湖南省永州市2015年中考数学真题试题(含解析)
湖南省永州市中考数学真题试题含解析
湖南省永州市中考数学试卷一、选择题,共10小题,每小题3分,共30分1.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013 B.2014 C.2015 D.2016考点:数轴..分析:数轴上两点间的距离等于表示这两点的数的差的绝对值.解答:解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015,故选:C.点评:本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)(2015•永州)下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a8考点:平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:A:根据同底数幂的乘法法则判断即可.B:平方差公式:(a+b)(a﹣b)=a2﹣b2,据此判断即可.C:根据幂的乘方的计算方法判断即可.D:根据合并同类项的方法判断即可.解答:解:∵a2•a3=a5,∴选项A不正确;∵(﹣a+b)(a+b)=b2﹣a2,∴选项B正确;∵(a3)4=a12,∴选项C不正确;∵a3+a5≠a8∴选项D不正确.故选:B.点评:(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(4)此题还考查了合并同类项的方法,要熟练掌握.3.(3分)(2015•永州)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为考点:众数;加权平均数;中位数;概率公式..分析:分别利用众数、中位数、平均数及概率的知识求解后即可判断正误;解答:解:A、数据170出现了3次,最多,故众数为170,正确,不符合题意;B、排序后位于中间位置的两数为168和170,故中位数为169,正确,不符合题意;C、平均数为(168+165+168+166+170+170+176+170)÷4=169.125,故错误,符合题意;D、从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为=,故选C.点评:本题考查了众数、加权平均数、中位数及概率公式,解题的关键是能够分别求得有关统计量,难度不大.4.(3分)(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00考点:一元一次方程的应用..分析:设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人”列出方程并解答.解答:解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.(3分)(2015•永州)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.14考点:由三视图判断几何体..分析:从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案.解答:解:由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个,故选:B.点评:本题考查的知识点是简单空间图形的三视图,分析出每摞碟子的个数是解答的关键.6.(3分)(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°考点:圆周角定理..分析:先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数.解答:解:∵和所对的圆心角分别为90°和50°,∴∠A=25°,∠ADB=45°,∵∠P+∠A=∠ADB,∴∠P=∠AD B﹣∠P=45°﹣25°=20°.故选D.点评:此题考查了圆周角定理及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题.7.(3分)(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.A﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0考点:一元一次不等式组的整数解..分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.解答:解:∵不等式组的解集为m﹣1<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣1<﹣1,解得:﹣1≤m<0恰有两个整数解,故选A.点评:本题考查了解一元一次不等式组,不等式组的解集的应用,解此题的关键是能求出关于m的不等式组,难度适中.8.(3分)(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.A B2=AD•AC D.=考点:相似三角形的判定..分析:根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.解答:解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.9.(3分)(2015•永州)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)考点:角平分线的性质..分析:根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD.解答:解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.点评:此题考查角平分线的性质,关键是根据AB=CD和三角形等底作出等高即可.10.(3分)(2015•永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数)B.0≤x﹣[x]<1C.[x+y]≤[x]+[y] D.[n+x]=n+[x](n为整数)考点:一元一次不等式组的应用..专题:新定义.分析:根据“定义[x]为不超过x的最大整数”进行计算.解答:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.点评:本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年高考常考的题型.二、填空题,共8小题,每小题3分,共24分11.(3分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为0元,0用科学记数法表示为 3.65×108.考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将0用科学记数法表示为3.65×108.故答案为:3.65×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2015•永州)如图,∠1=∠2,∠A=60°,则∠ADC=120 度.考点:平行线的判定与性质..分析:由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.解答:解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°点评:本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.13.(3分)(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x ≥2时,y≤0.考点:待定系数法求一次函数解析式;一次函数的性质..分析:利用待定系数法把点A(0,﹣1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可.解答:解:∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0),∴,解得:这个一次函数的表达式为y=﹣x+1.解不等式﹣x+1≤0,解得x≥2.故答案为x≥2.点评:本题考查了待定系数法求一次函数解析式,解不等式,把点的坐标代入函数解析式求出解析式是解题的关键.14.(3分)(2015•永州)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).考点:反比例函数图象上点的坐标特征..分析:先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解答:解:∵反比例函数y=(k>0)中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣1<0,﹣1<0,∴点A(﹣1,y1)位于第三象限,∴y1<0,∴B(1,y2)和C(2,y3)位于第一象限,∴y2>0,y3>0,∵1<2,∴y2>y3,∴y1<y3<y2.故答案为:y1,y3,y2.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(3分)(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=C D,AB=5,AE=2,则CE= 3 .考点:全等三角形的判定与性质..分析:由已知条件易证△ABE≌△AC D,再根据全等三角形的性质得出结论.解答:解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.点评:本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.16.(3分)(2015•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为π.考点:扇形面积的计算;坐标与图形性质;旋转的性质..分析:根据点A的坐标(﹣2,0),可得OA=2,再根据含30°的直角三角形的性质可得OB 的长,再根据性质的性质和扇形的面积公式即可求解.解答:解:∵点A的坐标(﹣2,0),∴OA=2,∵△ABO是直角三角形,∠AOB=60°,∴∠OAB=30°,∴OB=OA=1,∴边OB扫过的面积为:=π.故答案为:π.点评:本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.17.(3分)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF ,AE .(填A′D、A′E、A′F)考点:平移的性质;等腰三角形的性质..分析:根据三角形中线的定义,可得答案,根据三角形角平分线的定义,可得答案,三角形高线的定义,可得答案.解答:解:,在等腰△AB C中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF,AE,故答案为:A′D,A′F,A′E.点评:本题考查了平移的性质,平移不改变三角形的中线,三角形的角平分线分角相等,三角形的高线垂直于角的对边.18.(3分)(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015= 2 .考点:尾数特征..分析:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2015÷10的商和余数,再根据商和余数,即可求解.解答:解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,1+6+1+6+5+6+1+6+1+0=33,2015÷10=201…5,33×201+(1+6+1+6+5)=6633+19=6652.故a1+a2+a3+…+a2013+a2014+a2015=2.故答案为:2.点评:考查了尾数特征,本题关键是得出正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环.三、简单题,共9小题,共76分19.(6分)(2015•永州)计算:cos30°﹣+()﹣2.考点:实数的运算;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项化为最简二次根式,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=﹣+4=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2015•永州)先化简,再求值:•(m﹣n),其中=2.考点:分式的化简求值..分析:先根据分式混合运算的法则把原式进行化简,再由=2得出m=2n,代入原式进行计算即可.解答:解:原式=•(m﹣n)=,由=2得m=2n,故原式===5.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.考点:条形统计图;用样本估计总体;扇形统计图..分析:(1)用A类的人数除以它所占的百分比,即可得样本容量;(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;(3)用2000乘以26%,即可解答.解答:解:(1)20÷20%=100,∴本次抽样调查的样本容量为100.(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,如图所示:(3)2000×26%=520(人).故若该校有2000名学生.估计观看“中国汉字听写大会”节目不喜欢的学生人数为520人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2015•永州)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.考点:一元二次方程的解;根与系数的关系..分析:把x=﹣1代入已知方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.解答:解:设方程的另一根为x2,则﹣1+x2=﹣1,解得x2=0.把x=﹣1代入x2+x+m2﹣2m=0,得(﹣1)2+(﹣1)+m2﹣2m=0,即m(m﹣2)=0,解得m1=0,m2=2.综上所述,m的值是0或2,方程的另一实根是0.点评:本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.23.(8分)(2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E 点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.考点:全等三角形的判定与性质..专题:证明题.分析:(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.解答:(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADE=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△AB C和△EDC中,,∴△ABC≌△EDC(SAS).点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.24.(10分)(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.考点:勾股定理的应用;垂径定理的应用..分析:(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.解答:解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=800m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×800=400m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=30米/分钟,∴重型运输卡车经过BD时需要60÷30=2(分钟).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为2分钟.点评:此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响.25.(10分)(2015•永州)如图,已知△AB C内接于⊙O,且AB=AC,直径AD交BC于点E,F 是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.