MAXIMUM-LIKELIHOOD ESTIMATION OF MODELS FOR RESIDUAL COVARIANCE IN SPATIAL REGRESSION

合集下载

r 估计分布参数-概述说明以及解释

r 估计分布参数-概述说明以及解释

r 估计分布参数-概述说明以及解释1.引言1.1 概述在统计学中,估计分布参数是一种常见的问题。

参数估计是指根据样本数据来推断总体分布的参数值。

通过对样本数据进行分析和计算,我们可以获得关于总体分布参数的估计值,这样就能够更好地理解总体的特征和性质。

参数估计在许多实际应用中都起着至关重要的作用。

例如,在工程领域中,我们可能需要估计某种材料的强度分布参数,以便设计更安全的结构。

在医学领域中,我们可能需要估计某种药物的剂量分布参数,以找到最有效的治疗方案。

在金融领域中,我们可能需要估计某种资产的收益率分布参数,以进行风险管理和投资决策。

在估计分布参数的过程中,我们通常会使用最大似然估计或贝叶斯估计等方法。

最大似然估计是一种常用的频率派方法,通过寻找使观测数据出现的概率最大的参数值来进行估计。

而贝叶斯估计则是一种基于贝叶斯理论的方法,通过引入先验分布和后验分布,结合观测数据来进行参数估计。

此外,估计分布参数还广泛应用于假设检验、置信区间估计以及模型选择等统计推断问题中。

通过对分布参数的估计,我们可以对总体进行推断,并进行有效的决策和预测。

本文将详细介绍估计分布参数的背景、方法和应用,并对估计结果进行总结和分析。

通过深入理解估计分布参数的相关理论和实践技巧,我们可以更好地应用统计学方法解决实际问题,提高数据分析的准确性和可靠性。

1.2 文章结构文章结构部分的内容可以包括以下几点:文章结构部分的内容主要介绍了整篇文章的组织结构,以及各个章节的内容安排。

首先,在本文的文章结构部分,将会从引言、正文和结论三个方面来展开叙述。

引言部分是文章开头的部分,主要是对整篇文章的概述,简要介绍估计分布参数的背景、意义以及研究的目的。

引言的目的是引起读者的兴趣,使其了解文章的主要内容和研究意义。

接下来是正文部分,正文是论文的主要内容,也是对估计分布参数的方法和应用进行详细论述的地方。

在正文的第一个章节,将会介绍估计分布参数的背景,包括分布参数的概念和定义,以及为什么需要对分布参数进行估计。

服从指数分布的极大似然估计的实际例子

服从指数分布的极大似然估计的实际例子

服从指数分布的极大似然估计的实际例子1.统计学家使用极大似然估计来估计指数分布的参数。

Statisticians use maximum likelihood estimation toestimate the parameters of the exponential distribution.2.通过估计参数λ,我们可以更好地了解指数分布中事件发生的方式。

By estimating the parameter λ, we can gain a better understanding of how events occur in an exponential distribution.3.极大似然估计是一种常用的统计方法,可用于估计各种类型的分布。

Maximum likelihood estimation is a commonly usedstatistical method that can be used to estimate various types of distributions.4.我们可以使用极大似然估计来估计指数分布的中位数或平均值。

We can use maximum likelihood estimation to estimate the median or mean of the exponential distribution.5.估计出的参数可以用于预测未来事件的发生情况。

The estimated parameters can be used to predict the occurrence of future events.6.极大似然估计需要收集一定数量的数据来进行计算。

Maximum likelihood estimation requires collecting a sufficient amount of data for computation.7.通过比较不同参数值下的似然函数,我们可以找到最可能的参数值。

stata极大似然估计的实例

stata极大似然估计的实例

stata极大似然估计的实例Stata极大似然估计的实例:一步一步回答简介:极大似然估计(Maximum Likelihood Estimation, MLE)是一种常用的参数估计方法,其基本思想是找到一组参数值使得给定数据的似然函数达到最大。

Stata作为一种流行的统计分析软件,提供了丰富的功能和命令来实现极大似然估计。

本文将以实例的形式介绍如何使用Stata进行极大似然估计,并逐步解释相关的步骤和概念。

实例背景:假设我们有一组来自二项分布的数据,我们希望通过极大似然估计来估计出分布的参数。

步骤1:准备数据首先,我们需要准备数据。

假设我们有一个样本容量为100的二项分布数据,其中成功的次数为40次,失败的次数为60次。

步骤2:构建似然函数在进行极大似然估计之前,我们需要构建似然函数。

对于二项分布,似然函数的形式是:L(p) = (n choose k) * p^k * (1-p)^(n-k),其中n是样本容量,k是成功次数,p是成功的概率。

在Stata中,我们可以使用"ml model"命令来指定模型和似然函数的形式。

在本例中,我们使用二项分布的似然函数,其中p是我们要估计的参数。

步骤3:指定模型和似然函数在Stata中,我们可以使用以下命令来指定模型和似然函数:stataclearset seed 12345input success failure40 60endml model d2 (success = failure, noweight)ml maximize上述命令的含义是:清除现有数据,设置随机数种子,输入我们的样本数据,然后使用“ml model”命令指定模型和似然函数。

在这里,d2代表二项分布,success和failure是数据变量,noweight表示没有加权。

最后,我们使用“ml maximize”命令来最大化似然函数。

步骤4:查看估计结果在进行极大似然估计后,Stata会返回估计的参数值和其他统计信息。

高斯混合模型详解

高斯混合模型详解

高斯混合模型详解摘要:1.高斯混合模型的基本概念2.高斯混合模型的组成部分3.高斯混合模型的求解方法4.高斯混合模型的应用实例5.总结正文:一、高斯混合模型的基本概念高斯混合模型(Gaussian Mixture Model,简称GMM)是一种概率模型,用于对由多个高斯分布组成的数据集进行建模。

它是一个多元高斯分布,由多个一元高斯分布组合而成,每个一元高斯分布表示数据集中的一个子集。

高斯混合模型可以看作是多个高斯分布的加权和,其中每个高斯分布的权重表示该高斯分布在数据集中的重要性。

二、高斯混合模型的组成部分高斯混合模型包含三个主要组成部分:1.样本向量:样本向量是数据集中的一个观测值,通常表示为一个列向量。

2.期望:期望是每个高斯分布的均值,表示数据集中所有样本向量的平均值。

3.协方差矩阵:协方差矩阵表示数据集中各个样本向量之间的相关性。

它由多个一元高斯分布的协方差矩阵组成,每个协方差矩阵描述了一个子集内样本向量的相关性。

三、高斯混合模型的求解方法高斯混合模型的求解方法主要有两种:1.极大似然估计(Maximum Likelihood Estimation,简称MLE):MLE 是通过最大化似然函数来确定高斯混合模型的参数,即期望和协方差矩阵。

