度的概念。

9.2基本概念1电场强度E :试验电荷0q 所受到的电场⼒F 与0q 之⽐,即0q =F E 2电位移D :电位移⽮量是描述电场性质的辅助量。

在各向同性介质中,它与场强成正⽐,即ε=D E 3电场强度通量e Φ:e Sd Φ=E S电位移通量:D Sd Φ=D S4电势能pa E :0pa aE q d ∞=?E l (设0p E ∞=)5电势a V :0pa a aE V d q ∞==? E l (设0V ∞=)电势差ab U :ab a b U V V =- 6场强与电势的关系(1)积分关系 a aV d ∞=7电容C:描述导体或导体组(电容器)容纳电荷能⼒的物理量。

孤⽴导体的电容:Q C V =;电容器的电容:Q C U= 8静电场的能量:静电场中所贮存的能量。

电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3基本规律1库仑定律:12204rq q rπε=F e 2叠加原理(1)电场强度叠加原理:在点电荷系产⽣的电场中任⼀点的场强等于每个点电荷单独存在时在该点产⽣的场强的⽮量和。

(2)电势叠加原理:在点电荷系产⽣的电场中,某点的电势等于每个点电荷单独存在时在该点产⽣的电势的代数和。

3⾼斯定理:真空中静电场内,通过任意闭合曲⾯的电场强度通量等于该曲⾯所包围的电量的代数和的1/ε 0倍。

大学物理第9章静电场习题参考答案

大学物理第9章静电场习题参考答案

第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有210141AC r q E πε=14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 220241BC r q E πε=14299m V 107.204.0108.1109--⋅⨯=⨯⨯⨯= 方向沿CB 方向∴ C 点的合场强E的大小为:24242221)107.2()108.1(⨯+⨯=+=E E E 14m V 1024.3-⋅⨯=设E 的方向与CB 的夹角为α,则有︒===--7.337.28.11211tg E E tg α 9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相互抵消。

习题9-1图习题9-3图习题9-2图0=∴x E ,圆心O 处场强E 的y 分量为⎪⎪⎭⎫⎝⎛-===⎰⎰2312sin d 412sin d 412026260R R R R lE y πελθθλπεθλπεππ方向沿y 轴正向。

9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。

设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xxE E πε 132289110m V 1041.2102811081103109114----⋅⨯=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-=L d d πελ方向沿x 轴方向。

大学物理_第九章_课后答案

大学物理_第九章_课后答案

µ0 I , r 为管外一点到螺线管轴 2πr
题 9-4 图 9-5 如果一个电子在通过空间某一区域时不偏转, 能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存 在互相垂直的电场和磁场, 电子受的电场力与磁场力抵消所致. 如果它发生偏转也不能肯定 那个区域存在着磁场,因为仅有电场也可以使电子偏转. 9-6 已知磁感应强度 B = 2.0 Wb· m 的均匀磁场, 方向沿 x 轴正方向, 如题 9-6 图所示. 试求:(1)通过图中 abcd 面的磁通量;(2)通过图中 befc 面的磁通量;(3)通过图中 aefd 面 的磁通量. 解: 如题 9-6 图所示
题 9-7 图 9-7 如题9-7图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半 径为 R .若通以电流 I ,求 O 点的磁感应强度. 解:如题 9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中


AB 产生
� B1 = 0
CD 产生 B2 =
9-13 一根很长的铜导线载有电流10A,设电流均匀分布.在导线内部作一平面 S ,如题9-13 图所示.试计算通过S平面的磁通量(沿导线长度方向取长为1m的一段作计算).铜的磁导率
µ = µ0 .
解:由安培环路定律求距圆导线轴为 r 处的磁感应强度
� B ∫ ⋅ dl = µ 0 ∑ I
l
B 2πr = µ 0
B0 =

µ 0 ev = 13 T 4πa 2
电子磁矩 Pm 在图中也是垂直向里,大小为
Pm =
e 2 eva πa = = 9.2 × 10 − 24 A ⋅ m 2 T 2

新编物理基础学下册(9-17章)课后习题(每题都有)详细答案之欧阳法创编

新编物理基础学下册(9-17章)课后习题(每题都有)详细答案之欧阳法创编

新编物理基础学下册(9-17章)课后习题(每题都有)详细答案 时间:2021.03.09 创作:欧阳法王少杰,顾牡主编第九章9-1 两个小球都带正电,总共带有电荷55.010C -⨯,如果当两小球相距2.0m 时,任一球受另一球的斥力为1.0N.试求总电荷在两球上是如何分配的? 分析:运用库仑定律求解。

解:如图所示,设两小球分别带电q 1,q 2则有q 1+q 2=5.0×10-5C ① 由题意,由库仑定律得:912122091014π4q q q q F r ε⨯⨯⨯===② 由①②联立得:5152 1.210C 3.810C q q --⎧=⨯⎪⎨=⨯⎪⎩ 9-2 两根6.0×10-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为0.5×10-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。

解:设两小球带电q 1=q 2=q ,小球受力如图所示220cos304πq F T R ε==︒① sin30mg T =︒②题9-1解图联立①②得:2o 024tan30mg R q πε=③ 其中223sin 606103310(m)r l --=︒=⨯⨯=⨯ 代入③式,即: q =1.01×10-7C9-3 电场中某一点的场强定义为0FE q =,若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F 与q 0成正比,故0FE q =是与q 0无关的。

9-4直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知BC =0.04m ,AC =0.03m ,求C 点电场强度E 的大小和方向(cos37°≈0.8,sin37°≈0.6).分析:运用点电荷场强公式及场强叠加原理求解。