考点:垂径定理;勾股定理;菱形的判定..分析:(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;(3)设DE=x,则根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD.解答:(1)证明:∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.点评:本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键.26.(10分)(2015•永州)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.考点:二次函数综合题..专题:计算题.分析:(1)设顶点式y=a(x﹣1)2,然后把(0,)代入求出a即可;(2)根据二次函数图象上点的坐标,设P(x,(x﹣1)2),易得PM=(x﹣1)2+1,然后利用两点的距离公式计算PR,得到PR2=(x﹣1)2+[(x﹣1)2﹣1]2,接着根据完全平方公式变形可得PR2=[(x﹣1)2+1]2,则PR=(x﹣1)2+1,所以PR=PM,于是可判断点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)根据(2)的结论得到得QN=QR,PR=PM,则PQ=PR=QR=PM+QN,再证明EF为梯形PMNQ的中位线,所以EF=(QN+PM),则EF=PQ=EQ=EP,根据点与圆的位置关系得到点F在以PQ为直径的圆上,则根据圆周角定理得∠PFQ=90°,即有PF⊥QF.解答:(1)解:设抛物线解析式为y=a(x﹣1)2,把(0,)代入得a=,所以抛物线解析式为y=(x﹣1)2;(2)证明:如图1,设P(x,(x﹣1)2),则PM=(x﹣1)2+1,∵PR2=(x﹣1)2+[(x﹣1)2﹣1]2=(x﹣1)2+[(x﹣1)]4﹣(x﹣1)2+1=[(x ﹣1)]4+(x﹣1)2+1=[(x﹣1)2+1]2,∴PR=(x﹣1)2+1,∴PR=PM,即点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)证明:由(2)得QN=QR,PR=PM,∴PQ=PR=QR=PM+QN,∵EF⊥MN,QN⊥MN,PM⊥MN,而E为线段PQ的中点,∴EF为梯形PMNQ的中位线,∴EF=(QN+PM),∴EF=PQ,∴EF=EQ=EP,∴点F在以PQ为直径的圆上,∴∠PFQ=90°,∴PF⊥QF.点评:本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和梯形的中位线性质;理解坐标与图形性质;会利用待定系数法求二次函数解析式和利用两点间的距离公式计算线段的长.要充分运用(2)的结论解决(3)中的问题.27.(10分)(2015•永州)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.考点:圆的综合题..专题:探究型.分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN 是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.解答:解:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=O P=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°∴∠COP1=∠BOP1=60°,∠MP1N=60°.∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•s in∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.点评:本题主要考查了圆内接四边形的判定定理、圆周角定理、在同圆中弧与圆心角的关系、矩形的判定与性质、等边三角形的判定与性质、三角函数、角平分线的性质等知识,推出MN=OP•sin∠MQN是解决本题的关键.。
中考数学复习专题元一次方程含中考真题解析
专题06 一元一次方程2年中考2015年题组1.2015梧州一元一次方程410x +=的解是A .14B . 14-C . 4D . 4-答案B .解析试题分析:41x =-,所以14x =-.故选B . 考点:解一元一次方程.2.2015无锡方程2132x x -=+的解为A .x=1B .x=﹣1C .x=3D .x=﹣3答案D .解析试题分析:移项得:2x ﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D .考点:解一元一次方程.3.2015南充学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是A.25台 B.50台 C.75台 D.100台答案C.考点:一元一次方程的应用.4.2015深圳某商品的标价为200元,8折销售仍赚40元,则商品进价为元.A.140 B.120 C.160 D.100答案B.解析试题分析:设商品的进价为每件x元,售价为每件×200元,由题意,得×200=x+40,解得:x=120.故选B.考点:一元一次方程的应用.5.2015永州永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为A.10:00 B.12:00 C.13:00 D.16:00答案C.解析试题分析:设开幕式当天该景区游客人数饱和的时间约为x点,则x﹣8×1000﹣600=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选C.考点:一元一次方程的应用.6.2015长沙长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为A.元 B.875元 C.550元 D.750元答案B.考点:一元一次方程的应用.7.2015大庆某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为A .880元B .800元C .720元D .1080元答案A .解析试题分析:设1月份每辆车售价为x 元,则2月份每辆车的售价为x ﹣80元,依题意得 100x=x ﹣80×100×1+10%,解得x=880.即1月份每辆车售价为880元.故选A .考点:一元一次方程的应用.8.2015济南若代数式45x -与212x -的值相等,则x 的值是A .1B .32C .23 D .2答案B .解析 试题分析:根据题意得:21452x x --=,去分母得:8x ﹣10=2x ﹣1,解得:x=32,故选B . 考点:解一元一次方程.9.2015杭州某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程A .54﹣x=20%×108B .54﹣x=20%108+xC .54+x=20%×162D .108﹣x=20%54+x答案B .解析试题分析:设把x 公顷旱地改为林地,根据题意可得方程:54﹣x=20%108+x .故选B .考点:由实际问题抽象出一元一次方程.10.2015大连方程32(1)4x x +-=的解是A .25x =B .56x =C .x=2D .x=1答案C .考点:解一元一次方程.二、填空题11.2015崇左4个数a 、b 、c 、d 排列成 a bc d ,我们称之为二阶行列式,规定它的运算法则为: a b ad bc c d =-.若 3 3123 3x x x x +-=-+,则x=____.答案1.解析 试题分析:根据规定可得:223 3(3)(3)12123 3x x x x x x x +-=+--==-+,整理得:1x =,故答案为:1.考点:1.解一元一次方程;2.新定义.12.2015常州已知2x =是关于x 的方程1(1)2a x a x +=+的解,则a 的值是 . 答案45.解析试题分析:把2x =代入方程得:1322a a =+,解得:a=45.故答案为:45. 考点:一元一次方程的解. 13.2015甘孜州已知关于x 的方程332x a x -=+的解为2,则代数式221a a -+的值是 .答案1.解析 试题分析:∵关于x 的方程332x a x -=+的解为2,∴23232a -=+,解得a=2,∴原式=4﹣4+1=1.故答案为:1.考点:一元一次方程的解.14.2015孝感某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水 m3.答案28.解析试题分析:设该用户居民五月份实际用水x 立方米,故20×2+x﹣20×3=64,故x=28.故答案为:28.考点:一元一次方程的应用.15.2015荆门王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.答案5.考点:一元一次方程的应用.16.2015安徽省已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则111a b+=;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是把所有正确结论的序号都选上.答案①③④.解析试题分析:①∵a+b=ab≠0,∴111a b+=,此选项正确;②∵a=3,则3+b=3b,b=32,c=92,∴b+c=3922+=6,此选项错误;③∵a=b=c,则2a=2a=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=2a,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①③④.故答案为:①③④.考点:1.分式的混合运算;2.解一元一次方程.17.2015白银关于x的方程22403kx x--=有实数根,则k的取值范围是.答案k≥﹣6.解析试题分析:当k=0时,2403x--=,解得x=16-,当k≠0时,方程22403kx x--=是一元二次方程,根据题意可得:△=2164()03k-⨯-≥,解得k≥﹣6,且k≠0,综上k≥﹣6,故答案为:k≥﹣6.考点:1.根的判别式;2.一元一次方程的解.18.2015湘潭湘潭盘龙大观园开园啦其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.答案50.考点:一元一次方程的应用.19.2015牡丹江某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.答案100.解析试题分析:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案为:100.考点:一元一次方程的应用.20.2015龙东某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.答案18或.考点:1.一元一次方程的应用;2.分类讨论;3.综合题.21.2015鄂尔多斯如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.答案AB.解析试题分析:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为3:1,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×113+=2a,乙行的路程为2a×313+=32a,在AB边相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在CB边相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在DC边相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在AB边相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在AD边相遇;…因为2015=350344⨯,所以它们第2015次相遇在边AB上.故答案为:AB.考点:1.一元一次方程的应用;2.动点型.22.2015重庆市从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为 .答案35.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.23.2015义乌实验室里,水平桌面上有甲、乙、丙三个圆柱形容器容器足够高,底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通即管子底端离容器底5cm,现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm .答案35或3320或17140.考点:1.一元一次方程的应用;2.分类讨论.24.2015嘉兴公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.答案133 8.解析试题分析:设“它”为x,根据题意得:1197x x+=,解得:x=1338,则“它”的值为1338,故答案为:1338.考点:1.一元一次方程的应用;2.数字问题.25.2015百色某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.1甲队必答题答对答错各多少题2抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了”,小汪说:“小黄的话不一定对”,请你举一例说明“小黄的话”有何不对.答案1甲队答对18道题,则甲队答错或不答的有2道题;2举例见试题解析.考点:1.一元一次方程的应用;2.分类讨论;3.综合题.26.2015泰州某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标答案20.解析试题分析:设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.试题解析:设每件衬衫降价x元,依题意有:120×400+120﹣x×100=80×500×1+45%,解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.考点:1.一元一次方程的应用;2.销售问题.27.2015深圳下表为深圳市居民每月用水收费标准,单位:元/m3.1某用户用水10立方米,公交水费23元,求a的值;2在1的前提下,该用户5月份交水费71元,请问该用户用水多少立方米答案1;228.考点:一元一次方程的应用.28.2015宁德为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个答案亚洲的意向创始成员国有34个,欧洲的意向创始成员国有18个.解析试题分析:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x ﹣2个,根据题意得出方程求解即可.试题解析:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x ﹣2个,根据题意得:2x﹣2+x+5=57,解得:x=18,∴2x﹣2=34.答:亚洲的意向创始成员国有34个,欧洲的意向创始成员国有18个.考点:一元一次方程的应用.29.2015海南省小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少答案A 35元,B 25元.解析试题分析:设A号计算器的单价为x元,则B型号计算器的单价是x﹣10元,根据题意列出方程并解答.试题解析:设A号计算器的单价为x元,则B型号计算器的单价是x﹣10元,依题意得:5x=7x﹣10,解得x=35.所以35﹣10=25元.答:A号计算器的单价为35元,则B型号计算器的单价是25元.考点:一元一次方程的应用.30.2015怀化小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.答案小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.考点:一元一次方程的应用.31.2015云南省为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少答案5,3.解析试题分析:设胜了x场,那么负了8﹣x场,根据得分为13分可列方程求解.试题解析:设胜了x场,那么负了8﹣x场,根据题意得:2x+18﹣x=13,x=5,8﹣5=3.答:九年级一班胜5场、负3场.