高考数学数列通项公式与数列求和专题复习(专题训练)

合集下载

高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)1.已知数列{}n a 的前n 项和21n n S =-,则数列2{}n a 的前10项和为( )A .1041-B .102(21)-C .101(41)3-D .101(21)3-2.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式为n a =( ) A .21n -B .12n -C .21n-D .21n +3.数列{}n a 满足1(1)nn n a a n ++=-⋅,则数列{}n a 的前20项和为( )A .100-B .100C .110-D .1104.已知数列{}n a 的通项公式为100n a n n=+,则122399100||||||a a a a a a -+-++-=L ( ) A .150B .162C .180D .2105.数列{}n a 中,10a =,1n n a a +-=,若9n a =,则n =( )A .97B .98C .99D .1006.在数列{}n a 中,12a =-,111n na a +=-,则2019a 的值为( ) A .2-B .13 C .12D .327.已知n S 是数列{}n a 的前n 项和,且13n n n S S a +=++,4523a a +=,则8S =( ) A .72B .88C .92D .988.在数列{}n a 中,12a =,已知112(2)2n n n a a n a --=≥+,则n a 等于( )A .21n + B .2n C .31n + D .3n9.已知数列21()n a n n =-∈*N ,n T 为数列11{}n n a a +的前n 项和,求使不等式20194039n T ≥成立的最小 正整数( )一、选择题A .2017B .2018C .2019D .202010.已知直线20x y ++=与直线0x dy -+=互相平行且距离为m ,等差数列{}n a 的公差为d ,7835a a ⋅=,4100a a +<,令123||||||||n n S a a a a =++++L ,则m S 的值为( )A .60B .52C .44D .3611.已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列, 若23a =,713a =,则1232020()()()()f a f a f a f a ++++=L ( ) A .2-B .3-C .2D .312.已知数列满足12323(21)3nn a a a na n ++++=-⋅L ,设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),n ∈*N ,则λ的最小值为( )A .32B .94C .3112D .311813.已知数列{}n a 的通项公式为12n n a n -=⋅,其前n 项和为n S ,则n S = .14.设数列{}n a 满足1(1)()2n n n na n a n n +-+=∈+*N ,112a =,n a = . 15.已知数列{}n a 满足1(1)(2)nn n a a n n ---=≥,记n S 为数列{}n a 的前n 项和,则40S = .16.等差数列{}n a 中,3412a a +=,749S =,若[]x 表示不超过x 的最大整数,(如[0.9]0=,[2.6]2=,).令[lg ]()n n b a n =∈*N ,则数列{}n b 的前2000项和为 .1.【答案】C答 案 与 解 析二、填空题一、选择题【解析】∵21n n S =-,∴1121n n S ++=-,∴111(21)(21)2n n nn n n a S S +++=-=---=, 又11211a S ==-=,∴数列{}n a 的通项公式为12n n a -=,∴2121(2)4n n n a --==,∴所求值为1010141(41)143-=--. 2.【答案】B【解析】当1n =时,11121S a a =-=,∴11a =;当2n ≥时,1122n n n n n a S S a a --=-=-,∴12n n a a -=,因此12n n a -=.3.【答案】A【解析】121a a +=-,343a a +=-,565a a +=-,787a a +=-,…, 由上述可知,1219201191(13519)1101002a a a a +++++=-⨯++++=-⨯⨯=-L L . 4.【答案】B【解析】由对勾函数的性质知:当10n ≤时,数列{}n a 为递减; 当10n ≥时,数列{}n a 为递增,故12239910012239101110||||||()()()()a a a a a a a a a a a a a a -+-++-=-+-++-+-L L12111009911010010()()1100(1010)(1001)a a a a a a a a +-++-=-+-=+-+++-L (1010)162+=.5.【答案】D【解析】由1n n a a +-==,利用累加法可得,∴11)n a a -=+++L 1=,∵10a =,∴19n a ==10=,100n =. 6.【答案】B【解析】由题意得,12a =-,111n n a a +=-,∴213122a =+=,321133a =-=,4132a =-=-,…, ∴{}n a 的周期为3,∴20193673313a a a ⨯===. 7.【答案】C【解析】∵13n n n S S a +=++,∴113n n n n S S a a ++-=+=, ∴13n n a a +-=,∴{}n a 是公差为3d =的等差数列,又4523a a +=,可得12723a d +=,解得11a =,∴81878922S a d ⨯=+=. 8.【答案】B 【解析】将等式1122n n n a a a --=+两边取倒数,得到11112n n a a -=+,11112n n a a --=, 1{}n a 是公差为12的等差数列,1112a =,根据等差数列的通项公式的求法得到111(1)222n n n a =+-⨯=,故2n a n=. 9.【答案】C【解析】已知数列21()n a n n =-∈*N ,∵111111()(21)(21)22121n n a a n n n n +==--+-+, ∴11111111(1)()()(1)2335212122121n n T n n n n ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L , 不等式20194039n T ≥,即2019214039n n ≥+,解得2019n ≥, ∴使得不等式成立的最小正整数n 的值为2019. 10.【答案】B【解析】由两直线平行得2d =-,由两直线平行间距离公式得10m ==,∵77(2)35a a ⋅-=,得75a =-或77a =, ∵410720a a a +=<,∴75a =-,29n a n =-+,∴12310|||||||||7||5||5||7||9||11|52m S a a a a =++++=+++-+-+-+-=L L . 11.【答案】B【解析】由函数()f x 是奇函数且3()()2f x f x -=,得(3)()f x f x +=, 由数列{}n a 是等差数列,若23a =,713a =,可得到21n a n =-, 可得123456()()()()()()0f a f a f a f a f a f a ++=++=,则其周期为3,12320201()()()()()3f a f a f a f a f a ++++==-L .12.【答案】C【解析】∵12323(21)3nn a a a na n ++++=-⋅L ①,当2n ≥时,类比写出12323a a a ++++L 11(1)(23)3n n n a n ---=-⋅②, 由①-②得143n n na n -=⋅,即143n n a -=⋅.当1n =时,134a =≠,∴13,143,2n n n a n -=⎧=⎨⋅≥⎩,14,13,23n n n b n n -⎧=⎪⎪=⎨⎪≥⎪⎩, 214233333n n n S -=++++=L 021*********n n-+++++L ③, 2311112313933333n n n n nS --=++++++L ④, ③-④得,0231112211111231393333339313n n n n n n n S --=++++++-=+--L ,∴316931124312n n n S +=-<⋅,∵n S λ<(常数),n ∈*N ,∴λ的最小值是3112.13.【答案】(1)21nn -+【解析】由题意得01221122232(1)22n n n S n n --=⨯+⨯+⨯++-⋅+⋅L ①,∴1221222n S =⨯+⨯3132(1)22n n n n -+⨯++-⋅+⋅L ②,①-②得231121222222(1)2112nn nn n n S n n n ---=+++++-⋅=-⋅=-⋅--L ,∴(1)21nn S n =-+.14.【答案】21n n +【解析】∵1(1)()2n n n na n a n n +-+=∈+*N ,∴11111(2)(1)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,…,21112123a a -=-,累加可得11121n a a n n -=-+, 二、填空题∵112a =,∴1111n a nn n n =-=++,∴21n n a n =+. 15.【答案】440【解析】由1(1)(2)nn n a a n n ---=≥可得:当2n k =时,2212k k a a k --=①;当21n k =-时,212221k k a a k --+=-②; 当21n k =+时,21221k k a a k ++=+③;①+②有:22241k k a a k -+=-,③-①得有:21211k k a a +-+=, 则40135739()S a a a a a =+++++L24640109()110(71523)1071084402a a a a ⨯+++++=⨯++++=+⨯+⨯=L L . 16.【答案】5445【解析】设等差数列{}n a 的公差为d ,∵3412a a +=,749S =,∴12512a d +=,1767492a d ⨯+=,解得11a =,2d =, ∴12(1)21n a n n =+-=-,[lg ][lg(21)]n n b a n ==-,1,2,3,4,5n =时,0n b =;650n ≤≤时,1n b =; 51500n ≤≤时,2n b =; 5012000n ≤≤时,3n b =,∴数列{}n b 的前2000项和454502150035445=+⨯+⨯=.。

数列的通项公式与求和(包含等差数列与等比数列复习)

数列的通项公式与求和(包含等差数列与等比数列复习)
an = f ( n) an −1
n (1)已知 a1=1,an= a - (n≥2,n∈N*),求出满足条件的数列的通项公式. n-1 n 1
(2)在数列{an}中,a1=1,an+1=2nan,求 an.
(3)已知数列{an}中,a1=1, 2nan +1 = ( n + 1) an ,则数列{an}的通项公式为________.
第1讲 考点整合:
数列的通项公式与求和
1、数列通项公式的求解 (1)观察法 (2)利用 an 与 Sn 的关系求 an (3)利用递推公式求通项公式 2、数列的求和 (1)等差、等比数列的求和 ①公式法 ②关于奇偶项求和问题 ③关于含绝对值的数列求和 (2)通项分析法 (3)错位相减法 (4)分组求和法 (5)裂项相消法 (6)倒数相加法 (7)并项求和法
1 2
②形如 an +1 = pan + qn + r ( p, q, r为常数,p 0, p 1) 的递推式. 方法:可构造 an +1 + a ( n + 1) + b = p ( an + an + b ) 转化为等比数列. 例:在数列{an}中,a1=2, an +1 = 4an − 3n + 1( n N * ) ,求数列{an}的通项公式.
例 2:在等差数列 an 中, a10 = 23 , a25 = −22 , Sn 为其前 n 项和 Sn . (1)求使 S n 0 的最小正整数 n ; (2)求 Tn =| a1|+ | a2 |+ | a3|+...+ | an | .
例 3:已知等差数列 an 前三项的和为-3,前三项的积为 8. (1)求等差数列 an 的通项公式; (2)若 a2 , a3 , a1 成等差数列,求数列 | an | 的前 n 项和.

