上海市金山中学2013-2014学年高二下学期期末考试文科数学试卷(解析版)

合集下载

上海市2013学年高二年级第二学期期末数学试卷

上海市2013学年高二年级第二学期期末数学试卷

上海市2013学年高二年级第二学期期末数学试卷(满分150分,答题时间120分钟)一、填空题(本大题满分60分)本大题共有12题,每题5分,考生应在答题纸上相应编号的空格内直接填写结果. 1.计算:2(12)(32)1i i i+-++= 2.ϑ∈(π,23π),直线l :ϑsin x +ϑcos y +1=0的倾角α= 3.一条渐近线方程3x +4y =0,且经过点是(4,6)的双曲线标准方程是 4. 已知复数1z =3+4i ,2z =t +i ,且21z z ⋅是实数,则实数t 等于 5.过抛物线y 2=2px(p>0)的焦点,倾斜角为45°的直线截得的线段长为6. 若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是 7.在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上,则圆C 的方程为8. 已知命题:椭圆252x +92y =1与双曲线112x -52y =1的焦距相等.试将此命题推广到一般情形,使已知命题成为推广后命题的一个特例:9.已知a R ∈,且2k παπ≠+,k Z ∈设直线:tan l y x m α=+,其中0m ≠, 给出下列结论:①l 的倾斜角为arctan(tan )α;②l 的方向向量与向量(cos ,sin )a αα=共线;③l 与直线sin cos 0x y n αα-+=()n m ≠一定平行;④若04a π<<,则l 与y x =直线的夹角为4πα-;⑤若4k παπ≠+,k Z ∈,与l 关于直线y x =对称的直线l '与l 互相垂直.其中真命题的编号是 (写出所有真命题的编号)10.已知抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,双曲线221x y a -=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是11.若点P 在曲线C 1:28y x =上,点Q 在曲线C 2:(x -2)2+y 2=1上,点O 为坐标原点,则||||PO PQ 的最大值是 12.已知A 、B 是椭圆22221(0)x y a b a b +=>>和双曲线 22221(0,0)x y a b a b-=>>的公共顶点。

上海市金山中学高二数学下学期期末考试试题

上海市金山中学高二数学下学期期末考试试题

金山中学2014学年度第二学期高二年级数学学科期末考试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.已知247353---=x x x P C ,则=x 。

2.若正方体的体对角线长是4,则正方体的体积是 。

3.经过抛物线x y 42=的焦点,且以)1,1(=为方向向量的直线的方程是 。

4. 在二项式8)1(xx -的展开式中,含5x 的项的系数是 。

(用数字作答)5.若双曲线的渐近线方程为3y x =±,它的一个焦点与抛物线2y =的焦点重合,则双曲线的标准方程为 。

6.设21,F F 分别是双曲线1922=-y x 的左、右焦点,若点P 在双曲线上,且021=⋅PF PF,则=+ 。

7.若五个人排成一排,则甲乙两人之间仅有一人的概率是 。

(结果用数值表示)8.已知)1,1(-P ,)2,2(Q ,若直线:l 1-=mx y 与射线PQ (P 为端点)有交点,则实数m 的取值范围是 。

9.圆锥的侧面展开图为扇形,若其弧长为2πcm,则该圆锥的体积为 3cm 。

10.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面 的形状都不可能是三角形,那么液体体积的取值范围是 。

11.在一个水平放置的底面半径为3cm 的圆柱形量杯中装有适量的水,现放入一个半径为R cm 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好 上升R cm ,则R =___ ____cm 。

12.如右图,ABC ∆中,1,30,900==∠=∠BC A C内挖去半圆,圆心O 在边AC 上,半圆与BC 、AB 相切于点C 、M , 与AC 交于点N ,则图中阴影部分绕直线AC 旋转一周所得旋转体的体积为 。

13.已知抛物线22(0)y px p =>,过定点(,0)p 作两条互相垂直的直线12, l l ,1l 与抛物线交于, P Q 两点,2l 与抛物线交于, M N 两点,设1l 的斜率为k .若某同学已正确求得弦PQ 的中垂线在y 轴上的截距为B32p pk k +,则弦MN 的中垂线在y 轴上的截距为 。

2013-2014学年第二学期高二数学(文)期末试卷(含答案)

2013-2014学年第二学期高二数学(文)期末试卷(含答案)

2013-2014学年第二学期高二数学(文)期末试卷(含答案)(满分150 分,时间120 分钟)注意事项:1.考生应把班级、姓名、学号,写在密封线以内,写在密封线以外的无效。

2.请用钢笔、中型笔或圆珠笔把答案写在答题卡上。

3.考试结束后只上交答题卡,原试卷自己保存。

一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中只有一项是符合题目要求的 )1.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( ) A .1 B .3 C .4 D .82.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .R x x y ∈-=,3B .R x x y ∈=,sinR x x y ∈=, D .1(),2x y x R =∈ 3、设13log 5a =,153b =,0.315c ⎛⎫= ⎪⎝⎭,则有 ( ) A .a b c << B .c b a << C .c a b << D .b c a <<4.若lg a +lg b =0(其中a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称5.幂函数的图象过点(2,41),则它的单调增区间是( ) A .),0(+∞ B .),0[+∞ C .),(+∞-∞ D .)0,(-∞6、若函数()3222f x x x x =+--的一个正数零点附近的函数值用二分法逐次计那么方程32220x x x +--=的一个近似根(精确到0.1)为( )A .1.2B .1.3C .1.4D .1.57. “032>x ”是“0<x ”成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件8.下列命题中是假命题的是 ( )A .(0,),>2x x sin x π∀∈ B .000,+=2x R sin x cos x ∃∈ C . ,3>0x x R ∀∈ D .00,=0x R lg x ∃∈9.设集合{|0},,A x x B =>=R 则从集合A 到集合B 的映射f 只可能是 ( )A.||x y x =→B. x y x 2=→C. x y x 2log =→D. )1(log 2+=→x y x10.给出如下四个命题①若“p 且q ”为假命题,则p 、q 均为假命题②命题“若b a >,则122->b a ”的否命题为“若b a ≤,则122-≤b a ” ③“11,2≥+∈∀x R x ”的否定是“11,2≤+∈∃x R x ”④在∆ABC 中,“B A >”是“B A sin sin >”的充要条件其中不正确...的命题的个数是( ) A .4 B .3 C .2 D .111.函数)10(||<<=a x xa y x的图象的大致形状是 ( )12、如果偶函数()f x 在区间[]1,6上是增函数且最大值是8,则()f x 在[]6,1-- 上是( )A .增函数,最大值8-B .增函数,最小值8-C .减函数,最大值8D .减函数,最小值8二、填空题:(5'×4=20')13、已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为 。

金山中学2012-2013学年高二下学期期中考试数学试题及答案11

金山中学2012-2013学年高二下学期期中考试数学试题及答案11

金山中学2012-2013学年高二下学期期中考试数学试题一、填空题:(每小题4分,共56分)1.复数(13)z i i =-.(i 为虚数单位)的虚部是___________。

2.计算:201311⎪⎭⎫ ⎝⎛-+i i =___________。

3.已知Z 是复数,且满足2Z+|Z|i 2-=0,则Z=________________。

4.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的标准方程是______________。

5.已知双曲线22221(0,0)x y a b a b-=>> 与抛物线28y x =有一个公共的焦点,且双曲线上的点到坐标原点的最短距离为1,则该双曲线的标准方程是___________。