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。

解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。

解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理课后习题答案整理(杨晓峰版)-习题9-16答案

大学物理课后习题答案整理(杨晓峰版)-习题9-16答案

计算过程:应用高斯定理
∫∫
E idS
=
1 ε0球面为
高斯面有
∫∫
E idS
=
E4π
r2
=
q ε0
得球外任一点的电场强度: E = q 4πε0r 2
设无穷远处的电势为零,球外任一点的电势为:U = q 4πε 0 r
细线上在距离球心距离 r 处选一微电荷元 dq = λdr ,
其受电场力为
dF
=
Eλdr
=
qλ 4πε0r 2
dr
,方向沿细线所在的球面半径方向。细
线上各微电荷元受力方向一致。
在电场中的电势能为 dW = Udq = U λdr = qλ dr 4πε 0 r
细线所所受球面电荷的电场力为:
∫ F =
r0 +l r0.
qλ 4πε 0 r 2
dr
=
qλ 4πε 0
习题 9-16 解答:
解:基本思路:球面均匀带电,且电荷分布不受带电细线影响,因此其周围电场 分布球对称,可用高斯定理计算场强分布。细线距离球面不同的地方,电场强度 不一样,电场力和电势能也不一样,选一微电荷元 dq = λdr ,受电场力为 dF = Eλdr ,在电场中的电势能为 dW = Vdq = V λdr ,积分即可求出细线所受球 面电荷的电场力和细线在该电场中的电势能(设无穷远处的电势为零)。
⎛ ⎜ ⎝
1 r0