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题1、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).2、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;3、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 4、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 5、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.常用数列不等式证明中的裂项形式:(1)(1111n n =-+n(n+1)1111()1k n k =-+n(n+k);(2) 211111()1211k k k <=---+2k (3)211111111(1)(1)1kk k k k k k k k-=<<=-++-- (4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦; (5)()()111!!1!n n n n =-++(6)=<<=1(1)n n >+)一.数列的通项公式的求法1.定义法:①等差数列通项公式;②等比数列通项公式。

例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=2.公式法:已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

数列通项公式与求和讲解与习题(含答案)

数列通项公式与求和讲解与习题(含答案)

数列通项与求和一.求数列通项公式1.定义法(①等差数列通项公式;②等比数列通项公式。

)例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.2项和为S ,满足3如,1对所有的4。

例.521a a ⋅⋅⋅(例.已知数列{}n a 满足31=a ,n n a n a 11+=+,求n a 。

答案:23n a n=6.已知递推关系求n a ,用构造法(构造等差.等比数列)。

(1)形如()n f pa a n n +=+1只需构造数列{}n b ,消去()n f 带来的差异.其中()n f 有多种不同形式①()n f 为常数,即递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法:转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 答案:123n n a +=-②()n f 为一次多项式,即递推公式为s rn pa a n n ++=+1 例③(n f (2)n rq ,其中p q1+ 例(3型(2)的方法求解。

例.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

答案:1731(443n n a -=--7.形如11n n n a a ka b--=+或11n n n n a ba ka a ---=的递推数列都可以用倒数法求通项。

例.1,13111=+⋅=--a a a a n n n答案:132n a n =- 8.利用平方法、开平方法构造等差数列例1.数列{}n a的各项均为正数,且满足11n n a a +=+,12a =,求n a 。

答案:2(1)n a n = 例2.已知()f x x =<,求:(1)9.n a +设n b =例.1.已知2.已知13a =且132n n n a a +=+,求n a 答案:1532n n n a -=⋅- 3.已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-=,试求通项公式n a 。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

高考数学一轮复习: 专题6.4 数列求和(练)

高考数学一轮复习: 专题6.4 数列求和(练)

专题6.4 数列求和【基础巩固】一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.【答案】n 2+1-12n【解析】该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.(·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________. 【答案】2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.【答案】-200【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.(·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.5.(·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 【答案】6【解析】由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.6.(·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1 (a k a k +1)的值为________. 【答案】1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.8.(·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________. 【答案】4n-1【解析】由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.二、解答题9.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.10.(·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ. 令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n-1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2). 代入①得S n =n +32a n -1=n 2+5n 6.【能力提升】11.(·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 【答案】92【解析】a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号. ∴S n +8a n 的最小值是92. 12.(·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________. 【答案】7813.(·南京、盐城模拟)已知函数f (x )=⎩⎨⎧1-x -12,0≤x <2,f x -2,x ≥2,若对于正数k n (n ∈N*),直线y=k n x与函数y=f(x)的图象恰有(2n+1)个不同交点,则数列{k2n}的前n项和为________.【答案】n4n+4【解析】函数f(x)的图象是一系列半径为1的半圆,因为直线y=k n x与f(x)的图象恰有(2n+1)个不同交点,所以直线y=k n x与第(n+1)个半圆相切,则2n+1k n1+k2n=1,化简得k2n=14n n+1=14⎝⎛⎭⎪⎫1n-1n+1,则k21+k22+…+k2n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4n+4.14.(·苏、锡、常、镇四市调研)正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1, 则ka 1+12k (k -1)d =3×2a 1×1-2m -k1-2,即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k-1),则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k+k =6×2m +1-k-12,显然k ≠6,则2m +1-k=k +126-k =-1+186-k,。

高中数学《数列》复习专题

高中数学《数列》复习专题
检验:当n 1时, a1 1 12 2 满足已知条件.
1 n 1 练1.若an an 1 1 ( ) , a1 0, 求通项公式. 2 解:
专题2:求通项公式 1.累加型 an an1 f ( n) 2.累乘型 an an1 f ( n)
n 1个 an 1 q an 2 an q a
例3.数列 {an }满足an 3an1 1, a1 1, 求 {an }的通项公式 .
解: 设 为待定系数, an 3an 1 1
1 1 n 1 那么an =(a1 )3 2 2 an 3an1 1 1 1 n 1 即an = 3 1 2 2 an 3(an 1 ) n 1 3 3 +1 也即an = 1 1 2 则 令 , 2 3 1 1 即an 3(an 1 ) 2 2 1 1 {an }是以a1 为首项, 2 2 3为公差的等比数列.
练1.an
1 4n 1
2
, 求S n .
1 1 练 2.an 2 , 证明Sn . 4n 4n 3 3
1 1 1 例2.求和: 2+ 3 3+ 4 4+ 5
1 99+ 100
1 1 1 练3.求和: + 1+ 3 2+ 4 3+ 5
1 n + n+2
2 an an1 an1
专题2:求通项公式 1.累加型 an an1 f ( n) 回顾:求等差数列的通 项公式:— —累加法
由递推公式 an an1 d (n 2)可知, a2 a1 d 当n 2时, a3 a2 d a4 a3 d n 1个 a n 1 a n 2 d a n a n 1 d