6.正方体1111D C B A ABCD -的棱长为2,则异面直线1BD 与AC 之间的距离为_________。

7.正方体1111D C B A ABCD -的棱长为2,则C B 1与平面BD A 1间的距离为__________。

8.用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为_____________。

9.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积为_____________2cm 。

10. 一个圆柱的轴截面为正方形,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为_____。

11. 在正三棱柱111C B A ABC -中,AB=3,高为2,则它的外接球上A 、B 两点的球面距离为_______。

12.若正三棱锥底面边长为1,侧棱与底面所成的角为4π,则其体积为____________。

13.有一山坡倾斜角为300,若在斜坡平面内沿着一条与斜坡线成450角的直路前进了100米,则升高了_________米。

14.设地球的半径为R ,北纬600圈上有经度差为900的A 、B 两地,则A 、B 两地的球面距离为______。

上海市金山中学高二数学上学期期末考试试题 文(含解析

上海市金山中学高二数学上学期期末考试试题 文(含解析

上海市金山中学2013-2014学年高二数学上学期期末考试试题 文(含解析)第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题(题型注释)1.在正方体中任取两条棱,则这两条棱为异面直线的概率为( ) A .112 B .114 C .116 D .118 【答案】B. 【解析】试题分析:从正方体的12条棱中,任取两条棱,有6621112212=⨯=C 种不同的方法,因为与已知棱成异面直线的有4条,所以共有242412=⨯对异面直线,则这两条棱为异面直线的概率1146624==P . 考点:古典概型.2.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 【答案】B. 【解析】试题分析:由频率分布直方图可知,该模块测试成绩不少于60分的频率为8.010)010.0015.0025.0030.0(=⨯+++, 所以该模块测试成绩不少于60分的学生人数为4808.0600=⨯.考点:频率分布直方图.3..=++-+++-+1)1(4)1(6)1(4)1(234x x x x ( ) A .4x B .4x - C .1 D .1-【答案】A. 【解析】试题分析:由4322344464)(b ab b a b a a b a +-+-=-,可得=++-+++-+1)1(4)1(6)1(4)1(234x x x x []441)1(x x =-+.考点:二项式定理. 4.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是()A .)12,12(+-B .)2,1(C .)12,1(+D .)12,2(+ 【答案】B. 【解析】试题分析:由题意得,曲线C 是由椭圆上半部分1422=+y x 和双曲线1422=-y x 上半部分组成,且双曲线的渐近线方程为x y 21-=,与直线m x y l +-=21:平行;当直线l 过右顶点时,直线l 与曲线C 有两个交点,此时,1=m ;当直线l 与椭圆相切时,直线l 与曲线C有两个交点,此时2=m ;由图像可知,)2,1(∈m 时,直线l 与曲线C 有三个交点.考点:直线与圆锥曲线的位置关系.5.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是( )平方米.A .32424-πB .33636-πC .32436-πD .33648-π【答案】D. 【解析】试题分析:所求几何体的体积为阴影部分的面积与高的乘积,在OAB ∆中,2,4=-===DE OD OE OA OB ,则32π=∠AOB ,=-=∆OAB S S S 扇形阴影 34316231621321621-=⨯⨯-⨯⨯=ππ,体积33648-==πSh V . 考点:组合体的体积.6.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 【答案】B. 【解析】试题分析:由频率分布直方图可知,该模块测试成绩不少于60分的频率为8.010)010.0015.0025.0030.0(=⨯+++, 所以该模块测试成绩不少于60分的学生人数为4808.0600=⨯.考点:频率分布直方图. 7.使得*)()13(N n xx x n ∈+的展开式中含有常数项的最小的n 为 ( )A .4B .5C .6D .7 【答案】B. 【解析】试题分析:n xx x )13(+的展开式的通项为k n kn k n k k n knk xC xx x C T 2513)1()3(---+==,令025=-k n ,则)(25N k k n ∈=,所以n 的最小值为5.考点:二项式定理. 8.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是()A .)12,12(+-B .)2,1(C .)12,1(+D .)12,2(+ 【答案】B. 【解析】试题分析:由题意得,曲线C 是由椭圆上半部分1422=+y x 和双曲线1422=-y x 上半部分组成,且双曲线的渐近线方程为x y 21-=,与直线m x y l +-=21:平行;当直线l 过右顶点时,直线l 与曲线C 有两个交点,此时,1=m ;当直线l 与椭圆相切时,直线l 与曲线C有两个交点,此时2=m ;由图像可知,)2,1(∈m 时,直线l 与曲线C 有三个交点.考点:直线与圆锥曲线的位置关系.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)9.过点)2,1(、)6,3(的直线的斜率为______________. 【答案】2. 【解析】试题分析:由斜率公式得:21326=--=k . 考点:直线的斜率公式.10.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________. 【答案】54. 【解析】试题分析:5)43(=-z i Θ,i i i i i i z 545325)43(5)43)(43()43(5435+=+=+-+=-=∴,则z 的虚部为54. 考点:复数的除法.11.正四面体ABC S -的所有棱长都为2,则它的体积为________. 【答案】322. 【解析】试题分析:过S 作ABC SH 面⊥,则H 是ABC ∆的中心,连接AH ,则3232221=⨯⨯⨯=∆ABC S ,332233=⨯=AH , 在SAH Rt ∆中,36234422=-=-=AH SA SH , 所以32236233131=⨯⨯=⋅=∆-SH S V ABC ABC S .考点:多面体的体积.12.以)2,1(-为圆心且过原点的圆的方程为_____________. 【答案】5)2()1(22=++-y x . 【解析】试题分析:由题意,得所求圆的半径541=+=r ,则所求圆的标准方程为5)2()1(22=++-y x .考点:圆的标准方程.13.某几何体的三视图如图所示,则该几何体的体积为__________.【答案】π5. 【解析】试题分析:由三视图可知,该几何体是一个侧放的圆柱,底面半径为1,高为5;则该几何体的体积ππ52===h r Sh V .考点:三视图、圆柱的体积.14.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________. 【答案】2. 【解析】试题分析:设圆锥的底面半径和高为r ,则其母线长r l 2=;所以圆锥的侧面积22r rl S ππ==侧,底面面积2r S π=,则它的侧面积与底面积的比为2. 考点:圆锥的侧面积公式.15.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 【答案】4π. 【解析】试题分析:二面角111C D A B --,即半平面1111D C B A 与CB D A 11所成的图形,交线为11D A ,易知1111111,D A B A D A B A ⊥⊥,所以11B BA ∠是二面角111C D A B --的平面角,且411π=∠B BA ,即二面角111C D A B --的大小为4π.考点:二面角的平面角.16.双曲线1422=-y x 的顶点到其渐近线的距离等于_________.【答案】552. 【解析】试题分析:双曲线1422=-y x 的顶点为)0,2(,渐近线方程为0422=-y x ,即02=±y x ;则顶点到其渐近线的距离为552412=+=d . 考点:双曲线的性质、点到直线的距离公式.17.已知球的半径为1,A 、B 是球面上两点,线段AB 的长度为3,则A 、B 两点的球面距离为 ________. 【答案】32π. 【解析】试题分析:设球心为O,连接OB OA ,,则OAB ∆是等腰三角形,且3,1===AB OB OA , 则32π=∠AOB ,所以A 、B 两点的球面距离为32132ππθ=⨯==R l . 考点:两点的球面距离.18.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与平面N B A 11的距离是___________. 【答案】9.【解析】试题分析:过1C 作N B H C 11⊥,因为1111111,B BCC H C B BCC B A 面面⊂⊥,所以111B A H C ⊥,则N B A H C 111面⊥,H C 1的长度即为直线11C D 与平面N B A 11的距离; 在N BB Rt 1∆中,33933tan 1==∠N BB ,23cos 1==∠N BB ; 在H B C Rt 11∆中,3611=C B ,23cos sin 111=∠=∠N BB H B C , 923361=⨯=H C ,即直线11C D 与平面N B A 11的距离为9.考点:直线到平面的距离.19.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答). 【答案】590. 【解析】试题分析:骨科、脑外科和内科医生都至少有1人的选派方法可分以下几类:3名骨科、1名脑外科和1名内科医生,有20151433=C C C 种; 1名骨科、3名脑外科和1名内科医生,有60153413=C C C 种; 1名骨科、1名脑外科和3名内科医生,有120351413=C C C 种; 2名骨科、2名脑外科和1名内科医生,有90152423=C C C 种; 1名骨科、2名脑外科和2名内科医生,有180252413=C C C 种; 2名骨科、1名脑外科和2名内科医生,有120251423=C C C 种;由分类加法计数原理得,共有590120180901206020=+++++种. 考点:组合.20.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B两点.若 AB 的中点坐标为(1,1)-,则E 的方程为_________________.【答案】191822=+y x . 【解析】试题分析:设),(),,(2211y x B y x A ,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x ,两式相减,得0))(())((2212122121=+-++-b y y y y a x x x x ,又因为AB 的中点为)1,1(-,且斜率211310=-+=k ,所以222b a =,又92222==-=b b a c Θ,所以E 的方程为191822=+y x . 考点:点差法.21.设实数y x ,满足⎪⎩⎪⎨⎧≤-≥-+≤--,032,042,02y y x y x 则y x z -=2的最大值为____________.【答案】211.【解析】试题分析::画出不等式组表示的可行域和目标函数基准直线x y 2=(如图);设z y x =-2,则z x y -=2,当直线z x y -=2经过A 点时,z -最小,即y x -2最大;联立⎪⎩⎪⎨⎧=--=223y x y ,得)23,27(A ,此时211)2(max =+y x .考点:简单的线性规划.22.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计) 【答案】)23(4+.【解析】试题分析:根据题意,苍蝇需要8次完成,有两种方法:方法一:每次都到达相邻顶点,需经过8条棱,总路径长为8;方法二:每次到达不相邻的顶点,需爬行4次(面对角线),飞行4次(体对角线),总路径长是)23(4+;又8)23(4>+Θ,所以苍蝇的路径最长是)23(4+.考点:正方体的面对角线与体对角线.23.过点)2,1(、)6,3(的直线的斜率为______________. 【答案】2. 【解析】试题分析:由斜率公式得:21326=--=k .考点:直线的斜率公式.24.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________. 【答案】54. 【解析】试题分析:5)43(=-z i Θ,i i i i i i z 545325)43(5)43)(43()43(5435+=+=+-+=-=∴,则z 的虚部为54. 考点:复数的除法.25.正四面体ABC S -的所有棱长都为2,则它的体积为________. 【答案】322. 【解析】试题分析:过S 作ABC SH 面⊥,则H 是ABC ∆的中心,连接AH ,则3232221=⨯⨯⨯=∆ABC S ,332233=⨯=AH , 在SAH Rt ∆中,36234422=-=-=AH SA SH , 所以32236233131=⨯⨯=⋅=∆-SH S V ABC ABC S .考点:多面体的体积.26.以)2,1(-为圆心且过原点的圆的方程为_____________. 【答案】5)2()1(22=++-y x . 【解析】试题分析:由题意,得所求圆的半径541=+=r ,则所求圆的标准方程为5)2()1(22=++-y x .考点:圆的标准方程.27.从一副52张扑克牌中第一张抽到“Q ”,重新放回,第二张抽到一张有人头的牌,则这两个事件都发生的概率为________. 【答案】1693. 【解析】试题分析:从一副52张扑克牌中第一张抽到“Q ”,记为事件A,则131524)(==A P ;重新放回,第二张抽到一张有人头的牌,记为事件B,则1335212)(==B P ;且事件A 与事件B 相互独立;则则这两个事件都发生的概率为1693133131)()()(=⨯==B P A P AB P . 考点:古典概型.28.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________. 【答案】2. 【解析】试题分析:设圆锥的底面半径和高为r ,则其母线长r l 2=;所以圆锥的侧面积22r rl S ππ==侧,底面面积2r S π=,则它的侧面积与底面积的比为2.考点:圆锥的侧面积公式.29.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 【答案】4π. 【解析】试题分析:二面角111C D A B --,即半平面1111D C B A 与CB D A 11所成的图形,交线为11D A ,易知1111111,D A B A D A B A ⊥⊥,所以11B BA ∠是二面角111C D A B --的平面角,且411π=∠B BA ,即二面角111C D A B --的大小为4π.考点:二面角的平面角.30.双曲线1422=-y x 的顶点到其渐近线的距离等于_________.【答案】552. 【解析】试题分析:双曲线1422=-y x 的顶点为)0,2(,渐近线方程为0422=-y x ,即02=±y x ;则顶点到其渐近线的距离为552412=+=d . 考点:双曲线的性质、点到直线的距离公式.31.某人5次上班途中所花的时间(单位:分钟)分别为9,11,10,,y x .已知这组数据的平均数为10,方差为2,则=-||y x __________. 【答案】4.【解析】试题分析:由题意,得[]⎪⎪⎩⎪⎪⎨⎧=-+-+-+-+-=++++2)109()1011()1010()10()10(5110)91110(5122222y x y x ,化简,得⎩⎨⎧=-+-=+8)10()10(2022y x y x ,解得⎩⎨⎧==128y x 或⎩⎨⎧==812y x ,则4=-y x . 