1 r0 − l
⎞ ⎟
,方向沿细线所在的球面半径方向。

细线在该电场中的电势能:
∫ W = r0 +l qλ dr = qλ ln r0 + l
r0 4πε0r
4πε0 r0

《大学物理》下册(第五版)课后答案

《大学物理》下册(第五版)课后答案

第九章振动9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为-A,且向x 轴正方向运2动,代表此简谐运动的旋转矢量为()题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()(A)x = 2cos⎡2πt -2 π⎤(cm)(C)x = 2cos⎡2 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦(B)x = 2cos⎡4πt -2 π⎤(cm)(D)x = 2cos⎡4 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦题9-2图分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为2π / 3 .振动曲线上给出质点从–A/2 处运动到+A 处所需时间为 1 s,由对应旋转矢量图可知相应的相位差∆ϕ=4π3 ,则角频率ω=∆ϕ/ ∆t =(4π/ 3)s-1 ,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3两个同周期简谐运动曲线如图(a)所示,x1 的相位比x2 的相位()(A)落后π2(B)超前π2(C)落后π(D)超前π分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).题9-3图9-4当质点以频率ν作简谐运动时,它的动能的变化频率为()(A)v(B)v (C)2v2(D)4v分析与解质点作简谐运动的动能表式为E k=1mω2 A 2sin2 (ωt2+ϕ),可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν 的两倍.因而正确答案为(C).9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为()3(A)π21(B)π2(C)π(D)0分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为x1=A cosωt 和x2=Acos(ωt +π).它们的振幅不同.对2于这样两个简谐运动,可用旋转矢量法,如图(b)很方便求得合运动方程为x1 =而正确答案为(D).Acosωt .因2题9-5图9-6 有一个弹簧振子,振幅A = 2.0 ⨯10-2 m ,周期T = 1.0 s ,初相ϕ出它的运动方程,并作出x -t 图、v -t 图和a -t 图.=3π / 4 .试写题9-6 图分析弹簧振子的振动是简谐运动.振幅 A 、初相ϕ、角频率ω是简谐运动方程m / k 外, ω 可通过关系式ω = 2π / T 确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因ω = 2π / T ,则运动方程x = A cos (ωt + ϕ ) = A ⎛ 2πt + ϕ ⎫cos ⎪ ⎝ T⎭根据题中给出的数据得x = 2.0 ⨯ 10-2 cos (2πt + 0.75π ) (m )振子的速度和加速度分别为v = d x / d y a = d 2x / d 2y = -4π ⨯ 10-2sin (2πt = -8π ⨯ 10-2cos (2πt + 0.75π) ( m ⋅ s-1 )+ 0.75π) ( m ⋅ s -1)x - t 、 v - t 及 a - t 图如图所示.9-7 若简谐运动方程为 x = 0.10 cos (20πt + 0.25π)(m ),求:(1) 振幅、频率、角频率、周期和初相;(2) t = 2s 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式x = A cos (ωt + ϕ )作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将 x = 0.10 cos (20πt + 0.25π)(m )与 x = A cos (ωt + ϕ )比较后可得:振幅 A = 0.10m ,角频率ω = 20π s -1,初相ϕ =0.25 π ,则周期T = 2π / ω = 0.1 s ,频率 v = 1/ T Hz .(2) t = 2s 时的位移、速度、加速度分别为x = 0.10 cos (40πt + 0.25π) = 7.07 ⨯10-2 mv = d x / d t = -2πsin (40π + 0.25π) = -4.44m ⋅ s -1a = d 2 x / d 2t = -40π2cos (40π + 0.25π) = -2.79 ⨯102 m ⋅ s -29-8 一远洋货轮,质量为 m ,浮在水面时其水平截面积为 S .设在水面附近货轮的水平截面积近似相等,水的密度为 ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力 F 与位移 x 间的关系,如果满足 F = -kx ,则货轮作简谐运动.通过 F = -kx 即可求得振动 周期T = 2π / ω = 2π .证 货轮处于平衡状态时[图(a )],浮力大小为 F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点 O ,竖直向下为 x 轴正向,如图(b )所示.则当货轮向下偏移 x 位移时,受合外力为∑ F = P + F '其中 F ' 为此时货轮所受浮力,其方向向上,大小为F ' = F + ρgSx = mg + ρgSx则货轮所受合外力为题9-8图∑F=P -F '=-ρgSx =-kx式中k =ρgS 是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑F =m d2 x / d2t 可得货轮运动的微分方程为d2 x / d2t +ρgSx / m = 0令ω2 =ρgS / m ,可得其振动周期为T =2π / ω = 2π9-9设地球是一个半径为R 的均匀球体,密度ρ= 5.5 ⨯103 kg ⋅ m-3 .现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1)证明此质点的运动是简谐运动;(2)计算其周期.题9-9图分析证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证(1)取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为m / ρgSm / k x xF = -Gm x m式中G 为引力常量, m 是以 x 为半径的球体质量,即 m = 4πρx 3/ 3 .令 k = 4πρGm / 3 ,则质点受力F = 4πρGmx / 3 = -kx因此,质点作简谐运动.(2) 质点振动的周期为T = 2π = = 5.07 ⨯103 s9-10 如图(a )所示,两个轻弹簧的劲度系数分别为 k 1 、k 2时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率..当物体在光滑斜面上振动题 9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点 O ,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴, 物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体 在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ .证 设物体平衡时两弹簧伸长分别为 x 1 、 x 2 ,则由物体受力平衡,有mg sin θ = k 1x 1 = k 2 x 2按图(b )所取坐标,物体沿 x 轴移动位移 x 时,两弹簧又分别被拉伸 x 1' 和 x 2' ,即物体受力为(1)x = x 1' + x 2' .则 3π / Gρ1 2π(k + k )/ m 1 21 2F = mg si n θ - k 2 (x 2 + x 2' )= mg si n θ - k 1 (x 1 + x 1') 将式(1)代入式(2)得(2) F = -k 2 x 2' = -k 1x 1' 由式(3)得 x 1' = -F / k 1 、 x 2' = -F / k 2 ,而 x = x 1' + x 2' ,则得到(3)F = -[k k / (k + k )]x = -kx 1 2式中 k = k 1k 2 / (k 1 + k 2 )为常数,则物体作简谐运动,振动频率v = ω / 2π = 12π k / m = 讨论 (1) 由本题的求证可知,斜面倾角 θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其 作简谐运动,且振动频率均为v = ,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9-11 在如图(a )所示装置中,一劲度系数为 k 的轻弹簧,一端固定在墙上,另一端连接一质量为 m 1 的物体 A ,置于光滑水平桌面上.现通过一质量 m 、半径为 R 的定滑轮 B (可视为匀质圆盘)用细绳连接另一质量为 m 2 的物体 C .设细绳不可伸长,且与滑轮间无相对滑动, 求系统的振动角频率.题 9-11 图分析 这是一个由弹簧、物体 A 、C 和滑轮 B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体1 2πk k /(k + k )m1 2 1 2k 正向从原点 O 伸长 x 时,分析物体 A 、C 及滑轮 B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方 程,然后求得系统作简谐运动的微分方程.解 1 在图(b )的状态下,各物体受力如图(c )所示.其中 F = -k (x + x 0 )i .考虑到绳 子不可伸长,对物体 A 、B 、C 分别列方程,有F T 1 = -k (x + x 0 ) = d 2 x m 1 d t 2 d 2 x(1)m 2 g - F T 2 = m 2 d t2 (2)( - ) = α = 1d 2 xF T 2 F T 1 R J2 mR d t 2(3) kx 0 = m 2 g (4)方程(3)中用到了 F = F ' 、F = F ' 、J = mR 2/ 2 及α = a / R .联立式(1) ~式(4)T 2 T 2 可得T 1 T 1d 2 x k则系统振动的角频率为d t2+m 1 + m 2 + m / 2x = 0(5)ω = 解 2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离 x (此时速度为 v 、加速度为 a )为末状态, 则由机械能守恒定律,有E = -m gx + 1 m v 2 + 1 m v 2 + 1 J ω2 + 1 k (x + x )20 2 2 1 2 2 2 2在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体 C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得0 = -m gv + m v d v + m v d v + Jω d ω + k (x + x )d x2 1 d t 2 d t d t 0d t 将 J = mR 2 / 2 , ωR = v , d v / d t = d 2 x / d t 2和m g = kx 代入上式,可得d 2x + d t 2 m2 0+ m + m / 2 x = 0(6)12式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅 A =2.0 ×10-2 m ,周期 T =0.50s.当 t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在 x =-1.0×10-2m 处, 向负方向运动; (4) 物体在 x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅 A 和周期 T 已知的条件下,确定初相 φ 是求解简谐运动方程的关键.初相k / (m 1 + m 2 + m / 2)π π = 4π 的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即 t =0 时,x =x 0 和 v =v 0 来确定 φ 值.