选修二:数列求和的方法与专题训练

选修二:数列求和的方法与专题训练

高中数学选修二:数列求和的方法【思维导图】考点一 裂项相消【例1】若数列{}n a 的前n 项和n S 满足2n n S a n =+. (1)求证:数列{}1n a -是等比数列;(2)设()2log 1n n b a =-,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【一隅三反】1.设数列{}n a 满足:11a =,且112n n n a a a +-=+(2n ≥),3412a a +=. (1)求{}n a 的通项公式:(2)求数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和.2.已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .考点二 错位相减【例2】.已知数列{}n a 满足1(1)n n n a na ++=,且11a = (1)求数列{}n a 的通项公式;(2)设2nn n b a =⋅,求数列{}n b 的前n 项和n S .【一隅三反】1.已知数列{}n a 是公差0d ≠的等差数列,其前n 项和为n S ,满足42210S a -=,且1a ,2a ,5a 恰为等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式; (2)设nn na cb =,数列{}nc 的前n 项和为n T ,求证:3n T <.2.设数列{}n a 、{}n b 都有无穷项,{}n a 的前n 项和为()21352n S n n =+,{}n b 是等比数列,34b =且632b =.(1)求{}n a 和{}n b 的通项公式; (2)记nn na cb =,求数列{}nc 的前n 项和为n T .3.已知数列{}n a 满足121n n a a +=-()n *∈N ,12a =.(1)求数列{}n a 的通项公式;(2)求数列{}n na 的前n 项和n S ()n *∈N .考点三 分组求和【例3】.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和.【一隅三反】1.已知数列{}n c 的前n 项和122n n T +=-,在各项均不相等的等差数列{}n b 中,11b =,且1b ,2b ,5b 成等比数列,(1)求数列{}n b 、{}n c 的通项公式;(2)设22log n bn n a c =+,求数列{}n a 的前n 项和n S .2.已知在等比数列{}n a 中,11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*2n n b n a n N =+∈,求{}nb 的前n 项和nS.3.已知等比数列{}n a 的各项均为正数,22a =,3412a a +=. (1)求数列{}n a 的通项公式;(2)设2log n n n b a a =+,求数列{}n b 的前n 项和n S .考点四 倒序相加【例4】.已知函数()cos lnxf x x xππ=+-,若22018201920192019f f f πππ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()1009ln 0,0)a b a b π+>>(,则11a b +的最小值为( ) A .2 B .4 C .6 D .8【一隅三反】 1.设函数()221xf x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .1122.已知函数()sin 3f x x x π=+-,则12340332017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为( )A .4033B .-4033C .8066D .-80663.已知函数()442x x f x =+,设2019n n a f ⎛⎫= ⎪⎝⎭(n *∈N ),则数列{}n a 的前2019项和2019S 的值为( )A .30293B .30323C .60563D .60593考点五 奇偶并项【例5】.设*N n ∈,数列{}n a 的前n 项和为n S ,已知12n n n S S a +=++,______.请在①1a ,2a ,5a 成等比数列,②69a =,③535S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11na nn n b a +=+-,求数列{}n b 的前2n 项的和2n T .【一隅三反】.1.设n S 是数列{}n a 的前n 项和,已知11a =,122n n S a +=- ⑴求数列{}n a 的通项公式;⑵设()121log nn n b a =-,求数列{}n b 的前n 项和n T .2.已知数列{}n a 的前n 项和为,239n n n S S a =-. (1)求数列{}n a 的通项公式;(2)若()31log nn n b a =-,求数列{}n b 的前n 项和n T .考点六 绝对值求和【例6】.已知数列{}n a 的通项公式100n a n n=+,则122399100a a a a a a -+-+⋯+-= ( )A .150B .162C .180D .210【一隅三反】1.已知{}n a 是首项为32的等比数列,n S 是其前n 项和,且636564S S =,则数列{}2log n a 前10项和为( ) A .58 B .56C .50D .45答案解析 考点一 裂项相消【例1】若数列{}n a 的前n 项和n S 满足2n n S a n =+. (1)求证:数列{}1n a -是等比数列;(2)设()2log 1n n b a =-,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)详见解析(2)1n nT n =+ 【解析】证明:当1n =时,11121a S a ==+,计算得出11a =, 当1n >时,根据题意得,()1121n n S a n --=+-,所以()()111221221n n n n n n S S a n a n a a ----=+-+-=-+⎡⎤⎣⎦ ,即121n n a a -=-()1121n n a a -∴-=- ,即1121n n a a --=- ∴ 数列{}1n a -是首项为-2,公比为2的等比数列由(1)知,()11222n n n a --=-⋅=- 12n n a ∴=-()22log 1log 2n n n b a n ∴=-== ()1111111n n b b n n n n +∴==-++,1 则1111111...1311122⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪++⎝⎭⎭⎭+⎝⎝n n n n n n T 【一隅三反】1.设数列{}n a 满足:11a =,且112n n n a a a +-=+(2n ≥),3412a a +=. (1)求{}n a 的通项公式:(2)求数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)21n a n =-(*n N ∈)(2)113(21)(23)n n n +-++ 【解析】(1)由112n n n a a a +-=+(2n ≥)可知数列{}n a 是等差数列,设公差为d , 因为11a =,所以34112312a a a d a d +=+++=,解得2d =, 所以{}n a 的通项公式为:21n a n =-(*n N ∈);(2)由(1)知211111(21)(23)42123n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和: 1111111114537592123n S n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11111432123n n ⎛⎫=+-- ⎪++⎝⎭113(21)(23)n n n +=-++. 2.已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .【答案】(1)n a n =,(2)1n nS n =+ 【解析】(1)设等差数列{}n a 的公差为d (0d ≠), 因为11a =,且139,,a a a 成等比数列,所以2319a a a =,即2(12)1(18)d d +=⨯+,解得0d =(舍去)或1d =,所以n a n =,(2)由(1)可得11111(1)1n n a a n n n n +==-⋅++,所以111111+2231n n n S ⎛⎫⎛⎫⎛⎫=--+⋅⋅⋅+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭1111n n n =-=++考点二 错位相减【例2】.已知数列{}n a 满足1(1)n n n a na ++=,且11a = (1)求数列{}n a 的通项公式;(2)设2nn n b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =;(2)1*(1)22,()n n S n n N +=-⋅+∈.【解析】(1)11n n a n a n++= 2n ∴≥时,有32412312341231n n a a a a na a a a n -⨯⨯⨯⨯=⨯⨯⨯⨯-,即1n a n a =,故n a n =, 又1n =时也适合该式,n a n ∴=(2)因为2nn b n =, 所以1231222322n n S n =++++① 则234121222322n n S n +=++++②①-②得,123112(12)22222212n n n n n S n n ++--=++++-=--1*(1)22,()n n S n n N +∴=-⋅+∈.【一隅三反】1.已知数列{}n a 是公差0d ≠的等差数列,其前n 项和为n S ,满足42210S a -=,且1a ,2a ,5a 恰为等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式; (2)设nn na cb =,数列{}n c 的前n 项和为n T ,求证:3n T <. 【答案】(1)21n a n =-,13n n b -=;(2)见解析【解析】(1)由题意,422215210S a a a a -=⎧⎨=⋅⎩,得121252a d d a d +=⎧⎨=⎩,由0d ≠,得11a =,2d =.所以21n a n =-.由11b =,23b =,得公比3q =,所以13n n b -=.(2)因为1213n n n c --=,所以0121135213333nn n T --=++++① 得23111352321333333n n nn n T ---=+++⋯++② ①-②得21222221133333n n nn T --=++++- 12113321221213313n n nn n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-+⎢⎥⎣⎦=+-=--.所以3333n nn T +=-. 从而3n T <.2.设数列{}n a 、{}n b 都有无穷项,{}n a 的前n 项和为()21352n S n n =+,{}n b 是等比数列,34b =且632b =.(1)求{}n a 和{}n b 的通项公式; (2)记nn na cb =,求数列{}n c 的前n 项和为n T . 【答案】(1)31n a n =+;()1*,2n n b n N -=∈(2)137142n n -+-【解析】(1)当1n =时,1a =1S =4; 当2n ≥时,()22111353(1)5(1)22n n n a S S n n n n -⎡⎤=-=+--+-⎣⎦1[3(21)5]312n n =-+=+, 且14a =亦满足此关系,∴{}n a 的通项为()*31,n a n n N=+∈,设{}n b 的公比为q ,则3638b q b ==,则2q ,∴()31*32n n n b b qn N --=⋅=∈;(2)由题意,1312n n n n a n c b -+==, 而214710323112422n n n n n T ---+=+++⋯++, 27101331281242n n n T -+=++++, 两式相减,有21111318312422n n n n T --+⎛⎫=++++- ⎪⎝⎭, 2111313783214222n n n n n ---++⎛⎫=+--=- ⎪⎝⎭.3.已知数列{}n a 满足121n n a a +=-()n *∈N ,12a =.(1)求数列{}n a 的通项公式;(2)求数列{}n na 的前n 项和n S ()n *∈N .【答案】(1)121n n a -=+;(2)(1)(1)212nn n n S n +=-⋅++. 【解析】(1)∵121n n a a +=-,∴112(1)n n a a +-=-,而1110a -=≠, ∴数列{1}na -是等比数列,公比为1,首项为1,∴112n n a --=,∴121n n a -=+;(2)由(1)()11212n n n na n n n --=+=⋅+,21(111)(222)(323)(2)n n S n n -=⨯++⨯++⨯+++⋅+21(1122322)(123)n n n -=⨯+⨯+⨯++⋅+++++设21122322n n T n -=+⨯+⨯+⋅,则2312122232(1)22n n n T n n -=⨯+⨯+⨯++-⋅+⋅,两式相减得2112222212n n n n n T n n --=+++-⋅=--⋅,∴(1)21n n T n =-⋅+,∴(1)(1)212nn n n S n +=-⋅++.考点三 分组求和【例3】.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和.