高一数学《集合的含义与表示》3
【参考教案2】《集合的含义与表示》(数学人教必修一)
《集合的含义与表示》教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型新授课教学目标通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;教学重点1、利用集合中元素的三个特性解题。
(重点)2、准确认识元素与集合之间的符号“∈”“∉”。
(难点)教学过程引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样。
4.元素与集合的关系(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a∈A)(举例)5.常用数集及其记法非负整数集(或自然数集):记作N正整数集:记作N*或N+;整数集:记作Z有理数集:记作Q实数集:记作R题型一集合的基本概念【例1】考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2018年在校的所有高个子同学;(3)不超过20的非负数;(4)2018年度诺贝尔经济学奖获得者;(5)上海世博会的所有展馆。
高一数学集合的含义与表示
⑴上课前要预习
⑵上课时要认真 ⑶关于作业 ⑷自己整理问题集
集合的有关概念
元素(element)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
φ
集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并用花括号{ } 括起来的方法叫做列举法
(2) N+或N﹡ : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
•元素对于集合的关系
(1)属于(belong to):如果a是集合A 的元素,就说a属于A,记作a∈A
(2)不属于(not belong to):如果a不 是集合A的元素,就说a不属于A,记作
aA
练一练:用符号“∈”或“ ”
填空:
(1) 3.14__∈_____Q
(2) π_______Q
(3) 0__∈_____N
(4) 0_______N+
(5) (-0.5)0__∈_____Z (6) 2__∈_____R
集合的分类
有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含任何元素的集合
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
中国的直辖市
√
身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
高中数学人教A版必修1《1.1.1集合的含义与表示》教案3
必修一《1.1.1集合的含义与表示》教学案教学目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.答案:(1)(3)例2用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示教学内容的严谨性和简洁性.例3试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A ={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B ={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.知能训练课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N ,5__________N ,16__________N ;(2)-12__________Q ,π__________Q ,e __________C R Q (e 是个无理数);(3)2-3+2+3=__________{x |x =a +6b ,a ∈Q ,b ∈Q }.答案:(1)∈ ∉ ∈ (2)∈ ∉ ∈ (3)∈3.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值. 解:∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3.m =0不合题意,舍去.∴m 只能取3.4.用适当方法表示下列集合:(1)函数y =ax 2+bx +c (a ≠0)的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4.列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x ,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y ,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧ x =0,y =1,此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围. 活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意.(2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合(1)(2),知a =0或a ≥98.点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S={x|x=m+2n,m,n∈Z}.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.。
高一数学必修一《集合的含义与表示》
注意:(1)元素间要用逗号隔开;
(2)不管次序放在大括号内.
例如:book中的字母的集合表示为:
{b,o,k}
2.描述法
就是用确定的条件表示某些对象是否属于这个 集合的方法.其一般形式为:
{ x | p(x)}
x为该集合的代 表元素
p(x)表示该集 合中的元素x 所具有的性质
例如:book中的字母的集合表示为:
含有有限个元素的集合称为有限集.
2.无限集 若一个集合不是有限集,则该集合称为无限集.
例5 若以方程x2-5x+6=0和方程x2-x-2=0的解作 为元素构成集合A,请用最简形式写出集合A. 解:A={3,2,-1}. 例6 求不等式x-3>2的解集. 解:由x-3>2,得x>5, 所以不等式x-3>2的解集为{x|x>5,x∈R}.
A={-1};
(2)当a 0时, 16-16a=0,a=1 即x2+4x+4=0 ,x=-2 A={-2}.
集合的概念 集合的元素特征 常见的集合的字母表示
集合
集合的相等
元素与集合的关系及集合的表示
课后练习
课后习题
提出问题: 你知道我国的四大 发明吗? 火药和四大发明是 什么关系呢?
本视频主要是介绍四大发明
/edu/ppt/ppt_playVideo.action?mediaVo.res Id=536394795aa833d25d57ecc0
1
目 标
集合的概念: 集合的元素特征:
{x|x是 book中的字母}
3 .图示法(Venn图)
我们常常画一条封闭的曲线,用它的内部表示一个集合.