(2) 旋转矢量法:如图(a )所示,将质点 P 在 Ox 轴上振动的初始位置 x 0 和速度 v 0 的方向与旋转矢量图相对应来确定 φ.旋转矢量法比较直观、方便,在分析中常采用.题 9-12 图解 由题给条件知 A =2.0 ×10-2 m , ω = 2 / T = 4π s -1,而初相 φ 可采用分析中的两种不 同方法来求.解析法 : 根据简 谐 运动方 程 x = A cos (ωt + ϕ ) ,当 t = 0 时有 x 0 = A cos (ωt + ϕ ) ,v 0 = - Aωsin .当(1) x 0 = A 时, cos ϕ1 = 1,则ϕ1 = 0 ;π π(2) x 0 = 0 时, cos ϕ2 = 0 ,ϕ2 = ± ,因v 0 < 0 ,取ϕ2 = ;2 2(3) x 0 = 1.0 ⨯10-2 m 时, cos ϕ = 0.5 ,ϕ3 = ± π 3 ,由v 0 < 0 ,取ϕ3 = ; 3(4) x = -1.0 ⨯10-2m 时, cos ϕ = -0.5 ,ϕ = π ± ,由v > 0 ,取ϕ 4π 0 4 4 3 0 4 3旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初 相分别为ϕ1 = 0 , ϕ2 =, ϕ3 =2, ϕ4 =.33振幅 A 、角频率 ω、初相 φ 均确定后,则各相应状态下的运动方程为(1) x = 2.0 ⨯10-2cos4πt(m )(2) x = 2.0 ⨯10-2 cos (4πt + π/2) (m ) (3) x = 2.0 ⨯10-2 cos (4πt + π/3) (m ) (4) x = 2.0 ⨯10-2 cos (4πt + 4π/3) (m )9-13 有一弹簧, 当其下端挂一质量为 m 的物体时, 伸长量为 9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当 t =0 时,物体在平衡位置上方 8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当 t =0 时,物体在平衡位置并以 0.6m·s -1 的速度向上运动,求运动方程.π π 3.k / m g / ∆l x + ( 21010 v / ω )2⎝ 12 ⎭分析 求运动方程,也就是要确定振动的三个特征物理量 A 、ω 和 φ.其中振动的角频率是 由弹簧振子系统的固有性质(振子质量 m 及弹簧劲度系数 k )决定的,即ω =k /m ,k 可根据物体受力平衡时弹簧的伸长来计算;振幅 A 和初相 φ 需要根据初始条件确定.题 9-13 图解 物体受力平衡时,弹性力 F 与重力 P 的大小相等,即 F =mg .而此时弹簧的伸长量 Δl =9.8 ×10-2m .则弹簧的劲度系数 k =F /Δl =mg /Δl .系统作简谐运动的角频率为ω = = = 10 s -1(1) 设系统平衡时,物体所在处为坐标原点,向下为 x 轴正向.由初始条件 t =0 时, x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅 A = = 8.0 ⨯10- 2m ;应用旋转矢量法可确定初相ϕ1 = π [图(a )].则运动方程为x = 8.0 ⨯10-2cos (10t + π) (m ) (2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得 A 2 == 6.0 ⨯10- 2 m ; ϕ2 = π / 2 [图(b )].则运动方程为x = 6.0 ⨯10-2cos (10t + 0.5π) (m ) 9-14 某振动质点的 x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点 P 对应的相位;(3) 到达点 P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过 x -t 图线确定振动的三个特征量 A 、ω 和ϕ0 ,从而写出运动方程.曲线最大幅值即为振幅 A ;而 ω、ϕ0 通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅 A =0.10 m.而由振动曲线可画出 t 0 =0 和 t 1 =4 s时旋转矢 量,如图( b ) 所 示.由图可见初相 ϕ0 = -π / 3 (或 ϕ0 = 5π / 3 ), 而由 ω(t 1 - t 0 ) = π / 2 + π / 3 得ω = 5π / 24 s ,则运动方程为 -1x = 0.10 cos⎛ 5πt - π / 3⎫(m )24⎪ x + ( 220 20 v / ω)2ppp p题9-14 图(2)图(a)中点P 的位置是质点从A/2 处运动到正向的端点处.对应的旋转矢量图如图(c)所示.当初相取ϕ0 =-π / 3 时,点P 的相位为ϕp =ϕ0 +ω(t - 0)= 0 (如果初相取成=5π / 3 ,则点P 相应的相位应表示为ϕp =ϕ0 +ω(t -0)=2π .(3)由旋转矢量图可得ω(t - 0)=π/ 3 ,则t =1.6 s .9-15作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几?(1)由平衡位置到最大位移处;(2)由平衡位置到x =A/2 处;(3)由x =A/2 处到最大位移处.解采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O.(1))平衡位置x1到最大位移x3处,图中的旋转矢量从位置 1 转到位置 3 ,故∆ϕ1=π / 2 ,则所需时间∆t1=∆ϕ1 / ω=T / 4(2)从平衡位置x1到x2=A/2 处,图中旋转矢量从位置1 转到位置2,故有∆ϕ2则所需时间=π / 6 ,∆t2=∆ϕ2 / ω=T / 12(3)从x2=A/2 运动到最大位移x3处,图中旋转矢量从位置 2 转到位置3,有∆ϕ0=π / 3 ,则所需时间∆t3=∆ϕ3 / ω=T / 6N 题 9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为 1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为 0.50s,振幅为 2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题 9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力 P 和板支持力 F N 作用,F N 是一个变力.按牛顿定律,有d 2 y F = mg - F N = m d t 2(1)由于物体是随板一起作简谐运动,因而有a 改写为 = d 2y d t 2 = -A ω 2 cos (ωt + ϕ ) ,则式(1)可 F N = mg + mA ω 2cos (ωt + ϕ ) (2)(1) 根据板运动的位置,确定此刻振动的相位ωt + ϕ ,由式(2)可求板与物体之间的作 用力.(2) 由式(2)可知支持力 F N 的值与振幅 A 、角频率 ω 和相位( ωt + ϕ )有关.在振 动过程中,当ωt + ϕ = π 时 F N 最小.而重物恰好跳离平板的条件为 F N =0,因此由式(2)可 分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ωt + ϕ =0,物体受板的支持力为F = mg + mA ω 2 = mg + mA (2π / t)2 = 12.96 N 重物对木块的作用力 F N ' 与 F N 大小相等,方向相反. (2) 当频率不变时,设振幅变为 A ′.根据分析中所述,将 F N =0 及ωt + ϕ 分析中式(2),可得= π 代入max max2A ' = mg / mω2 = gT 2 / 4π2 = 6.2 ⨯10-2 m(3) 当振幅不变时,设频率变为v ' .同样将 F N =0 及ωt + ϕ 可得= π 代入分析中式(2), v ' = ω = 2π = 3.52 Hz 9-17 两 质点作同 频率、同 振幅的简 谐运动. 第一个质 点的运动 方程 为x 1 = A cos (ωt + ϕ ),当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方 向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题 9-17 图解 图示为两质点在时刻 t 的旋转矢量图,可见第一个质点 M 的相位比第二个质点 N 的相位超前π / 2 ,即它们的相位差 Δφ=π/2.故第二个质点的运动方程应为x 2 = A cos (ωt + ϕ - π / 2)9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为 2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据 v -t 图可知速度的最大值 v max ,由 v max =Aω 可求出角频率 ω,进而可求出周期 T 和加速度的最大值 a max =Aω2 .在要求的简谐运动方程 x =A cos (ωt +φ)中,因为 A 和 ω 已得出,故只要求初相位 φ 即可.由 v -t 曲线图可以知道,当 t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿 x 轴正向向着平衡点运动.利用 v 0 =-Aωsinφ 就可求出 φ.解 (1) 由v = A ω 得ω =1.5 s -1 ,则 T = 2π / ω = 4.2 s (2) a = A ω 2 = 4.5 ⨯10-2 m ⋅ s -2 (3) 从分析中已知 v 0 = - Aωsin= Aω / 2 ,即 sin ϕ = -1 / 2= -π / 6,-5π / 6因为质点沿 x 轴正向向平衡位置运动,则取 = -5π / 6 ,其旋转矢量图如图(b )所示.则运动 方程为 x = 2cos (1.5t - 5π / 6) (cm )1 mg / m A 2πg / l g / l max题 9-18 图9-19 有一单摆,长为 1.0m ,最大摆角为 5°,如图所示.(1) 求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为 3°时的角速度和摆球的线速度各为多少?题 9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量 θ 与时间的关系可表示为简谐运动方程 θ = θmax co s (ωt + ϕ ) ,其中角频率 ω 仍由该系统的性质(重力加速度 g 和绳长 l )决定,即 ω = .初相 φ 与摆角 θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理 概念,必须注意区分.解 (1) 单摆角频率及周期分别为ω = = 3.13 s -1; T = 2π / ω = 2.01 s(2) 由t = 0 时θ = θ = 5o可得振动初相ϕ = 0 ,则以角量表示的简谐运动方程为 θ = π cos3.13t 36(3) 摆角为 3°时,有cos (ωt + ϕ ) = θ / θmax = 0.6 ,则这时质点的角速度为J / mgl c maxE c M线速度的大小为d θ/d t = -θmax ωsi n (ωt + ϕ ) = -θmax ω = -0.80θ ω = -0.218 s -1 v = l d θ/d t = -0.218 s -1讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取sin θ ≈ θ ,所以,单摆的简谐运动方程仅在 θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为 2.00s),拿到月 球上去,如测得周期为 4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度 g = 9.80 m ⋅s-2 ) 解 由单摆的周期公式T = 2π 可知 g ∝ 1 / T 2 ,故有 g / g = T 2 / T 2 ,则月球的重力加速度为 g = (T/ T M )2g M E E M= 1.63 m ⋅ s - 29-21 一飞轮质量为 12kg ,内缘半径 r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为 2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为 T = 2π ,因此,只要知道复摆振动的周期和转轴到质心的距离l c ,其以刃口为转轴的 转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期T = 2π J / mgl ,可得 J = mgrT 2 / 4π2.