考点:均值、方差公式.32.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与平面N B A 11的距离是___________.【解析】试题分析:过1C 作N B H C 11⊥,因为1111111,B BCC H C B BCC B A 面面⊂⊥,所以111B A H C ⊥,则N B A H C 111面⊥,H C 1的长度即为直线11C D 与平面N B A 11的距离; 在N BB Rt 1∆中,33933tan 1==∠N BB ,23cos 1==∠N BB ; 在H B C Rt 11∆中,3611=C B ,23cos sin 111=∠=∠N BB H B C , 923361=⨯=H C ,即直线11C D 与平面N B A 11的距离为9.考点:直线到平面的距离.33.棱长为1的正方体1111D C B A ABCD -的8个顶点都在球面O 的表面上,E 、F 分别是棱1AA 、1DD 的中点,则直线EF 被球O 截得的线段长为________. 【答案】2. 【解析】试题分析:因为棱长为1的正方体1111D C B A ABCD -的8个顶点都在球面O 的表面上,所以该球的半径23=r ,球心O 到直线EF 的距离21=d ,则直线EF 被球O 截得的线段长为241432222=-=-=d r l . 考点:多面体与球的组合体.34.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科和内科医生都至少有1人的选派方法种数是___________.(用数字作答) 【答案】590. 【解析】试题分析:骨科、脑外科和内科医生都至少有1人的选派方法可分以下几类:3名骨科、1名脑外科和1名内科医生,有20151433=C C C 种; 1名骨科、3名脑外科和1名内科医生,有60153413=C C C 种; 1名骨科、1名脑外科和3名内科医生,有120351413=C C C 种; 2名骨科、2名脑外科和1名内科医生,有90152423=C C C 种; 1名骨科、2名脑外科和2名内科医生,有180252413=C C C 种; 2名骨科、1名脑外科和2名内科医生,有120251423=C C C 种;由分类加法计数原理得,共有590120180901206020=+++++种. 考点:组合.35.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计) 【答案】)23(4+.【解析】试题分析:根据题意,苍蝇需要8次完成,有两种方法:方法一:每次都到达相邻顶点,需经过8条棱,总路径长为8;方法二:每次到达不相邻的顶点,需爬行4次(面对角线),飞行4次(体对角线),总路径长是)23(4+;又8)23(4>+Θ,所以苍蝇的路径最长是)23(4+.考点:正方体的面对角线与体对角线.36.设焦点是)5,0(1-F 、)5,0(2F 的双曲线C 在第一象限内的部分记为曲线T ,若点ΛΛ),,(),,2(),,1(2211n n y n P y P y P 都在曲线T 上,记点),(n n y n P 到直线02:=+-k y x l 的距离为),2,1(Λ=n d n ,又已知5lim =∞→n n d ,则常数=k ___________.【答案】5±. 【解析】试题分析:因为双曲线的焦点为)5,0(),5,0(21F F -,所以双曲线的标准方程可设为)0,0(12222>>=-b a bx a y ,且522=+b a ;因为双曲线上的点),(n n y n P 到直线02:=+-k y x l 的距离为),2,1(Λ=n d n 存在极限,所以直线l 与双曲线的渐近线x ba y =平行,即2=ba,所以渐近线方程为02=-y x ;又因为5lim =∞→n n d ,所以直线l 与双曲线的渐近线02=-y x 的距离为55=k ,即5±=k .考点:双曲线的几何性质.三、解答题(题型注释)37.求8)3(x x +的二项展开式中的第5项的二项式系数和系数. 【答案】811120,70.【解析】 试题分析:解题思路:利用二项式定理的通项公式写出5T ,再求出二项式系数与系数.规律总结:涉及求二项展开式的二项式系数或系数或特定项时,往往先写出二项式的通项公式,再进行求解. 注意点:要正确区分二项式系数与系数:二项式系数仅是一个组合数,系数是未知数的系数.试题解析:4485)32)((xx C T =, 所以二项式系数为7048=C ,系数为811120. 考点:二项式定理.38.求半径为10,且与直线07034=-+y x 相切于)10,10(的圆的方程. 【答案】100)16()18(22=-+-y x 或100)4()2(22=-+-y x 【解析】 试题分析:解题思路:设出所求圆的圆心坐标,根据题意可得⎪⎩⎪⎨⎧=-+-=--,100)10()10(,43101022b a a b ,进而求出圆的标准方程.规律总结:直线圆的位置关系,主要涉及直线与圆相切、相交、相离,在解决直线圆的位置关系时,要注意结合初中平面几何中的直线与圆的知识.试题解析:设圆心为),(b a ,则由题意得⎪⎩⎪⎨⎧=-+-=--,100)10()10(,43101022b a a b解得⎩⎨⎧==16,18b a 或⎩⎨⎧==4,2b a所以所求圆的方程为100)16()18(22=-+-y x 或100)4()2(22=-+-y x 考点:直线与圆的位置关系.39.已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围. 【答案】.1313213132≤≤-m . 【解析】试题分析:解题思路:利用直线AB 与直线m x y +=4垂直,设出直线AB 的方程,联立直线与椭圆方程,消去y ,整理成关于x 的一元二次方程,利用中点公式和判别式求出m 的范围. 规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解.. 试题解析:设直线AB 方程为b xy +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b xy y x 得,0481681322=-+-b bx x 从而,138bx x B A =+ ,13242)(41bb x x y y B A B A =++-=+则B A ,中点是)1312,134(bb ,则,013121344=+-⋅m b b 解得.134b m -=由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m . 考点:1.直线与椭圆的位置关系;2.对称问题.40.如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//,1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1)证明:CE C B ⊥11;(2)求异面直线E C 1与AD 所成角的大小.(结果用反三角函数值表示) 【答案】(1)证明见解析;(2).33arccos. 【解析】 试题分析: 解题思路:(1)利用勾股定理证明垂直;(2)作出平行线,构造异面直线所成的角,再利用三角形进行求角.规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及空间中的求角问题,往往利用角的定义作出辅助线,转化为平面中的线线角.试题解析:(1)证明:连结BE .在BEC ∆中,,5,3,2===BE CE BC 即222BE CE BC =+,所以,CE BC ⊥又因为BC C B //11,所以CE C B ⊥11;解:取1DD 的中点为F ,连结F C EF 1,.又因为E 为1AA 中点,则.//EF AD 所以EF C 1∠即为异面直线E C 1与AD 所成角. 在EF C 1∆中,1,2,311===EF F C E C ,所以EF C 1∆为直角三角形,33cos 1=∠EF C .所以异面直线E C 1与AD 所成角为.33arccos考点:1.直线的垂直关系的证明;2.直线与平面所成的角的求法.41.下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方). 证明:n OA 的斜率是定值;求1A 、2A 、Λ、n A 、Λ所在直线的方程;记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.【答案】(1)51+-=n OA k ;(2)x y )51(+-=;(3)22152p p -. 【解析】 试题分析:解题思路:(1)联立直线与抛物线方程,整理成关于1x ,1y 的方程,进而求出n OA 的斜率;(2)利用直线的点斜式方程写出直线方程即可;(3)联立直线与抛物线方程,求弦长与点到直线的距离,进而求三角形的面积.规律总结:锥曲线的问题一般都有这样的特点:第一小题是基本的求方程问题,一般简单的利用定义和性质即可;后面几个小题一般来说综合性较强,用到的内容较多,大多数需要整体把握问题并且一般来说计算量很大,学生遇到这种问题就很棘手,有放弃的想法,所以处理这类问题一定要有耐心..试题解析:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n42=,直线n l 的方程为).(2np x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121nnp x y x p y 则有,042211121=-+x y x y而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ;直线方程为x y )51(+-=;由⎪⎩⎪⎨⎧-==),(2,42nn p x y x p y 得,04222=--n n p y p y 则n p AB 10||=,而O 到直线n l 的距离为52n p ,于是n n OB A ∆的面积nn pS 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p ,所以所有三角形面积和为22152pp -. 考点:1.直线的方程;2.直线与抛物线的位置关系.42.求8)32(x x +的二项展开式中的第5项的二项式系数和系数. 【答案】811120,70.【解析】 试题分析:解题思路:利用二项式定理的通项公式写出5T ,再求出二项式系数与系数.规律总结:涉及求二项展开式的二项式系数或系数或特定项时,往往先写出二项式的通项公式,再进行求解. 注意点:要正确区分二项式系数与系数:二项式系数仅是一个组合数,系数是未知数的系数.试题解析:4485)32)((xx C T =, 所以二项式系数为7048=C ,系数为811120. 考点:二项式定理.43.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者从装有3个红球、1个蓝球、6个白球的袋中任意摸出4个球.根据摸出4个球中红球与蓝球的个数,设一、二、三其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望()E X .【答案】(1)21;(2)分布列见解析,314)(=X E . 【解析】试题分析: 解题思路:(1)利用超几何分布的概率公式求解即可;(2)写出获奖金额X 的所有可能取值,利用古典概型的概率公式求出各自概率,列出表格,即得分布列,再利用期望公式求其期望. 规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出;抽样方法要注意各自的特点;古典概型是一种重要的概率模型,其关键是正确列举基本事件.试题解析:(1)214103713=C C C ;321020035503510420)(=⋅+⋅+⋅+⋅=X E . 考点:1.超几何分布;2.古典概型;3.随机变量的分布列与期望.44.已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围. 【答案】.1313213132≤≤-m . 【解析】试题分析:解题思路:利用直线AB 与直线m x y +=4垂直,设出直线AB 的方程,联立直线与椭圆方程,消去y ,整理成关于x 的一元二次方程,利用中点公式和判别式求出m 的范围. 规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解.. 试题解析:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+则B A ,中点是)1312,134(b b , 则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m . 考点:1.直线与椭圆的位置关系;2.对称问题.45.如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//,1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 设点M 在线段E C 1上, 且直线AM 与平面11A ADD 所成角的正弦值为62, 求线段AM 的长.【答案】(1)证明见解析;(2)2=AM .【解析】试题分析:解题思路:根据题意建立空间直角坐标系,写点的坐标与有关向量,利用直线的方向向量的数量积为0证明两直线垂直;利用线面角的公式列出关于AM 的方程即可.规律总结:证明平行或垂直问题,一般有两个思路:①利用一个判定与性质进行证明;②转化为空间向量的平行与垂直进行证明;求角或距离问题,往往利用空间向量进行求解. 试题解析:以点A 为原点建立空间直角坐标系,依题意得)1,0,1(),2,0,0(),0,0,0(C B A ,).0,1,0(),1,2,1(),2,2,0(11E C B证明:)1,1,1(),1,0,1(11--=-=→→CE C B ,于是,所以CE C B ⊥11;解:).0,1,1(),0,1,0(1==→→EC AE 设,10),,,(1≤≤==→→λλλλλEC EM 有 ),1,(λλλ+=+=→→→EM AE AM .可取)2,0,0(=→AB 为平面11A ADD 的一个法向量. 设θ为直线AM 与平面11A ADD 所成角,则 .1232|||||||,cos |sin 2++=⋅⋅==→→→→→→λλλθAB AM AB AM AB AM 于是,6212322=++λλλ解得.31=λ所以.2=AM . 考点:1.直线的垂直关系的证明;2.直线与平面所成的角的求法.46.下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方). 证明:n OA 的斜率是定值;求1A 、2A 、Λ、n A 、Λ所在直线的方程;记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.【答案】(1)51+-=nOA k ;(2)x y )51(+-=;(3)22152p p -. 【解析】试题分析:解题思路:(1)联立直线与抛物线方程,整理成关于1x ,1y 的方程,进而求出n OA 的斜率;(2)利用直线的点斜式方程写出直线方程即可;(3)联立直线与抛物线方程,求弦长与点到直线的距离,进而求三角形的面积.规律总结:锥曲线的问题一般都有这样的特点:第一小题是基本的求方程问题,一般简单的利用定义和性质即可;后面几个小题一般来说综合性较强,用到的内容较多,大多数需要整体把握问题并且一般来说计算量很大,学生遇到这种问题就很棘手,有放弃的想法,所以处理这类问题一定要有耐心..试题解析:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n42=,直线n l 的方程为).(2n p x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121n n p x y x p y 则有,042211121=-+x y x y 而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ; 直线方程为x y )51(+-=;由⎪⎩⎪⎨⎧-==),(2,42n n p x y x p y 得,04222=--n n p y p y 则n p AB 10||=, 而O 到直线n l 的距离为52np , 于是n n OB A ∆的面积n n p S 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p , 所以所有三角形面积和为22152p p -. 考点:1.直线的方程;2.直线与抛物线的位置关系.。