【答案】(1)213nn n a n b =+=,(2)()()33122n n n -++【解析】(1)由11a b =,42a b =,则()()421234122312S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=, 所以2d =,所以3(1)21n a n d n =+-=+ 设等比数列{}n b 的公比为q 由4219,3a b b ===,2139b b q q ∴===,解得3q =,所以113n nn b b q -==,(2)()213n n n a b n +=++,数列{}n n a b +的前n 项和()()22222n a a a b b b +++++++()()()()()231332135213332213nnn n n nn -++=++++++++=+=+-()3312n -+【一隅三反】1.已知数列{}n c 的前n 项和122n n T +=-,在各项均不相等的等差数列{}n b 中,11b =,且1b ,2b ,5b 成等比数列,(1)求数列{}n b 、{}n c 的通项公式;(2)设22log n bn n a c =+,求数列{}n a 的前n 项和n S .【答案】(1)()1121n b b n d n =+-=-,2nn c =;(2)n S 2122232n n n+-+=+. 【解析】(1)设数列{}n b 的公差为d ,则21b b d =+,514b b d =+,∵1b ,2b ,5b 成等比数列,∴2215b b b =,即()()21114b d b b d +=+.整理得212d b d =,解得0d =(舍去)或122d b ==,∴()1121n b b n d n =+-=-. 当1n =时,12c =,当2n ≥时,()1112222222222n n n n n n n n n n c T T ++-=-=---=-=⨯-=.验证:当1n =时,12c =满足上式,∴数列{}n c 的通项公式为2nn c =.(2)由(1)得,2122log 2n bn n n a c n -=+=+, ∴()()()()35212122232n n S n -=++++++++ ()()35212222123n n -=+++++++++()()21221412214232n n n n n n +-+-+=+=+-.2.已知在等比数列{}n a 中,11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*2n n b n a n N =+∈,求{}nb 的前n 项和nS.【答案】(1)12n na ;(2)221nn S n n =++-.【解析】(1)设等比数列{}n a 的公比为q ,则0q ≠,则21a a q q ==,2231a a q q ==,由于2a 是1a 和31a -的等差中项,即21321a a a =+-,即22q q =,解得2q .因此,数列{}n a 的通项公式为1111122n n n n a a q ---==⨯=; (2)1222n n n b n a n -=+=+,()()()()012112322426222n n n S b b b b n -∴=++++=++++++++()212(22)12(2462)122221212n n n n n n n n -+-=+++++++++=+=++--.3.已知等比数列{}n a 的各项均为正数,22a =,3412a a +=. (1)求数列{}n a 的通项公式;(2)设2log n n n b a a =+,求数列{}n b 的前n 项和n S . 【答案】(1)12n na (2)(1)212n n n n S -=-+【解析】(1)设公比为q由题意可知12311212a q a q a q =⎧⎨+=⎩,整理得260q q +-=,解得3q =-(舍),2q ,即11a =则11122n n n a --=⋅=(2)11122log 221n n n n b n ---=+=+-12(1)(1)211222n n n n n n n S ---∴=+=-+-考点四 倒序相加【例4】.已知函数()cos lnxf x x xππ=+-,若22018201920192019f f f πππ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()1009ln 0,0)a b a b π+>>(,则11a b +的最小值为( ) A .2 B .4 C .6 D .8【答案】A 【解析】由题可知:()()()()2cos lncos ln ln 2ln x xf x f x x x x xππππππππ-+-=++-+==- 令22018201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++⎪ ⎪⎪⎝⎭⎝⎭⎝⎭又20182017201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭于是有22ln 2ln 2ln 22018ln S ππππ=++⋅⋅⋅+=⨯ 2018ln S π⇒= 因此2a b += 所以()()11111112222222a b a b a b a b b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当1a b ==时取等号 本题正确选项:A【一隅三反】 1.设函数()221xf x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .112【答案】B 【解析】()221x f x =+,()()()22222212121221x x x x x x f x f x --⋅∴+-=+=+++++()2122222211221xx x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B.2.已知函数()sin 3f x x x π=+-,则12340332017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为( )A .4033B .-4033C .8066D .-8066【答案】D【解析】()()()2sin 32sin 234f x f x x x x x πππ+-=+-+-+--=-,所以原式()4033480662=-⋅=-. 3.已知函数()442x x f x =+,设2019n n a f ⎛⎫= ⎪⎝⎭(n *∈N ),则数列{}n a 的前2019项和2019S 的值为( )A .30293B .30323C .60563D .60593【答案】A【解析】因为()442xx f x =+,所以()114214242x x xf x ---==++ 所以()()21414242xx x f x f x +=-+=++因为2019n n a f ⎛⎫=⎪⎝⎭所以2019n n a f ⎛⎫=⎪⎝⎭,20192019120192019n n n f f a --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭所以20191n n a a -+=则数列{}n a 的前2018项和2018S 则1220182018a a S a =+++ 2018212018017S a a a =+++所以201820182S = 所以20181009S = 又()91201120119422019423a f f ⎛⎫==== ⎪+⎝⎭20192018201923029100933S S a ∴=+=+= 故选:A考点五 奇偶并项【例5】.设*N n ∈,数列{}n a 的前n 项和为n S ,已知12n n n S S a +=++,______.请在①1a ,2a ,5a 成等比数列,②69a =,③535S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式; (2)若数列{}n b满足()11na nn n b a +=+-,求数列{}n b 的前2n 项的和2n T .【答案】(1)答案见解析;(2)答案见解析.【解析】选①,(1)由12n n n S S a +=++得:()*12N n n a a n +-=∈,∴数列{}n a 是以1a 为首项,2为公差的等差数列.由1a ,2a ,5a 成等比数列得()()211128a a a +=+,解得11a =. ∴()*21N n a n n =-∈.(2)()()()112121na nnn n n b a n +=+-=+--,()()()22122211357 (434122221)n n n T n n n+-=+-+-+---+-=-+⎡⎤⎣⎦-. 选②,(1)由12n n n S S a +=++得()*12N n n a a n +-=∈,∴数列{}n a 是以1a 为首项,2为公差的等差数列. 由69a =得1529a +⨯=,解得11a =-, ∴()*23N n a n n =-∈.(2)()()()1112123na nnn n n b a n +-=+-=+--,∴()()22211135 (454321)n n T n n -=++-+---+-⎡⎤⎣⎦- 2212412n n n n =-+=-+.选③,(1)同理,由12n n n S S a +=++得()*12N n n a a n +-=∈,∴数列{}n a 是以1a 为首项,2为公差的等差数列, 由535S =得151035a d +=,解得13a =, ∴()*21N n a n n =+∈. (2)()()()1112121na n nn n n b a n ++=+-=+-+,∴()()()2222213579 (414121)n nTn n -=+-+-+---++⎡⎤⎣⎦- 221242442n n n n ++=-+=-+.【一隅三反】.1.设n S 是数列{}n a 的前n 项和,已知11a =,122n n S a +=- ⑴求数列{}n a 的通项公式;⑵设()121log nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)112n n a -=(2)1,2,2n nn T n n 为奇数为偶数-⎧⎪⎪=⎨⎪⎪⎩【解析】(1)因为122n n S a +=-,所以当2n ≥时,122n n S a -=- 两式相减得122n n n a a a +=-+, 所以112n n a a += 当1n =时,1222S a =-,11a =,则212a = 所以数列{}n a 为首项为1,公比为12的等比数列, 故112n n a -= (2)由(1)可得()()()121log 11nnn n b a n =-=--所以()()012311nn T n =+-+-⋅⋅⋅+--故当n 为奇数时,()()()101234212n nT n n -=+-+-+⋅⋅⋅+-+-=当n 为偶数时,()()()()012345212n n T n n =++-++-+++-+-=综上1,2,2n nn T n n 为奇数为偶数-⎧⎪⎪=⎨⎪⎪⎩2.已知数列{}n a 的前n 项和为,239n n n S S a =-.(1)求数列{}n a 的通项公式;(2)若()31log nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)13n n a +=;(2),23,2n nn T n n ⎧⎪⎪=⎨+⎪-⎪⎩为偶数为奇数【解析】(1)当1n =时,11239S a =-. 因为11S a =,所以11239a a =-,所以19a =. 因为239n n S a =-,所以11239n n S a ++=-. 两式相减,得11233n n n a a a ++=-,即13n n a a += 又因为19a =,所以0n a >.所以数列{}n a 是以9为首项,3为公比的等比数列. 所以11933n n n a -+=⨯=.(2)由(1)可知()()()31log 11nnn n b a n =-=-+故当n 为偶数时,()()()234512n nT n n ⎡⎤=-++-++⋯+-++=⎣⎦ 当n 为奇数时,()()()()()123451112n n T n n n n -⎡⎤=-++-++⋯+--+-+=-+⎣⎦ 32n +=-所以,23,2n nn T n n 为偶数为奇数⎧⎪⎪=⎨+⎪-⎪⎩考点六 绝对值求和【例6】.已知数列{}n a 的通项公式100n a n n=+,则122399100a a a a a a -+-+⋯+-= ( )A .150B .162C .180D .210【答案】B【解析】由对勾函数的性质可知:当10n ≤时,数列{}n a 为递减;当10n ≥时,数列{}n a 为递增. 所以122310099a a a a a a -+-++-=12239101110121110099()()()()()()a a a a a a a a a a a a -+-++-+-+-++-=11010010a a a a -+-=1100(1010)(1001)(1010)+-+++-+ =162 【一隅三反】1.已知{}n a 是首项为32的等比数列,n S 是其前n 项和,且636564S S =,则数列{}2log n a 前10项和为( ) A .58 B .56C .50D .45【答案】A【解析】{}n a 是首项为32的等比数列,n S 是其前n 项和,且636564S S =,所以公比不为1, ()()63321651643211q qqq --∴=--, 365164q ∴+=, 14q ∴=, 172132()24n n n a --∴=⋅=,2log 72n a n ∴=-,∴数列{}2log n a 前10项和为53113579111358+++++++++=,故选:A《数列求和的方法》专题训练【题组一 裂项相消】 1.数列{}n a的通项公式n a =n 项的和为11,则n=________.2.已知数列{}n a ,{}n b 都是等差数列,313a b ==,15715a b ==,设11(1)n nn n n b c a a -+=-,则数列{}n c 的前2018项和为( ) A .20172018- B .20172018C .20182019-D .201820193.已知等差数列{}n a 中,13212a a +=,12421a a a +=+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n S ,证明:121112123n S S S n +++<+++.4.