则由平行轴定理得 J 0 = J - mr 2 = mgrT 2 / 4π 2 - mr 2 = 2.83 kg ⋅ m 29-22 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以 500m·s -1 的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为 4.99 kg ,弹簧的劲度系数为 8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为 x 轴正向,求简谐运动方程.1 - cos2 (ωt + ϕ ) l / g E E题 9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度 v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量 m 1 +m 2 和弹簧的劲度系数 k 确定,振幅和初相可根据初始条件(初速度 v 0 和初位移 x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ω == 40 s -1由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度 v 0 为v = m v (m + m ) = 1.0 m ⋅ s -10 1 1 2 又因初始位移 x 0 =0,则振动系统的振幅为A = = v 0/ ω = 2.5⨯10-2 m 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位 0 = π / 2 ,则简谐运动方程为x = 2.5⨯10-2 cos (40t + 0.5π) (m )9-23 如图(a )所示,一劲度系数为 k 的轻弹簧,其下挂有一质量为 m 1 的空盘.现有一质量为 m 2 的物体从盘上方高为 h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?k / (m 1 + m 2 ) x + ( 2 0 0 v / ω) 2x + (v / ω) 2 20 0题 9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由 m 1 变为 m 1 + m 2,因此新系统的角频率(或周期)要改变.由于 A = ,因此,确定初始速度 v 0 和初始位移 x 0 是求解振幅 A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度 v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移 x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移 x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为T = 2π / ω = 2π T ' = 2π / ω' = 2π 可见 T ′>T ,即振动周期变大了. (2) 如图(b )所示,取新系统的平衡位置为坐标原点 O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即x = l - l =m 1g - m 1 + m 2 g = - m 2 g 01 2 k k k式中 l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹 簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度v 0 = m 2 v =m 1 + m 2 式中 v = 是物体由 h 高下落至盘时的速度.故系统振动的振幅为m 1 / k(m 1 + m 2 )/ km 2 m 1 + m 2 2gh2ghx +(2 v / ω ) ' 20 0x + 20 0( v/ ω) 211A ==本题也可用机械能守恒定律求振幅A.9-24如图所示,劲度系数为k 的轻弹簧,系一质量为m1的物体,在水平面上作振幅为A的简谐运动.有一质量为m2的粘土,从高度h 自由下落,正好在(a)物体通过平衡位置时,(b)物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化?(2)振幅有何变化?题9-24 图分析谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式A =)求得两种情况下的振幅.解(1)由分析可知,在(a)、(b)两种情况中,粘土落下前后的周期均为T =2π / ω =2πT '=2π / ω'=2π物体粘上粘土后的周期T′比原周期T 大.(2)(a)设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A、v 和A′、v′.由动量守恒定律和机械能守恒定律可列出如下各式kA'2 / 2 =m v2 / 2 (1)kA'2 / 2 =(m+m)v'2 / 22(2)联立解上述三式,可得m1v=(m1+m2)v'A'=(3)即A′<A,表明增加粘土后,物体的振幅变小了.(b)物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v′=m1v/(m1+m2)=0,因而振幅不变,即m2gk1 +2khm1+m2m1/ k(m1+m2)/ km1/(m1+m2)AA / a max max 0 max max 9-25 质量为 0.10kg 的物体,以振幅 1.0×10-2 m 作简谐运动,其最大加速度为 4.0 m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度 a = A ω 2,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量 E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期 T = 2π / ω = 2π = 0.314 s(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即 E = E = 1 mA 2ω 2 = 1 mAak 2 2max = 2.0 ⨯10-3 J(3) 设振子在位移 x 0 处动能与势能相等,则有kx 2 / 2 = kA 2 / 4得 x 0 = ± 2 A / 2 = ±7.07 ⨯10-3 m(4) 物体位移的大小为振幅的一半(即 x = A / 2 )时的势能为 E = 1 kx 2 = 1 k ⎛ A ⎫ = E / 4 P 2 2 2 ⎪ ⎝ ⎭则动能为E K = E - E P = 3E / 4 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量 m =1.68 ×10-27 Kg ,振动频率υ =1.0 ×1014 Hz ,振幅 A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度 v =-A ωsin (ωt +φ),故氢原子振动的最大速度为v = ωA = 2πvA = 6.28⨯102 m ⋅ s -1 (2) 氢原子的振动能量E = mv 2 / 2 = 3.31⨯10-20 J 9-27 质量 m =10g 的小球与轻弹簧组成一振动系统, 按 x = 0.5(8πt + π / 3) (cm )的规 律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量 E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将 x = 0.5(8πt + π / 3) (cm )与 x = A cos (ωt + ϕ )比较后可得:角频率ω = 8π s -1 ,振 幅 A =0.5cm ,初相 φ=π/3,则周期 T =2π/ω=0.25 sA + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 2 1(2) 简谐运动的能量 E = 1 mA 2ω 2 = 7.90 ⨯10-5 J (3) 简谐运动的动能和势能分别为 E = 1 mA 2ω 2sin 2 (ωt + ϕ ) K 2E = 1 mA 2ω 2cos 2 (ωt + ϕ ) P 2则在一个周期中,动能与势能对时间的平均值分别为E = 1 ⎰T 1 mA 2ω 2 sin 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 4E = 1 ⎰T 1 mA 2ω 2 cos 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 49-28已 知 两 同 方 向 、 同 频 率 的 简 谐 运 动 的 运 动 方 程 分 别 为 x 1= 0.05cos (10t + 0.75π) (m ); x 2 = 0.06cos (10t + 0.25π) (m ) .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动 x 3 = 0.07co s (10t + ϕ3 ) (m ),则ϕ3 为多少时, x 1 +x 3 的振幅最大? 又ϕ3 为多少时,x 2 +x 3 的振幅最小?题 9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动 的合成仍为一简谐运动,其角频率不变;合振动的振幅 A = ,其大小与两个分振动的初相差ϕ2 - ϕ1 相关.而合振动的初相位ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为∆ϕ 故合振动振幅为= ϕ2 - ϕ1 = -π / 2 , A = 合振动初相位= 7.8 ⨯10-2 m ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2= arctan11 = 1.48 rad (2) 要使 x 1 +x 3 振幅最大,即两振动同相,则由∆ϕ= 2k π 得 A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 21 K PA 2 + A 2 + 2A 2cos (π + ϕ - ϕ ) 2 12ϕ3 = ϕ1 + 2k π = 2k π + 0.75π, k= 0,±1,±2,...要使 x 1 +x 3 的振幅最小,即两振动反相,则由()得 ϕ3 = ϕ2 + (2k + 1)π = 2k π + 1.25π, k = 0,±1,±2,...9-29 手电筒和屏幕质量均为 m ,且均被劲度系数为 k 的轻弹簧悬挂于同一水平面上,如 图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为 x 1 = A cos (ωt + ϕ1 )和 x 2 = A cos (ωt + ϕ2 ).试求在下述两种情况下,初相位 φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅 A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题 9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有依题意x 光对地 = x 光对屏 + x 屏对地x 光对地 = x 1 = A cos (ωt + ϕ1 ) x 屏对地 = x 2 = A cos (ωt + ϕ2 ) 所以 x 光对屏 = x 1 - x 2 = x 1 + x 2'= A cos (ωt + ϕ1 ) + A cos (ωt + π + ϕ2 ) 可见光点对屏的运动就是两个同方向、同频率简谐运动 x 1 = A cos (ωt + ϕ1 ) 和 x 2' = A cos (ωt + π + ϕ2 )的合成.用与上题相同的方法即可求解本题.其中合运动振幅 A ' = . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即 x 光对屏 = 0 ,就是 当π + ϕ2 - ϕ1 = (2k + 1)π 时,即ϕ = ϕ1 + 2k π 时( k = 0,±1,±2,...),A ′=0.当光点 相对于屏作振幅为 2A 的运动时,要求π + ϕ2 - ϕ1 = 2k π ,即ϕ2 = ϕ1 + (2k - 1)π .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步, 即同相位,为此,把它们往下拉 A 位移后,同时释放即可;同理,要使光点对屏作振幅为 2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点 0 上方的-A 处,而屏则位于+A 处同。