上海市金山中学2013-2014学年高二下学期期末考试语文试题 Word版含答案

上海市金山中学2013-2014学年高二下学期期末考试语文试题 Word版含答案

高二下学期期末考试语文试题(考试时间:150分钟满分:150分命题人:陆英审核人:李书慧)一、阅读(共80分)㈠阅读下文,完成第1-6题。

(16分)回望科学史上的异端陈蓉霞⑵依据通常的讲述,布鲁诺是因宣扬日心说而被教会烧死的;与布鲁诺同时代的意大利科学家伽利略,因拥护哥白尼的日心说而被教会审判。

这样的讲述在受教育者的心中形成了这样的定论:科学代表真理,宗教代表迷信;这些历史证明了科学与宗教是水火不相容的。

⑶如此简单化的结论能涵括复杂的历史现象吗?⑷要知道,在中世纪的欧洲,教会在人们的精神生活中占据多么重要的地位。

一个欧洲人,生来就是基督教徒,他自小就继承了父母的文化传统。

难以想象,如伽利略、布鲁诺等人居然能完全摆脱基督教信仰。

⑸就伽利略而言,他一直深信这一命题:上帝有两部作品——《圣经》和自然界。

前者是上帝的间接作品,因为出自人之手;而后者却是上帝的直接作品。

显然,研究上帝的直接作品更加可靠。

在某种意义上,这就是伽利略从事科学研究的动力所在。

⑹《圣经》是一部用文字写成的作品。

在中世纪,普通百姓多是文盲,接受教育差不多是神学家的特权。

教会人士差不多垄断了阅读和解释《圣经》的权力,普通信徒只能通过神父的传教来领会神意。

⑺伽利略的出场却对教会构成了威胁,因为要读懂上帝的直接作品——自然界,可不像读懂《圣经》那么容易。

读懂自然界恰是伽利略的专长。

在他看来,上帝创世所用的语言就是几何符号,如圆、三角形之类,通过数学或几何学的方法,我们就能描述或解释自然现象。

把数学与实验方法相结合,这正是伽利略的首创,他也因此成为近代科学的设计师。

⑻但他却因此冒犯了当时的学术权威。

他们能熟读《圣经》及亚里士多德的著作,却难以读懂伽利略的数学语言及其实验思路,更何况伽利略得出的结论与他们向来熟悉的世界观针锋相对。

不仅如此,伽利略还支持已被教会取缔的日心说,这正是他们控告伽利略的最好证据。

伽利略最终受到教会审判,压力之下,他违心地放弃了日心说。

上海市金山区金山中学2013-2014学年高二下学期期末补考英语试题Word版含答案

上海市金山区金山中学2013-2014学年高二下学期期末补考英语试题Word版含答案

(考试时间:90分钟满分:100分命题人:樊学义审核人:张伟华)I.Grammar and VocabularySection A(32%)Directions: Beneath each of the following sentences there are four choices marked A, B, C, and D. Choose the one answer that best completes the sentence.1.He began to work for a big company ________ an early age.A. onB. atC. inD. from2.Mrs. Green kept telling her daughter not to surf the Internet too much, but ____ didn’t help.A. itB. oneC. heD. she3. ---They believed that their conclusion was right, ______________?--- I suppose so.A. was itB. did theyC. didn’t theyD. wasn’t it4. Some young girls are always worrying about being overweight, although they are ________.A. perfectly healthB. perfectly healthyC. perfect healthyD. perfect health5. A small plane crashed into a hillside five miles east of the city, _____ all four people on board.A. killB. killedC. to killD. killing6. ---Have you brought my book?--- Oh no! I ________ again. That was stupid of me.A. forgotB. have forgottenC. had forgottenD. forget7. More and more Chinese people follow the practice _______ they will travel to various scenic spots to enjoy the scenery in their leisure time.A. whereB. thatC. whichD. what8. _________ from the job for a long time makes my father have a sense of loss.A. RetiredB. RetiringC. Have retiredD. Having retired9. We have no idea at all _______________________.A. where he has goneB. where did he goC. which place he has goneD. where has he gone10. ____________________, the football game was decided not to be put off.A. Heavily as did it rainB. As it rained heavilyC. Heavily as it rainedD. As heavily as it could11. After the war, a new school building was put up _______ there had once been a theatre.A. thatB. whereC. whichD. when12. The Black Sea was a fresh water lake about ________ and unconnected with the Mediterranean 100 years ago.A. its two-thirds present sizeB. two-thirds of its present sizeC. two-thirds its present sizeD. its two-thirds of the present size13. The exam was continued at the beginning of the new term, ______ was announced on January29.A. whatB. thatC. whereD. as14. People always shake hands and say “How do you do?” whey ______ to each other.A. introducedB. introducingC. to introduceD. introduce15. Knocked down by a speeding car, _____________________________________.A. many people didn’t think he was still aliveB. the car was stopped by a policemanC. he was rushed to a nearby hospitalD. a stranger hurried over to help him16. Only by changing the coaches ____________________ to improve the Chinese football team;what a shortsighted and stupid idea!A. some people can expectB. can expect some peopleC. some people do expectD. do some people expectSection B( 9%)Directions: Complete the following by using the words in the box. Each word can only be usedThere is a tendency to think of each of the arts as a separate area of activity. Many artists, __17__, would prove that there has always been a warm relationship between the various areas of human activity. For example, in the late nineteenth century the connections between music and painting were particularly __18__. Artists were invited to design clothes and settings for operas and ballets, but sometimes it was the musicians who were inspired by the work of painters. Of the musical compositions that were considered as __19__ to the visual arts, perhaps the most famous is Mussorgsky’s Pictures at an Exhibition.Mussorgsky composed the piece in 1874 after the death, at the age of 39, of the artist Victor Hartmann. __20__ their friendship had not been a particularly long-lasting one, Mussorgsky was shocked by Hartmann’s __21__ death. The following year the critic, Vladimir Stasov, who decided to hold an exhibition of Hartmann’s work, suggested that Mussorgsky try to __22__ his grief by writing something in memory of Hartmann.The exhibition served as Mussorgsky’s inspiration(刺激,灵感). The ten pieces that make up Pictures at an Exhibition are intended as __23___ rather than representations of the paintings in the exhibition. Between each is a promenade, __24__ the composer walks from one painting to another. The music is sometimes witty and playful, sometimes almost alarming and frightening. Through a range of surprising __25__, Mussorgsky manages to convey the spirit of the artist and his work.II.Reading ComprehensionSection A( 15 %)Directions: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.The American expression “ burning your bridges” means acting in such a way that you destroy any chance of turning back or changing your actions.You can burn your bridges when you are __26__ a new job. Suppose, for example, that you decide to __27__ the new job, you tell your boss about your __28__. You also tell him how gladyou are to leave.__29__ these words, you have burned your bridges. Your boss will __30__ let you return to your old job.The expression “ burning your bridges” __31__ its name from the war. An army that is forced back across a river may decide to burn the bridge __32___ crossing it. In this way, the army __33__ its enemy from using the bridge. __34__, the army also destroys its own chance to go back __35__ the river.Most people who “burn their bridges” today don’t __36___ the army. But like those armies, they move in a different direction with no __37__ of turning back. There is another __38__ that all bridge burners should not forget. It is usually in the form of a __39___: “Don’t cross your bridges until you come to them”The meaning is clear: wait until the right time before you __40___.26. A. offered B. awarded C. looking for D. doing27. A. look for B. take C. refuse D. give up28.A. suggestion B. idea C. thought D. decision29.A. For B. With C. After D. At30.A. soon B. perhaps C. certainly D. never31.A. gets B. makes C. collects D. arrives32.A. before B. after C. since D. without33.A. preserves B. hides C. avoids D. prevents34.A. Besides B. Instead C. However D. Therefore35. A. along B. above C. through D. across36. A. like B. join C. belong to D. leave37. A. time B. stress C. chance D. bridge38. A. word B. expression C. information D. lesson39. A. advice B. method C. warning D. sign40. A. act B. come C. leave D. goSection B ( 24%)Directions:Read the following passage. Each passage is followed by several questions or unfinished sentences. For each of them there are four choices marked A, B, C and D. Choose the one that suits best according to the information given in the passage you have just read.( A )Some people believe that your blood group hides no secrets. It show the “real you”. And the owners of certain blood groups might be particularly good or bad at a certain task. This is the very reason why you could be asked to offer your blood group before being given a job.The new idea was carried out first in Japan and now it has been brought over to other parts of the world. One important business company in Japan is quite special about these needs: For ouroffice members, we must have 30 percent of those with group A and 15 percent with AB, 25 percent with B.”Do you happen to know that if your own blood group is O, you can get things done and sell the goods well? People with blood group A are thinkers, while those with blood group B are highly creative. And if you have problems, ask the ABs to solve them. So if you visited the Japanese company, you would find the O types out selling goods and A types keeping order in the office.41. This passage seems to lead you to believe_____________________________.A. your blood group could affect your workB. blood types can never change your lifeC. the idea about blood groups has little scientific basisD. personality tests are exactly correct42. People belonging to blood group B might be good at ____________________.A. sports and gamesB. smoothing away difficultiesC. doing office workD. painting and writing43. From the passage, we know _____________________.A. four kinds of blood groups were discovered in JapanB. people of good blood groups might do their work very wellC. more and more countries have accepted the new idea about blood groupsC. knowing your own blood group, you could get a good job( B )Robert Kohout, 39, was working outside his home last October when he heard a frightening noise. He turned round and saw Walter Graham’s car sinking into 8 feet of water of the inground swimming pool a little distance away from his yard. Kohout immediately called to Graham’s wife, Evelyn, to phone 911. Then he ran back to his house to get Terence Reif and Glenn Fajardo to help, who were at work inside the house. “There was no time for second thoughts,” said Reif, a farmer’s son. “ The only thing to do is to get in the pool.”The car doors were locked. Graham, 73, was unconscious, and his mercury was rapidly filling with water. Reif struggled to break the driver’s side window with a hammer but had trouble getting it done underwater.Finally, some of four minutes after the car had fallen into the pool, the glass was broken. By then, Graham was floating at the top of the flooded passenger compartment.The three men pulled Graham out through the broken glass. He wasn’t breathing and his heart stopped beating, so they performed mouth-to-mouth resuscitation. The rescue team arrived in no time. Doctors supplied him with advanced life support on the way to the hospital.“These people were getting to Graham through the glass,”said Dr. Jeff. “All three acted without regard for their own safety.” Added Evelyn Graham, “ They were truly angels, watching over us.”44. Who may Terrence Reif and Glenn Fajardo most probably be?A. Doctor and nurse.B. Policemen.C. Walter’s wife and son.D. Workmen .45. In the third paragraph, mercury referred to ____________________.A. the old man’s carB. another workmanC. one of the man’s carD. a kind of machine46. What does the word Resuscitation refer to in the story?A. A way of helping people who have heart trouble.B. A way of saving people who have got drunk.C. A way of saving people who have stopped breathing.D. A way of helping people who need water.47. Which of the following would be the best title for this passage?A. The Underwater CarB. Angels around Us.C. Rescue Team in TimeD. Safety FirstSection CDirections: Read the following text and choose the most suitable heading from A-F for each48.__________________.A world record is every athlete’s dream, but the hard-won records of a few years ago are mostly just today’s qualifying times. Roger Bannister’s famous four-minute mile of 1956 has been beaten by nearly 15 seconds, while almost an hour and twenty minutes has been taken off the women’s marathon since 1953, “Faster, higher, stronger”is the Olympic motto, and today’s competitors continue to push back the boundaries of what the body can achieve. But one wonders if this can continue.49.__________________.The last forty years have seen many important technological advances. For example, since the introduction of strong, flexible fiber glass poles, over a meter has been added to the pole vault record. There have also been important developments in the design of the running shoes. And while a shoe won’t actually make someone run faster, modern shoes do mean many more miles of comfortable, injury-free training.50.__________________.Pushing back the limits now depends more on science, technology and medicine than anything else. Athletic technique, training programs and diets are all being studied to find ways of taking a few more seconds off or adding a few more centimeters to that elusive record. It seems that natural ability and hard work are no longer enough.51.__________________.The search to find more efficient way of moving goes on. Analysis of an athlete’s style is particularly useful for events like jumping and throwing. Studies show that long jumpers need to concentrate not on the speed of approach, as once thought, but on the angle their bodies make with the ground as they take off. However, the rules governing each sport limit advances achieved by new styles. For instance only one-footed take-offs are allowed in the high jump.52.__________________.In the future, it should be possible to develop a more individual approach to training programs.Athletes will keep detailed diaries and collect data to help predict the point when training becomes over training, the cause of many injuries. If athletes feed all their information into a database, it may then be possible to predict patterns and to advise them individually when they should cut down.III. Translation(20%)1. 今天早晨他的自行车坏了。