具体方法是使用EM 算法(Expectation-Maximization)迭代求解。

2.贝叶斯信息准则(Bayesian Information Criterion,简称BIC):BIC 是一种模型选择方法,用于比较不同模型的拟合效果。

它通过计算模型的复杂度和拟合优度来选择最佳模型。

四、高斯混合模型的应用实例高斯混合模型在许多领域都有广泛应用,例如:1.语音识别:高斯混合模型可以用来对语音信号进行建模,从而实现语音识别。

2.聚类分析:高斯混合模型可以用来对数据进行聚类,每个聚类对应一个高斯分布。

3.异常检测:高斯混合模型可以用来检测数据中的异常值,因为异常值通常不符合高斯分布。

生态学研究中潜在类别分析的统计学解析

生态学研究中潜在类别分析的统计学解析

生态学研究中潜在类别分析的统计学解析生态学研究是对生物与环境之间相互作用的科学研究,旨在理解和保护自然生态系统的稳定性和可持续性。

在生态学研究中,潜在类别分析(latent class analysis)是一种常用的统计学方法,用于识别和分析群体中的潜在类别。

本文将从统计学角度对潜在类别分析进行解析。

潜在类别分析是一种基于概率模型的聚类方法,它假设观测数据来自于若干个未知的潜在类别。

通过对观测数据的模式进行分析,潜在类别分析可以将观测样本划分为不同的类别,并估计每个类别的概率分布。

这种方法在生态学研究中具有广泛的应用,例如对物种群落的分类和生态系统功能的评估等。

潜在类别分析的核心是模型的建立和参数估计。

常用的潜在类别分析模型包括混合模型(mixture model)和隐马尔可夫模型(hidden Markov model)。

混合模型假设观测数据来自于若干个不同的概率分布,每个概率分布对应一个潜在类别。

隐马尔可夫模型则进一步考虑了时间序列数据的特点,将观测数据看作是由一个隐藏的马尔可夫链生成的。

在潜在类别分析中,参数估计是一个关键的步骤。

常用的参数估计方法包括最大似然估计(maximum likelihood estimation)和贝叶斯估计(Bayesian estimation)。

最大似然估计通过最大化观测数据的似然函数来估计模型参数,而贝叶斯估计则通过引入先验分布来估计后验分布,并基于后验分布对参数进行推断。

潜在类别分析的结果可通过多种方式进行解释和应用。

一种常用的方式是通过类别的概率分布来解释不同类别的特征和属性。

例如,在物种群落的研究中,可以通过潜在类别分析将物种划分为不同的功能组,并进一步研究它们在生态系统中的相互作用和功能。

另一种方式是将潜在类别作为预测变量,用于解释和预测观测数据的变异性。

例如,在生态系统功能评估中,可以通过潜在类别分析将不同的生态系统功能划分为不同的类别,并进一步研究它们与环境因子的关系和变化趋势。

参数模型估计算法

参数模型估计算法

参数模型估计算法参数模型估计算法是指根据已知的数据样本,通过其中一种数学模型来估计模型中的参数值。

这些参数值用于描述模型中的各种特征,例如均值、方差、回归系数等。

参数模型估计算法在统计学和机器学习等领域中有着广泛的应用,可以用来解决预测、分类、回归等问题。

常见的参数模型估计算法包括最小二乘法、最大似然估计和贝叶斯估计等。

下面将逐一介绍这些算法的原理和实现方法。

1. 最小二乘法(Least Squares Method):最小二乘法是一种常见的参数估计方法,用于拟合线性回归模型。

其思想是选择模型参数使得观测数据与预测值之间的差平方和最小。

通过最小化误差函数,可以得到方程的最优解。

最小二乘法适用于数据符合线性关系的情况,例如回归分析。

2. 最大似然估计(Maximum Likelihood Estimation):最大似然估计是一种常见的参数估计方法,用于估计模型参数使得给定观测数据的概率最大。

其基本思想是找到一组参数值,使得给定数据产生的可能性最大化。

最大似然估计适用于数据符合其中一种概率分布的情况,例如正态分布、泊松分布等。

3. 贝叶斯估计(Bayesian Estimation):贝叶斯估计是一种基于贝叶斯定理的参数估计方法,用于估计模型参数的后验分布。

其思想是先假设参数的先验分布,然后根据观测数据来更新参数的后验分布。

贝叶斯估计能够将先验知识和数据信息相结合,更加准确地估计模型参数。

除了以上提到的算法,还有一些其他的参数模型估计算法,例如最小二乘支持向量机(LSSVM)、正则化方法(如岭回归和LASSO)、逻辑回归等。

这些算法在不同的情境下具有不同的应用。

例如,LSSVM适用于非线性分类和回归问题,正则化方法用于解决高维数据的过拟合问题,逻辑回归用于二分类问题。

无论是哪种参数模型估计算法,都需要预先定义一个合适的模型以及其参数空间。

然后,通过选择合适的损失函数或优化目标,采用数值优化或迭代方法求解模型参数的最优解。

经管实证英文文献常用的缺失值处理方法

经管实证英文文献常用的缺失值处理方法

经管实证英文文献常用的缺失值处理方法Methods for Handling Missing Values in Empirical Studies in Economics and ManagementMissing values are a common issue in empirical studies in economics and management. These missing values can occur for a variety of reasons, such as data collection errors, non-response from survey participants, or incomplete information. Dealing with missing values is crucial for maintaining the quality and reliability of empirical findings. In this article, we will discuss some common methods for handling missing values in empirical studies in economics and management.1. Complete Case AnalysisOne common approach to handling missing values is to simply exclude cases with missing values from the analysis. This method is known as complete case analysis. While this method is simple and straightforward, it can lead to biased results if the missing values are not missing completely at random. In other words, if the missing values are related to the outcome of interest, excluding cases with missing values can lead to biased estimates.2. Imputation TechniquesImputation techniques are another common method for handling missing values. Imputation involves replacing missing values with estimated values based on the observed data. There are several methods for imputing missing values, including mean imputation, median imputation, and regression imputation. Mean imputation involves replacing missing values with the mean of the observed values for that variable. Median imputation involves replacing missing values with the median of the observed values. Regression imputation involves using a regression model to predict missing values based on other variables in the dataset.3. Multiple ImputationMultiple imputation is a more sophisticated imputation technique that involves generating multiple plausible values for each missing value and treating each set of imputed values as a complete dataset. This allows for uncertainty in the imputed values to be properly accounted for in the analysis. Multiple imputation has been shown to produce less biased estimates compared to single imputation methods.4. Maximum Likelihood EstimationMaximum likelihood estimation is another method for handling missing values that involves estimating the parametersof a statistical model by maximizing the likelihood function of the observed data. Missing values are treated as parameters to be estimated along with the other parameters of the model. Maximum likelihood estimation has been shown to produce unbiased estimates under certain assumptions about the missing data mechanism.5. Sensitivity AnalysisSensitivity analysis is a useful technique for assessing the robustness of empirical findings to different methods of handling missing values. This involves conducting the analysis using different methods for handling missing values and comparing the results. If the results are consistent across different methods, this provides more confidence in the validity of the findings.In conclusion, there are several methods available for handling missing values in empirical studies in economics and management. Each method has its advantages and limitations, and the choice of method should be guided by the nature of the data and the research question. It is important to carefully consider the implications of missing values and choose the most appropriate method for handling them to ensure the validity and reliability of empirical findings.。

混合效应模型model fit

混合效应模型model fit

混合效应模型model fit
混合效应模型是一种统计模型,常用于分析具有层次结构或者重复测量设计的数据。

该模型结合了固定效应和随机效应,能够更好地捕捉数据中的变异性和复杂性。

而model fit则是用来评估统计模型对观察数据的拟合程度的指标。

要评估混合效应模型的model fit,通常可以使用一些常见的指标来进行评估。

其中最常用的指标之一是最大似然估计值(Maximum Likelihood Estimation, MLE),它可以用来比较不同模型对数据的拟合程度。

另外,还可以使用AIC(Akaike Information Criterion)和BIC(Bayesian Information Criterion)等信息准则来评估模型的拟合程度,这些指标考虑了模型的拟合优度和模型的复杂度,能够帮助我们找到最合适的模型。

此外,混合效应模型的model fit还可以通过拟合优度指标(Goodness of Fit)来进行评估,比如R平方(R-squared)和调整后的R平方。

这些指标可以告诉我们模型对观察数据的解释能力如何,以及模型中的变量对因变量的解释程度。

除了上述指标外,还可以通过模型的残差分析来评估混合效应
模型的model fit。

残差是观察值与模型估计值之间的差异,通过分析残差的分布和模式,可以判断模型是否能够很好地拟合数据。

总的来说,评估混合效应模型的model fit需要综合考虑多个指标和方法,以确保我们得到的模型能够对观察数据进行准确的描述和解释。

在评估时,需要注意权衡模型的拟合优度和复杂度,以选择最合适的模型来解释数据。

em算法

em算法

EM算法简介最大期望算法(Expectation-Maximization algorithm, EM),或Dempster-Laird-Rubin算法,是一类通过迭代进行极大似然估计(Maximum Likelihood Estimation, MLE)的优化算法,通常作为牛顿迭代法(Newton-Raphson method)的替代用于对包含隐变量(latent variable)或缺失数据(incomplete-data)的概率模型进行参数估计。

EM算法的标准计算框架由E步(Expectation-step)和M步(Maximization step)交替组成,算法的收敛性可以确保迭代至少逼近局部极大值。

EM算法是MM算法(Minorize-Maximization algorithm)的特例之一,有多个改进版本,包括使用了贝叶斯推断的EM算法、EM梯度算法、广义EM算法等。

由于迭代规则容易实现并可以灵活考虑隐变量,EM算法被广泛应用于处理数据的缺测值,以及很多机器学习(machine learning)算法,包括高斯混合模型(Gaussian Mixture Model, GMM和隐马尔可夫模型(Hidden Markov Model, HMM的参数估计。

历史对EM算法的研究起源于统计学的误差分析(error analysis)问题。

1886年,美国数学家Simon Newcomb在使用高斯混合模型(Gaussian Mixture Model, GMM)解释观测误差的长尾效应时提出了类似EM算法的迭代求解技术。