考点:一元一次方程的应用.32.2015本溪暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.1旅游团中成人和儿童各有多少人2旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫不足10件不赠送,儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元答案1成人有45人,儿童有24人;220.考点:1.一元一次不等式的应用;2.一元一次方程的应用;3.最值问题.2014年题组1.2014年广西玉林中考下面的数中,与﹣2的和为0的是A.2 B.2- C.12 D.12-答案A.解析试题分析:设这个数为x,由题意得:x+﹣2=0,解得,x=2,故选A.考点1.有理数的加法;2.方程思想的应用.2. 2014年湖北咸宁中考若代数式x+4的值是2,则x 等于A. 2B. 2-C. 6D. 6-答案B .解析试题分析:依题意,得x+4=2,解得x=﹣2.故选B .考点:解一元一次方程.3. 2014年山东滨州中考方程2x 13-=的解是A .-1B .12 C .1 D .2答案D .解析试题分析:根据方程两边左右相等的未知数的值叫做方程的解的定义,将各选项代入2x 13-=验证即可知2是方程的解或解方程2x 13-=与各选项比较.故选D .考点:方程的解.4.2014·湖州中考方程2x ﹣1=0的解是x= .答案1 2.解析试题分析:根据等式性质计算.即解方程步骤中的移项、系数化为1:移项得:2x=1,系数化为1得:x=1 2.考点:方程的解.5.2014年黑龙江大庆中考某市出租车起步价是5元3公里及3公里以内为起步价,以后每公里收费是元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为元,则此出租车行驶的路程可能为A. 5.5公里B. 公里C. 公里D. 公里答案B.考点:一元一次方程的应用.6.2014年江苏无锡中考某文具店一支铅笔的售价为元,一支圆珠笔的售价为2元.该店在“61儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为A. 1.2×+2×60+x=87B. ×+2×60﹣x=87C. 2×+×60+x=87D. 2×+×60﹣x=87答案B.解析试题分析:要列方程,首先要根据题意找出存在的等量关系,本题根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+60﹣x支圆珠笔的售价=87,据此列出方程:×+2×60﹣x=87.故选B.考点:由实际问题抽象出一元一次方程销售问题.7.2014年山东枣庄中考某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是A. 350元B. 400元C. 450元D. 500元答案B.解析试题分析:设该服装标价为x元,由题意,根据售价﹣进价=利润得﹣200=200×20%,解得:x=400.∴该服装标价为400元.故选B.考点:一元一次方程的应用.8.2014·绍兴中考天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为A .10克B .15克C .20克D .25克答案A .考点:一元一次方程的应用.9. 2014年山东滨州中考解方程:2x 11x 232++-= 答案解:去分母,得()()1222x 131x -+=+,去括号,得124x 233x --=+,移项,得4x 3x 3122--=-+,合并同类项,得7x 7-=-,化x 的系数为1,得x 1=.∴原方程的解为x 1=.考点:解一元一次方程.10.2014·吉林中考为促进交于均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.答案该班男生、女生分别是24人、21人.考点:一元一次方程的应用.考点归纳归纳 1:有关概念基础知识归纳:一元一次方程的概念1、方程含有未知数的等式叫做方程.2、方程的解能使方程两边相等的未知数的值叫做方程的解.3、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项.基本方法归纳:判断一元一次方程时只需看未知数的个数及未知数的次数为1即可;方程的解只需带入方程看等式是否成立即可.注意问题归纳: 未知数的系数必须不能为零.例12014·眉山方程312x -=的解是A .1x =B .1x =-C .13x =-D .13x = 答案A .解析 试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A . 考点:一元一次方程的解.归纳 2:一元一次方程的解法基础知识归纳:1、等式的性质1等式的两边都加上或减去同一个数或同一个整式,所得结果仍是等式.2等式的两边都乘以或除以同一个数除数不能是零,所得结果仍是等式.2、解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.基本方法归纳:根据解一元一次方程的步骤计算即可.注意问题归纳:利用等式的性质2时注意:除数不能是零;解方程去分母时应该每项都乘;去括号时注意应该变号.例22014年山东滨州中考解方程:2x11x 232++ -=考点:解一元一次方程.归纳 3:一元一次方程的应用基础知识归纳:1、列一元一次方程解应用题的一般步骤:1审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.2设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.3列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.4解方程.5检验,看方程的解是否符合题意.6写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.例32014山东淄博为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:第二档大于200小于400第三档大于等于400例如:一户居民七月份用电420度,则需缴电费420×=357元.某户居民五、六月份共用电500度,缴电费元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度答案1.考点:一元一次方程的应用.1年模拟1.2015届北京市门头沟区中考二模为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:如果小明某次租赁自行车3小时,缴费14元,请判断小明该次租赁自行车所在地区的类别是类填“A、B、C”中的一个.答案B.解析试题分析:如果租赁自行车所在地区的类别是A类,应该收费:×4+×8=28元,如果停车所在地区的类别是B类,应该收费:×4+×8=14元,如果停车所在地区的类别是C类,应该收费:0×4+×8=6元,故答案为:B.考点:1.一元一次方程的应用;2.分段函数.2.2015届广东省佛山市初中毕业班综合测试某种衣服每件的进价为100元,如果按标价的八折销售时,每件的利润率为20%,则这种衣服每件的标价是元.答案150.解析试题分析:设这种衣服的标价是x元,80%x-100=100×20%,x=150,这种衣服的标价是150元.故答案为:150.考点:一元一次方程的应用.3.2015届北京市门头沟区中考二模列方程或方程组解应用题:4年北京市生产运营用水和居民家庭用水的总和为亿立方米,其中居民家庭用水比生产运营用水的3倍还多亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.答案和.考点:一元一次方程的应用.。
2015湖南省永州市中考数学 (含详细答案)
2015年湖南省永州市中考数学试卷(满分130分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)永州市1.(2015湖南省永州市,1,3分)在数轴上表示数-1和2014的两点分别为A和B,则A、B两点间的距离为( )A.2013 B.2014 C.2015 D.2016【答案】C【解析】解:2014-(-1)=2015,故答案选C.2.(2015湖南省永州市,2,3分)下列算正确的是( )A. a2•a3=a6B.(-a+b)(a+b)=b2-a2C. (a3)4=a7D. a3+a5=a8【答案】B【解析】解:(-a+b)(a+b)=(b-a)( b+a)=b2-a2.故答案选B.3.(2015湖南省永州市,3,3分)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166, 170,170,176, 170,则下列说法错误的是( )A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从这8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为1 2【答案】C【解析】解:(168+165+168+166+170+170+176+170)÷8=169.125≠169. 故答案选C.4.(2015湖南省永州市,4,3分)永州市般牌县的刚明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期问举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花在文化节开幕式当天,从甲晨8∶00开始每小时进入阳明山景区的游客人数约为1000人.同时每小时走出景区的游客人数约为600人.已知阳明山景隧游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱利和的时间约为( )A .10∶00 B.12∶00 C.13∶00 D. 16∶00【答案】C【解析】解:2000÷(1000-600)=5(小时),8∶00+5=13∶00,故答案选C.5.(2015湖南省永州市,5,3分)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D. 14【答案】B【解析】解:观察分析其三视图可知∶A处有4个碟子、B处有3个碟子、C处有5个碟子,则这张桌子上碟子的总数为4+3+5=12. 故答案选B.CBA6.(2015湖南省永州市,6,3分)如下图,P是⊙O外一点,P A,PB分别交⊙O于C,D两点,已知AB和CD所对的圆心角分别为90°和50°,则∠P=()A. 45°B. 40°C. 25°D.20°DCOAPB(第6题图)【答案】D【解析】解:∵AB和CD所对的圆心角分别为90°和50°,∴∠ADB=12×90°=45°,∠CAD=12×50°=25°,∴∠P=∠ADB―∠CAD=45°-25°=20°. 故答案选D.7.(2015湖南省永州市,7,3分)若不等式组11xx m<⎧⎨>-⎩恰有两个整数解,则m的取值范围是()A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <0 【答案】C【解析】解:不等式组11x x m <⎧⎨>-⎩的解集应为:m -1<x <1,则这个不等式组的两个整数解应为-1,0.那么-2≤m -1<-1,∴-1≤m <0. 故答案选C.8. (2015湖南省永州市,8,3分)如下图,下列条件不能..判定△ADB ∽△ABC 的是( ) A .∠ABD =∠ACB B.∠ADB =∠ABC C.AB 2=AD •AC D .AD ABAB BC=ACBD(第8题图)【答案】D【解析】解:在△ADB 和△ABC 中,∠A 是它们的公共角,那么当AD ABAB AC=时,才能使△ADB ∽△ABC ,不是AD ABAB BC=. 故答案选D.9.(2015湖南省永州市,9,3分)如下图,在四边形ABCD 中,AB =CD ,BA 和CD 的延长线交于点E ,若点P 使得S △P AB =S △PCD ,则满足此条件的点P ( ) A .有且只有1个 B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)ACDE(第9题图)【答案】D【解析】解:因为AB =CD ,所以要使S △P AB =S △PC D 成立,那么点P 到AB ,CD 的距离应相等,当点P 在组成∠E 的角平分线所在的直线(E 点除外)上时,点P 到AB ,CD 的距离相等,故答案选D.10.(2015湖南省永州市,10,3分)定义[x ]为不超过x 的最大整数,如[3.6]=3, [0.6]=0, [-3.6]=-4.对于任意实数x ,下列式子中错误的是( ) A.[x ]=x (x 为整数) B.0≤x -[x ] <1C.[x +y ]≤[x ]+[y ]D.[n +x ]=n +[x ](n 为整数) 【答案】C【解析】解:我们不妨取x =-3.5,y =-3.2,那么[x +y ]=[-3.5-3.2]=[-6.7]=-7,[x ]+[y ]=[-3.5]+[-3.2]=-4+(-4)=-8,此时[x +y ]>[x ]+[y ]. 故答案选C.二、填空题(本大题共8小题,每小题3分,满分24分.)11.(2015湖南省永州市,11,3分)国家森林城市的创建极人地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量.截至2014年,全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”称号.永州市也正在积极创建“国家森林城市”,据统计近两年全市投入“创森”资金约为365000000元.365000000用科学记数法表示为________.【答案】3.65×108.【解析】解:365 000 000=3.65×100 000 000=3.65×108.12.(2015湖南省永州市,12,3分)如下图,∠1=∠2,∠A =60°,则∠ADC =_ _度.21ABD(第12题图)【答案】120【解析】解:∵∠1=∠2,∴AB ∥CD .∴∠A +∠ADC =180°.∵∠A =60°,∴∠ADC =120°.13. (2015湖南省永州市,13,3分)已知一次函数y =kx +b 的图象经过两点A (0,1),B (2,0),则当x ____时,y ≤0. 【答案】x ≥2【解析】解:将点A (0,1),B (2,0)分别代入y =kx +b 可得b =1,k =―12.∴y =―12x +1.若y ≤0,则―12x +1≤0,解得x ≥2.14. (2015湖南省永州市,14,3分)已知点A (-1,y 1),B (1,y 2), C (2, y 3)都在反比例函数y=kx(k >0)的图象上,则___<____<__ (填y 1,y 2, y 3). 【答案】y 1<y 3<y 2 【解析】解:由已知可得:y 1=1k k =--, y 2=1k k =, y 3=2k .∵k >0,∴-k <2k<k .即y 1<y 3<y 2.15. (2015湖南省永州市,15,3分)如下图,在△ABC 中,己知∠1=∠2,BE =CD ,AB=5,AE =2,则CE =__ __12FA BCE D(第15题图)【答案】CE =3.【解析】解:∵∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD .∴AD =AE =2,AB =AC=5.∴CE =AC -AE =5-2=3.16. (2015湖南省永州市,16,3分)如下图,在平面直角坐标系中,点A 的坐标(-2,0),△ABO 是直角三角形,∠AOB =60°,现将Rt △ABO 绕原点O 按顺时针方向旋转到Rt △A ′B ′O 的位置,则此时边OB 扫过的面积为________.xy B'BA'AO(第16题图)【答案】14π.【解析】解:在Rt △ABO 中,∵∠AOB =60°,∴∠BAO =30°,∠A ′OB =30°.∴OB =12OA =1. 由旋转可知:OB =OB ′=1,∠A ′OB ′=∠AOB =60°.∴∠BOB ′=∠A ′OB ′+∠A ′OB =90°.∴边OB 扫过的面积为=214⨯⨯π1=14π.17.(2015湖南省永州市,17,3分)在等腰△ABC 中,AB =AC ,则有BC 边上的中线、高线和∠BAC 的平分线重合于AD (如图一).若将等腰△ABC 的顶点A 向右平行移动后,得到△A 'BC (如图二).那么,此时BC 边上的中线、BC 边上的高线和∠BA ′C 的平分线应依次分别是________,________,________ (填A ′D 、A ′F 、A ′E )图二图一E D CDC BA BA'(第17题图)【答案】A ′D 、A ′F 、A ′E【解析】解:本题通过画图,即可得出结论.18.