上海市金山中学2012-2013学年高二下学期期末考试语文试题

上海市金山中学2012-2013学年高二下学期期末考试语文试题

上海市金山中学2012-2013学年高二下学期期末考试语文试题考生注意:1.本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答案必须写在答题纸上,做在试卷上一律不得分。

2.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。

3.考试时间150分钟。

试卷满分150分。

一、阅读(80分)(一)阅读下文,完成第1—6题。

(16分)马铃薯的文学缘/王干①似乎,每个地方的马铃薯的味道都是不一样的。

它在什么地方生长,就和那个地方的气息融到了一起,然后变异,因而马铃薯的品种之多,让植物学家们为之挠头。

②山东叫地蛋,云贵称洋芋,广西叫番鬼慈薯,山西叫山药蛋,安徽又叫地瓜,东北各省多称土豆,广东人叫薯仔。

我的家乡在苏北泰州,和上海人一样叫它洋山芋,我们把红薯叫山芋,马铃薯是舶来品,加‚洋‛前缀,自然。

国外怎么称呼它,我现在无力去考证,但按照马铃薯随性生长的适应能力,它在国外也会有其它的叫法。

③1978年我开始接触现代文学史,知道两个著名的文学流派,一个是山药蛋派,一个是荷花淀派,荷花淀派以孙犁为代表,山药蛋派以赵树理为代表。

他们的出现改变了现代文学史的农民形象,尤其是赵树理的一系列小说给我们塑造了一些欢乐的喜剧农民形象,比如小二黑,和鲁迅笔下的闰土、祥林嫂、阿Q是不一样的。

赵树理的出现,改变了现代文学的生态,原先在启蒙者笔下被启蒙的农民,有了喜悦的表情,有了正面的时刻。

很喜欢山药蛋派的质朴和诙谐,但不知山药蛋是什么样的植物,满以为山药蛋也和荷花一样招人爱怜的,等有人告诉我山药蛋就是土里土气的土豆,就是长相笨笨的马铃薯,还是有些失望的,但现在想来,当年为山药蛋派命名的人真是有才,山药蛋的质朴、深厚、皮实、实用,和赵树理们的小说太吻合了。

④后来又在汪曾祺的文章里读到了马铃薯,他在一篇题为《马铃薯》的散文里,写到他与马铃薯的故事,老先生被打成右派后下放到张家口的沙岭子农科所,居然画成了一本《中国马铃薯图谱》。

上海市金山中学高二数学下学期期末考试试题 文

上海市金山中学高二数学下学期期末考试试题 文

上海市金山中学2013-2014学年高二数学下学期期末考试试题 文(考试时间:120分钟 满分:150分)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.过点)2,1(、)6,3(的直线的斜率为______________.2.若i 是虚数单位,复数z 满足5)43(=-z i ,则z 的虚部为_________.3.正四面体ABC S -的所有棱长都为2,则它的体积为________.4.以)2,1(-为圆心且过原点的圆的方程为_____________.5.某几何体的三视图如图所示,则该几何体的体积为__________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体1111D C B A ABCD -中,二面角111C D A B --的大小为__________. 8.双曲线1422=-y x 的顶点到其渐近线的距离等于_________. 9.已知球的半径为1,A 、B 是球面上两点,线段AB 的长度为3,则A 、B 两点的球面距离为 ________.10.在长方体1111D C B A ABCD -中,已知36,91==BC AA ,N 为BC 的中点,则直线11C D 与平面N B A 11的距离是___________.11.从3名骨科、4名脑外科和5名内科医生中选派6人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答).12. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若 AB 的中点坐标为(1,1)-,则E 的方程为_________________.13.设实数y x ,满足⎪⎩⎪⎨⎧≤-≥-+≤--,032,042,02y y x y x 则y x z -=2的最大值为____________.14.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一 个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直 线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编 号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在正方体1111D C B A ABCD -中,任取两条棱,则这两条棱为异面直线的概率为( )A .112B .114C .116D .11816.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .12017.=++-+++-+1)1(4)1(6)1(4)1(234x x x x ( )A .4xB .4x -C .1D .1- 18.若直线m x y l +-=2:与曲线|4|21:2x y C -=有且仅有三个交点,则m 的取值范围是()A .)12,12(+-B .)2,1(C .)12,1(+D .)12,2(+三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤. 19.(12分)求8)32(xx +的二项展开式中的第5项的二项式系数和系数.20.(14分)求半径为10,且与直线07034=-+y x 相切于)10,10(的圆的方程.21.(14分)已知椭圆13422=+y x 上存在两点A 、B 关于直线m x y +=4对称,求m 的取值范围.22.(16分)如图,四棱柱1111D C B A ABCD -中, 侧棱⊥A A 1底面ABCD ,AD AB DC AB ⊥,//,1==CD AD ,21==AB AA ,E 为棱1AA 的中点.(1) 证明:CE C B ⊥11;(2) 求异面直线E C 1与AD 所成角的大小.(结果用反三角函数值表示)23.(18分)下图是利用计算机作图软件在直角坐标平面xOy 上绘制的一列抛物线和一列直线,在焦点为n F 的抛物线列x p y C n n 4:2=中,n p 是首项和公比都为)10(<<p p 的等比数列,过n F 作斜率2的直线n l 与n C 相交于n A 和n B (n A 在x 轴的上方,n B 在x 轴的下方).(1)证明:n OA 的斜率是定值;(2)求1A 、2A 、Λ、n A 、Λ所在直线的方程;(3)记n n OB A ∆的面积为n S ,证明:数列}{n S 是等比数列,并求所有这些三角形的面积的和.第23题图金山中学2013学年度第二学期高二年级数学学科(文)期末考试卷参考答案19.(12分)解:4485)32)((x x C T =, 所以二项式系数为7048=C ,系数为811120.21.(14分)解:设直线AB 方程为b x y +-=4,联立 ⎪⎩⎪⎨⎧+-==+,4,124322b x y y x 得,0481681322=-+-b bx x 从而,138b x x B A =+ ,13242)(41b b x x y y B A B A =++-=+ 则B A ,中点是)1312,134(b b ,则,013121344=+-⋅m b b 解得.134b m -= 由0481681322=-+-b bx x 有实数解得,0)4816(526422≥--=∆b b 即.4132≤b 于是.413)413(2≤-m 则m 的取值范围是.1313213132≤≤-m23.(18分)解:(1)由已知得n n p p =,抛物线焦点)0,(n n p F ,抛物线方程为x p y n 42=,直线n l 的方程为).(2np x y -=于是,抛物线n C 与直线n l 在x 轴上方的交点),(11y x A n 的坐标满足⎪⎩⎪⎨⎧-==),(2,411121n n p x y x p y 则有,042211121=-+x y x y 而直线n OA 的斜率为11x y k n OA =,则,042112=-+OA OA k k 解得,51±-=n OA k 又,0>k 点n A 在第一象限,则51+-=n OA k ;(2)直线方程为x y )51(+-=;(3)由⎪⎩⎪⎨⎧-==),(2,42n n p x y x p y 得,04222=--n n p y p y 则n p AB 10||=, 而O 到直线n l 的距离为52np , 于是n n OB A ∆的面积n n p S 252=,所以数列}{n S 是以252p 为首项,2p 为公比的等比数列.由于10<<p , 所以所有三角形面积和为22152p p -.。

2013-2014金山中学高二数学下期末试卷(含答案文科)

2013-2014金山中学高二数学下期末试卷(含答案文科)

2013-2014金山中学高二数学下期末试卷(含答案文科)2013-2014金山中学高二数学下期末试卷(含答案文科)本卷共4页,共21题,满分150分。

考试用时120分钟。

注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项符合要求.1.若,其中,是虚数单位,则=()A.B.C.D.2.设集合,集合为函数的定义域,则()A.B.C.D.3.下列有关命题的说法正确的是().A.命题“若,则”的否命题为:“若,则”.B.“”是“”的必要不充分条件.C.命题“若,则”的逆否命题为真命题.D.命题“使得”的否定是:“均有”.4.设是等差数列的前项和,公差,若,若,则正整数的值为()A.B.C.D.5.定义在上的函数满足且时,则()A.B.C.D.6.函数的图像大致是()A.B.C.D7.如图2,某四棱锥的三视图如图所示,则最长的一条侧棱长度为()A.B.C.D.图28.执行如图3所示的程序框图,若输出,则框图中①处可以填入()A.B.C.D.9.设、分别是椭圆的左、右焦点,y点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为()F1OF2xA.B.C.D.图410.定义运算的最大值是()A.4B.3C.2D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13小题)11.给出下列等式:;;,……由以上等式推出一个一般结论:对于=.12.已知、的取值如下表:从散点图可以看出与线性相关,且回归方程,则.13.已知实数满足约束条件,则的最小值是.(二)选做题(14、15小题,考生只能从中选做一个小题)14.(坐标系与参数方程选做题)在平面直角坐标系中,直线(是参数)被圆(是参数)截得的弦长为.15.(几何证明选讲选做题)如图,直线与圆相切于,割线经过圆心,弦于点,,,则.图5三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本题满分12分)已知函数,.(1)求函数的最小正周期;(2)在中,角、、的对边分别为、、,且满足,求的值.17.(本题满分12分)从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下图所示:(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分(平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和);(2)若用分层抽样的方法从分数在和的学生中共抽取人,该人中成绩在的有几人?(3)在(2)中抽取的人中,随机抽取人,图6求分数在和各人的概率.18.(本题满分14分)如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.(1)求证://平面;(2)求证:;(3)求三棱锥的体积.图719.(本题满分14分)已知椭圆过和点.(1)求椭圆的方程;(2)设过点的直线与椭圆交于两点,且,求直线的方程.20.(本题满分14分)已知二次函数+的图象通过原点,对称轴为,.是的导函数,且.(1)求的表达式(含有字母);(2)若数列满足,且,求数列的通项公式;(3)在(2)条件下,若,,是否存在自然数,使得当时恒成立?若存在,求出最小的;若不存在,说明理由.21.(本题满分14分)已知函数(,),.(1)求函数的单调区间,并确定其零点个数;(2)若在其定义域内单调递增,求的取值范围;(3)证明不等式().。