已知公差不为0的等差数列{}n a 中22a =,且2a ,4a ,8a 成等比数列. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,求使1415n S <的n 的最大值.5.设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.6.已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项 (1)求数列{a n }通项公式;(2)求数列{()()1111n n n a a a ++++}的前n 项和T n .7.已知数列{}n a 的前n 项和为n S ,且2347n n S a n =+-. (1)证明:数列{}2n a -为等比数列; (2)若()()1211n n n n a b a a +-=--,求数列{}n b的前n 项和n T .8.记n S 是正项数列{}n a 的前n 项和,1n a +是4和n S 的等比中项. (1)求数列{}n a 的通项公式; (2)记11(1)(1)n n n b a a +=++,求数列{}n b 的前n 项和n T .9.数列{}n a 满足121nn n a a a +=+,11a =.(1)证明:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S ,并证明:121111n n S S S n ++⋯+>+.10.设n S 为首项不为零等差数列{}n a 的前n 项和,已知4593a a a =,520S =. (1)求数列{}n a 的通项公式; (2)设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求1n n T a +的最大值.【题组二 错位相减】1.在数列{a n }中,a 1=1,a n +1=2a n +2n. (1)设b n =12nn a -.证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和.2.设等差数列{}n a 的前n 项和为n S ,且424S S =,2121a a =+. (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足()214n n na b -=, 求数列{}n b 的前n 项和n R .3.设等差数列{}n a 的公差为d ,前n 项和为n S ,且满足2d =-,476S =.等比数列{}n b 满足1310b b +=,2420b b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)设(23)n n n c a b =-,求数列{}n c 的前n 项和n T .4.已知等比数列{}n a 中,12a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)记2log =n n n b a a ,求数列{}n b 的前n 项和n T .5.设数列{}n a 的前n 项和为n S ,24a =,且对任意正整数n ,点()1,n n a S +都在直线320x y ++=上.(1)求{}n a 的通项公式;(2)若n n b na =,求{}n b 的前n 项和n T .6.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.7.已知等比数列{}n a 的前n 项和是n S ,且122,1=+S a 是1a 与3a 的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()22log =+⋅n n n b S a ,求数列{}n b 的前n 项和n T .8.数列{}n a 的前n 项和为n S 满足13122n n S a a =-,且15a -,35a +,415a -成等差数列.(1)求数列{}n a 的通项公式; (2)设3n 4log 1nn a b a -=,求数列{}n b 的前n 和n T .【题组三 分组求和】1.已知数列{}n a 满足13a =-,且()*124n n a a n +=+∈N .(1)证明:{}4n a +是等比数列; (2)求{}n a 的前n 项和n S .2.已知数列{}n a 是公差不为0的等差数列,首项11a =,且124,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足2n an n b a =+,求数列{}n b 的前n 项和n T3.已知数列{}n a 是公差不为零的等差数列,11a =且139,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)若42n an n b a =+数列{}n b 的前n 项和n S ..【题组四 倒序相加】1.设4()42xx f x =+,1231011111111f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .4B .5C .6D .10.2. 121()(1)2,(0)()()...()(1)n n f x f x a f f f f f n n n-+-==+++++(*n N ∈),则数列{}n a 的通项公式是___________.3.设()f x =,利用课本中推导等差数列前n 项和的公式的方法,可求得12019f ⎛⎫⎪⎝⎭22019f ⎛⎫+ ⎪⎝⎭2017201820192019f f ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭_________.4. ()221xf x x =-,利用课本中推导等差数列前n 项和的公式的方法,可求得122020202120212021f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.5.设4()42x x f x =+,则12320162017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭__________.【题组五 奇偶并项】1.已知数列{}n a 为等比数列, 24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log (1)nn n b a n =+-⋅,求数列{}n b 的前n 项和n T .2.已知数列{}n a 的前n 项和n S 满足252n n nS +=,*n N ∈.(1)求数列{}n a 的通项公式;(2)设()21n nan n b a =+-,*n N ∈,求数列{}n b 的前2n 项和2n T .3.已知等比数列{}n a 的前n 项和为n S ,22743a a a =,且3-,4S ,39a 成等差数列.(1)求数列{}n a 的通项公式; (2)设()()111nn n b a n n =-++,求数列{}n b 的前n 项和n T .4.在数列{}n a 中,已知12a =,2211440n n n n a a a a ++-+=,121n n n n T a a a +-=+++.(1)求数列{}n T 的通项公式;(2)令()22(1)log 4nnn n b n T =-⋅+-,求数列{}n b 的前50项和50S .5.已知n S 为数列{}n a 的前n 项和,且12a <,0n a >,2632n n n S a a =++,*n N ∈.(1)求数列{}n a 的通项公式;(2)若对*n N ∀∈,()21nn n b a =-,求数列{}n b 的前2n 项和2n T .【题组六 绝对值求和】1.已知数列{}n a 的前n 项和为214n S n n =-.(1)求数列{}n a 的通项公式; (2) 求数列{}n a 的前n 项和n T .2.记数列{}n a 的前n 项和为S ,已知221n n S a n =-+. (1)求数列{}n a 的通项公式;(2)记224(1)log (4),33nn n b a ⎡⎤=-⋅+-⎢⎥⎣⎦数列n b 的前n 项和为n T ,求n T3.设数列{}n a 前n 项和为S ,且满足()*1111,3232n n a S a n N +==-∈. (1)证明{}n a 为等比数列,并求数列{}n a 的通项公式;(2)在(1)的条件下,设2log n n b a =,求数列{}n b 的前n 项和n T .4.已知数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 为等差数列113b a =,452b a =-.(1)求{}n a ,{}n b 的通项公式;(2)记n n n c a b =-,求数列{}n c 的前n 项和n T . 答案解析【题组一 裂项相消】 1.数列{}n a的通项公式n a =n 项的和为11,则n=________.【答案】143.【解析】因为n a =n a =所以+11n S n+1=11143n ∴=,2.已知数列{}n a ,{}n b 都是等差数列,313a b ==,15715a b ==,设11(1)n nn n n b c a a -+=-,则数列{}n c 的前2018项和为( )A .20172018-B .20172018C .20182019-D .20182019【答案】D【解析】设数列{}n a ,{}n b 的公差分别为a d ,b d , 则由已知得1531212a a a d -==,71612b b b d -==,所以1a d =,2b d =,所以3(3)n a a a n d n =+-=,1(1)21n b b b n d n =+-=+, 所以121(1)(1)n n n c n n -+=-=+111(1)1n n n -⎛⎫-+ ⎪+⎝⎭,所以数列{}n c 的前2018项和为201812201811111223S c c c ⎛⎫⎛⎫=+++=+-++ ⎪ ⎪⎝⎭⎝⎭…11113445⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭1120172018⎛⎫+++- ⎪⎝⎭ (1111201820182019120192019)⎛⎫+=-= ⎪⎝⎭,故选D. 3.已知等差数列{}n a 中,13212a a +=,12421a a a +=+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n S ,证明:121112123n S S S n +++<+++. 【答案】(1)31n a n =-;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d , 由题意得()()111112212231a a d a a d a d ⎧++=⎪⎨++=++⎪⎩,解得12a =,3d =,故数列{}n a 的通项公式为()23131n a n n =+-=-.(2)由(1)知()2313222n n n n nS n -+=+=,所以()231322n n n n nS n n +++=+=, 所以()122113131n S n n n n n ⎛⎫==- ⎪+++⎝⎭,所以1211121111111232231n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦2121313n ⎛⎫=-< ⎪+⎝⎭. 4.已知公差不为0的等差数列{}n a 中22a =,且2a ,4a ,8a 成等比数列. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,求使1415n S <的n 的最大值. 【答案】(1)n a n =;(2)13.【解析】(1)因为2a ,4a ,8a 成等比数列,所以2428a a a =⋅,因为数列{}n a 是等差数列,且22a =,所以224282a a a a =⎧⎨=⋅⎩,即()()1311123()7a d a d a d a d +=⎧⎪⎨+=++⎪⎩,解得111a d =⎧⎨=⎩或120a d =⎧⎨=⎩(舍去) 所以n a n =(2)因为n a n =,11n n n b a a +=, 所以11111n n n b a a n n +==-+,所以11411115n n S n n =-=<++,解得14n <, 所以当1415n S <时,n 的最大值为13. 5.设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【答案】(1) 221n a n =-;(2)221n n +. 【解析】(1)数列{}n a 满足()123212=n a a n a n ++⋯+-2n ≥时,()()12132321n a a n a n ++⋯+--﹣= ∴()212n n a -= ∴221n a n =- 当1n =时,12a =,上式也成立 ∴221n a n =- (2)21121(21)(21)2121n a n n n n n ==-+-+-+ ∴数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和1111113352121n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1212121nn n =-=++ 6.已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项 (1)求数列{a n }通项公式;(2)求数列{()()1111n n n a a a ++++}的前n 项和T n .【答案】(1)12n na ;(2)n T 2121n n -=+.【解析】(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=,因为1q >,所以2q .所以12n na(2)记()()()()1112112121nn n n n n n a b a a +-+==++++则()()1112211221212121n n n n n nb ---⋅==-++++() 所以 01122311111111122121212121212121n n n T -⎛⎫=-+-+-++-⎪++++++++⎝⎭1121222121n n n-⎛⎫=-= ⎪++⎝⎭。