(2015湖南省永州市,18,3分)设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6. 则a 1+a 2+a 3+…+a 2013+a 2014+a 2015= . 【答案】6652【解析】解:a n 为正整数n 4的末位数,则a 1=1,a 2=6,a 3=1,a 4=6, a 5=5,a 6=6,a 7=1,a 8=6, a 9=1,a 10=0;a 11=1,a 12=6,a 13=1,a 14=6,a 15=5,…可以看出:是按照1,6,1,6,5,6,1,6,1,0的顺序依次循环出现,1+6+1+6+5+6+1+6+1+0=33.∴a 1+a 2+a 3+…+a 2013+a 2014+a 2015=201×33+(1+6+1+6+5)=6652.三、解答题(本大题共9小题,满分76分,解答应写出文字说明、证明过程或演算步骤) 19. (2015湖南省永州市,19,6分)计算:cos3012+-212⎛⎫⎪⎝⎭【答案】4【解析】解:cos30°-124+-212⎛⎫⎪⎝⎭2323=33-+422=4.20. (2015湖南省永州市,20,6分)先化简,再求值:222()2m n m n m mn n +--+,其中2mn=.【答案】5 【解析】解:222()2m nm n m mn n+--+ =22()()m nm n m n +--=2m nm n+-. ∵2mn=,∴m =2n . ∴原式=452n nn n+=-.21.(2015湖南省永州市,21,8分)中央电视台举办的“中国汉字听写大会”节日受到中学生的广泛关注,某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出了如下所示的两幅统计图.在条形图中,从左往右依次为A 类(非常喜欢),B 类(较喜欢),C 类(一般),D 类(不喜欢)已知A 类和B 类所占人数的比是5:9,请结台两幅统计图,回答下列问题:(第21题图)(1)写出本次抽样调查的样本容量; (2)请补全两幅统计图;(3)若该校有2000名学生,请你估计对观看“中国汉字写会”节日不喜欢的学生人数. 【答案】(1) 100; (2)条形图中,D 类有25名;扇形统计图中,B 类所占百分比为36%,D 类 所占百分比为25%; (3) 500名.【解析】解:(1)本次抽样调查的样本容量为:20÷20%=100. (2)补全两幅统计图如下:25%36%(第21题图)(3) 2000×25%=500(名).答:对观看“中国汉字写会”节日不喜欢的学生有500名.22.(2015湖南省永州市,22,8分)已知关于x 的一元二次方程x 2+x +m 2—2m =0有一个实根为一1,求m 的值及方程的另一个实根. 【答案】m 的值为0或2,方程的另一个实根为0.【解析】解:把x =-1代入方程,得 1-1+m 2—2m =0.解得m 1=0,m 2=2.设方程的另一个根为x 2,则由一元二次方程根与系数的关系可得 -1+x 2=-1.∴x 2=0.23. (2015湖南省永州市,23,8分)如图,在四边形ABCD 中,∠A =∠BCD =90°,BC=DC ,延长AD 到E 点,使DE =AB . (1)求证:∠ABC =∠EDC ; (2)求证:△ABC ≌△EDC .AEB CD(第23题图)【答案】(1)证明略;(2) 证明略.【解析】(1)证明:在四边形ABCD 中,∵∠A =∠BCD =90°,∴∠B +∠ADC =180°.又∵∠ADC +∠EDC =180°,∴∠ABC =∠EDC . (2) 证明:连接AC .AEB CD(第23题图)∵⎩⎪⎨⎪⎧BC =DC∠ABC =∠EDC AB =DE,∴△ABC ≌△EDC .24.(2015湖南省永州市,24,10分)如图,有两条公路OM ,ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时.(1)求对学校A 的噪声影响最大时,卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪影响的时间.30°OMNP(第24题图)【答案】(1)40米;(2)15分钟. 【解析】解:(1)过点A 作AB ⊥ON 于点B .∵∠O =30°,∴AB =12OA =40(米). 答:对学校A 的噪声影响最大时,卡车P 与学校A 的距离为40米; 30°E F B ONP(第24题图)(2)以点A 为圆心、50米为半径作⊙A ,交ON 于E ,F 两点,分别连接AE ,AF ,则AE =AF =50米.∴BE =BF 22504030-=(米).∴EF =60米.18千米/时=300米/分.60÷300=15(分).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪影响的时间为15分钟.25. (2015湖南省永州市,25,10分)如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD交BC 于点E ,F 是OE 上的一点,使CF ∥BD . (1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.EO DABCF(第25题图)【答案】(1) 证明略;(2)四边形BFCD 是菱形; 5【解析】解:(1)∵AD 是⊙O 的直径,∴∠ABD =∠ACD =90°. ∵AB =AC ,AD =AD ,∴Rt △ABD ≌Rt △ACD .∴BD =CD .∵AB =AC , BD =CD ,∴点A ,D 都在线段BC 的垂直平分线上.∴AD 垂直平分BE .∴BE =CE ,AD ⊥BC .(2) 四边形BFCD 是菱形. 理由:∵AD 垂直平分BE . ∴BF =CF . ∵CF ∥BD ,∴∠DBE =∠FCE ,∠BDE =∠CFE . 又∵BE =CE ,∴△BDE ≌△CFE . ∴BD =CF .∵BD =CD , BF =CF , BD =CF , ∴BD =CD =CF =BF . ∴四边形BFCD 是菱形.(3)∵BC =8,∴BE =CE =4.∵CE 2=AE •DE ,AE =AD -DE =10-DE , ∴42=(10-DE )•DE . 解得DE =2或8.但DE =8不合题意,应舍去. ∴CD 22CE DE +2242+5.26. (2015湖南省永州市,26,10分)已知抛物线y =ax 2+bx 十c 的项点为(1,0),与y轴的交点坐标为(0,14),R (1,1)是抛物线对称轴l 上的一点. (1)求抛物线y =ax 2+bx 十c 的解析式; (2)若P 是抛物线上的一个动点(如图一),求证:点P 到R 的距离与点P 到直线 y =-1的距离恒相等;(3)设直线PR与抛物线的另一个交点为Q,,F为线段PQ的中点,过点P,E,Q分别作直线y=-1的垂线,垂足分别为M,F,N(如图二).求证:PF⊥QF.(第26题图一) (第26题图二)【答案】(1) y=14(x-1)2;(2)证明略;(3) 证明略;.【解析】解:(1) ∵抛物线y=ax2+bx十c的项点为(1,0),∴可设其解析式为y=a(x-1)2.把(0,14)代入上式,得14= a(0-1)2. 解得a=14.∴抛物线的解析式为y=14(x-1)2.(2)设点P的坐标为(x,14(x-1)2),则PM=14(x-1)2+1,PR=(x-1)2+[14(x-1)2―1]2=14(x-1)2+1,∴PM=PR.(3) (2)中已证PM=PR..与(2)中同理可得:QN=QR.∴PM+QN=PR+QR=PQ.∵QN∥EF∥PM,且QE=PE,∴NF=MF.∴EF=12(QN+PM).∴EF=12PQ. 又∵QE=PE,∴△PQF是直角三角形,且∠PFQ=90°.∴PF⊥QF.27.(2015湖南省永州市,27,10分)问题探究:(一)新知学习:圆内接四边形的判定定理:如果四边形的对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E,F,G,H都在同一个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径,P是BC上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于BC上任意一点P(与B,C不重合)(如图一),证明:四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(与B,C不重合)从B运动到C的过程中,证明:MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到BC的中点P1时(如图二),求MN的长;②在点P(与B,C不重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.(第27题图一) (第27题图二) (第27题图三)【答案】(1)证明略,此圆直径的长为2;(2) 证明略,其定值为2;(3)①MN3②证明略;(4) 当直径AB与CD相交成90°角时,MN的长取最大值,其最大值为2.【解析】解:(1)连接OP,则OP=2.∵PM⊥CD,PN⊥AB,∴∠PMO=∠PNO=90°.∴∠PMO+∠PNO=180°.∴四边形PMON内接于圆.∵AB⊥CD,∴∠MON=90°.又∵∠PMO=∠PNO=90°,∴四边形PMON是矩形.∴OP是四边形PMON内接圆的直径.∴四边形PMON内接圆的直径为2.(2) 在(1)中已证四边形PMON是矩形.∴MN=OP.∵OP=2(是定值),∴MN的长也为定值,其定值为2;(3)①连接OP1.则OP1=2.∵P1是BC的中点,∴∠COP1=∠BOP1=12∠BOC=60°.∴∠OP1M=∠OP1N=30°.∴OM=ON=12OP1=1.∴P1M=P1N3∵∠P1MO=∠P1NO=90°,∴点O,M,P1,N都在以OP1为直径的同一个圆上.∵∠MON+∠MP1N=180°,∠MON=120°,∴∠MP1N=60°.∵P1M=P1N3∴△MP1N是等边三角形.∴MN=P1M=P1N3②连接OP,则OP=2.取OP的中点O′,并分别连接O′M,O′N.∵∠PMO=∠PNO=90°,∴点O,M,P,N都在以OP为直径的⊙O′上.∴O′M=O′N=12OP=1.∵∠MON+∠MPN=180°,∠MON=120°,∴∠MPN=60°.∴∠MO′N=2∠MPN=120°.∴∠O′MN=∠O′NM=30°.过点O ′作O ′E ⊥MN 于点E .则O ′E =12O ′M =12,∴ME =123∴MN =2 ME 3E O 'NM O DACP(第27题图三)(4)如图四,连接OP ,则OP =2.取OP 的中点O ′,并分别连接O ′M ,O ′N .∵∠PMO =∠PNO =90°,∴点O ,M ,P ,N 都在以OP 为直径的⊙O ′上.∴O ′M =O ′N =12OP =1. ∴MN ≤O ′M +O ′N =2且当点M ,O ′,N 在同一条直线上时,等号成立. 此时∠MO ′N =180°,则∠MPN =12∠MO ′N =90°. ∵点O ,M ,P ,N 四点共圆,∴∠MON =180°-∠MPN =180°-90°=90°. ∴当直径AB 与CD 相交成90°角时,MN 的长取最大值,其最大值为2. O 'NM DOACP(第27题图四)。
中考复习数学真题汇编18:三角形全等(含答案)
1. (2015江苏泰州,6,3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是 A .1对 B .2对 C .3对 D .4对【答案】D2. (2015浙江省绍兴市,7,4分)如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS第7题【答案】D【解析】本题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形常见判定方法.由图和条件可知:AB=AD ,BC=DC ,AC 是公共边,即AC=AC ,根据三角形全等的判定方法可得这两个三角形全等的依据是“边边边”,因此,本题的正确答案为D .3. (2015义乌7,3分)如图,小敏做了一个角平分仪 ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可说明△ABC ≌△ADC ,这样就有∠QAE =∠P AE .则此两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS【答案】D(第6题图)CAFODE1. (2015江西省,第9题,3分)如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA =OB .则图中有 对全等三角形.【答案】3【解析】∵∠POE=∠POF, ∠PEO=∠PFO=90°OP=OP,∴△POE ≌△POF(AAS), 又OA=OB,∠POA=∠POB,OP=OP,∴△POA ≌△POB(AAS), ∴PA=PB,∵PE=PF, ∴Rt △PAE ≌Rt △PBF(HL). ∴图中共有3对全的三角形. 故答案为32. (2015娄底市,13,3分)已知AB=BC ,要使△ABD ≌△CBD ,还需要加一个条件,你添加的条件是 .(只需写一个,不添加辅助线)【答案】AD=CD 或∠ABD=∠CBD 【解析】解:△ABD 和△CBD 中,AB=BC ,BD=BD ,根据全等三角形的判定定理可知AD=CD 或∠ABD=∠CBD 时,两三角形全等.3. (2015湖南省永州市,15,3分)如下图,在△ABC 中,己知∠1=∠2,BE =CD ,AB =5,AE =2,则CE=__ __12FA BCE D(第15题图)【答案】CE =3.【解析】解:∵∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD .∴AD =AE =2,AB =AC =5.∴CE =AC -AE=5-2=3.三、解答题1. (2015年四川省宜宾市,18,6分)如图,AC =DC ,BC =EC ,∠ACD =∠BCE 。
2015年湖南省永州市中考数学试题及参考答案(word解析版)
2015年湖南省永州市中考数学试题及参考答案与解析一、选择题(本大题共有8小题,每小题3分,共24分,每小题只有一个正确的答案)1.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013 B.2014 C.2015 D.20162.下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a83.某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为1 24.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:005.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.146.如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知AB和CD所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°7.若不等式组11x x m ⎧⎨-⎩<>恰有两个整数解,则m 的取值范围是( ) A .﹣1≤m <0 B .﹣1<m≤0 C .﹣1≤m≤0 D .﹣1<m <08.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACB B .∠ADB=∠ABC C .AB 2=AD•ACD .AD AB AB BC= 9.如图,在四边形ABCD 中,AB=CD ,BA 和CD 的延长线交于点E ,若点P 使得S △PAB =S △PCD ,则满足此条件的点P ( )A .有且只有1个B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)10.定义[x]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x ,下列式子中错误的是( )A .[x]=x (x 为整数)B .0≤x ﹣[x]<1C .[x+y]≤[x]+[y]D .[n+x]=n+[x](n 为整数)二、填空题(本大题共8小题,每小题3分,共24分)11.国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为 .12.如图,∠1=∠2,∠A=60°,则∠ADC= 度.13.已知一次函数y=kx+b 的图象经过两点A (0,1),B (2,0),则当x 时,y≤0.14.