上海市金山区华东师大三附中2013-2014学年高二第二学期期末考试文科数学试题及答案

上海市金山区华东师大三附中2013-2014学年高二第二学期期末考试文科数学试题及答案

俯视图左视图主视图上海市金山区华东师大三附中2013-2014学年高二第二学期期末考试(文)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 201532i i i i ++++ =__________________.2. 在5(31)x -的展开式中,设各项的系数和为a ,各项的二项式系数和为b ,则ab= . 3. 若实数x y 、满足22000x y x y +-≤⎧⎪≥⎨⎪≥⎩则22y x +的最大值为 .4. 若圆锥的侧面展开图是半径为2、 圆心角为90︒的扇形,则这个圆锥的全面积是 .5. 由若干个棱长为1的正方体组成的几何体的 三视图如右图所示,则该几何体的体积为 .6. 在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择了3个点,刚好构成直角三角形的概率 是 . 7. 已知正四棱柱的一条对角线长为22,底面边长为1,则此正四棱柱的表面积为__.8. 设D 是不等式组2102403x y x y x +≤⎧⎪+≥⎨⎪≤≤⎩表示的平面区域,则D 中的点(,)P x y 到直线10x y +=的距离的最大值是 .9. 设函数21x y -=的曲线绕x 轴旋转一周所得几何体的表面积__________.10. 设不等式组*00()4x y n N y nx n >⎧⎪>∈⎨⎪≤-+⎩所表示的平面区域n D 的整点(即横坐标和纵坐标均为整数的点)个数为,n a 则2420101()2010a a a +++= .11. 边长分别为a 、b 的矩形,按图中所示虚线剪裁后,可将两个小矩形拼接成一个正四棱锥的底面,其余恰好拼接成该正四棱锥的4个侧面,则ba的取值范围是 . 12. 在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为 .13. 正四面体ABCD 的表面积为S ,其中四个面的中心分别是E 、F 、G 、H .设四面体EFGH 的表面积为T ,则TS等于___________. 14. 对于曲线C 所在平面上的定点0P ,若存在以点0P 为顶点的角α,使得0APB α≥∠对于曲线C 上的任意两个不同的点B A ,恒成立,则称角α为曲线C 相对于点0P 的“界角”,并称其中最小的“界角”为曲线C 相对于点0P 的“确界角”.曲线⎪⎩⎪⎨⎧<--≥+=)0(12)0(1:22x x x x y C 相对于坐标原点O 的“确界角”的大小是 . 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15. 某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人.为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为 ( ) A. 84B. 78C. 81D. 9616. 教室内有一把直尺,无论这把直尺怎样放置,在教室的地面上总能画出一条直线,使这条直线与直尺 ( ) A. 平行 B. 垂直 C. 异面 D. 相交17. 如图,P 为正方体1111ABCD A B C D -的中心,△PAC 在该正方体各个面上的射影可能是 ( )A. (1)、(2)、(3)、(4)B.(1)、(3)C.(1)、(4)D.(2)、(4) 18. 给出下列四个命题:(1) 异面直线是指空间两条既不平行也不相交的直线; (2) 若直线l 上有两点到平面α的距离相等,则//l α; (3) 若直线m 与平面α内无穷多条直线都垂直,则m ⊥α;(4) 两条异面直线中的一条垂直于平面α,则另一条必定不垂直于平面α.其中正确命题的个数是 ( ) A. 0个 B. 1个 C. 2个 D. 3个三.解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 . 19.(本题满分12分)已知矩形ABCD 内接于圆柱下底面的圆O ,PA 是圆柱的母线,若6AB =,8AD =,异面直线PB 与CD 所成的角为arctan 2,求此圆柱的体积.20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 如图:三棱锥ABC P -中,PA ⊥底面ABC ,若底面ABC 是 边长为2的正三角形,且PB 与底面ABC 所成的角为3π.若M是BC 的中点,求:(1)三棱锥ABC P -的体积;(2)异面直线PM 与AC21.(本题满分14分)如图,在北纬60°线上,有A 、B 两地,它们分别在东经20°和140°线上,设地球半径为R ,求A 、B 两地的球面距离.22.(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分。

上海市金山中学2012-2013学年高二数学下学期期中试题(含解析)

上海市金山中学2012-2013学年高二数学下学期期中试题(含解析)

2012-2013学年上海市金山中学高二(下)期中数学试卷参考答案与试题解析一、填空题:(每小题4分,共56分)1.(4分)(2012•崇明县一模)复数z=i(1﹣3i)(i为虚数单位)的虚部是 1 .2.(4分)计算:()2013= ﹣i ..3.(4分)已知Z是复数,且满足2Z+|Z|﹣2i=0,则Z= ﹣+i .﹣2a+,解得﹣4.(4分)(2012•奉贤区一模)设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是y2=8x .5.(4分)(2012•崇明县一模)已知双曲线(a>0,b>0)与抛物线y2=8x有一个公共的焦点,且双曲线上的点到坐标原点的最短距离为1,则该双曲线的标准方程是.故答案为:6.(4分)正方体ABCD﹣A1B1C1D1的棱长为2,则异面直线BD1与AC之间的距离为.OB=.故答案为7.(4分)正方体ABCD﹣A1B1C1D1的棱长为2,则B1C与平面A1BD间的距离为.故答案为:8.(4分)(2012•上海二模)用一个与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为π.=所以球的体积为:=故答案为:9.(4分)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是12πcm2.=2R10.(4分)一个圆柱的轴截面为正方形,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.=π故答案为:11.(4分)在正三棱柱ABC﹣A1B1C1中,AB=3,高为2,则它的外接球上A、B两点的球面距离为2π﹣2arccos.=arccosarccos)2arccos2arccos.12.(4分)若正三棱锥底面边长为1,侧棱与底面所成的角为,则其体积为.。

金山中学2012-2013第一学期高二文数期末考试题

金山中学2012-2013第一学期高二文数期末考试题

金山中学2012-2013年度第一学期期末考试高二文科数学 试题卷一、选择题(以下题目从4项答案中选出一项,每小题5分,共50分) 1.如图所示正方体1111ABCD A B C D -的棱长为1 ,则点1B 的坐标是( )A .)0,0,1(B .)1,0,1(C .)1,1,1(D .)0,1,1(2. “0x >”是“0x ≠”的( )条件A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 3.命题“存在0x ∈R ,02x ≤0”的否定是( )A .不存在0x ∈R, 02x >0B .存在0x ∈R, 02x ≥0C .对任意的x ∈R, 2x ≤0D .对任意的x ∈R, 2x >04.如果直线013=++y ax 与直线0322=-+y x 互相垂直,那么a 的值等于( )A .3B .31-C .3-D .315.直线l 512200x y ++=与圆22(1)(2)25x y ++-=的位置关系是( )A .相离B .相切C .相交D .不能确定6.曲线34y x x =-在点)3,1(--处的切线方程是( )A .74y x =+B .72y x =+C .4y x =-D .2y x =-7. 设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥8.一个锥体的主视图和左视图如图所示,下面选项中,该锥体的俯视图不可能...是( )A .B .C .D .9.若椭圆的短轴为A B ,一个焦点为1F ,且1ABF △为等边三角形的椭圆的离心率是( ) A.14B.22D.1210.若函数()() y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-,函数()()()lg 01 0x x g x x x⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为( )A .5B .7C .8D .10二、填空题(每小题5分,共20分)11.若一个球的半径为3,则它的体积为 . 12.若函数2()1x a f x x +=+在1x =处取极值,则a = .13.已知双曲线22221(0,0)x y a b ab-=>>的一条渐近线方程是y =,它的一个焦点在抛物线28y x =的准线上,则双曲线的方程为 .14.一个半径为2的球放在桌面上,桌面上的一点1A 的正上方有一个光源A ,1AA 与球相切,1AA =8,球在桌面上的投影是一个椭圆,则这个椭圆的离心率等于 .B 1A 2A 1B 2主视图左视图A A三、解答题(共80 分)15.(本小题满分12分)已知{}4≥-=a x x A |,{}0342<+-=x x x B ,p 是A 中x 满足的条件, q 是B 中x 满足的条件. (1)求p ⌝(2)若p ⌝是q 的必要条件,求实数a 的取值范围.16.(本小题满分12分)已知椭圆()2222:10+=>>x y C a b ab的左、右焦点分别为)0,1(),0,1(21F F -,且经过定点)22,1(P(1)求椭圆C 的方程;(2)设直线2+=x y 交椭圆C 于B A ,两点,求线段AB 的长..17.(本小题满分14分)如图,已知矩形ABCD 中,10=AB ,6=BC ,将矩形沿对角线BD 把△ABD 折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上. (1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A B D ; (3)求三棱锥1A BC D -的体积.18.(本小题满分14分)已知a 为实数,).)(4()(2a x x x f --= (1)若'(1)0f -=,求)(x f 在[]2,2-上最大值和最小值;(2)若)(x f 在(]2-∞-,和[)2+∞,上都是递增的,求a 的取值范围。

上海市金山中学高二数学下学期期中试题(含解析)

上海市金山中学高二数学下学期期中试题(含解析)
考点:
抛物线的标准方程.
专题:
计算题.
分析:
根据抛物线的顶点在原点,准线方程为x=﹣2,可设抛物线的方程为y2=2px(p>0),从而可求抛物线的方程.
解答:
解:∵抛物线的顶点在原点,准线方程为x=﹣2
∴可设抛物线的方程为y2=2px(p>0)

∴2p=8
∴抛物线的方程为y2=8x
故答案为:y2=8x
解答:
解:设AC∩BD=O,过O作BD1的垂线,交BD1与E,则OE的长就是所求异面直线的距离.
∵Rt△DD1B∽Rt△EOB,DD1=2,BD1= ,OB= ,

∴OE= .
故答案为
点评:
本题考查异面直线间距离的计算,考查学生分析解决问题的能力,正确作出OE是关键.
7.(4分)正方体ABCD﹣A1B1C1D1的棱长为2,则B1C与平面A1BD间的距离为 .
点评:
本题重点考查抛物线的方程,解题的关键是根据抛物线的性质,设出抛物线的方程.
5.(4分)(2012•崇明县一模)已知双曲线 (a>0,b>0)与抛物线y2=8x有一个公共的焦点,且双曲线上的点到坐标原点的最短距离为1,则该双曲线的标准方程是 .
考点:
圆锥曲线的共同特征;双曲线的标准方程.
专题:
综合题.
8.(4分)(2012•上海二模)用一个与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为 π.
考点:
球的体积和表面积.
专题:
计算题.
分析:
求出小圆的半径,利用球心到该截面的距离为1 cm,小圆的半径,通过勾股定理求出球的半径,即可求出球的体积.
解答:
解:用一平面去截球所得截面的面积为π,所以小圆的半径为1