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。

解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。

)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。

经典的数列通项公式与数列求和练习题(有答案)

经典的数列通项公式与数列求和练习题(有答案)

经典的数列通项公式与数列求和练习题(有答案)一、斐波那契数列斐波那契数列是最经典的数列之一,它的通项公式为:$$F(n) = F(n-1) + F(n-2)$$其中 $F(1) = 1$,$F(2) = 1$。

以下是一些关于斐波那契数列的练题:练题1:求斐波那契数列的第10项。

解答:根据通项公式进行递归计算,得出第10项为34。

练题2:求斐波那契数列的前20项的和。

解答:利用循环计算斐波那契数列的前20项,并将每项相加得到总和为6765。

二、等差数列等差数列是一种常见的数列类型,它的通项公式为:$$a_n = a_1 + (n - 1) \cdot d$$其中 $a_1$ 是首项,$d$ 是公差。

以下是一些关于等差数列的练题:练题1:已知等差数列的首项 $a_1 = 3$,公差 $d = 5$,求该数列的前10项。

解答:根据通项公式,将$a_1$ 和$d$ 代入,依次计算出前10项为:3, 8, 13, 18, 23, 28, 33, 38, 43, 48。

练题2:已知等差数列的首项 $a_1 = 2$,公差 $d = -4$,求该数列的前15项的和。

解答:根据通项公式和等差数列前n项和的公式,将 $a_1$、$d$ 和$n$ 代入,计算出前15项的和为:-420。

三、等比数列等比数列是另一种常见的数列类型,它的通项公式为:$$a_n = a_1 \cdot q^{(n-1)}$$其中 $a_1$ 是首项,$q$ 是公比。

以下是一些关于等比数列的练题:练题1:已知等比数列的首项 $a_1 = 2$,公比 $q = 3$,求该数列的前8项。

解答:根据通项公式,将 $a_1$ 和 $q$ 代入,依次计算出前8项为:2, 6, 18, 54, 162, 486, 1458, 4374。

练题2:已知等比数列的首项 $a_1 = 5$,公比 $q = \frac{1}{4}$,求该数列的前12项的和。

解答:根据通项公式和等比数列前n项和的公式,将 $a_1$、$q$ 和$n$ 代入,计算出前12项的和为 $\frac{5}{1 - \frac{1}{4}} =\frac{20}{3}$。

(完整版)数列求通项专题(总复习专题,方法全面,有答案)

(完整版)数列求通项专题(总复习专题,方法全面,有答案)

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。

解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。

)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。

2023届高考数学一轮复习考点训练——求数列的通项公式

2023届高考数学一轮复习考点训练——求数列的通项公式

2023考点专题复习——数列的通项公式考法一:累加法——适用于)(1n f a a n n +=+()(n f 可以求和)例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

例2、已知数列}{n a 中, 0>n a 且)(21nn n a na S +=,求数列}{n a 的通项公式.例3、已知数列{}n a 满足112313n n n a a a ,,求数列{}n a 的通项公式。

练习1、已知数列{}n a 的首项为1,且*12()n n a a n nN 写出数列{}n a 的通项公式.练习2、已知数列}{n a 满足13a ,11(2)(1)n n a a n n n -=+≥-求此数列的通项公式.练习3、已知数列{}n a 满足11211nn a a n a ,,求数列{}n a 的通项公式。

练习4、已知在数列{}n a 中,13a =,112(2)n n n a a n --=+. (1)求数列{}n a 的通项公式; (2)设21log (1)n n b a +=-,求11{}n n b b +的前n 项和n T .练习5、在数列{}n a 中,12a =,122n n n a a +=++. (1)求数列{2}n n a -的通项公式;(2)设数列{}n b 满足2(22)n n b a n =+-,求{}n b 的前n 项和n S .练习6、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

练习7、已知数列{}n a 满足11a =,1n n n a a +-=,则数列{}n a 的通项公式练习8、在数列{}n a 中,12a =,11ln 11n n a a n n n +⎛⎫⎪⎝+++⎭=,则数列{}n a 的通项公式练习9、已知数列{a n }满足11a =-,111+1n n a a n n +=-+,n ∈N *,求数列的通项公式a n .练习10、设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式练习11、已知数列{}n a 满足112a =,121n n a a n n+=++,则数列{}n a 的通项公式考法二:累乘法例1、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。

数列求和和求通项方法总结(定版)(最新整理)

数列求和和求通项方法总结(定版)(最新整理)

等差等比数列、数列求和、求通项一、单选题1.已知等差数列的前项为,且,,则使得取最小值时的为{}n a n n S 1514a a +=-927S =-n S n ( ).A .1B .6C .7D .6或72.已知等比数列满足,,则( ){}n a 114a =()35441a a a =-2a =A .B .C .D .2112183.设等差数列的前项和为,若,,则的值为( ){}n a n n S 11m a =21121m S -=m A. B. C. D.34564.设等差数列的前项和为,若公差,,则的值为( ){}n a n n S 3d =68a =10S A.65B.62C.59D.565.等比数列中,若,是方程的两根,则的值为( ).{}n a 1a 10a 220x x --=47a a ⋅A.2B. C. D.12-1-6.已知等差数列的前项和为,且,,则( ){}n a n n S 452a =1015S =7a =A.B.1C.D.212327.公比为的等比数列中,,,则( )q {}n a 134a a ⋅=48a =1a q +=A. B.3或2C. D.3或-3328.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .649.在各项均为正数的等比数列中,若,则的值为(){}n a 569a a =3132310log log log a a a ++⋅⋅⋅+A.12 B.10 C.8D.32log 5+10.已知数列满足,且,那么( ){}n a 12n n a a +=+12a =5a =A.8B.9C.10D.1111.已知等差数列中,,,则的值是( ){}n a 7916+=a a 41a =12a A .15B .30C .31D .6412.在等比数列中,,,则( ){}n a 212a =68a =4a =A.B.C.D.424±2±13.设等比数列的前项和为,若,则( ){}n a n n S 4813S S =816S S =A.B.C.D.19141521514.在等差数列中,,则等于(){}n a 372a a +=9S A.2B.18C.4D.915.在等比数列中,,,,则等于(){}n a 11a =2q =16n a =n A. B. C. D.345616.已知等差数列中,若,,则( ){}n a 21a =-45a =-5S =A. B. C. D.7-13-15-17-17.已知等比数列满足,且,则当时,{}n a 0,1,2,n a n >= 25252(3)nn a a n -⋅=≥1n ≥( )2123221log log log n a a a -+++= A .B .C .D .(21)n n -2(1)n +2n 2(1)n -18.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,73812则塔的顶层共有灯( )A .盏B .盏C .盏D .盏123419.等差数列的公差是2,若成等比数列,则的前项和( ){a n }a 2,a 4,a 8{a n }n S n =A .B .C .D .n(n +1)n(n−1)n(n +1)2n(n−1)220.等差数列的前项和为,若,,则等于( ){}n a n n S 24S =410S =6S A. B. C. D.1218244221.已知等比数列中,,,则( ){}n a 2341a a a =67864a a a =456a a a =A. B.-8C.8D.168±22.一个等比数列的前项和为48,前项和为60,则前项和为( ){}n a n 2n 3n A.63B.108C.75D.8323.等差数列{a n }中,若a 2+a 4+a 9+a 11=32,则a 6+a 7= ( )A .9B .12C .15D .16二、填空题24.2与4的等比中项为_________.25.已知是等差数列,是其前项和,若,则的值是_____________.{}n a n S n 75230a a --=17S26.等差数列,的前项和分别为,,且,则______.{}n a {}n b n n S n T 313n n S n T n +=+220715a ab b +=+27.设是公差不为0的等差数列的前项和,且,则______.n S {}n a n 712a a =-1197S S a =+28.在各项均为正数的等比数列中,若,则的值为{}n a 10091011 3a a =333122019111log log log a a a +++ ____________.29.在等差数列中,已知,则______.{}n a 4816a a +=11S =数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和例题.在等差数列中,已知,.{}n a 15a =59113a a =(1)求数列的前项和的最大值;{}n a n n S (2)若,求数列前项和.n n b a ={}nb n nT练习.已知等差数列的前项和为,且,.{}n a n n S 35a =-424S =-(1)求数列的通项公式;{}n a (2)求数列的前项和的最小值.{}n a n n S 作业.已知数列是公差不为0的等差数列,首项,且成等比数列.{}n a 11a =124,,a a a(1)求数列的通项公式.{}n a (2)设数列满足求数列的前项和为.{}n b 2n an b =,{}n b n n T 2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法例:已知数列,求前项和1312--=n n n a n nS 练习.已知的前n 项和,{}n a 243n S n n =-+(1)求数列的通项公式;{}n a (2)求数列的前n 项和.162n n a +-⎧⎫⎨⎬⎩⎭n T 作业1.设数列满足:,.{}n a 212321111 (333)n n a a a a n -++++=n ∈+N ⑴求;n a ⑵求数列的前项和.{}n a n n S2.设数列是公差为2的等差数列,数列满足,,.{}n a {}n b 11b =22b =()11n n n n a b b n b ++=+(1)求数列、的通项公式; {}n a {}n b (2)求数列的前项和;{}n n a b n n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如,可裂项成,列出前项求和消去一些项)(1k n n a n +=)11(1kn n k a n +-=n ②形如,可裂项成,列出前项求和消去一些项kn n a n ++=1)(1n k n ka n -+=n 例:已知数列,求前项和1)2()1)(1(11=≥+-=a n n n a n ,n nS练习1.等比数列的各项均为正数,,,成等差数列,且满足.{}n a 52a 4a 64a 2434a a =Ⅰ求数列的通项公式;(){}n a Ⅱ设,,求数列的前n 项和.()()()1111n n n n a b a a ++=--*n N ∈{}n b n S 练习2.已知数列满足,且,等比数列中,.{}n a 0n a ≠1133n n n n a a a a ++-={}n b 2146,3,9b a b b ===(1)证明:数列为等差数列,并求数列的通项公式1n a ⎧⎫⎨⎬⎩⎭{}n a (2)求数列的前n 项和.{}1n n a a +n S作业1.在等差数列中,为其前项和,且{}n a n S n *()n N ∈335,9.a S ==(1)求数列的通项公式;{}n a (2)设,求数列的前项和。