已知点A (﹣1,y 1),B (1,y 2)和C (2,y 3)都在反比例函数k y x=(k >0)的图象上. 则 < < (填y 1,y 2,y 3).15.如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE= .16.如图,在平面直角坐标系中,点A 的坐标(﹣2,0),△ABO 是直角三角形,∠AOB=60°.现将Rt △ABO 绕原点O 按顺时针方向旋转到Rt △A′B′O 的位置,则此时边OB 扫过的面积为 .17.在等腰△ABC 中,AB=AC ,则有BC 边上的中线,高线和∠BAC 的平分线重合于AD (如图一).若将等腰△ABC 的顶点A 向右平行移动后,得到△A′BC (如图二),那么,此时BC 边上的中线、BC 边上的高线和∠BA′C 的平分线应依次分别是 , , .(填A′D 、A′E 、A′F )18.设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6.则a 1+a 2+a 3+…+a 2013+a 2014+a 2015= .三、解答题(本大题共9小题,共76分)19.(6分)计算:21cos3042-⎛⎫︒-+ ⎪⎝⎭. 20.(6分)先化简,再求值:()2222m n m n m mn n +--+,其中2m n=. 21.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B 类(较喜欢),C 类(一般),D 类(不喜欢).已知A 类和B 类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.22.(8分)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.23.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.24.(10分)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.25.(10分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.26.(10分)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,14).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.27.(10分)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH 的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是BC上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于BC上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到BC的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013 B.2014 C.2015 D.2016【知识考点】数轴.【思路分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【解答过程】解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015,故选:C.【总结归纳】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a8【知识考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】A:根据同底数幂的乘法法则判断即可.B:平方差公式:(a+b)(a﹣b)=a2﹣b2,据此判断即可.C:根据幂的乘方的计算方法判断即可.D:根据合并同类项的方法判断即可.【解答过程】解:∵a2•a3=a5,∴选项A不正确;∵(﹣a+b)(a+b)=b2﹣a2,∴选项B正确;∵(a3)4=a12,∴选项C不正确;∵a3+a5≠a8∴选项D不正确.故选:B.【总结归纳】(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn (m,n是正整数);②(ab)n=a n b n(n是正整数).(4)此题还考查了合并同类项的方法,要熟练掌握.。
2015年湖南省永州市中考数学试卷
湖南省永州市2015年中考数学试卷一、选择题,共10小题,每小题3分,共30分1.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013 B.2014 C.2015 D.2016考点:数轴.分析:数轴上两点间的距离等于表示这两点的数的差的绝对值.解答:解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015,故选:C.点评:本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)(2015•永州)下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a8考点:平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:A:根据同底数幂的乘法法则判断即可.B:平方差公式:(a+b)(a﹣b)=a2﹣b2,据此判断即可.C:根据幂的乘方的计算方法判断即可.D:根据合并同类项的方法判断即可.解答:解:∵a2•a3=a5,∴选项A不正确;∵(﹣a+b)(a+b)=b2﹣a2,∴选项B正确;∵(a3)4=a12,∴选项C不正确;∵a3+a5≠a8∴选项D不正确.故选:B.点评:(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(4)此题还考查了合并同类项的方法,要熟练掌握.3.(3分)(2015•永州)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为考点:众数;加权平均数;中位数;概率公式.分析:分别利用众数、中位数、平均数及概率的知识求解后即可判断正误;解答:解:A、数据170出现了3次,最多,故众数为170,正确,不符合题意;B、排序后位于中间位置的两数为168和170,故中位数为169,正确,不符合题意;C、平均数为(168+165+168+166+170+170+176+170)÷4=169.125,故错误,符合题意;D、从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为=,故选C.点评:本题考查了众数、加权平均数、中位数及概率公式,解题的关键是能够分别求得有关统计量,难度不大.4.(3分)(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00考点:一元一次方程的应用.分析:设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人”列出方程并解答.解答:解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.(3分)(2015•永州)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.14考点:由三视图判断几何体.分析:从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案.解答:解:由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个,故选:B.点评:本题考查的知识点是简单空间图形的三视图,分析出每摞碟子的个数是解答的关键.6.(3分)(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°考点:圆周角定理.分析:先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P 的度数.解答:解:∵和所对的圆心角分别为90°和50°,∴∠A=25°,∠ADB=45°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠P=45°﹣25°=20°.故选D.点评:此题考查了圆周角定理及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题.7.(3分)(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.A﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0考点:一元一次不等式组的整数解.分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.解答:解:∵不等式组的解集为m﹣1<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣1<﹣1,解得:﹣1≤m<0恰有两个整数解,故选A.点评:本题考查了解一元一次不等式组,不等式组的解集的应用,解此题的关键是能求出关于m的不等式组,难度适中.8.(3分)(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.A B2=AD•AC D.=考点:相似三角形的判定.分析:根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.解答:解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.9.(3分)(2015•永州)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)考点:角平分线的性质.分析:根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD.解答:解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.点评:此题考查角平分线的性质,关键是根据AB=CD和三角形等底作出等高即可.10.(3分)(2015•永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数)B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)考点:一元一次不等式组的应用.专题:新定义.分析:根据“定义[x]为不超过x的最大整数”进行计算.解答:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.点评:本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年高考常考的题型.二、填空题,共8小题,每小题3分,共24分11.(3分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为 3.65×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将365000000用科学记数法表示为3.65×108.故答案为:3.65×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2015•永州)如图,∠1=∠2,∠A=60°,则∠ADC=120度.考点:平行线的判定与性质.分析:由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.解答:解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°点评:本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.13.(3分)(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x≥2时,y≤0.考点:待定系数法求一次函数解析式;一次函数的性质.分析:利用待定系数法把点A(0,﹣1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可.解答:解:∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0),∴,解得:这个一次函数的表达式为y=﹣x+1.解不等式﹣x+1≤0,解得x≥2.故答案为x≥2.点评:本题考查了待定系数法求一次函数解析式,解不等式,把点的坐标代入函数解析式求出解析式是解题的关键.14.(3分)(2015•永州)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解答:解:∵反比例函数y=(k>0)中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣1<0,﹣1<0,∴点A(﹣1,y1)位于第三象限,∴y1<0,∴B(1,y2)和C(2,y3)位于第一象限,∴y2>0,y3>0,∵1<2,∴y2>y3,∴y1<y3<y2.故答案为:y1,y3,y2.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(3分)(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.考点:全等三角形的判定与性质.分析:由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.解答:解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.点评:本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.16.(3分)(2015•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为π.考点:扇形面积的计算;坐标与图形性质;旋转的性质.分析:根据点A的坐标(﹣2,0),可得OA=2,再根据含30°的直角三角形的性质可得OB 的长,再根据性质的性质和扇形的面积公式即可求解.解答:解:∵点A的坐标(﹣2,0),∴OA=2,∵△ABO是直角三角形,∠AOB=60°,∴∠OAB=30°,∴OB=OA=1,∴边OB扫过的面积为:=π.故答案为:π.点评:本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.17.(3分)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC 的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC (如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF,AE.(填A′D、A′E、A′F)考点:平移的性质;等腰三角形的性质.分析:根据三角形中线的定义,可得答案,根据三角形角平分线的定义,可得答案,三角形高线的定义,可得答案.解答:解:,在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD (如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF,AE,故答案为:A′D,A′F,A′E.点评:本题考查了平移的性质,平移不改变三角形的中线,三角形的角平分线分角相等,三角形的高线垂直于角的对边.18.(3分)(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015=2.考点:尾数特征.分析:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2015÷10的商和余数,再根据商和余数,即可求解.解答:解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,1+6+1+6+5+6+1+6+1+0=33,2015÷10=201…5,33×201+(1+6+1+6+5)=6633+19=6652.故a1+a2+a3+…+a2013+a2014+a2015=2.故答案为:2.点评:考查了尾数特征,本题关键是得出正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环.