上海市金山中学2012-2013学年高二下学期期末考试化学试题

上海市金山中学2012-2013学年高二下学期期末考试化学试题

上海市金山中学2012-2013学年高二下学期期末考试化学试题 相对原子质量:H-1 C-12 N-14 O-16 Na-23 S-32 Cl-35.5 Cu-64一 、选择题(本题共40分,每小题2分,每小题只有一个正确答案) 1. 海水中含量最多的元素是A .钠B .氯C .镁D .氢A .Se 7834和Se 8034互为硒的同位素 B .Se 7834和Se 8034都含有34个中子 C .Se 7834和Se 8034分别含有44和46个质子 D .Se 7834和Se 8034的核外电子数不同 3.某直链烯烃分子中有18个氢原子,它的分子式是A .C 8H 18B .C 9H 18 C .C 10H 18D .C 11H 18 4.加入水能抑制水的电离的物质是A .碘化钾B .氯化铵C .硝酸钠D .硫酸 5.正确的实验操作是科学探究成功的基础,下列操作中正确的是A .取用少量液体B .过C .闻气味D .稀释浓硫酸6.设N A 代表阿伏加德罗常数,下列说法正确的是 A .5.6 g 铁与足量盐酸反应转移的电子数为0.3N A B .常温常压下,11.2L 甲烷中含有的氢原子数为2N AC.标准状况下,22.4 L氦气与22. 4 L氟气所含原子数均为2 N AD.常温下,2.7g铝与足量的盐酸反应,失去的电子数为0.3N A7.下列反应的离子方程式书写正确的是A.氢氧化镁与稀硫酸反应H++ OH-→ H2OB.Zn与硝酸的反应Zn+ 2H+→ Zn2+ + H2↑C.碳酸钙溶于醋酸CaCO3 + 2H+→Ca2+ + CO2↑+ H2OD.用氢氧化钠溶液吸收少量二氧化碳2OH-+CO2→CO32-+H2O8.下列说法中,正确的是A.化学反应一定是放热反应B.反应物的总能量小于生成物的总能量的化学反应是放热反应C.化学反应中能量变化的大小与反应物的质量多少无关D.能量变化是化学反应的基本特征之一9.下列化合物中不能由单质直接化合而成的是A.FeCl2B.HF C.Fe3O4D.CuCl210.某有机物的结构为HO—CH2CH=CHCH2—COOH,该有机物不可能发生的化学反应是A.水解B.酯化C.加成D.氧化11.下列溶液中,跟200 mL 0.5 mol / L Na2SO4溶液所含的Na+物质的量浓度相同的是A.200 mL 0.25 mol / L NaCl溶液B.200 mL 1 mol / L NaCl溶液C.100 mL 0.5 mol / L NaOH溶液D.100 mL 2 mol / L NaOH溶液12.与SiO2晶体中所含化学键类型完全相同的物质是A.Na2S B.P4C.NaOH D.He13.用分液漏斗可以分离的一组混合物是A.苯和水B.乙酸乙酯和乙酸C.乙酸和乙醇D.乙醇和水一定正确的是A.加入Mg粉,生成H2的体积:V(A)<V(B) B.A为弱酸,B为强酸C.加入Mg粉,生成H2的平均反应速率v(A)<v(B) D.A溶液比B溶液导电性强15.配制100 mL 1.0 mol/LNa2CO3溶液,下列操作正确的是()A.称取10.6 g无水碳酸钠,加入100 mL容量瓶中,加水溶解、定容B.称取10.6 g无水碳酸钠,加入100 mL蒸馏水,搅拌、溶解C.转移Na2CO3溶液时,未用玻璃棒引流,直接倒人容量瓶中D.定容后,塞好瓶塞,反复倒转、摇匀16. 右图为番茄电池,下列说法正确的是A.一段时间后,锌片质量会变小B.铜电极附近会显蓝色C.电子由铜通过导线流向锌D.锌电极是该电池的正极17.只用一种试剂就能把Na2SO4、NaCl、(NH4)2SO4、NH4Cl四种溶液区分开来,这种试剂是()A.AgNO3B.NaOH C.BaCl2D.Ba(OH)218.对物质进行分类是一种简单、有效的科学方法。

新编上海市金山中学高二下期末考试数学试卷含解析

新编上海市金山中学高二下期末考试数学试卷含解析

金山中学第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即.又点在上,有,.则,所以的垂心在椭圆上.。