大学物理课后习题答案-9答案

大学物理课后习题答案-9答案

普物答案 第九章9.8:如图所示将半圆分成极窄的小圆环其电量为:222sin dq ds rdl R d σσπσπθθ==•=• 223/204()xdq dE x r πε=+ 其中cos x R θ=,sin r R θ=,dl Rd θ= 代入得:/2000sin cos 24E dE d πσσθθθεε===⎰⎰ 9.9:半无限长导线A ,B 在0点处产生的电场分别是:0044A E i j R R λλπεπε=--,0044B E i j R Rλλπεπε=-+ 而半圆产生的电场为:02AB E i Rλπε= 所以总场为0A B ABE E E E =++= xyθ9.25:(1)0004346c qqqU l l l πεπεπε=-=-••,00U =0000()6c q q A q U U lπε=•-= (2)000()6c q q A q U U lπε∞'=-•-=9.28:利用高斯定理得: 111220122200()()4()4r R q E R r R rq q r R r πεπε⎧⎪<⎪⎪=<<⎨⎪⎪+>⎪⎩0.3230.20.3900a U E dr E dr V ∞=+=⎰⎰,30.5450b U E dr V ∞==⎰9.29:设AB ,DE 段对0点的电势为1U ,2U ,圆弧对0点的电势为3U 21200ln 244RR dx U U x λλπεπε===⎰ 30044BDRd U R λθλπεε==⎰ 所以有1230(2ln 2)4U U U U λππε=++=+9.31:(1):我们在导线上任取微元dx ,电量为:2Q dq dx l= 它产生的电势220124Q dx l dU x y πε=+ 由叠加原理得:220ln 4l ll y l Q U dU l y πε-++==⎰ 2204dU Q E dy y l y πε=-=+ 方向:y 轴正方向 (2):0124Q dl l dU x l πε'='-, 0ln 8q x l U dU dU x l πε+===-⎰ 2204()dU Q E dx x l πε=-=- 方向:x 轴正方向dxxy9.32: 与前面类似的,我们取平行与底面的细圆环,面积为:22sin ds rdl l dl ππθ==00sin 42ds dU dl l σσθπεε•== 积分得: 21R 00)22R U dU dl σσεε===-⎰⎰21(R R9.33:在半径r 处取宽度为dr 的同心圆环,其电量为2rdr σπ•00242rdr dr dU r σπσπεε•== 代入数据得: 309102b a dr U V σε==⨯⎰r ldlr。

大学物理(中国矿业大学出版社)第九章习题

大学物理(中国矿业大学出版社)第九章习题

第九章习题9.1 卢瑟福试验证明,当两个原子核之间的距离小到1510m -时,他们之间的排斥力仍遵守库伦定律。

金的原子核中有79个质子,氦的原子核中有两个质子。

已知每个质子带电量为:191.6010C e -=⨯,α粒子的质量为276.6810kg -⨯,当α粒子与核相距为156.910m -⨯时,求:⑴ α粒子所受的力;⑵ α粒子的加速度。