在极大似然估计(Maximum Likelihood Estimation, MLE)方法出现后,英国学者Anderson McKendrick在1926年发展了Newcomb的理论并在医学样本中进行了应用。

1956年,Michael Healy和Michael Westmacott提出了统计学试验中估计缺失数据的迭代方法,该方法被认为是EM算法的一个特例。

稳健最大似然(mlr)估计方法

稳健最大似然(mlr)估计方法

稳健最大似然(mlr)估计方法The robust maximum likelihood estimation method (mlr) is a statistical technique used to estimate the parameters of a model while accounting for outliers or extreme values in the data. This method is particularly useful in situations where traditional maximum likelihood estimation may be prone to bias or inefficiency due to the presence of outliers. By incorporating robust estimators, such as the Huber or Tukey biweight functions, mlr helps to reduce the impact of outliers on parameter estimates, resulting in more reliable and accurate model fitting.稳健最大似然估计方法(mlr)是一种统计技术,用于在考虑数据中的异常值或极端值的情况下估计模型的参数。

这种方法特别适用于传统最大似然估计可能因为异常值存在而产生偏差或低效的情况。

通过结合稳健估计器,如Huber或Tukey双加权函数,mlr有助于减少异常值对参数估计的影响,从而实现更可靠和准确的模型拟合。

One of the key advantages of the robust maximum likelihood estimation method is its ability to provide consistent estimates even in the presence of outliers. Traditional maximum likelihoodestimation methods are sensitive to outliers, which can greatly impact the accuracy of parameter estimates and the overall fit of the model. By using robust estimators, mlr is able to downweight the influence of outliers while still maintaining the consistency of parameter estimates, resulting in more robust and reliable inference.稳健最大似然估计方法的关键优势之一是它能够在存在异常值的情况下提供一致的估计。

最大似然估计(Maximumlikelihoodestimation)

最大似然估计(Maximumlikelihoodestimation)

最⼤似然估计(Maximumlikelihoodestimation)最⼤似然估计提供了⼀种给定观察数据来评估模型参数的⽅法,即:“模型已定,参数未知”。

简单⽽⾔,假设我们要统计全国⼈⼝的⾝⾼,⾸先假设这个⾝⾼服从服从正态分布,但是该分布的均值与⽅差未知。

我们没有⼈⼒与物⼒去统计全国每个⼈的⾝⾼,但是可以通过采样,获取部分⼈的⾝⾼,然后通过最⼤似然估计来获取上述假设中的正态分布的均值与⽅差。

最⼤似然估计中采样需满⾜⼀个很重要的假设,就是所有的采样都是独⽴同分布的。

下⾯我们具体描述⼀下最⼤似然估计:⾸先,假设为独⽴同分布的采样,θ为模型参数,f为我们所使⽤的模型,遵循我们上述的独⽴同分布假设。

参数为θ的模型f产⽣上述采样可表⽰为回到上⾯的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为: 在实际应⽤中常⽤的是两边取对数,得到公式如下: 其中称为对数似然,⽽称为平均对数似然。

⽽我们平时所称的最⼤似然为最⼤的对数平均似然,即:举个别⼈博客中的例⼦,假如有⼀个罐⼦,⾥⾯有⿊⽩两种颜⾊的球,数⽬多少不知,两种颜⾊的⽐例也不知。

我们想知道罐中⽩球和⿊球的⽐例,但我们不能把罐中的球全部拿出来数。

现在我们可以每次任意从已经摇匀的罐中拿⼀个球出来,记录球的颜⾊,然后把拿出来的球再放回罐中。

这个过程可以重复,我们可以⽤记录的球的颜⾊来估计罐中⿊⽩球的⽐例。

假如在前⾯的⼀百次重复记录中,有七⼗次是⽩球,请问罐中⽩球所占的⽐例最有可能是多少?很多⼈马上就有答案了:70%。

⽽其后的理论⽀撑是什么呢?我们假设罐中⽩球的⽐例是p,那么⿊球的⽐例就是1-p。

因为每抽⼀个球出来,在记录颜⾊之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜⾊服从同⼀独⽴分布。

这⾥我们把⼀次抽出来球的颜⾊称为⼀次抽样。

题⽬中在⼀百次抽样中,七⼗次是⽩球的概率是P(Data | M),这⾥Data是所有的数据,M是所给出的模型,表⽰每次抽出来的球是⽩⾊的概率为p。

简述极大似然估计法的原理

简述极大似然估计法的原理

简述极大似然估计法的原理The principle of maximum likelihood estimation (MLE) is a widely used method in statistics and machine learning for estimating the parameters of a statistical model. In essence, MLE attempts to find the values of the parameters that maximize the likelihood of observing the data given a specific model. In other words, MLE seeks the most plausible values of the parameters that make the observed data the most likely.极大似然估计法的原理是统计学和机器学习中广泛使用的一种方法,用于估计统计模型的参数。

在本质上,极大似然估计试图找到最大化观察到的数据在特定模型下的可能性的参数值。

换句话说,极大似然估计寻求最合理的参数值,使观察到的数据最有可能。

To illustrate the concept of maximum likelihood estimation, let's consider a simple example of flipping a coin. Suppose we have a fair coin, and we want to estimate the probability of obtaining heads. We can model this situation using a Bernoulli distribution, where the parameter of interest is the probability of success (, getting heads). By observing multiple coin flips, we can calculate the likelihood ofthe observed outcomes under different values of the parameter and choose the value that maximizes this likelihood.为了说明极大似然估计的概念,让我们考虑一个简单的抛硬币的例子。

结构方程模型中调节效应的标准化估计

结构方程模型中调节效应的标准化估计

结构方程模型中调节效应的标准化估计一、本文概述1、结构方程模型(SEM)简介结构方程模型(Structural Equation Modeling,简称SEM)是一种广泛应用于社会科学研究中的统计技术,它结合了路径分析和多元回归分析,使得研究者能够同时检验多个变量间的因果关系。

SEM不仅允许研究者估计直接效应,还能探索间接效应和总效应,从而提供一个全面、整合的视角来理解变量之间的关系。

SEM还能够处理测量误差,并通过拟合指数来评估模型的拟合程度。

在SEM中,研究者首先需要根据理论或先前的研究来构建一个假设模型,该模型包括一系列的观察变量(也称为指标或测量项)和潜在变量(也称为构念或因子)。

观察变量是可以直接测量的变量,如问卷中的项目得分;而潜在变量则是无法直接测量的抽象概念,需要通过一组观察变量来间接测量。

一旦模型建立,研究者就可以使用统计软件(如AMOS、Mplus、EQS 等)来估计模型的参数,并检验模型的拟合度。

模型的参数估计通常基于最大似然法或其他优化算法。

通过这些参数估计,研究者可以了解变量之间的因果关系强度、方向以及显著性水平。

结构方程模型是一种强大而灵活的工具,它能够帮助研究者更深入地理解变量之间的关系,并为理论发展提供实证支持。

在社会科学、心理学、教育学、管理学等领域,SEM已经成为了一种广泛使用的分析方法。

2、调节效应在SEM中的重要性在结构方程模型(SEM)中,调节效应的重要性不容忽视。

调节效应,也称为中介效应或调节路径,它描述了一个或多个变量如何影响两个主要变量之间的关系强度或方向。

在SEM的框架内,这种效应是通过在路径模型中引入一个或多个中介变量来考察的,这些中介变量在自变量和因变量之间起到了“桥梁”或“调节器”的作用。

调节效应有助于深化我们对变量间关系的理解。

通过探究中介变量对自变量和因变量关系的调节作用,我们可以更准确地理解这些关系的本质和动态过程。

这不仅有助于理论的发展和完善,也为实践中的决策和干预提供了更有力的依据。

对数正态分布的极大似然估计matlab

对数正态分布的极大似然估计matlab

对数正态分布的极大似然估计matlab(中英文实用版)Task Title: Maximum Likelihood Estimation of Log-Normal Distribution in MATLABTask Title: 对数正态分布的极大似然估计MATLABIn this task, we aim to estimate the parameters of a log-normal distribution using the maximum likelihood estimation (MLE) method in MATLAB.The log-normal distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.It is characterized by two parameters: the mean (μ) and the variance (σ^2) of the logarithm.本任务中,我们使用最大似然估计(MLE)方法在MATLAB中对数正态分布的参数进行估计。