上海市金山中学2013-2014学年高二下学期期末考试英语试题

上海市金山中学2013-2014学年高二下学期期末考试英语试题

(考试时间:120分钟满分:150分命题人:曹宇审核人:张伟华)第I卷(共103分)I. Listening Comprehension(30分)Directions: In section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.Section A1. A. 7:00 B. 7:10 C. 7:20 D. 7:302. A. He has a cough. B. He has a coldC. He has a fever.D. He has a headache.3. A. She got a good job. B. She did well in the test.C. She is a maths teacher.D. She likes maths very much.4. A. Buying some furniture. B. Moving some furniture.C. Looking for a bigger room.D. Buying a new house.5. A. At school B. In a hospital C. In an office D. On the phone6. A. Go on working B. Quit her job C. Go to the seaside D. Go home7. A. Friends B. Sister and brotherC. Policeman and driverD. Classmates8. A. He wants to play basketball. B. He doesn’t want to do anything.C. He’d like the woman to decide.D. He is quite busy right now.9. A. Get up early. B. Read English after getting up.C. Do exercise in the morning.D. Have a walk for ten minutes.10. A. The place B. The party C. The people D. The noiseSection BQuestion 11 through 13 are based on the following passage.11. A. At least 1,300 years.B. More than 3,000 years.C. Less than 2,300 years.D. More than 1,000 years.12. A. Singapore B. India C. Korea D. Malaysia13. A. Gold B. Wood C. Silver D. BambooQuestion 14 through 16 are based on the following passage.14. A. At the top of a mountain of Yunnan Province.B. Along Chirui LakeC. In Shiping County.D. Between the Ming Village and the Qing Village15. A. 10 B. 28 C. 403 D. 60016. A. Living buildings. B. Mountains and water.C. Qing and Ming museums.D. Ancient halls and towers.Section CBlanks 17 through 20 are based on the following conversation.Blanks 21 through 24 are based on the following conversation.II. Grammar (16分)Directions: After reading the passages below, fill in the blanks to make the passages coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.(A)Several years ago, I drove into a service station to get some gas. It was a beautiful day, I wasfeeling great. As I walked into the station to pay for the gas, the attendant said to me: “You don’t look well” That completely took me by surprise, I told him I had never felt 25 (well). Without hesitation he told me I looked terribly bad and my skin appeared yellow.When I left the service station, 26 (feel) a little uneasy, I pulled over to the side of road and look at my face in the mirror. How did I feel? Was everything all right? Had I picked up 27 rare disease? Had I picked up hepatitis(肝炎)?The next time I drove into the service station, I figured out what 28 (happen). The place had recently been painted a bright yellow, the light 29 (reflect) off the walls made someone inside look as though they had hepatitis. I wondered how many folks had reacted the way I did. I had let one short conversation with a total stranger 30 (change) my attitude for an entire day. He told me I looked sick, and before long, I was actually feeling sick. That single negativeobservation had a profound effect 31 the way I felt and acted.A little while later I saw how funny the incident was. I wonder how many other people that the man had told were ill 32 he realized that the service station had a paint job.(B )My daughter and I were flying to spend a week with my husband in Florida. The plane was totally full. I had noticed some Boy Scouts (童子军) at the gate and promised to my daughter that if 33 happened, we would be OK with all those Scouts on our flight!Unfortunately, our seats were separated by the aisle (走道). Kallie was nervous about the trip and had counted on my reading to her the whole way. 34 (try) to read across the aisle would be a challenge.When the two passengers who shared my row boarded the plane, I asked if they __35__ switch places with Kallie and me. They refused. Meanwhile, a mother and her three children were panicking several rows ahead of us. There had been a mistake with their boarding passes, and the whole family 36 (split) up. The passengers in her row also refused to move. The mother was concerned about the younger boy sitting with strangers.Suddenly the Scout leader stood up and said, “Ma’am, we can help you.” He then spent five minutes rearranging his group. The mothe r’s relief was obvious.Kallie, however, was still upset . I told her that there wasn’t anything 37 I could do; we would have to sit 38 we were. Gradually, the man sitting next to the Scoutmaster (not a Scout himself) turned around and asked, “Woul d you and your daughter like our seats ?” We traded seats and continued our trip, very much 39 (relieve) to be together.Would that man have offered us his seat if the Scouts hadn’t done so for the mom and her children? I don’t know. But the belief lives on in my mind 40 kindness is contagious (蔓延)! III. Vocabulary (10分)Directions: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.The documentary film The Alps tells the story of a young American mountaineer who 41 the North Face of the Eiger, considered Europ e’s most dangerous climb and one that 42 his father ’s life.The 40-minute film by Stephen Judson was shown in the IMAX Dome Theater of the Shanghai Science and Technology Museum on October 3, 2010.When John Harlin III was only nine years old, his father John Harlin II died while 43 the North Face of the Eiger in Switzerland in 1996, Thirty-nine years later, in 2005, Harlin confronted his demons and attempted the same climb.“For a long time I grew up in the 44 of my father ’s tragedy. But after many years ’ fear I finally climbed the mountain, where I found a closer 45 with my father,” Harlin said at the premiere of the film in Shanghai.The film ’s 46 was supported by the Switzerland Tourism Agency andfeaturesmagnificent scenery.During the world Expo, the Switzerland Pavilion screened a seven-minute condensed version of the film. The pavilion 47 an indoor cable ride through Switzerland, a photo exhibition and a tourism-themed night.The film also explains the 48 and geology of the Alps and why the North Face of the Eiger is so dangerous.Harlin says the film not only documents the greatest moment in his life, but also 49 the importance of family, love and respect for nature.His father 50 these values on young Harlin and he, in turn, has passed them on to his young daughter.IV.Reading Comprehension(47分)Section A (15分)Directions: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.In a city of south India lived a young man who was always dreaming of becoming rich. He often heard about some traders in his city who gathered a great deal of 51 in the course of their travels across the world. He believed he could also make a great achievement although he didn’t have any 52 in business at all. So, one fine day, the young man set out on a long 53 in search of trade opportunities.54 though, he did not become as rich as he had thought he would. Worse, he spent more money on his travels than he 55 in the course of his trade. All this made him feel confused and 56 , but he refused to return home without 57 .One day, while he was wandering on the shore in a seaside town, his eyes 58 on an object which he thought should be a large ship at a distance.“When I become rich, I shall buy a ship just like that one and 59 around the world,” he said ambitiously. Then he waited to see the ship enter the harbor. As the ship got closer, it lost its 60 dimensions(规模) and looked more like a small boat. When the boat reached the 61 , the young man let out a big heavy sigh because he discovered that it was only a bunch of logs tied together. He was terribly 62 to see such a raft(木筏).Finally he understood. Just as he 63 a lot of time on fruitless speculation(猜想) about the “ship”, his expectations of getting 64 was also without any real basis. Therefore, he decided to return home and 65 up a more practical job.51. A. energy B. knowledge C. resource D. fortune52. A. expectation B. experience C. interest D. ambition53. A. journey B. partnership C. vacation D. period54. A. Unreasonably B. Unbelievably C. Unconsciously D. Unfortunately55. A. begged B. borrowed C. earned D. adopted56. A. uncertain B. excited C. patient D. indifferent57. A. hesitation B. success C. problem D. income58. A. depended B. focused C. insisted D. lived59. A. show B. turn C. sail D. fly60. A. correct B. formal C. real D. grand61. A. bank B. shore C. ocean D. bottom62. A. disappointed B. pleased C. puzzled D. astonished63. A. saved B. valued C. wasted D. created64. A. rich B. learned C. smart D. strong65. A. set B. gave C. made D. tookSection B (24分)Directions: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)Some years ago, writing in my diary used to be a usual activity. I would return from school and spend the expected half hour recording the day’s events, feelings, and impressions in my little blue diary. I did not really need to express my emotions by way of words, but I gained a certain satisfaction from seeing my experiences forever recorded on paper. After all, isn’t accumulating memories a way of preserving the past?When I was thirteen years old, I went on a long journey on foot in a great valley, well-equipped with pens, a diary, and a camera. During the trip, I was busy recording every incident, name and place I came across. I felt proud to be spending my time productively, dutifully preserving for future generations a detailed description of my travels. On my last night there, I wandered out of my tent, diary in hand. The sky was clear and lit by the glare of the moon, and the walls of the valley looked threatening behind their screen of shadows. I automatically to ok out my pen…At that point, I understood that nothing I wrote could ever match or replace the few seconds I allowed myself to experience the dramatic beauty of the valley. All I remembered of the previous few days were the dull characterizations I had set down in my diary.Now, I only write in my diary when I need to write down a special thought or feeling. I still love to record ideas and quotations that strike me in books, or observations that are particularly meaningful. I take pictures, but not very often—only of objects I find really beautiful. I’m no longer blindly satisfied with having something to remember when I grow old. I realize that life will simply pass me by if I stay behind the camera, busy preserving the present so as to live it in the future.I don’t want to wake up one day and have nothing but a pile of pictures and notes. Maybe I won’t have as many exact representations of people and places; maybe I’ll forget certain facts, but at least the experiences will always remain inside me. I don’t live to make memories—I just live, and the memories form themselves.66. Before the age of thirteen, the author regarded keeping a diary as a way of ______.A. observing her school routineB. expressing her satisfactionC. impressing her classmatesD. preserving her history67. What caused a change in the author’s understanding of keeping a diary?A. A dull night on the journey.B. The beauty of the great valley.C. A striking quotation from a book.D. Her concerns for future generations.68. What does the author put in her diary now?A. Notes and beautiful pictures.B. Special thoughts and feelings.C. Detailed accounts of daily activities.D. Descriptions of unforgettable events.69. The author comes to realize that to live a meaningful life is ______.A. to experience itB. to live the present in the futureC. to make memoriesD. to give accurate representations of it(B)Do you realize that every time you take a step, the bones in your hip are subjected to forces between four and five times your body weight? When you are running, this force is increased further still. What happens if through disease a hip-joint ceases to be able to resist such forces? For many years hip-joints and other body joints have been replaceable either partially or completely. It is after all a simple ball and socket joint; it has certain loads imposed on it; it needs reliability over a defined life; it must contain materials suitable for the working environment. Any engineer will recognize these as characteristic of a typical engineering problem, which doctors and engineers have worked together to solve, in order to bring a fresh lease of life to people who would otherwise be disabled.This typifies the way in which engineers work to help people and create a better quality of life. The fact that this country has the most efficient agricultural industry in the world is another good example. Mechanical engineers have worked with farmers and biologists to produce fertilizers, machinery and harvesting systems. This team effort has now produced crops uniformly waist high or less so that they are better suited to mechanical harvesting. Similar advances with other crops have released people from hard and boring jobs for more creative work, whilst machines harvest crops more efficiently with less waste. Providing more food for the rapidly increasing population is yet another role for the mechanical engineer.70. According to the passage, when would most weight be imposed on hip-joints?A. When one is walking.B. When one is running.C. When one is standing.D. When one is lying down.71. Engineers regard the replacement of hip-joints as a(n) ____ Problem.A. mechanicalB. medicalC. healthD. agricultural72. According to the passage, how do engineers contribute to increasing efficiency of theagricultural industry?A. By working with farmers.B. By working in teams.C. By growing crops of the same height.D. By making agricultural machinery.73. According to the context, "This team effort'" in Paragraph Two refers to__________.A. mechanical engineers.B. doctors and engineers.C. biologists, doctors and farmers.D. farmers, biologists and engineers(C)Rules for the University Entrance Examination•You must be at the examination center ten minutes before the examination starts. If you are more than ten minutes late, you may not enter the examination center. The examination takes place at the same time in different states.•You must have proof of your name and grade as well as official examination number. Show these when you come to the examination center.•Depending on which examination you are taking, you may bring certain items into the examination center. Mathematics examinations may allow you to use electronic calculators. Othersubjects may allow you to use dictionaries and other reference material. Please read the notes sent with your timetable carefully.•You must bring your own pencils. None will be provided for you. The following items are not allowed in the examination center: walkmans and radios, head sets, any food or drink, school bags, electronic equipment (unless specifically permitted for various subjects), and mobile phones. •Once in the center, you must sit at the desk with your examination number on it. When you sit down, place your examination number at the top corner of your desk.•You must remain silent during the examination. You must not disturb other people who are taking the test.•If you need a drink or toilet break, you should raise your hand and wait for the supervisor (监督者) to speak to you. You will be given water or the supervisor will take you to the bathroom. You are not allowed to talk with anyone during the break.•You must write your answers in the official answer sheet. Your supervisor will provide extra paper if you wish to make notes.•You may leave the examination room at any time if you do not plan to return. If you finish early and want to leave, please move well away from the examination center.•The supervisor will warn you fifteen minutes, five minutes and one minute before the end of the examination. When the supervisor says that the time is up, you must put down your pencil and wait at your desk until your paper is collected.74. What kind of examination are these rules probably for?A. A local exam.B. A final exam.C. A college exam.D. A national exam.75. What are you allowed to have with you when you take mathematics examination?A. Related material.B. Proof of yourself.C. A cell phone.D. A dictionary.76. What should you do if you finish the test early, and want to get a better result?A. Take some notes carefully.B. Leave the room immediately.C. Remain in your seat and check again.D. Raise your hand to inform your teacher.77. What can he provided for you during the exam?A. Pencils.B. Food and drinkC. Extra paper.D. Calculators.Section C (8分)Directions: Read the passage carefully. Then answer the questions or complete the statements in the fewest possible words.A sense of smell is very important to a person. Our nose helps us to know more about the world.The sense of smell starts with the nose, but it includes other parts of the head and the brain. Let us use the example of the burning match to understand how this sense works.When the match starts to burn, tiny little pieces of ash that come from the match float through the air. These small pieces of material are too small for us to see, but the nose is sensitive to them and can smell them as they travel through the air into our nose. When the small pieces of ash reachthe olfactory nerve (嗅觉神经), which is like an electrical wire on a telephone, the olfactory nerve carries the message to the brain, telling it that we are smelling a burning match. We don’t always smell a smell right away, because it takes time for the small pieces to travel in the air and then into our nose to the olfactory nerve.Human beings have a very weak sense of smell. As people evolved and began to use reason more, they didn’t need to smell things quite as well as other animals did. They could use their eyes and their brains in a different way. There is one way our sense of smell is different from other senses. After sensing a particular smell for a long time, our sense of smell gets tired. When we first come into the house, we can smell dinner cooking, but after that, our olfactory nerves get tired and then we don’t smell anything at all. When we have a cold, our nose is all stuffed up, and we cannot smell certain things, like perfume or food.(Note: Answer the questions or complete the statements in NO MORE THAN TEN WORDS.)78. The sense of smell is not only related to the nose, but also has a connection with__________________________________________________________________________.79. How dose the olfactory nerve make people know a smell?__________________________________________________________________________.80. Why do people have a weaker sense of smell in contrast to other animals according to the passage?_________________________________________________________________________.81. A healthy cook cannot smell the cooking most probably because __________________ .第II 卷(共47 分)I. Translation (4+4+4+5+5)Directions: Translate the following sentences into English, using the words given in the brackets.1. 和他争论艺术的起源没有任何意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市金山中学2013-2014学年高二下学期期末考试文科数
学试卷(解析版)
一、选择题
1)
A
【答案】B.
【解析】
试题分析:从正方体的12
与已知棱成异面直线的有4
考点:古典概型.
2.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组[40,50),[50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()
A.588 B.480 C.450 D.120
【答案】B.
【解析】
试题分析:由频率分布直方图可知,
该模块测试成绩不少于60
所以该模块测试成绩不少于60
考点:频率分布直方图.
3.)
A.1 D
【答案】A.
【解析】
考点:二项式定理.
4
是()
A
C
【答案】B.
【解析】
试题分析:由题意得,曲线C
C C
C有三个交点.
考点:直线与圆锥曲线的位置关系.
二、填空题
5______________.
【答案】2.
【解析】
考点:直线的斜率公式.
6_________.
【解析】
考点:复数的除法.
72,则它的体积为________.
【解析】
考点:多面体的体积.
8.以)2,1(-为圆心且过原点的圆的方程为_____________. 【答案】)2()1(22=++-y x
【解析】
试题分析:由题意,得所求圆的半则所求圆的标准方程为
考点:圆的标准方程.
9.某几何体的三视图如图所示,则该几何体的体积为__________.
【解析】
试题分析:由三视图可知,该几何体是一个侧放的圆柱,底面半径为1,高为5;则该几何体的体积
考点:三视图、圆柱的体积.
10.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.
【解析】
考点:圆锥的侧面积公式.
11__________.
【解析】
试题分析:
易所二面平面角,且
考点:二面角的平面角.
12.双曲线14
22
=-y x 的顶点到其渐近线的距离等于_________. 52 【解析】
试题分析:
考点:双曲线的性质、点到直线的距离公式.
13.已知球的半径为1
球面距离为 ________.
【解析】
试题分析:设球心为O,
考点:两点的球面距离.
14.则直线
___________.
【答案】9.
【解析】
试题分析:因所以
9.
考点:直线到平面的距离.
15.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1___________(用数字作答).
【答案】590.
【解析】 试题分析:骨科、脑外科和内科医生都至少有
3名骨科、1名脑外科和1名内科医生,有
1名骨科、3名脑外科和
1
1名骨科、1名脑外科和3
2名骨科、2名脑外科和1
1名骨科、2名脑外科和2
2名骨科、1名脑外科和2
.
考点:组合. 16
两点
.若
_________________.
【解析】
又因中点
且斜

考点:点差法.
17
____________.
【解析】
试题分析::

当直
过A 点时小,
大;联立
考点:简单的线性规划.
18.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)
【解析】
试题分析:根据题意,苍蝇需要8次完成,有两种方法:方法一:每次都到达相邻顶点,需经过8条棱,总路径长为8;方法二:每次到达不相邻的顶点,需爬行4次(面对角线),
飞行4次(体对角线)
考点:正方体的面对角线与体对角线.
三、解答题
19
5项的二项式系数和系数.
【解析】
试题分析: .
规律总结:涉及求二项展开式的二项式系数或系数或特定项时,往往先写出二项式的通项公式,再进行求解.
注意点:要正确区分二项式系数与系数:二项式系数仅是一个组合数,系数是未知数的系数.
考点:二项式定理
. 20.求半径为10
.
【解析】
试题分析: 解题思路:设出所求圆的圆心坐标,
圆的标准方程.
规律总结:直线圆的位置关系,主要涉及直线与圆相切、相交、相离,在解决直线圆的位置关系时,要注意结合初中平面几何中的直线与圆的知识.
考点:直线与圆的位置关系. 21.
.
【解析】
试题分析:
. ..
考点:1.直线与椭圆的位置关系;2.对称问题.
22.如图,
,
.
(1)
(2).(结果用反三角函数值表示)
【答案】(1)证明见解析;(2
【解析】
试题分析:
解题思路:(1)利用勾股定理证明垂直;(2)作出平行线,构造异面直线所成的角,再利用三角形进行求角.
规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及空间中的求角问题,往往利用角的定义作出辅助线,转化为平面中的线线角.
试题解析:(1)证明:连
解:
.
在中,,所以为直角三角形,
考点:1.直线的垂直关系的证明;2.直线与平面所成的角的求法.
23
2
.
.【答案】(1
(2
(3
【解析】
试题分析:
解题思路:(1)联立直线与抛物线方程,
(2)利用直线的点斜式方程写出直线方程即可;(3)联立直线与抛物线方程,求弦长与点到直线的距离,进而求三角形的面积.
规律总结:锥曲线的问题一般都有这样的特点:第一小题是基本的求方程问题,一般简单的利用定义和性质即可;后面几个小题一般说综合性较强,用到的内容较多,大多数需要整体把握问题并且一般说计算量很大,学生遇到这种问题就很棘手,有放弃的想法,所以处理这类问题一定要有耐心..
试题解析:(1
.
考点:1.直线的方程;2.直线与抛物线的位置关系.。

相关文档
最新文档