解:α粒子的带电量为:2Q e α=,金核的带电量为:19Q e =金 156.910m r -=⨯,276.6810kg M α-=⨯222279764N Q Q e F k k r rα⨯===金 加速度()2921.1410m s Fa M α==⨯ 9.2 两个相同的小球,质量都是m ;带等量同号电荷q ,各用长l 的细线挂在一起,设平衡时两线夹角为2θ很小。

⑴ 证明下列近似等式:13202q l x mg πε⎛⎫= ⎪⎝⎭式中x 为两球平衡时的距离。

⑵ 如果 1.2m l =,21.010kg m -=⨯,2510m x -=⨯,则每个小球上的电荷q 是多少库仑?解:⑴ 对m 进行受力分析列方程为:cos mg T θ=, sin F T θ=电tan 2F x mg l θ==电(θ很小时,tan 2x lθ≈) 即:13223202002422q x q l mgx q l x mgx l mg πεπεπε⎛⎫=⇒=⇒= ⎪⎝⎭⑵ 132328002022 2.3810C 42mgx q x mgx q l q mgx l l πεπεπε-⎛⎫=⇒=⇒==⨯ ⎪⎝⎭9.3 两个点电荷带电量为2q 和q ,相距为l ,将第三个电荷放在何处,所受库仑力为零?解:01201214qq F r πε=,0220214qq F r πε= 方向相反当所受合力为零时,1212221221:F F r r r r =⇒=⇒=)1221r r l r l +=⇒=(2r 为距q 的位置)(12r l = (1r 为距2q 的位置)9.4 两个点电荷,618.010C q -=⨯,621610C q -=-⨯,相距0.2m ,求离它们都是0.2m 出的电场强度E 。

大学物理第九章练习 参考答案

大学物理第九章练习 参考答案

第九章 电磁感应 电磁场理论练 习 一一.选择题1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势ε,磁通量Φ为正值。

若磁铁沿箭头方向进入线圈,则有( B )(A ) d Φ /dt < 0, ε < 0 ; (B ) d Φ /dt > 0, ε < 0 ; (C ) d Φ /dt > 0, ε > 0 ; (D ) d Φ /dt < 0, ε > 0。

2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C )(A ) I 由A 到B ,U A >U B ; (B ) I 由B 到A ,U A <U B ; (C ) I 由B 到A ,U A >U B ; (D ) I 由A 到B ,U A <U B 。

3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量∆q 为( A )(A ) 2μ0nINA /R ; (B ) μ0nINA /R ; (C ) μ0NIA /R ; (D ) μ0nIA /R 。

4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。

二.填空题1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L可表示为0220l R n L πμ=。

2. 如图4所示,一光滑的金属导轨置于均匀磁场B 中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2θ。

大学物理课后习题答案第九章

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。

大学物理八九章部分习题解答..

大学物理八九章部分习题解答..

第8章 磁场8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。

分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。

解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。

在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为2022322()R nIdxdB R x μ=+ 由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为212022322()x Lx R nIdxB dB R x μ==+⎰⎰0212212221221[]2()()nIx x R x R x μ=-++ 由图可知12122212221212cos os ()()x x R x R x ββ==++ c ,代入上式并整理可得 021(cos cos )2nIB μββ=-式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。

讨论:(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有nI B 0μ=上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。

理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。

即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行;(2)若点O 位于半无限长载流螺线管一端,即12πβ=,20β=或12πβ=,2βπ=时,无论哪一种情况均有nI B 021μ=------(8-19) 可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半;综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b )所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。

《大学物理讲义》 习题答案

《大学物理讲义》 习题答案



2 3.375 1.375m
则第 2 秒内的路程为
S x1 x2 0.875 1.375 2.25m 3 1-3 一质点的运动方程为 r ti 2t j m 。求 t 1s 时的速度、 1 ~ 3s 内的平均速度和平均
加速度。 解: 质点的速度矢量为


1-5 在离水面高度为 h 的岸边,有人用绳拉船靠岸(图 1-5) 。当人以 v 0 的速率收绳时,求 船的速度和加速度。
3
《大学物理讲义》习题解答
解: 以滑轮处 O 为坐标原点,建立如图坐标系(图 1-5 解答) 船的位置矢量为
r xi hj
速度矢量为
dr dx v i dt dt
dx dt 2 x 10 x t dx 0 2 x 10 0 dt 1 x ln 2 x 10 0 t 2
ln 2 x 10 ln 10 2t
ln 2 x 10 2t 10 1 x 1 e 2t 5
得质点的运动方程为
x 5 e 2t 1
x2 x3 x2 2 1 1m
a
t 2s O
1
习题 1-1 解答图
t 0 5 x/m
前 3s 内它的路程
S x1 x2 4 1 5m
前 3s 内它的位移
x x1 x2 4 1 3m
1-2 有一质点沿 x 轴作直线运动,t 时刻的坐标为
(2)第 2 秒末的瞬时速度为
v t 2 s
(3)质点的速度为
t 2 s
v
令v
dx 9t 6t 2 0 ,得 t 1.5s 。 dt 1 ~ 1.5s 时间内质点的位移为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.10 半径为R 的无限长圆柱体内均匀带电,电荷体密度为ρ,求电场强度分布。

解:无限长圆柱体带电所激发的电场具有轴对称性,可用高斯定理。

取高斯面为:半径为r ,长为l 的圆柱体,轴线为圆柱带电体的轴线。

当r R <时,高斯定理为: 2110
1
22r E rl r l E ρπρπεε•=
⇒=
当r R >时,高斯定理为:
2
2
22001
22R E rl R l E r
ρπρπεε•=⇒=
9.11 在半径为1R 和2R 的两个同心球面上,分别均匀地分布着电荷1Q 和2Q ,求:⑴ Ⅰ, Ⅱ,Ⅲ三个区域内的电场强度分布;⑵ 若12Q Q =-,情况如何。

解:⑴ 电荷激发的电场为球对称,取高斯面为雨带电球面同球心,半径为r 的球面,由
高斯定理可得:1
2
112
012
2004r R Q E r R r R Q Q r R πεε⎧

<⎪
⎪•=<<⎨⎪
⎪+>⎪⎩
所以可得到电场强度的表达式为:10E =,10r R << 1
22
014Q E r
πε=
,12R r R << 12
32
014Q Q E r πε+=
,2r R >
⑵ 若12Q Q =-,10E =,10r R <<,
1
22
014Q E r πε=
,12R r R << 30E =,2r R >
9.16 求题9.10中无限长带电直圆柱体的电势分布(以轴线为零电势参考点)
解:电场强度分布为:10
2r
E ρε=
,0r R << 2
202R E r
ρε=,r R >
并由题意可知,电势为零的点为轴线处,即0r =处。