高三数列专题练习30道带答案复习课程

高三数列专题练习30道带答案复习课程

高三数列专题练习30道带答案高三数列专题训练二学校:___________姓名:___________班级:___________考号:___________一、解答题1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,记292n nb S =,求数列{}n b 的前n 项和n T .2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .3.设等比数列{}n a 的前n 项和为n S ,218a =,且1116S +,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式;(2)设n n n c a b =⋅,若对任意*n N ∈,不等式121212n n c c c S λ+++≥+-…恒成立,求λ的取值范围.4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =,24b a =,313b a =.(Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列{1nS }的前n 项和为n T ,求n T . 5.设数列(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T . 6.已知差数列等{}n a 的前n 项和n S ,且对于任意的正整数n满足1n a =+.(1)求数列{}n a的通项公式;(2)设11n n n b a a +=, 求数列{}n b 的前n 项和n B .7.对于数列}{n a 、}{n b ,n S 为数列}{n a 的前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,231+=+n n b b ,*∈N n .(1)求数列}{n a 、}{n b 的通项公式; (2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .8.已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++. (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的首项11a =,前n 项和为nS ,且1210n n S S n +---=(*n ∈N ).(Ⅰ) 求证:数列{1}n a +为等比数列; (Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T .10.已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =.(Ⅱ)设3log n n b a =,且n S 为数列{}n b 的前n 项和,求数列12{}nnS S +的前n 项和n T .11.已知数列{}n a 的前n 项和为n S ,2121,2n n n a S a a ==+. (1)求数列{}n a的通项公式;(2)若2n a n b =,求13521...n b b b b +++++.12.设公差不为0的等差数列{}n a 的首项为1,且2514,,a a a 构成等比数列. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈,求{}n b 的前n 项和n T .13.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。

数列的求和与通项专题训练

数列的求和与通项专题训练

1. 数列的求和学案一、分组法求和:若:n n n c b a +=,且数列{}n b 、{}n c 的前n 项和可以求出,则分组求和. 例1:已知等差数列{}n a 的首项为1,前10项的和为145,求.242n a a a +++例2:求数列1,3+13,32+132,…,3n +13n 的各项的和.例3:求和:()()()1222221221211-+++++++++++n ; 221--+n n二、错位相减法求和:(公差不为0的等差数列与公比不为1的等比数列的积的形式)若:()[]1111-⋅-+=n nq c d n b a ,则:()n n n n qa c c c d a qS S -++++=- 321,可以求和.(注意:用前式第k 项减后式的第1-k项——错位相减!) 例4:1.n n n S 333323132⨯++⨯+⨯+⨯= ;例5:设a 为常数,求数列a ,2a 2,3a 3,…,na n ,… 的前n 项和例6:已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈⋅=,求数列{}n b 的前n 项和n S .三、裂项法求和:若:1+-=n n n b b a (裂项),则:11+-=n n b b S (相消). 提示:111)1(1+-=+n n n n ;)211(21)2(1+-=+n n n n ;)11(1)(1d n n d d n n +-=+. 例7:求:nn ⋅-+⋅+⋅)1(1321211.例8:求:)(,32114321132112111*N n n∈+++++++++++++++ .例9:已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑=+ni i i a a 111.2. 数列的求和练习1.)21(813412211n n +++++ = ; 2.数列{}n a 中,3,6011+=-=+n n a a a ,求这个数列前30项的绝对值之和;3.已知数列{}n a 的前n 项和),,2,1]()21)(1(2[])21(2[11=+---=--n n b a S n n n 其中a 、b是非零常数,则存在数列{}n x 、{}n y 使得( ) A .n n n y x a +=,其中{}n x 为等差数列,{}n y 为等比数列 B .n n n y x a +=,其中{}n x 和{}n y 都为等差数列C .n n n y x a ⋅=,其中{}n x 为等差数列,{}n y 都为等比数列D .n n n y x a ⋅=,其中{}n x 和{}n y 都为等比数列 4.n n n S 223222132++++= .5.设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S . ⑴求{}n a 的通项;⑵求{}n nS 的前n 项和n T . 6、求:)12)(12(1531311+-++⋅+⋅n n = . 7、求:)2(1531421311+++⋅+⋅+⋅n n = .13、求数列的通项公式学案一、)(1n f a a n n +=+型.解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解. 例1:数列{}n a 中,11a =,121,(2)n n a a n n -=+-≥,其通项公式n a =.二、n n a n f a )(1=+型. 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解. 例3:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a .三、q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )型. 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. 例4:==+11,1n a a 121+n a )(*N n ∈.四、递推公式为n S 与n a 的关系式.(或()n n S f a =). 解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解.例5:数列{}n a 的前n 项和为23n n S a =+,则{}n a 是( )A .等比数列B .等差数列C .从第2项起是等比数列D .从第2项起是等差数列五、)()()(1n h a n g a n f a n nn +=+型.解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1. 例6:数列{}n a 中,11a =,12,()2nn n a a n N a ++=∈+,则5a =( ) A .25 B . 13 C . 23 D . 1214、求数列的通项公式练习1.数列{}n a 中,21=a ,n a a n n 21+=-,()1>n ,求其通项公式n a .2.(08年理江西卷5)在数列{}n a 中,21=a ,⎪⎭⎫⎝⎛++=+n a a n n 11ln 1,则=n a A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 3.设数列{}n a 是首项为1的正项数列,且)(0)1(1221N n a a na a n n n n n ∈=+-+++,则它的通项公式是=n a .4.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .5. 已知正项数列{}n a ,其前n 项和n S 满足65102++=n n n a a S 且1a ,3a ,15a 成等比数列,求数列{}n a 的通项n a6.已知数列{}n a 满足:1,13111=+⋅=--a a a a n n n ,求数列{}n a 的通项公式.7.数列{}n a 的前n 项和1+=n n a S ,()+∈N n ,21=a ,求n a 和n S .。

数列的通项公式及数列求和大题综合(学生卷)十年(2015-2024)高考真题数学分项汇编(全国通用)

数列的通项公式及数列求和大题综合(学生卷)十年(2015-2024)高考真题数学分项汇编(全国通用)