对数正态分布是一个连续概率分布,其定义为对数是正态分布的随机变量。

它由两个参数确定:对数的均值(μ)和对数的方差(σ^2)。

To perform the MLE in MATLAB, we first need to generate a dataset that follows a log-normal distribution.We can use the "logistic" function in MATLAB to generate random samples from a log-normal distribution.Let"s generate a dataset with 1000 observations having a mean of 0 and a variance of 1.在MATLAB中进行MLE之前,我们首先需要生成一个遵循对数正态分布的数据集。

经济学毕业论文中的计量经济模型参数估计方法

经济学毕业论文中的计量经济模型参数估计方法

经济学毕业论文中的计量经济模型参数估计方法计量经济模型在经济学研究中扮演着重要的角色,它通过对经济变量之间的关系进行量化,并运用统计学方法来估计这些关系的参数。

本文将介绍一些常用的计量经济模型参数估计方法,以及它们在经济学毕业论文中的应用。

一、最小二乘法(Ordinary Least Squares, OLS)最小二乘法是最经典的参数估计方法之一,它通过最小化实际观测值与模型预测值之间的差异来估计参数。

在OLS中,我们假设误差项服从正态分布,且具有零均值和常数方差。

这种方法通常适用于线性回归模型。

二、广义最小二乘法(Generalized Least Squares, GLS)广义最小二乘法是对OLS的一种扩展,它允许误差项不符合OLS 的基本假设。

当误差项具有异方差或者相关性时,GLS可以提供更为准确的参数估计。

通过引入协方差矩阵的倒数作为权重矩阵,GLS可以对不同方程的参数进行加权,以提高估计的有效性。

三、仪器变量法(Instrumental Variables, IV)仪器变量法是一种用于解决内生性问题的参数估计方法。

当存在内生性问题时,OLS的估计结果会偏倚,仪器变量法可以通过寻找具有相关性但不影响被解释变量的仪器变量来解决该问题。

该方法常用于面板数据模型或者工具变量回归模型。

四、差分法(Difference-in-Differences, DID)差分法是一种用于估计政策效果的方法。

该方法通过比较政策实施前后不受政策影响的对照组和实施组之间的差异来估计政策效果。

差分法需要具备实验和对照组的数据,并且假设两组在政策实施前具有平行趋势。

五、面板数据模型(Panel Data Model)面板数据模型是一种将时间序列与横截面数据相结合的经济学模型。

它可以用于估计个体效应和时间效应对经济变量的影响。

面板数据模型可以采用固定效应模型、随机效应模型或者混合效应模型进行估计。

六、极大似然法(Maximum Likelihood Estimation, MLE)极大似然法是一种在统计学中广泛使用的参数估计方法。

Unconditional maximum likelihood estimation of linear and dynamic models for spatial panels

Unconditional maximum likelihood estimation of linear and dynamic models for spatial panels