当0r R <<时,电势为:2
110
4r
r
r U Edr E dr ρε=
==-⎰

当r R >时,电势为:220
22100ln 42R
r
r
R R R R
U Edr E dr E dr r
ρρεε=
=+=-+⎰


9.17 求题9.11中同心均匀带电球面在Ⅰ,Ⅱ,Ⅲ三个区域内的电势分布。

解:电场强度的分布为:10E =,10r R << 1
22
014Q E r
πε=
,12R r R << 12
32
014Q Q E r
πε+=
,2r R > 当10r R <<时,12
1
2
1123R R r
r
R R U Edr E dr E dr E dr ∞

=
=++⎰
⎰⎰⎰
2
12
112001144R R R Q Q Q r r πεπε∞
+⎛⎫⎛⎫
=-- ⎪ ⎪⎝⎭⎝⎭
1201
02
44Q Q R R πεπε=
+
当12R r R <<时,22
223R r
r
R U Edr E dr E dr ∞

=
=+⎰
⎰⎰
112
0202
1144Q Q Q r R R πεπε⎛⎫+=-+
⎪⎝⎭ 12002
44Q Q r
R πεπε=
+
当2r R >时,12
12332001144r
r r Q Q Q Q U Edr E dr dr r
r πεπε∞


++=
===⎛⎜⎠⎰
⎰ 9.18 电荷Q 均匀分布在半径为R 的球体内,求球体内外的电势分布。

解:电场强度分布:由高斯定理得到:0
S
q
EdS ε=

2
3302013444314Q r E r r R R r E Q r R
ππεππε⎧=<⎪⎪
⎨⎪=>⎪⎩
电场强度的表达式为:()13
04Qr
E r R R πε=
< ()22
04Q E r R r πε=
>
当r R <时,112R
r
r
R
U Edr E dr E dr ∞

=
=+⎰
⎰⎰
222
33
00003422488Q
R r Q Q Qr R R R
πεπεπεπε⎛⎫=-+=- ⎪⎝⎭ 当r R >时,2204r
r
Q U Edr E dr r
πε∞

===


12.2 解:02
sin 4Idl dB r μθ
π=
()21000122sin sin cos cos 444L I Idl I B d r a a
θθμμμθθθθθπππ===-⎛⎛⎜⎜⎠⎠ 图中的12
π
θ=,2θπ→,所以可以得到:
00cos cos 424I I
B a a
μμππππ⎛⎫=
-= ⎪⎝⎭,方向垂直于纸面向里。

12.3 解:两条长直导线电流在其延长线上O 点的磁感应强度为零。

1
4
弧长在O 点的磁感应强度的大小为:1
0022
48R I I
B dl R R
πμμπ==

方向为垂直于纸面向里。

12.5 解:铁环不通电流,两条直线电流在O 点处产生的磁感应强度为零。

因此环中心O 处的磁感应强度为:0B =。

15.2 解:已知条件:6000A λ=,4m D =,垂直入射,两第五级明条纹中心之间的距离
为4cm 。

2551022410m D D x d d
λλ
-=⨯
==⨯ 双缝之间的距离:103
2
5101046000100.610m=0.6mm 2410
D d x λ---⨯⨯⨯===⨯⨯
15.7 解:设G 的厚度为x ,2S P ,1S P 的几何路程分别为1r ,2r ,则由题意可知: 211r x n x r k λ-+-= 1n 为玻璃的折射率 ()
211212
r x d n x nd r k λ
--++-=+
两式联立可得:()()()
10
75000101 1.8510m 2212 2.351n d d n λλ
--⨯-=⇒===⨯-⨯-
15.9 解:光程差为:22
nd λ
δ=+
, 第k ,1k +级暗条纹的条件为:
()22122k k nd k λ
λδ=+
=+,()1122322
k k nd k λλ
δ++=+=+
可以得到:()112k k k k n d d δδ++-=-,则相邻两暗纹对应厚度间隔为: 12k k d d d l n
λ
α+∆=-=
=∆,所以劈尖的夹角为:
1053
589310 3.8810rad 22 1.52510
n l λ
α---⨯===⨯∆⨯⨯⨯ 15.11 解:平凸透镜的曲率半径为:20m R =,透镜的半径为: 2.12cm 2
D
r == 产生牛顿环的光程差为:22
nd λ
δ=+
曲率半径,厚度,透镜半径之间的关系为:()
2
2
2
22k k
k k r R r R d d R
=+-⇒=
光程差:222222
k k r nr n
k R R λλδλ=+=+= 当1n =时,可得:()224101 2.12101
35.50.5362206328102
k r k R λ--⨯=+=+=+=⨯⨯条
16.2 解:已知条件:-7
5461A=5.46110m λ=⨯
缝宽 -4
0.1mm=1.010m a =⨯,焦距 0.5m f =
第一级暗条纹:103
1114
546110sin sin 5.461101.010
a a λ
θλθθ---⨯=⇒===⨯=⨯ ⑴ 中央亮条纹的宽度:
33112tan 220.5 5.46110 5.4610m y f f θθ--===⨯⨯⨯=⨯
⑵ 一级次极大条纹的宽度应为第一级暗纹与第二级暗纹之间的宽度。

111sin sin a a
λ
θλθθ=⇒==
2222sin 2sin a a
λθλθθ=⇒==
一级次极大条纹的宽度为:
()()312121tan tan 2.7310m f
y f f f a
λθθθθ-=-=-=
=⨯
16.3 解:⑴
5890A λ=,0.1mm a =
311sin sin 5.8910rad a a
λ
θλθ-=⇒==⨯
所以:3
1 5.8910rad θ-=⨯

5890A λ=,10.50.0087rad θ==
10
511589010sin 6.7710m 0.0087
a a λθλθ--⨯=⇒===⨯
16.4 解:设未知波长为1λ,红光的波长为2λ,由题意可知:
17sin 2a θλ= 25sin 2
a θλ= 1212755
4286A 227
λλλλ=⇒==。

相关文档
最新文档