专题20数列的通项公式及数列求和大题综合考点十年考情(2015-2024)命题趋势考点1等差数列的通项公式及前n项和(10年5考)2023·全国乙卷、2023·全国新Ⅰ卷、2021·全国新Ⅱ卷、2019·全国卷、2018·全国卷、2016·全国卷1.掌握数列的有关概念和表示方法,能利用与的关系以及递推关系求数列的通项公式,理解数列是一种特殊的函数,能利用数列的周期性、单调性解决简单的问题该内容是新高考卷的必考内容,常考查利用与关系求通项或项及通项公式构造的相关应用,需综合复习2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,能在具体的问题情境中识别数列的等差关系并能用等差数列的有关知识解决相应的问题,熟练掌握等差数列通项公式与前n项和的性质,该内容是新高考卷的必考内容,一般给出数列为等差数列,或通过构造为等差数列,求通项公式及前n项和,需综合复习3.掌握等比数列的通项公式与前n项和公式,能在具体的问题情境中识别数列的等比关系并能用等比数列的有关知识解决相应的问题,考点2等比数列的通项公式及前n项和(10年4考)2020·全国卷、2019·全国卷2018·全国卷、2017·全国卷考点3等差等比综合(10年6考)2022·全国新Ⅱ卷、2020·全国卷、2019·北京卷2017·北京卷、2017·全国卷、2016·北京卷2015·天津卷考点4数列通项公式的构造(10年9考)2024·全国甲卷、2024·全国甲卷、2023·全国甲卷2022·全国甲卷、2022·全国新Ⅰ卷、2021·天津卷2021·浙江卷、2021·全国乙卷、2021·全国卷2020·全国卷、2019·全国卷、2018·全国卷2016·山东卷、2016·天津卷、2016·天津卷2016·全国卷、2016·全国卷、2016·全国卷2015·重庆卷、2015·全国卷考点5数列求和(10年10考)2024·天津卷、2024·全国甲卷、2024·全国甲卷2023·全国甲卷、2023·全国新Ⅱ卷、2022·天津卷2020·天津卷、2020·全国卷、2020·全国卷2019·天津卷、2019·天津卷、2018·天津卷2017·天津卷、2017·山东卷、2016·浙江卷2016·山东卷、2016·天津卷、2016·北京卷2015·浙江卷、2015·全国卷、2015·天津卷熟练掌握等比数列通项公式与前n 项和的性质,该内容是新高考卷的必考内容,一般给出数列为等比数列,或通过构造为等比数列,求通项公式及前n 项和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六、数列(二)
1.求数列的通项公式关键是找出数列的递推式。

根据数列的递推式的不同,数列通项公式的求解主要有14种题型。

2.数列求和的常用方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)倒序相加法;(5)分组求和法;(6)周期法。

例1.如图,在杨辉三角中,斜线上方的数组成数列:1,3,6,10,…,记这个数列的前n 项和为S n ,则
=∞
→n
n S n 3
lim
__________
例2.已知数列{n a }中,1a =1,n≥2时,32
3
83131--=--n n n a a , 则{n a }的通项公式为___________
例3.(2017山东)已知{}n x 是各项均为正数的等比数列,且12323,2x x x x +=-= (Ⅰ)求数列{}n x 的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点112211(,1),(,2)...(,1)n n P x P x P x n +++得到折线121n PP P +,求由该折线与直线0,({})i n y x x x x ==所围成的区域的面积n T .
例4.已知函数4
1
21)(2
+-
=x x x f ,若数列{b n }满足:11=b ,)(21n n b f b =+(n ∈N *).若对任意n ∈N *,都存在有M ∈Z ,使得
M b b b b n
<+⋅⋅⋅+++1
111321恒成立, 则整数M 的最小值是____________
变式训练:
1.已知数列{a n }满足a 1=3,a n+1•a n +a n+1+1=0,则a 2011=___________
2.数列{a n }中,11=a ,11-++⋅=
n n n n a a a a ,则{n a }的通项n a =___________
3.在数列{a n }中,a 1=2,na n+1=(n+1)a n +1,则{a n }通项公式n a =___________
4.(2012上海)若S n =sin 7
π+sin 72π+…+sin 7πn (n ∈N *),则在S 1,S 2,…,S 100中,正数的
个数是___________个。

5.已知n
n n a a S 1
2+
=,则S 2014=____________ 6.已知数列{a n }满足a 2=1,)
2(1
1+=
-+n n a a n n ,若1212-+>n n a a ,n n a a 222<+(n ∈N +),则
数列{n n a )1(-}的前40项的和为____________ 7.已知函数2
sin
)(2
π
n n n f =,且)1()(++=n f n f a n ,则a 1+a 2+a 3+…+a 2014=____________ 8.已知数列{a n }满足a 1=1,a 2=,且1
2
1
2
++++=
n n n n a a a a ,则如图中第10行所有数的和为_________
9.已知数列{a n }的前n 项和为S n ,且S n +1=2a n ,则使不等式a 12+a 22+…+a n 2<5×2n+1成立的n 的最大值为____________
10.设S n 为数列{a n }的前n 项之和.若不等式2122
2
a n
S a n n λ≥+对任何等差数列{n a }及任何正整
数n 恒成立,则λ的最大值为________________
11.(2017闵行区一模)已知无穷数列{}n a ,11a =,22a =,对任意*
n N ∈,有2n n a a +=, 数列{}n b 满足1n n n b b a +-=(*
n N ∈),若数列2{}n
n
b a 中的任意一项都在该数列中重复出现无 数次,则满足要求的1b 的值为
12.给定100<≤x 对一切整数n >0,令=n x ⎪⎩⎪⎨⎧
≥-<----1
2121
2211
11n n n n x x x x ,,,则使60x x =成立的0x 的
个数为____________
13.如图,△A 0B 1A 1,△A 1B 2A 2,…,△A n ﹣1B n A n 均为等腰直角三角形,其直角顶点B 1,B 2,…,B n (n ∈N *)在曲线)0(1
>=
x x
y 上,A 0与坐标原点O 重合,A i (i ∈N *)在x 轴正半轴上.设B n 的纵坐标为y n ,则y 1+y 2+…+y n =____________
14.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),然后接着按图所示在x 轴,y 轴平行方向来回运动(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…),若每秒运动一个单位长度,那么第2010秒时,这个粒子所在的位置为( )
A.(16,44) B .(15,44) C .(14,44) D .(13,44)
15.(2017普陀区一模)已知数列的各项均为正数,且,对任意的,均有
,;
(1)求证:是等比数列,并求出的通项公式;
(2)若数列中去掉的项后,余下的项组成数列,求; (3)设,数列的前项和为,是否存在正整数(),使得
、、成等比数列,若存在,求出的值,若不存在,请说明理由;
16.(2017浦东新区一模)设数列{}n a 满足2
1241n n a a n n +=+-+,2
2n n b a n n =+-; (1)若12a =,求证:数列{}n b 为等比数列;
(2)在(1)的条件下,对于正整数2、q 、r (2)q r <<,若25b 、q b 、r b 这三项经适当 排序后能构成等差数列,求符合条件的数组(,)q r ; (3)若11a =,n n c b n =+
,n d =n M 是n d 的前n 项和,求不超过2016M 的最大整数;
{}n a 11a =*
n N ∈2114(1)n n n a a a +-=⋅+22log (1)1n n b a =+-{1}n a +{}n a {}n b {}n a {}n c 12100c c c ++⋅⋅⋅+1
1
n n n d b b +=
⋅{}n d n n T m 1m n <<1T m T n T m
17.(2017崇明县一模)已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和;
(1)若数列{}n a 是首项为
23
,公比为1
3-的等比数列,求数列{}n b 的通项公式;
(2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式; (3)在(2)的条件下,设n
n n
a c
b =,求证:数列{}n
c 中的任意一项总可以表示成该数列 其他两项之积;
18.(2017徐家汇区一模)正数数列、满足:,且对一切,,是与的等差中项,是与的等比中项; (1)若,,求、的值;
(2)求证:是等差数列的充要条件是为常数数列;
(3)记,当,,指出与的大小关系并说明理由;
{}n a {}n b 11a b ≥2k ≥k N *
∈k a 1k a -1k b -k b 1k a -1k b -22a =21b =1a 1b {}n a n a ||n n n c a b =-2n ≥n N *
∈2n c c ++ 1c
19. (2017嘉定区一模)已知无穷数列{}n a 的各项都是正数,其前n 项和为n S ,且满足:1a a =,
11n n n rS a a +=-,其中1a ≠,常数r N ∈;
(1)求证:2n n a a +-是一个定值;
(2)若数列{}n a 是一个周期数列(存在正整数T ,使得对任意*
n N ∈,都有n T n a a +=成立,则称{}n a 为周期数列,T 为它的一个周期),求该数列的最小周期; (3)若数列{}n a 是各项均为有理数的等差数列,1
23
n n c -=⋅(*
n N ∈),问:数列{}n c 中的
所有项是否都是数列{}n a 中的项?若是,请说明理由,若不是,请举出反例;
20.如图,已知曲线C 1:)0(12>+=
x x x y 及曲线C 2:)0(31
>=x x
y ,C 1上的点P 1的横坐标为a 1(0<a 1<).从C 1上的点P n (n ∈N +)作直线平行于x 轴,交曲线C 2于点Q n ,再从点Q n 作直线平行于y 轴,交曲线C 1于点P n+1.点P n (n=1,2,3,…)的横坐标构成数列{a n }
(Ⅰ)试求a n+1与a n 之间的关系,并证明:n n a a 2122
1
<<
-; (Ⅱ)若a 1=31,求证:|a 2﹣a 1|+|a 3﹣a 2|+…+|a n+1﹣a n |<3
4
.。

相关文档
最新文档