Geographical Analysis ISSN0016-7363 Unconditional Maximum Likelihood Estimation of Linear and Log-LinearDynamic Models for Spatial PanelsJ.Paul ElhorstFaculty of Economics,University of Groningen,Groningen,The NetherlandsThis article hammers out the estimation of afixed effects dynamic panel data model extended to include either spatial error autocorrelation or a spatially lagged dependent variable.To overcome the inconsistencies associated with the traditional least-squares dummy estimator,the models arefirst-differenced to eliminate thefixed effects and then the unconditional likelihood function is derived taking into account the density function of thefirst-differenced observations on each spatial unit.When exogenous variables are omitted,the exact likelihood function is found to exist.When exogenous variables are included,the pre-sample values of these variables and thus the likelihood function must be approximated.Two leading cases are considered:the Bhargava and Sargan approximation and the Nerlove and Balestra approximation.As an application,a dynamic demand model for cigarettes is estimated based on panel data from46U.S.states over the period from1963to1992.IntroductionIn recent years,there has been a growing interest in the estimation of econometric relationships based on panel data.In this article,we focus on dynamic models for spatial panels,a family of models for which,according to Elhorst(2001)and Had-inger,Mu¨ller,and Tondl(2002),no straightforward estimation procedure is yet available.This is(as will be explained later)because existing methods developed for spatial but non-dynamic and for dynamic but non-spatial panel data models produce biased estimates when these methods/models are put together.A dynamic spatial panel data model takes the form of a linear regression equa-tion extended with a variable intercept,a serially lagged dependent variable and either a spatially lagged dependent variable(known as spatial lag)or a spatially autoregressive process incorporated in the error term(known as spatial Correspondence:J.Paul Elhorst,Faculty of Economics,University of Groningen,P.O.Box 800,9700AV Groningen,The Netherlandse-mail:j.p.elhorst@eco.rug.nlSubmitted:July11,2003.Revised version accepted:May18,2004.Geographical Analysis37(2005)85–106r2005The Ohio State University85Geographical Analysiserror).To avoid repetition,we apply to the spatial error specification in this article.The spatial lag specification is explained in a working paper(Elhorst 2003a).1The model is considered in vector form for a cross-section of observa-tions at time t:Y t¼t Y tÀ1þX t bþmþj t;j t¼d W j tþe t;Eðe tÞ¼0;Eðe t e0tÞ¼s2I Nð1Þwhere Y t denotes an NÂ1vector consisting of one observation for every spatial unit(i51,...,N)of the dependent variable in the t th time period(t51,...,T)and X t denotes an NÂK matrix of exogenous explanatory variables.It is assumed that the vector Y0and matrix X0of initial observations are observable.The scalar t and the KÂ1vector b are the response parameters of the model.The disturbance term consists of m5(m1,...,m N)0,j t5(j1t,...,j Nt)0,and e t5(e1t,...,e Nt)0,where e it are independently and identically distributed error terms for all i and t with zero mean and variance s2.I N is an identity matrix of size N,W represents an NÂN non-negative spatial weight matrix with zeros on the diagonal,and d represents the spatial autocorrelation coefficient.The properties of m are explained below.The reasons for considering serial and spatial dynamic effects,either directly as part of the specification or indirectly as part of the disturbance term,have been published earlier(Elhorst2001,2004).A standard space–time model,even if it is dynamic,still assumes that the spatial units are completely homogeneous,differing only in their explanatory variables.Standard space–time models include the STARMA/STARIMA(Space Time AutoRegressive[Integrated]Moving Average) model(Hepple1978;Pfeifer and Deutsch1980),spatial autoregression space–time forecasting model(Griffith1996),and the serial and spatial autoregressive distrib-uted lag model(Elhorst2001).A panel data approach would presume that spatial heterogeneity is a feature of the data and attempt to model that heterogeneity.The need to account for spatial heterogeneity is that spatial units are likely to differ in their background variables,which are usually space-specific time-invariant varia-bles that affect the dependent variable,but are difficult to measure or hard to ob-tain.Omission of these variables leads to bias in the resulting estimates.One rem-edy is to introduce a variable intercept m i representing the effect of the omitted variables that are peculiar to each spatial unit considered(Baltagi2001,chap.1). Conditional upon the specification of the variable intercept m i,the regression equa-tion can be estimated as afixed or a random effects model.In thefixed effects model,a dummy variable is introduced for each spatial unit as a measure of the variable intercept.In the random effects model,the variable intercept is treated as a random variable that is independently and identically distributed with zero mean and variance s2m.Whether the random effects model is an appropriate specification in spatial research remains controversial.When the random effects model is implemented, the units of observation should be representative of a larger population,and the number of units should potentially be able to go to infinity.There are two types of 86asymptotics that are commonly used in the context of spatial observations:(i)the ‘‘infill’’asymptotic structure,where the sampling region remains bounded as N !1.In this case,more units of information come from observations taken from between those already observed and (ii)the ‘‘increasing domain’’asymptotic structure,where the sampling region grows as N !1and the sample design is such that there is a minimum distance separating any two spatial units for all N .According to Lahiri (2003),there are also two types of sampling designs:(i)the stochastic design where the spatial units are randomly drawn and (ii)the fixed de-sign where the spatial units lie on a non-random field,possibly irregularly spaced.The spatial econometric literature mainly focuses on increasing domain asympto-tics under the fixed sample design (Cressie 1991,p.100;Griffith and Lagona 1998;Lahiri 2003).Although the number of spatial units under the fixed sample design can potentially go to infinity,it is questionable whether they are representative of a larger population.For a given set of regions,such as all counties of a state or all regions in a country,the population may be said ‘‘to be sampled exhaustively’’(Nerlove and Balestra 1996,p.4),and ‘‘the individual spatial units have charac-teristics that actually set them apart from a larger population’’(Anselin 1988,p.51).According to Beck (2001,p.272),‘‘the critical issue is that the spatial units be fixed and not sampled,and that inference be conditional on the observed units.’’In ad-dition,the traditional assumption of zero correlation between m i in the random ef-fects model and the explanatory variables is particularly restrictive.For these reasons,the random effects model is often not used.We will return to the random effects model briefly in the concluding section.The dynamic spatial panel data model was first considered by Hepple (1978).His conclusion was that empirical studies with a serially lagged dependent variable have a real problem in that ordinary least squares (OLS)is no longer consistent when relaxing the assumption that the disturbance term is homoskedastic and in-dependently distributed (e.g.,because of a variable intercept).He also pointed out that estimation would have to be by maximum likelihood (ML)and that this was worth pursuing,but did not explain how to do so.Buettner (1999)has estimated a wage curve for Germany using the non-dynamic fixed effects spatial lag model and using the non-spatial dynamic fixed effects models,but not the dynamic spatial panel data model.Spatial but non-dynamic panel data modelThe standard estimation method for the fixed effects model without a serially lagged dependent variable and without spatial error autocorrelation (t 50;d 50)is to eliminate the intercept b 1and the dummy variables m i from the regression equation.This is possible by taking each variable in the regression equation in deviation from its average over time z it Àð1=T ÞP t z it for z ¼y ;x ÀÁ;called demeaning.The slope coefficients b (the K Â1vector b without the intercept)in the resulting equation can then be estimated by OLS,known as the least-squares dummy variables (LSDV)estimator.Subsequently,the intercept b 1and the dummy variables m i may beJ.Paul Elhorst Dynamic Spatial Panels 87Geographical Analysisrecovered(Baltagi2001,pp.12–15).It should be stressed that the coefficients of these dummy variables cannot be estimated consistently,because the number of observations available for the estimation of m i is limited to T observations.How-ever,in many empirical applications this problem does not matter,because t and b are the coefficients of interest and m i are not.Fortunately,the inconsistency of m i is not transmitted to the estimator of the slope coefficients in the demeaned equation, because this estimator is not a function of the estimated m i.This implies that in-creasing domain asymptotics under thefixed sample design(N!1)do apply for the demeaned equation.Anselin(1988)shows that OLS estimation is inefficient for cross-sectional models incorporating spatial error autocorrelation(t still0,but d¼0)2and suggests overcoming this problem by using ML.This is important because the LSDV esti-mator of thefixed effects models falls back on the OLS estimator of the response coefficients in the demeaned equation.Elhorst(2003b)shows that ML estimation of the spatialfixed effects model can be carried out with standard techniques devel-oped by Anselin(1988,pp.181–82)and Anselin and Hudak(1992)after the var-iables in the regression equation have been demeaned.The asymptotic properties of the ML estimator depend on the spatial weight matrix.The critical condition is that the row and column sums,before normalizing the spatial weight matrix,should not diverge to infinity at a rate equal to or faster than the rate of the sample size N in the cross-section domain(Lee2002).3Dynamic but non-spatial panel data modelThe panel data literature has extensively discussed the dynamic but non-spatial panel data model(t¼0,but d50;see Hsiao1986,chap.4;Sevestre and Trognon 1996;Baltagi2001,chap.8).The most serious estimation problem caused by the introduction of a serially lagged dependent variable is that the OLS estimator of the response coefficients in the demeaned equation,as discussed above and in this case consisting of t and b,is inconsistent if T isfixed,regardless of the size of N. Two procedures to remove this inconsistency are being intensely discussed in the panel data literature.Thefirst procedure considers the unconditional likelihood function of the model formulated in levels(cf.Equation(1)).Regression equations that include variables lagged one period in time are often estimated conditional upon thefirst observations.When estimating these models by ML,it is also possible to obtain unconditional results by taking into account the density function of thefirst obser-vation of each time-series of observations.This so-called unconditional likelihood function has been shown to exist when applying this procedure to a standard linear regression model without exogenous explanatory variables(Hamilton1994;Johns-ton and Dinardo1997,pp.229–30),and on a random effects model without ex-ogenous explanatory variables(Ridder and Wansbeek1990;Hoogstrate1998; Hsiao,Pesaran,and Tahmiscioglu2002).Unfortunately,the unconditional likeli-hood function does not exist when applying this procedure on thefixed effects 88J.Paul Elhorst Dynamic Spatial Panels model,even without exogenous explanatory variables.The reason is that the co-efficients of thefixed effects cannot be estimated consistently,because the number of these coefficients increases as N increases.The standard solution to eliminate thesefixed effects from the regression equation by demeaning the Y and X variables also does not work,because this technique creates a correlation of order(1/T)be-tween the serial lagged dependent variable and the demeaned error terms(Nickell 1981;Hsiao1986,pp.73–76),as a result of which the common parameter t cannot be estimated consistently.Only when T tends to infinity does this inconsistency disappear.The second procedurefirst-differences the model to eliminate thefixed effects, Y tÀY tÀ1¼tðY tÀ1ÀY tÀ2ÞþðX tÀX tÀ1Þbþj tÀj tÀ1,and then applies general-ized method-of-moments(GMM)using a set of appropriate