三、简单题,共9小题,共76分19.(6分)(2015•永州)计算:cos30°﹣+()﹣2.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项化为最简二次根式,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=﹣+4=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2015•永州)先化简,再求值:•(m﹣n),其中=2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再由=2得出m=2n,代入原式进行计算即可.解答:解:原式=•(m﹣n)=,由=2得m=2n,故原式===5.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用A类的人数除以它所占的百分比,即可得样本容量;(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;(3)用2000乘以26%,即可解答.解答:解:(1)20÷20%=100,∴本次抽样调查的样本容量为100.(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,如图所示:(3)2000×26%=520(人).故若该校有2000名学生.估计观看“中国汉字听写大会”节目不喜欢的学生人数为520人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2015•永州)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.考点:一元二次方程的解;根与系数的关系.分析:把x=﹣1代入已知方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.解答:解:设方程的另一根为x2,则﹣1+x2=﹣1,解得x2=0.把x=﹣1代入x2+x+m2﹣2m=0,得(﹣1)2+(﹣1)+m2﹣2m=0,即m(m﹣2)=0,解得m1=0,m2=2.综上所述,m的值是0或2,方程的另一实根是0.点评:本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.23.(8分)(2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD 到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.解答:(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADE=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.24.(10分)(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O 点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.考点:勾股定理的应用;垂径定理的应用.分析:(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.解答:解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=800m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×800=400m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=30米/分钟,∴重型运输卡车经过BD时需要60÷30=2(分钟).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为2分钟.点评:此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响.25.(10分)(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.考点:垂径定理;勾股定理;菱形的判定.分析:(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;(3)设DE=x,则根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD.解答:(1)证明:∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.点评:本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键.26.(10分)(2015•永州)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.考点:二次函数综合题.专题:计算题.分析:(1)设顶点式y=a(x﹣1)2,然后把(0,)代入求出a即可;(2)根据二次函数图象上点的坐标,设P(x,(x﹣1)2),易得PM=(x﹣1)2+1,然后利用两点的距离公式计算PR,得到PR2=(x﹣1)2+[(x﹣1)2﹣1]2,接着根据完全平方公式变形可得PR2=[(x﹣1)2+1]2,则PR=(x﹣1)2+1,所以PR=PM,于是可判断点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)根据(2)的结论得到得QN=QR,PR=PM,则PQ=PR=QR=PM+QN,再证明EF为梯形PMNQ的中位线,所以EF=(QN+PM),则EF=PQ=EQ=EP,根据点与圆的位置关系得到点F在以PQ为直径的圆上,则根据圆周角定理得∠PFQ=90°,即有PF⊥QF.解答:(1)解:设抛物线解析式为y=a(x﹣1)2,把(0,)代入得a=,所以抛物线解析式为y=(x﹣1)2;(2)证明:如图1,设P(x,(x﹣1)2),则PM=(x﹣1)2+1,∵PR2=(x﹣1)2+[(x﹣1)2﹣1]2=(x﹣1)2+[(x﹣1)]4﹣(x﹣1)2+1=[(x ﹣1)]4+(x﹣1)2+1=[(x﹣1)2+1]2,∴PR=(x﹣1)2+1,∴PR=PM,即点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)证明:由(2)得QN=QR,PR=PM,∴PQ=PR=QR=PM+QN,∵EF⊥MN,QN⊥MN,PM⊥MN,而E为线段PQ的中点,∴EF为梯形PMNQ的中位线,∴EF=(QN+PM),∴EF=PQ,∴EF=EQ=EP,∴点F在以PQ为直径的圆上,∴∠PFQ=90°,∴PF⊥QF.点评:本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和梯形的中位线性质;理解坐标与图形性质;会利用待定系数法求二次函数解析式和利用两点间的距离公式计算线段的长.要充分运用(2)的结论解决(3)中的问题.27.(10分)(2015•永州)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.考点:圆的综合题.专题:探究型.分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.解答:解:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=OP=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°∴∠COP1=∠BOP1=60°,∠MP1N=60°.∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.点评:本题主要考查了圆内接四边形的判定定理、圆周角定理、在同圆中弧与圆心角的关系、矩形的判定与性质、等边三角形的判定与性质、三角函数、角平分线的性质等知识,推出MN=OP•sin∠MQN是解决本题的关键.。
湖南省永州市2015年中考数学试题(word版)
湖南省永州市2015年中考数学试卷一、选择题,共10小题,每小题3分,共30分3.(3分)(2015•永州)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):=,4.(3分)(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数5.(3分)(2015•永州)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()6.(3分)(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()和所对的圆心角分别为7.(3分)(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()的解集为恰有两个整数解,8.(3分)(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是()=,∴=、不能判定9.(3分)(2015•永州)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()10.(3分)(2015•永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对二、填空题,共8小题,每小题3分,共24分11.(3分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为 3.65×108.12.(3分)(2015•永州)如图,∠1=∠2,∠A=60°,则∠ADC=120度.13.(3分)(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x≥2时,y≤0.x+1解不等式﹣x+114.(3分)(2015•永州)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).(15.(3分)(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.16.(3分)(2015•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为π.OA=1扫过的面积为:=故答案为:πS=lR17.(3分)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC 的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC (如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF,AE.(填A′D、A′E、A′F)18.(3分)(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015=2.三、简单题,共9小题,共76分19.(6分)(2015•永州)计算:cos30°﹣+()﹣2.﹣20.(6分)(2015•永州)先化简,再求值:•(m﹣n),其中=2.=2,=2==521.(8分)(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.22.(8分)(2015•永州)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.23.(8分)(2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD 到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.24.(10分)(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O 点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.BC OA=×=小时,即=3025.(10分)(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.==226.(10分)(2015•永州)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.)代入求出,(PM=(+[(=[(PR=((PQ=EQ=EP,a=((+[(+[((+1=[((+1=[PR=EF=EF=27.(10分)(2015•永州)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.的中点,∠,MN=,×=2015年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
湖南省永州市2015年中考数学试卷(解析版)
湖南省永州市2018年中考数学试卷一、选择题,共10小题,每小题3分,共30分1.在数轴上表示数﹣1和2018的两点分别为A和B,则A和B两点间的距离为()2.(3分)(2018•永州)下列运算正确的是()3.(3分)(2018•永州)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()=,4.(3分)(2018•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()5.(3分)(2018•永州)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()6.(3分)(2018•永州)如图,P是⊙O外一点,P A、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()和所对的圆心角分别为7.(3分)(2018•永州)若不等式组恰有两个整数解,则m的取值范围是()的解集为恰有两个整数解,8.(3分)(2018•永州)如图,下列条件不能判定△ADB∽△ABC的是()=,∴,∠、不能判定9.(3分)(2018•永州)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△P AB=S△PCD,则满足此条件的点P()10.(3分)(2018•永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()二、填空题,共8小题,每小题3分,共24分11.(3分)(2018•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2018年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为 3.65×108.12.(3分)(2018•永州)如图,∠1=∠2,∠A=60°,则∠ADC=120度.13.(3分)(2018•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x≥2时,y≤0.x解不等式﹣x14.(3分)(2018•永州)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).(15.(3分)(2018•永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3.16.(3分)(2018•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为π.OA扫过的面积为:=故答案为:πlR17.(3分)(2018•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC 的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF,AE.(填A′D、A′E、A′F)18.(3分)(2018•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2018+a2018+a2018=2.三、简单题,共9小题,共76分19.(6分)(2018•永州)计算:cos30°﹣+()﹣2.﹣20.(6分)(2018•永州)先化简,再求值:•(m﹣n),其中=2.=2,=2==521.(8分)(2018•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.22.(8分)(2018•永州)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.23.(8分)(2018•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=D C.延长AD 到E点,使DE=A B.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△ED C.24.(10分)(2018•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O 点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.=OA=小时,即=3025.(10分)(2018•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥B D.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.==226.(10分)(2018•永州)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.)代入求出,(=(+[(=[(((=,=((+[(+[﹣(((27.(10分)(2018•永州)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON 内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.是===2×=。