instruments.4Recently, Hoogstrate(1998)and Hsiao,Pesaran,and Tahmiscioglu(2002)have suggested a third procedure that combines the preceding two.This procedurefirst-differences the model to eliminate thefixed effects and then considers the unconditional like-lihood function of thefirst-differenced model taking into account the density func-tion of thefirst-differenced observations on each spatial unit.Hsiao,Pesaran,and Tahmiscioglu(2002)prove that this procedure yields a consistent estimator of the scalar t and the response parameters b when the cross-sectional dimension N tends to infinity,regardless of the size of T.It is also shown that the ML estimator is as-ymptotically more efficient that the GMM estimator.Estimation of a dynamic spatial panel data modelThe advantage of the last procedure is that it also opens the possibility to estimate a fixed effects dynamic panel data model extended to include spatial error autocor-relation(or a spatially lagged dependent variable),which is the objective of this article.We utilize the ML estimator;the objection to GMM from a spatial point of view is that this estimator is less accurate than ML(see Das,Kelejian,and Prucha 2003).This is because d is bounded from below and above using ML,whereas it is unbounded using GMM;the transformation of the estimation model from the error term to the dependent variable contains a Jacobian term,5which the ML approach takes into account but the GMM approach does not.In addition to spatial heterogeneity,it is the specification of the generating process of the initial observations that sets this estimation procedure apart from those used previously to standard space–time models(STARMA,STARIMA,and the spatial autoregression space–time forecasting model).As thefirst cross-section of observations conveys a great deal of information,conditioning on these observa-tions is an undesirable feature,especially when the time-series dimension of the spatial panel is short.It is not difficult to obtain the unconditional likelihood func-tion once the marginal distribution of the initial values is specified.The problem arises in obtaining a valid specification of this distribution when the model contains exogenous variables.This is because the likelihood function under this circum-stance depends on pre-sample values of the exogenous explanatory variables and89Geographical Analysisadditional assumptions have to be made to approach these values.The panel data literature has suggested different distributions leading to different optimal estima-tion procedures.We consider the Bhargava and Sargan(1983)(BS)approximation, which is also applied in Hsaio,Pesaran,and Tahmiscioglu(2002),and an approx-imation recently introduced by Nerlove and Balestra(1996)(NB)and Nerlove (1999)or Nerlove(2000).As a spatial panel has two dimensions,it is possible to consider asymptotic behavior as N!1,T!1,or both.Generally speaking,it is easier to increase the cross-section dimension of a spatial panel.If as a result N!1is believed to be the most relevant inferential basis,it follows from the above discussion that the parameter estimates of t and b derived from the unconditional likelihood function of thefixed effects dynamic panel data transformed intofirst differences and ex-tended to include spatial autocorrelation(or a spatially lagged dependent variable) are consistent.The remainder of this article consists of one technical,one empirical,and one concluding section.In the technical section,we derive the unconditional likeli-hood function of the dynamic panel data model extended to include spatial error autocorrelationfirst excluding and then including exogenous explanatory variables. In the empirical section,a dynamic demand model for cigarettes is estimated based on panel data from46U.S.states over the period from1963to1992.The con-cluding section recapitulates our majorfindings.Spatial error specificationNo exogenous explanatory variablesIn this section,exogenous explanatory variables are omitted from Equation(1). Although this model will probably seldom be used in applied work,it is still interesting because the exact log-likelihood function exists.Takingfirst differ-ences of(1),the dynamic panel data model excluding exogenous explanatory variables(b50)extended to include spatial error autocorrelation changes intoD Y t¼tD Y tÀ1þBÀ1De tð2Þwhere B¼I NÀd W.It is assumed that the characteristic roots of the spatial weight matrix W,denoted by o i(i51,...,N),are known.This assumption is needed to ensure that the log-likelihood function of the models below can be computed.Ad-ditional properties of W,which we call Griffith’s matrix properties throughout this article,are(Griffith1988,p.44,Table3.1):(i)if W is multiplied by some scalar constant,then its characteristic roots are also multiplied by this constant;(ii)if d I is added to W,where d is a real scalar,then d is added to each of the characteristic roots of W;(iii)the characteristic roots of W and its transpose are the same;(iv)the characteristic roots of W and its inverse are inverses of each other;and(v)if W is90powered by some real number,each of its characteristic roots is powered by this same real number.D Y t is well defined for t52,...,T,but not for D Y1because D Y0is not observed. To be able to specify the ML function of the complete sample D Y t(t51,...,T),the probability function of D Y1must be derivedfirst.Therefore,we repeatedly lag Equation(2)by one period.For D Y tÀmðm!1Þ,we obtainD Y tÀm¼tD Y tÀðmþ1ÞþBÀ1De tÀmð3ÞThen,by substitution of D Y tÀ1into(2),next D Y tÀ2into(2)up to D Y tÀðmÀ1Þinto(2), we obtainD Y t¼t m D Y tÀmþBÀ1De tþt BÀ1De tÀ1þÁÁÁþt mÀ1BÀ1De tÀðmÀ1Þ¼t m D Y tÀmþBÀ1½e tþðtÀ1Þe tÀ1þðtÀ1Þte tÀ2þÁÁÁþðtÀ1Þt mÀ2e tÀðmÀ1ÞÀt mÀ1e tÀmð4ÞAs E(e t)50(t51,...,T)and the successive values of e t are uncorrelated,EðD Y tÞ¼t m D Y tÀm and VarðD Y tÞ¼s2v b BÀ1B0À1ð5Þwhere the scalar v b is defined asv b¼21þtð1þt2mÀ1Þð6ÞTwo assumptions with respect to D Y1can be made(cf.Hsiao,Pesaran,and Tahmiscioglu2002):(I)The process started in the past,but not too far back from the0th period,andthe expected changes in the initial endowments are the same across all spatial units.Note that this assumption,although restrictive,does not impose the even stronger restriction that all spatial units should start from the same initial endowments.Under this assumption,EðD Y1Þ¼p01N,where1N denotes an NÂ1vector of unit elements and p0is afixed but unknown parameter to be estimated.(II)The process has started long ago(m approaches infinity)and|t|o1.Under this assumption,EðD Y1Þ¼0,while v b reduces to v b¼2=ð1þtÞ.It can be seen that thefirst assumption reduces to the second one,when p0¼0, j t j o1,and m is sufficiently large so that the term t m becomes negligible.Therefore, we consider the unconditional log-likelihood function of the complete sample un-der the more general assumption(I).Writing the residuals of the model as D e t¼D Y tÀtD Y tÀ1for t52,...,T and,using assumption(I),D e1¼D Y1Àp0I N for t51,we have VarðD e1Þ¼s2v b BÀ1B0À1,VarðD e tÞ¼2s2BÀ1B0À1(t52,...,T),CovarðD e t;D e tÀ1Þ¼Às2BÀ1B0À1 (t52,...,T),and zero otherwise.This implies that the covariance matrix of D e J.Paul Elhorst Dynamic Spatial Panels91can be written as VarðD eÞ¼s2ðG vb BÀ1B0À1Þ,by which v b is given in(6),denotes the Kronecker product,and the TÂT matrix G v j v¼vbis defined as Definition1.G vvÀ10:00À12À1:000À12:00::::::000:2À1000:À1226666666643777777775with its subelement in thefirst row andfirst column set to v.Properties of the matrix G v used below are:(i)The determinant is j G v j ¼1ÀTþTÂv;(ii)the inverse is GÀ1v¼1=ð1ÀTþTÂvÞ½ð1ÀTÞGÀ10þvðGÀ11Àð1ÀTÞGÀ10Þ ,where the inverse matrices GÀ10¼GÀ1v j v¼0and GÀ11¼GÀ1v j v¼1can easily be calculated and are characterized by a specific structure; and(iii)let p denote an NTÂ1vector,which can be partitioned into T block rows of length N.When p t denotes the t th block row(t51,...,T)of p,thenp0ðG vb I NÞÀ1p¼P Tt1¼1P Tt2¼1GÀ1vbðt1;t2Þp0t1p t2,where GÀ1vbðt1;t2Þrepresents theelement of GÀ1vb in row t1and column t2.In sum,we have6log L¼ÀNT2logð2ps2ÞþT log j B jÀN2log j G vbjÀ12s2D eÃ0ðG vbI NÞÀ1D eÃð7aÞwhereD eüBðD Y1Àp01NÞBðD Y2ÀtD Y1Þ:BðD Y TÀtD Y TÀ1Þ2666437775;EðD eÃD eÃ0Þ¼s2ðG v b I NÞð7bÞThis log-likelihood function is well-defined,satisfies the usual regularity con-ditions,and contains four unknown parameters to be estimated:p0,t,d,and s2.An appropriate value of m should be chosen in advance.s2can be solved from itsfirst-order maximizing condition,^s2¼1=NT D eÃ0ðG vb I NÞÀ1D eÃ.On substituting s2into the log-likelihood function and using Griffith’s matrix properties and the prop-erties of G v given below Definition1,the concentrated log-likelihood function of p0,t,and d is obtained asLog L C¼CÀNT2logX Tt1¼1X Tt2¼1GÀ1vbðt1;t2ÞD eÃ0t1D eÃt1 "#þTX Ni¼1logð1Àd o iÞÀN2log1ÀTþTÂ21þtð1þt2mÀ1Þð8ÞGeographical Analysis 92where C is a constant(C¼ÀNT=2ð1þlog2pÞ).As thefirst-order maximizing conditions of this function are non-linear,a numerical iterative procedure must be used tofind the maximum for p0,t,and d.Exogenous explanatory variablesIn this section,explanatory variables are added to the model.They are assumed to be strictly exogenous and to be generated by a stationary process in time.By taking first differences and continuous substitution,we can rewrite the dynamic panel data model(1)extended to include spatial error autocorrelation asD Y t¼t m D Y tÀmþBÀ1De tþt BÀ1De tÀ1þÁÁÁþt mÀ1BÀ1De tÀðmÀ1ÞþXmÀ1j¼0t j D X tÀj b¼t m D Y tÀmþD e tþXÃð9ÞAs X t is stationary,we have E D X t¼0and thus EðD Y1Þ¼t m D Y tÀm.This expecta-tion is determined under assumption(I).By contrast,VarðD Y1Þis undetermined,as XÃis not observed.This implies that the probability function of D Y1is also unde-termined.The panel data literature has suggested different assumptions about XÃleading to different optimal estimation procedures.We consider two leading cases: the BS approximation and the NB approximation.The BS approximationBhargava and Sargan(1983)suggest predicting XÃwhen t51by all the exogenous explanatory variables in the model subdivided by time over the observation period. In other words,when the model contains K1time varying and K2time invariance explanatory variables over T time periods,XÃis approached by K1ÂTþK2re-gressors.Lee(1981),Ridder and Wansbeek(1990),and Blundell and Smith(1991) use a similar approach.Hsiao,Pesaran,and Tahmiscioglu(2002)apply this ap-proximation on thefixed effects model formulated infirst differences.One of their main conclusions is that there is much to recommend the ML estimator based on this approximation.The results of a Monte Carlo simulation study strongly favor the ML estimator over other estimators(instrumental variables[IV],GMM)and the ML estimator appears to have excellentfinite sample properties even when both N and T are quite small.The predictor of XÃunder assumption(I)is p01NþD X1p1þÁÁÁþD X T p Tþx, where x$Nð0;s2x I NÞ,p0is a scalar,and p t(t51,...,T)are KÂ1vectors of para-meters.When the k th variable of X is time invariant,the restriction p1k¼ÁÁÁ¼p Tk should be imposed.In addition to this,the condition N41þKÂT should hold; otherwise,the number of parameters used to predict XÃmust be reduced.We thus haveD Y1¼p01NþD X1p1þÁÁÁþD X T p TþD e1where D e1¼xþBÀ1XmÀ1j¼0t j De1Àjð10aÞJ.Paul Elhorst Dynamic Spatial Panels93EðD e1Þ¼0;EðD e1D e02Þ¼Às2BÀ1B0À1;EðD e1D e0tÞ¼0ðt¼3;...;TÞð10bÞEðD e1D e01Þ¼s2x I Nþs2v b BÀ1B0À1 s2BÀ1ðy2BB0þv b I NÞB0À1ð10cÞInstead of estimating s2x and s2,it is easier to estimate y2(y2¼s2x=s2)and s2, which is allowed as there exists a one-to-one correspondence between s2x and y2.Let V BS¼y2BB0þv b I N¼y2BB0þ21þt ð1þt2mÀ1ÞI N;then,the covariance ma-trix of D e can be written as VarðD eÞ¼s2½ðI T BÀ1ÞH VBS ðI T B0À1Þ ,by which theNTÂNT matrix H V j V¼VBSis defined as Definition2.H VVÀI N0:00ÀI N2ÂI NÀI N:000ÀI N2ÂI N:00::::::000:2ÂI NÀI N000:ÀI N2ÂI N 26666666643777777775with its submatrix in thefirst block row andfirst block column set to the NÂN matrix V.Properties of the matrix H v used below are:(i)The determinant is j H V j¼j I NÀTÂI NþTÂV j;(ii)The inverse is HÀ1V¼ð1ÀTÞðGÀ10 DÀ1ÞþððGÀ11Àð1ÀTÞGÀ10Þ ðDÀ1VÞ;where D¼I NÀTÂI NþTÂV;and(iii)HÀ1V can be partitioned into T block rows and T block columns,by which the subma-trix HÀ1Vðt1;t2Þ(t1,t251,...,T)equals HÀ1Vðt1;t2Þ¼ð1ÀTÞGÀ10ðt1;t2ÞÂDÀ1þðGÀ11ðt1;t2ÞÀð1ÀTÞGÀ10ðt1;t2ÞÂðDÀ1VÞ:The last equation is used to obtain the matrix HÀ1V computationally.Using Griffith’s matrix properties and the properties of H V given below Def-inition2,the log-likelihood function is obtained aslog L¼ÀNT2logð2ps2ÞþTX Ni¼1logð1Àdo iÞÀ12X Ni¼1log1ÀTþTÂ21þtð1þt2mÀ1ÞþT y2ð1Àd o iÞ2À12sD eÃ0HÀ1VBSD eÃð11aÞwhere D eüBðD Y1Àp01NÀD X1p1ÀÁÁÁÀD X T p TÞBðD Y2ÀtD Y1ÀD X2bÞ:BðD Y TÀtD Y TÀ1ÀD X T bÞ2666437775;EðD eÃD eÃ0Þ¼s2H VBS ð11bÞGeographical Analysis 94。