2015年湖南省永州市中考数学试卷(试卷)
2015年湖南省永州市中考数学试卷一、选择题,共10小题,每小题3分,共30分1.(3分)在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013B.2014C.2015D.20162.(3分)下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a83.(3分)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为4.(3分)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00B.12:00C.13:00D.16:005.(3分)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.146.(3分)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°7.(3分)若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<08.(3分)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=9.(3分)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.(3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数)B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)二、填空题,共8小题,每小题3分,共24分11.(3分)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”称号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为.12.(3分)如图,∠1=∠2,∠A=60°,则∠ADC=度.13.(3分)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x时,y≤0.14.(3分)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则<<(填y1,y2,y3).15.(3分)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.16.(3分)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为.17.(3分)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC (如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是,,.(填A′D、A′E、A′F)18.(3分)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015=.三、简单题,共9小题,共76分19.(6分)计算:cos30°﹣+()﹣2.20.(6分)先化简,再求值:•(m﹣n),其中=2.21.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.22.(8分)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.23.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E 点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.24.(10分)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.25.(10分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F 是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.26.(10分)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q 分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.27.(10分)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程中,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.。
湖南永州中考数学真题测试卷有答案
2015年湖南省永州市中考数学试卷一、选择题,共10小题,每小题3分,共30分1.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A. 2013 B. 2014 C. 2015 D. 20162.下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a83.某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概1率为24.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A. 10:00 B. 12:00 C. 13:00 D. 16:005.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D. 146.如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A. 45°B. 40°C. 25°D. 20°7.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0 C.﹣1≤m≤0 D.﹣1<m<08.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C. AB2=AD•AC D.=9.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个 B.有且只有2个C.组成∠E的角平分线 D.组成∠E的角平分线所在的直线(E点除外)10.定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A. [x]=x(x为整数) B. 0≤x﹣[x]<1C. [x+y]≤[x]+[y] D. [n+x]=n+[x](n为整数)二、填空题,共8小题,每小题3分,共24分11.国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为.12.如图,∠1=∠2,∠A=60°,则∠ADC= 度.13.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y ≤0.14.已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则<<(填y1,y2,y3).15.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .16.如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为.17.在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是,,.(填A′D、A′E、A′F)18.设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015= .三、简单题,共9小题,共76分19.计算:cos30°﹣+()﹣2.20.先化简,再求值:•(m﹣n),其中=2.21.中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.22.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.23.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.24.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.25.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.26.已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.27.问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.参考答案一、选择题(本大题共10小题)1. C解析:2004-(-1)=2005,故选择C .点评:本题考查了求数轴上两点之间的距离,解题的关键是熟练掌握有理数的运算.2. B解析:同底数幂的乘法,底数不变,指数相加,所以A错误;幂的乘方,底数不变,指数相乘,所以C错误;只有同类项才可以进行加减运算,所以D错误;22()()()()a b a b b a b a b a-++=-+=-,所以B正确,故选择B.点评:本题考查了与幂相关的运算以及平方差公式,解题的关键是熟练掌握与幂有关运算的法则和平方差公式的应用.3.C解析:众数是一组数据中出现次数最多的数,因此A正确;中位数是指把一组数据排序后,位于正中间的数或是正中间两个数的平均数,因此B正确;在这8名学生中,身高不低于170的有4个,因此身高不低于170的概率为12,所以D正确;求平均数时应该是所有数据的总和去除以总个数,即16516616821703176169.1258x-++⨯+⨯+==,而不是169,所以C不正确;故选择C .点评:本题考查了众数、中位数、平均数以及概率的简单应用,解题的关键是分清众数、中位数、平均数所表示的意义以及计算方法.4. C解析:设开幕式当天该景区游客人数饱和的时间约为x 点,根据题意可得:(8)(100600)200x -⨯-=,解得:x =13,故选择C . 点评:本题考查了一元一次方程的应用,解题的关键是理清题意,找出等量关系,列出符合要求的方程.5. B解析:因为右上角的盘子有5个,左下角的盘子有3个,左上角盘子的个数为4个,3+4+5=12(个),故选择B.点评:本题考查了实际物体的三视图,解题的关键是能由三视图想象出对应的物体.6.D解析:因为AB 和CD 所对的圆心角分别为90°和50°,所以∠ADB =45°,∠CAD =25°,则∠P =∠ADB -∠CAD =45°-25°=20°,故选择D .点评:本题考查了圆周角定理和三角形外角的性质,解题的关键是利用圆周角定理进行圆心角和圆周角度数的互化.7. B解析:因为不等式组11x x m <⎧⎨>-⎩恰好有两个整数解,所以这两个整数解是0和-1,因此-2≤1m -<-1,解得10m -<≤点评:本题考查了不等式组的整数解,解题的关键是利用数轴确定字母m 的取值范围.8. jsD解析:根据两角对应相等,可知A 、B 正确;根据两边对应成比例且夹角相等可知C 正确,而D 选项给出的不是对应边,因此D 是错误的,故选择D .点评:本题考查了相似三角形的判定,解题的关键是熟练掌握相似三角形的判定方法.9. jD解析:因为AB =CD ,若PAB PCD S S =,则AB 、CD 边上的高必须相等,因此考虑点P 所在的位置到AB 、CD 的距离相等,即点P 在∠E 的平分线上;若反向延长∠E 的平分线,则其上面的点到AB 、CD 的距离也相等,同时考虑到点E 在AB 和CD 的延长线上,因此点P 位于点E 时构不成三角形,所以点P 组成∠E 的平分线所在的直线(E 点除外),故选择D ..点评:本题考查了角平分线的性质以及三角形面积公式,解题的关键是牢牢抓住“角平分线上的点到角两边的距离相等”这个基本性质.10. jC解析:当x 、y 都为正小数且小数部分相加大于1时,[][][]x y x y +>+,所以C 错误,故选择C .点评:本题考查了定义新运算,解题的关键是读懂题意,按照题目中定义的运算进行计算即可.二、填空题(本大题共8小题)11. 3.65×108解析:365000000=3.65×108.故答案为3.65×108.点评:本题考查了科学记数法,解题的关键是要正确确定a 的值以及n 的值.12. 120°解析:因为∠1=∠2,所以AB ∥CD ;又因为∠A =60°,则∠ADC =120° ,故答案为120. 点评:本题考查了平行线的判定与性质,解题的关键是根据内错角相等判定两条直线平行,然后根据平行线的性质解题.13.2x ≥解析:把A (0,1),B (2,0)代入y =kx +b 可得:120b k b =⎧⎨+=⎩,解得:121k b ⎧=-⎪⎨⎪=⎩,所以一次函数的解析式是:112y x =-+,当0y ≤时,即:1102x -+≤,解得:2x ≥,故答案为2x ≥.点评:本题考查了待定系数法求一次函数解析式以及自变量取值范围的求法,解题的关键是利用待定系数法求出一次函数的解析式.14. 132y y y <<; 解析:因为(0)k y k x=>,所以反比例函数图象位于第一、三象限.点A (11,y -),因此点A 在第三象限,1y <0.而B (21,y ),C (32,y )都在第一象限内,因为在每个象限内,y 随x 的增大而减小,所以320y y <<,故答案为132y y y <<.点评:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的图象及性质.15. 3解析:因为∠1=∠2,∠A 是公共角,BE =CD ,所以△ABE ≌△ACD (AAS ),所以AC =AB =5,CE =AC -AE =5-2=3,故答案为3.点评:本题考查了全等三角形的证明,解题的关键是寻找合适的条件来证明三角形全等. 16.4π 解析:因为点A 的坐标(-2,0),所以OA =2;又△ABO 是直角三角形,∠AOB =60°,所以OB =OA ×cos60°=2×12=1;又∠BOB ’=∠A ’OB ’+∠A ’OB =∠AOB +∠A ’OB =90°,所以边OB 扫过的面积=29013604ππ⨯=,故答案为4π. 点评:本题考查了特殊角的三角函数值、旋转以及扇形面积公式,解题的关键是根据已知条件求出OB 的长及OB 旋转的度数.17. j A ’D 、A ’F 、A ’E解析:根据题意可以作图如下,因为等腰三角形底边的中线是顶点A 与底边中点的连线,当顶点A 向右平移时,中线的位置发生变化,但与底边的交点始终是中点D , 所以A ’D 是中线;在顶点A 的平移过程中,点A 或是点A ’与边BC 的距离是定值,即高的 长度是不变的,所以A ’F 是高;中线及高线确定以后,则剩余的A ’E 是角平分线,故答案 为A ’D 、A ’F 、A ’E.