数理统计mle的英语解释

数理统计mle的英语解释

数理统计mle的英语解释Maximum Likelihood Estimation (MLE) is a fundamental statistical method used for estimating the parameters of a statistical model. It is based on the principle of findingthe parameter values that maximize the likelihood function, which is the probability of observing the given sample data under the model.In the context of MLE, the likelihood function is defined as the joint probability of the observed data given the parameters of the model. The goal is to find the set of parameter values that make the observed data most probable. This is achieved by taking the derivative of the likelihood function with respect to the parameters, setting these derivatives equal to zero, and solving for the parameters.The process of MLE involves the following steps:1. Specify the Model: Choose a statistical model that is appropriate for the data. This could be a normal distribution, a binomial distribution, or any other probabilitydistribution that fits the nature of the data.2. Formulate the Likelihood Function: Write down the likelihood function based on the chosen model. This istypically the product of the probability density functions (for continuous data) or probability mass functions (for discrete data) of the individual observations.3. Differentiate the Likelihood Function: Calculate the first derivative of the likelihood function with respect to each parameter of the model.4. Set Derivatives to Zero: Set each derivative equal to zero to find the critical points. These points are potential candidates for the maximum likelihood estimates.5. Solve for the Parameters: Solve the set of equations obtained from the previous step to find the parameter values that maximize the likelihood function.6. Verify the Maximum: Ensure that the critical points found are indeed maxima, not minima or saddle points, by checking the second derivative or using other methods.MLE has several desirable properties, such as consistency and asymptotic efficiency, which make it a popular choice in statistical inference. However, it is important to note that MLE is based on certain assumptions about the data and the model, and these assumptions should be checked before applying MLE to ensure the validity of the results.。

广义线性模型论文:广义线性模型中极大拟似然估计的相合性与渐近正态性

广义线性模型论文:广义线性模型中极大拟似然估计的相合性与渐近正态性

广义线性模型论文:广义线性模型中极大拟似然估计的相合性与渐近正态性【中文摘要】广义线性模型是一类非常重要的数学模型,是经典线性模型的推广,有着广泛的应运。

在经济,社会,医学,生物等数据的统计分析上有这重要的意义。

可以适用于连续数据与离散数据,尤其是后者,如计数数据,属性数据等等。

广义线性模型包括线性回归,方差分析模型,交替响应的对数和概率单位模型模型,对数线性模型,计数的多项响应模型和生存数据的一些常用模型。

以上这些模型具有大量的性质,例如线性性,我们可以使用这些性质得到很好的效果。

除此之外,我们还有计算参数估计的常用方法。

广义线性模型的个例起源很早,世界著名统计学家费舍尔曾于1919年使用过该模型。

1972年Nelder和Wedderburn在一篇论文中引进了广义线性模型的概念。

1989年McCullagh和Nelder再版的著作详细的论述了广义线性模型及其取得的成果。

时至今日,这方面的研究文献数以千计。

本文研究了广义线性模型的参数估计,研究估计的渐近性,包括渐近存在性,相合性和渐近正态性。

1.本文研究了在自适应设计和自联系情况下,广义线性模型极大拟似然的渐近存在性。

当响应变量yi是q×1维,设计阵Xi是p×q维且有界,以及最小特征根sup E以及其它正则条件下,证明了极大拟似然估计(MQLE)的渐近存在性,弱相合性和收敛速度。

之前没有文献在λn→∞的条件下,获得相应的结果。

2.本文研究了在自适应设计和自联系情况下,广义线性模型极大拟似然的渐近正态性性。

当响应变量yi是q×1维,设计阵Xi是p×q维且有界,及及其它的正则条件下,广义线性模型有一个渐近正态的根。

这将高启兵和吴耀华(2004)中的条件减弱到了【英文摘要】The generalized linear model, which is the classical linear model promotion, is a kind of very important mathematical model and has been widely used. It is very significant in data analysis in the economy, the society, the medicine, in biology and so on. It is suitable for the continuous and the discrete data, particularly the latter, like counted data, characteristic data and so on. The generalized linear model includes models such as the peculiar circumstance, the linear regression, the variance analysis model, the logarithm and the probit model of alternated responds, the log-linear model, the counting many response model and some commonly used models of survival data. There are massive properties in some models above, such as the linearity. We can use these properties to obtain the very good effect. In addition, we also have commonly used methods of the parameter estimation.Generalized linear model’s example originated very early. World-famous statistician Fish once used this model in 1919. In 1972 Nelder and Wedderburn introduced the concept of the generalized linear model in a paper. In 1989 McCullagh andNelder discussed the generalized linear model and obtained achievement in their reprinted work in detail. Now there is much literature in this aspect.In this paper, parameter estimation of the generalized linear model is studied. The asymptotic properties of parameter estimation are discussed, including consistency, asymptotic existence and normality.1. The consistency of maximum quasi-likelihood estimators (MQLEs) in generalized linear models with natural link function and adaptive designs is discussed. When the response yi is q x 1 dimensional random vectors, the p x q regressors Xi is bounded, the minimum eigenvalue sup E and the other mild conditions, the consistency, asymptotic existence and the rate of MQLEs are proved. Corresponding results are not obtained until now when2. The asymptotic normality of maximum quasi-likelihood estimators (MQLEs) in generalized linear models with natural link function and adaptive designs is discussed. When the response yi is q x 1 dimensional random vectors, the p x q regressors Xi is bounded, and the other mild conditions, the asymptotic normality of MQLEs is proved. This weakened in Gao Q B and Wu Y H (2004).【关键词】广义线性模型极大拟似然估计相合性渐近正态性【英文关键词】generalized linear models maximumquasi-likelihood estimators consistency asymptotic normality【目录】广义线性模型中极大拟似然估计的相合性与渐近正态性摘要3-4Abstract4第一章绪论6-16 1.1 广义线性模型简介6-9 1.1.1 线性模型简介6-7 1.1.2 广义线性模型简介7-9 1.2 极大拟似然估计理论9-12 1.2.1 极大似然估计理论简介9-11 1.2.2 极大拟似然估计理论简介11-12 1.3 国内外的研究成果12-14 1.4 本文内容安排14-16第二章广义线性模型的渐近存在性和相合性16-26 2.1 引言16-19 2.2 主要定理和相关结果19-25 2.3 小结25-26第三章广义线性模型中极大拟似然估计的渐近正态性26-35 3.1 引言26-28 3.2 相关理论简介28-31 3.3 主要定理和相关结果31-34 3.4 小结34-35第四章总结与展望35-37 4.1 本文研究工作总结35-36 4.2 进一步研究方向36-37致谢37-38参考文献38-41攻读学位期间发表的学术论文目录41。

机器学习(3)之最大似然估计

机器学习(3)之最大似然估计

机器学习(3)之最⼤似然估计关键字全⽹搜索最新排名【机器学习算法】:排名第⼀【机器学习】:排名第⼆【Python】:排名第三【算法】:排名第四最⼤似然估计上⼀篇(机器学习(2)之过拟合与⽋拟合)中,我们详细的论述了模型容量以及由模型容量匹配问题所产⽣的过拟合和⽋拟合问题。

这⼀次,我们探讨哪些准则可以帮助我们从不同的模型中得到特定函数作为好的估计。

其中,最常⽤的准则就是极⼤似然估计(maximum likelihood estimation,MLE)。

(1821年⾸先由德国数学家C. F. Gauss提出,但是这个⽅法通常被归功于英国的统计学家R. A. Fisher(罗纳德·费希尔)。

)基本思想⼀个随机试验如有若⼲个可能的结果A,B,C,…。

若在仅仅作⼀次试验中,结果A出现,则⼀般认为试验条件对A出现有利,也即A出现的概率很⼤。

⼀般地,事件A发⽣的概率与参数theta 相关,A发⽣的概率记为P(A,theta),则theta的估计应该使上述概率达到最⼤,这样的theta顾名思义称为极⼤似然估计。

求解的⼀般步骤(1)写出似然函数;(2)对似然函数取对数,并整理;(3)求导数;(4)解似然⽅程。

假设有⼀组样本,样本数量为m,由未知的数据⽣成分布Pdata(x)独⽴的⽣成,设Pmodel(x, theta)是⼀组由theta确定在相同空间上的概率分布,则theta的最⼤后验估计(在贝叶斯统计学中,最⼤后验(Maximum A Posteriori,MAP)估计可以利⽤经验数据获得对未观测量的点态估计。

它与Fisher的最⼤似然估计⽅法相近,不同的是它扩充了优化的⽬标函数,其中融合了预估计量的先验分布信息,所以最⼤后验估计可以看作是正则化(regularized)的最⼤似然估计。

)被定义为如上式所⽰,多个概率(⼩于1)相乘在计算上会有很多的不便,其次也会发⽣数值下溢的问题。

为此,我们将上述优化问题通过log函数转化为求和的优化问题,如下所⽰进⽽其中MLE的⼀种解释就是将其看做为最⼩化经验分布与模型真实分布之间的差异,这种差异可以使⽤KL散度来度量(其实就是分布之间的交叉熵),其中KL散度的定义如下所⽰其中第⼀项只包括数据⽣成的过程,与我们的模型参数⽆关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-2. Computational aspects One procedure to maximize Ln is by scoring using the updating equation <f>i = 4>o + B~1 L^. In view of (25) this amounts to computing /?0, for a given 60, using PQ = (X'V-lX)-lX'V-1 Y (2-6)
Some key words: Asymptotic normality; Consistency; Gaussian process; Kriging; Lattice process; Likelihood; Simulation; Spatial covariance.
1. I N T R O D U C T I O N
Biometriica (1984), 71, I, pp. 136-46 Printed in (heal Britain
135
Maximum likelihood estimation of models for residual covariance in spatial regression
i
W
1
(i = l,...,p),
(2-2)
where V, = dV/8d,, V = dV^dd,
derivative matrix of Ln can be written
= - F " Vx F "
1
and W = Y-X0. The second
l0g
M,
LlggJ
(2-3)
+ X'V Y for i = 1, ...,p, and LM (2-4)
2. MAXIMUM LIKELIHOOD
2-1. The likelihood for a Gaussian process
We consider a real valued Gaussian random process { Y(t); t e T} where T is an index set. For example T = Zd describes a d-dimensional lattice process and T = R* is a
In regression analysis the assumption that residuals are uncorrelated is sometimes untenable. This is particularly so in the analysis of spatial data when correlation may exist between neighbouring entities. The nature of the covariance among residuals will usually not be known precisely, but it is often possible to adopt a simple parametric model to describe it. One then has a set of covariance parameters as well as the regression coefficients to estimate. In most applications estimation of the regression coefficients will be of primary importance; however, our interest in this problem arose in the estimation of models of spatial covariance where the nature of the covariance is of particular interest in itself (Mardia, 1980). The approach we adopt, through maximum likelihood, is akin to the earlier studies of Cliff & Ord (1973, Chapter 5), and more recently Cook & Pocock (1983). In § 2 we discuss how the likelihood function may be numerically maximized, giving suitable formulae for the derivatives and information matrix. In §3 we give conditions which ensure that, with dependent observations, estimators are consistent and uniformly asymptotically normal. The relevance of these conditions for the analysis of spatial data is discussed in §§4 and 5. The results of some Monte Carlo simulation experiments for the estimation of spatial covariance is presented in §5. These provide a useful insight into the nature of bias for small samples. In §6 we discuss the computationally straightforward large sample spectral approximation to the likelihood for processes observed on a lattice and we give some illustrative examples.
where Lfifi = -X'V'1
has (i,j)th term
X, L^ has ith column -X'V'Xp
-i{tr(F- x Vtj+VVJ+W'V'JW}, where V,j = d2 V/d9idep Bn = -E(Li2(2-5)
Using ViJ = V~l(Vt V~l Vj+ V} F " 1 V,- F y ) V'1 we obtain the information matrix = diag (B,, Be), Vj) = tr(VVlVVJ). where Bp = X'V~ X and the (i, j)th element of Be is $ttj with
136
K . V. M A R D I A AND R . J .
MARSHALL
continuous parameter process. Or T could be a collection of spatial entities such as regions or counties. We suppose that, for all t e T, E{ Y(t)} = x{t)'fi, where x(t) = {xl(t), ...,xq(t)}' is a g x 1 vector of nonrandom regressors and /? e B is a parameter vector, B being an open subset of Bf. Also let the covariance be defined by a parametric model cov{y(/), Y(s)} = a(t,s; 6), for all t,a e T, where 6 6 0 is a p x l parameter vector, 0 being an open subset of Rp. We assume that <x(t, s; 6) is twice differentiate with respect to 0 a t all points on T2 x 0 , and that it is positive-definite in the sense that for every finite subset Tn = {t1, ...,tn} of T the covariance matrix Vn = {o(tt,ty, 6)}. is positive-definite. Suppose that Y(t) is observed at each point to give the sample vector Yn = { Y ^ ) , . . . , Y(tn)}'. We denote the combined (q+p)xl parameter vector by (j> = (/?', 6')'. The log likelihood for (f> is, if we ignore a constant, Ln(<j>;Yn)=-±\og\Vn\-\(Yn-XnP)'V;1(Yn-XJ), (2-1) where Xn is an n x q regressor matrix with^'th column Xj = {x^t^,..., Xj(tn)}''. We assume Xn to be rank q. By maximizing (21) the maximum likelihood estimates of ft and 0, denoted fin, §n, can be obtained. There are a number of ways this can be done as we indicate in §22. First, however, we give some relevant formulae. For notational convenience, we shall henceforth omit the subscript n on XH, Vn and Yn. The derivative vector of £„, say L^, can be written £</> = (L'^L'g)', where L0 = - X T " 1 I j S + I ' F " 1 Y and the ith element of Lg is
相关文档
最新文档