点评:本题考查了等腰三角形的“三线合一”以及图形的平移,解题的关键是正确理解三角形的角平分线、底边的中线和顶角平分线的含义,同时结合平移的性质来进行解答.18.j6652解析:因为11a =,26a =,31a =,46a =,55a =,66a =,71a =,86a =,91a =,100a = ,2015÷10=201……5,所以1a +2a +3a +……+2013a +2014a +2015a =(1+6+1+6+5+6+1+6+1+0)×201+(1+6+1+6+5)=6652,故答案是6652.点评:本题考查了数字型规律探索,解题的关键是找出其内在的规律,然后利用规律求值.三、解答题(本大题共9小题)19. 解析:先分别计算231231cos30,,()42422-===,然后相加减. 解:212133cos30()444222--+=-+=. 点评:本题考查了特殊角的三角函数值、二次根式的化简、负整指数幂,解题的关键是熟练掌握相关运算法则. 20. 解析:先分解因式可得2222()m mn n m n -+=-,然后化简求解.解:222222()()2()m n m n m n m n m n m mn n m n m n +++-=-=-+--,由2m n=可得:m =2n ,代入原式得:22252m n n n m n n n+⨯+==--. 点评:本题考查了分式的化简求值,解题的关键是掌握分式的乘除运算.21. 解析:(1)总数=A 的数量:A 所占的比例;(2)由“A 类和B 类所占人数的比是5:9”可以求出B 的具体数量,进而可以求出D 的数量;(3)部分数量=总数×百分比. 解:(1)20÷20%=100,所以样本容量是100.(2)如下图:(3)2000×25%=250(人).答:观看“中国汉字听写大会”节目不喜欢的学生人数为250人.点评:本题考查了抽样调查、样本容量和条形图及扇形图的相关知识,解题的关键是根据A 所占比例和具体数量求出样本的容量.22. j 解析:把未知数的值代入原方程可以求得m 的值,然后把m 的值代入原方程求另一个实数根.解:把x =-1代入2220x x m m ++-=得:220m m -=,解得:10m =,22m =.当10m =时,2220x x m m ++-=可化为20x x +=,解得:10x =,21x =-;当22m =时,2220x x m m ++-=可化为20x x +=,解得:10x =,21x =-;所以m 的值是0或2,另一个实数根是0.点评:本题考查了一元二次方程的解法,解题的关键是选用合适的方法解方程.23.解析:(1)由四边形的内角和可得∠ABC +∠ADC =180°;根据邻补角互补可得∠EDC +∠ADC =180°,则问题可证;(2)连接AC ,利用“SAS ”进行证明.解:(1)∵在四边形ABCD 中,∠A =∠BCD =90°,∴∠ABC +∠ADC =180°;又∵∠EDC +∠ADC =180°,∴∠ABC =∠EDC ;(2)连接AC ,在△ABC 和△EDC 中,BC =DC ,∠ABC =∠EDC ,DE =AB ,∴△ABC ≌△EDC (SAS ).点评:本题考查了四边形的内角和定理以及全等三角形的证明,解题的关键是利用同角的补角相等来证明∠ABC =∠EDC .24. 解析:(1)因为卡车P 与学校A 的距离越近噪声影响越大,所以过点A 作ON 的垂线段,当卡车位于垂足位置时,噪声影响最大;(2)以A 为圆心,50米长为半径画弧,交ON 于点D 、E 两点,则两点之间的路程与速度的比就是学校受噪声污染的时间.解:(1)过点A 作ON 的垂线段,交ON 于P 点,如下图:在Rt △AOP 中,∠APO =90°,∠POA =30°,OA =80米,所以AP =80×sin 30°=80×12=40米, 即对学校A 的噪声影响最大时卡车P 与学校A 的距离是40米.(2)以A 为圆心,50米长为半径画弧,交ON 于点D 、E ,如下图:在Rt △ADP 中,∠APD =90°,AP =40米,AD =50米,所以DP =2222504030AD AP -=-=米,同理可得EP =30米,所以DE =60米.又18千米/时=30米/分,所以60230=分, 即:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间2分.点评:本题考查了锐角三角函数的实际应用,解题的关键是理解题意,添加合适的辅助线,求出相应的长度或路程.25. 解析:(1)要证BE =CE ,只需证明AD 垂直平分BC 即可.考虑到AD 是直径,为此可以利用垂径定理和圆周角的相关性质来证明;(2)考虑到CF ∥BD ,且通过(1)可知BF =CF ,CD =BD ,可以通过证四边相等来证明四边形BFCD 是菱形;(3)要求CD 的长,只需求出DE 的长即可,考虑到题目中出现的直角三角形较多,可以通过直角三角形之间的相似来求值.解:(1)∵AD 是直径,∴∠ABD =∠ACD =90°;在Rt △BAD 和Rt △CAD 中,AB =AC ,AD =AD ,∴Rt △BAD ≌Rt △CAD (HL ),∴∠BAD =∠CAD ,又∵AB =AC ,∴BE =CE .(2)由(1)可知AD 垂直平分BC ,∴BF =CF ,CD =BD ;∴∠DCB =∠DBC ;又CF ∥BD ,∴∠FCB =∠DBC ,∴∠FCB =∠DCB .又AD 垂直平分BC ,∴CF =CD ,∴CF =FB =BD =DC ,∴四边形BFCD 是菱形;(3)∵AD 垂直平分BC ,BC =8,∴CE =4;在Rt △ACD 中,∵CE ⊥AD ,∴△CDE ∽△ACE . ∴DE CE CE AE= 设DE 为x ,则AE =10-x , 即:4410x x =-, 解得:12x =,28x =(不合题意,舍去),∴DE =2.在Rt △CDE 中,CD =22224225CE DE +=+=.点评:本题考查了圆和相似三角形的综合运用,难度比较大,解题的关键是熟练掌握垂径定理以及相似三角形的相关知识.26.解析:(1)因为顶点坐标已知,所以在求解析式时可以考虑用顶点式求解;(2)P 到R的距离可以通过构造直角三角形,然后利用勾股定理求值;点P 到直线y =-1的距离因为两点的横坐标相等,直接用纵坐标的差即可;(3)根据(2)可得:QN =QR ,PM =PR ,所以QP =QN +PM ;同时根据梯形的中位线定理可得:QN +PM =2EF ,由此可得QP =2EF .然后根据点E 是PQ 的中点即可求解.解:(1)设此抛物线的解析式是2()y a x h k =-+,∵顶点为(1,0),∴2(1)y a x =-;又与y 轴的交点坐标为(0,14),代入可得:21(01)4a =-, 解得: a =14; ∴此抛物线的解析式为21(1)4y x =-,即:2111424y x x =-+; (2)设P 点的坐标为(x ,y ),则:点P 到直线y =-1的距离PM =1y +;∵R 点的坐标为(1,1),则2PR =22(1)(1)x y -+-=222121x x y y -++-+; 又2111424y x x =-+,∴221x x -+=21114()4424x x y ⨯-+=, ∴2PR =222121x x y y -++-+=221y y ++,∴PR =1y +.即:点P 到R 的距离与点P 到直线y =-1的距离恒相等;(3)由(2)可得:QN =QR ,PM =PR ,∴QP =QN +PM ;又∵E 为线段PQ 的中点,QN ⊥MN ,EF ⊥MN ,PM ⊥MN , ∴1()2EF QN PM =+; ∴12EF QP =; 又E 为线段PQ 的中点,∴EF =QE =EP∴∠EFQ =∠EQF ,∠EFP =∠EPF .∴∠QFP =∠EFQ +∠EFP =12(∠EFQ +∠EQF +∠EFP +∠EPF )=90°. ∴PF ⊥QF .点评:本题考查了二次函数的综合运用,解题的关键是熟练掌握待定系数法、函数图 象上两点间的距离以及中位线的相关性质等知识.27. 解析:(1)所求圆的直径就是O 的半径;(2)在点P (与B ,C 不重合)从B 运动到C 的过程中,只有OP 的长定值,因此考虑MN 与OP 之间的联系;(3)①要求MN 的长,可以考虑构造直角三角形,使MN 是该直角三角形的某条边;或是探求MN 与1P M 、1P N 之间的数量关系,考虑到∠MPN =60°,同时易证1P M =∠1P N ,可以利用等边三角形的相关知识来解答;②若MN 的长为定值,考虑到在变化过程中只有OP 的长是固定的,因此可以探求MN 与OP 之间的数量关系.(4)MN 与OP 之间具有某种数量关系,可以考虑当OP 最大时的情况. 解:(1)∵AB ⊥CD ,PM ⊥OC ,PN ⊥OB ,∴∠PMO =∠MON =∠PNO =90°,∴∠PMO +∠PNO =180°,∴四边形PMON 内接于圆,且该圆的直径为OP =2.(2)∵∠PMO =∠MON =∠PNO =90°,∴四边形PMON 为矩形,∴MN =OP =2.即:MN 的长为定值.(3)①∵∠COB =120°,BC 的中点是1P ,∴∠1P OM =∠1P ON =60°.又PM ⊥OC ,PN ⊥OB ,∴∠1P MO =∠1P NO =90°又∵1P O 为公共边,∴△1P MO ≌△1P NO (AAS );又根据四边形内角和可得∠M 1P N =60°.∴△1P MN 是等边三角形.∴MN =1P M =1P O ×sin 60°=2×32=3. ②∵∠PMO =∠PNO =90°,∴四边形PMON 的各顶点在同一圆上.设四边形PMON 的外接圆为⊙E ,连接NE 并延长, 交⊙E 于点F ,连接FM ,如下图: F EMNPO DC BA∵∠MPN =60°,∴∠MFN =60°;∵NF 是圆E 的直径,∴∠FMN =90°;∴MN =sin 60°×NF ;又∵点P (与B ,C 不重合)从B 运动到C 的过程中,OP 的长度不变,且在此过程中P 点到O 点的距离最远,∴OP 为⊙E 的直径. ∴MN =sin 60°×NF = sin 60°×OP =2×32=3;即:在点P(与B,C不重合)从B运动到C的过程中MN的长为定值.(4)由(3)②得MN=OP•sin∠MPN,当直径AB与CD相交成90°角时,∠MPN=180°-90°=90°此时MN取得最大值2.点评:本题考查了圆内接四边形的相关知识,解题的关键是牢牢抓住“圆内接四边形的对角互补”这个基本性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省永州市2015年中考数学试卷
一、选择题,共10小题,每小题3分,共30分
n(
3.(3分)(2015•永州)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,
=,
4.(3分)(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,
人数饱和的时间约为
5.(3分)(2015•永州)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()
6.(3分)(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()
和所对的圆心角分别为
=25
7.(3分)(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()
的解集为
恰有两个整数解,
8.(3分)(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是()
=
=AD•AC,∴=
=
9.(3分)(2015•永州)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()
10.(3分)(2015•永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意
二、填空题,共8小题,每小题3分,共24分
11.(3分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为 3.65×108.
12.(3分)(2015•永州)如图,∠1=∠2,∠A=60°,则∠ADC=120 度.
13.(3分)(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x ≥2时,y≤0.
x+1
解不等式﹣
14.(3分)(2015•永州)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).
y=(
15.(3分)(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=C D,AB=5,AE=2,则CE= 3 .
题主要考查了全等三角形的性质和判定,熟记定理是解题的关键
(2015•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现(3分)
16.
OA=1
扫过的面积为:=
故答案为:
S=
S=
17.(3分)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD (如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF ,AE .(填A′D、A′E、A′F)
18.(3分)(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015= 2 .
三、简单题,共9小题,共76分
19.(6分)(2015•永州)计算:cos30°﹣+()﹣2.
=﹣
20.(6分)(2015•永州)先化简,再求值:•(m﹣n),其中=2.
=2
=
==5
21.(8分)(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:
(1)写出本次抽样调查的样本容量;
(2)请补全两幅统计图;
(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.
22.(8分)(2015•永州)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.
23.(8分)(2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于
C
24.(10分)(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.
(1)求对学校A的噪声影响最大时卡车P与学校A的距离;
(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.
)
BD=CD=BC
OA=×800=400m,
=
小时,即
25.(10分)(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.
(1)求证:BE=CE;
(2)试判断四边形BFCD的形状,并说明理由;
(3)若BC=8,AD=10,求CD的长.
==2
26.(10分)(2015•永州)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,
1)是抛物线对称轴l上的一点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;
(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:
PF⊥QF.
)代入求出
,(PM=(
(
=[(
EF=(EF=
,,
(
,(
(((+1=[(
((
(
的中位线,
(
PQ
27.(10分)(2015•永州)问题探究:
(一)新知学习:
圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).
(二)问题解决:
已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.
(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并
求此圆直径的长;
(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;
(3)若直径AB与CD相交成120°角.
①当点P运动到的中点P1时(如图二),求MN的长;
②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.
(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.
的中点,∠BOC=120°
=2×sin60°=;
中,sin∠MQN=
∴MN=OP•s in∠MQN=2×sin60°=2×=。