例如,图1-1表示任意一个集合A;图1-2表示集合
集合的含义与表示说课稿
集合的含义与表示说课稿集合的含义与表示说课稿11教学目标1.知识与技能:认识和理解集合、映射、函数、幂函数、指数函数、对数函数等概念,认识和理解它们的有关性质和运算.具有一定的把函数应用于实际的能力。
2.过程与方法:通过背景的给出,通过经历、体验和实践探索过程的展现,通过数学思想方法的渗透,让学生体会过程的重要,并在过程中学习知识,同时领会一定的数学思想和方法。
3.情感、态度与价值观:教育的根本目的是育人,通过对本模块内容的教学,使学生在学习和运用知识的过程中提高对数学学习的兴趣,并在初中函数的学习基础上,对数学有更深刻的感受,提高说理、批判和质疑精神,形成锲而不舍追求真理的科学态度和习惯,树立良好的情感态度和价值观。
2学情分析本模块共三章:第一章集合与函数概念;第二章基本初;本模块为了用集合与对应的语言刻画函数概念,先在第;概括地说,是本模块的核心内容。
3重点难点教学重点:集合的基本概念与表示方法. 教学难点:选择恰当的方法表示一些简单的集合。
4教学过程4.1第一学时集合的含义与表示5教学活动活动1【导入】导入新课问题1.军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合。
活动2【活动】你能举出一些集合的例子吗在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆、举例和互相交流自己举的例子,与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
推进新课新知探究活动3【活动】提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义。
高一数学集合的含义与表示
集合三大特性:
(1)确定性:集合中的元素必须是确定 的.
(2)互异性:集合中的元素必须是互不相同 的。
(3)无序性:集合中的元素是无先后顺序的. 集合中的任何两个元素都可以交换位置.
只要构成两个集合的元素是一样 的,我们就称这两个集合是相等 的
; 优游新闻网 ;
φ
集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并用花括号{ } 括起来的方法叫做列举法
• 例1用列举法表示下列集合: • (1)小于10的所有自然数组成的集合; • (2)方程x2=x的所有实数根组成的集合; • (3)由1~20以内的所有质数组成的集合。
几个要求
⑴上课前要预习
⑵上课时要认真 ⑶关于作业 ⑷自己整理问题集
集合的有关概念
元素(element)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
(2) N+或N﹡ : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
•元素对于集合的关系
(1)属于(belong to):如果a是集合A 的元素,就说a属于A,记作a∈A
(2)不属于(not belong to):如果a不 是集合A的元素,就说a不属于A,记作
aA
练一练:用符号“∈”或“ ”
填空:
(1) 3.14__∈_____Q
(2) π_______Q
(3) 0__∈_____N
(4) 0_______N+
人教版高中数学新教材必修第一册课件 集合的含义与表示
(8)滕州一中2019年9月入学的所有高一学生.
讲集合的描述性定义:我们把研究对象统称为元
课
人
:邢启素.把一些元素组成的全体叫做集合(简称为集).
强
4
学习新知
1、集合的含义:
集合的含义:
把一些确定的研究对象放在一起
作为一个整体,就形成一个 集合.
集合里面的每个对象就称为元素.
确定的对象:任何一个集合它的组成元
素必须是确定的,不能模糊不清.即给定
一个集合,任何一个元素在不在这个集
合中就确定了.
讲
课
人
:
邢
启 强
5
学习新知
1、集合的含义:
说明:
●集合是数学中最原始的概念之一,我们不能用 其他的概念下定义,只能作描述性说明,是不定 义概念,即原始概念,和点、直线、平面等基本 概念及原理构成了整个数学大厦的基石,是从 现实世界中总结出来的.
注:集合的相等:构成两个集合的元素完全一样
强
7
学习新知
3、元素与集合的表示及它们之间的关系:
1.符号表示
集合常用大写拉丁字母A,B,C,D,……标记, 元素常用小写拉丁字母a,b,c,d,……标记。
2.集合与元素的关系表示:
若a是集合A的元素,就说a属于集合A ,
记作 a∈A ;
若a不是集合A的元素,则说a不属于集合A ,
(3)方程x2-16=0的实数解组成的集合__{_-_4_, _4_}__;
例 2.已知集合 A={-1,x,x+1},若 0 A,
求实数 x 的值
0
讲
课
人
:
邢
启 强
12
学习新知
5、集合的常用表示方法:
(完整版)《集合的含义及其表示》知识梳理
集合的含义及其表示一、集合1.集合某些指定的对象集在一起成为集合。
(1)集合中的对象称元素,若a是集合A的元素,记作Aa∈;若b不是集合A的元素,记作Ab∉;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法非负整数集(或自然数集),记作N;;正整数集,记作N*或N+整数集,记作Z;有理数集,记作Q;实数集,记作R 。
2.集合的包含关系(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。
若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作AB ;(2)简单性质:1)A ⊆A ;2)Φ⊆A ;(3)若A ⊆B ,B ⊆C ,则A ⊆C ; (4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集);3.全集与补集(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集;(3)简单性质:1)S C (S C )=A ;2)S C S =Φ,ΦS C =S 。
集合的含义与表示知识点总结
集合的含义与表示知识点总结一、课标要求《课程标准》对本课内容的要求是:能够了解集合的含义,知道常用数集的表示方法,了解集合元素的三个性质,会用适当的方法表示集合.集合知识是整个高中学习的基础,使学生掌握和使用数学语言表述数学问题的基础.通过学习集合知识,可以使学生更好的理解数学中的集合语言,可以使学生逐步运用集合的观点和思想分析数学问题.二、本节知识要点(1)集合的含义与表示;(2)元素与集合之间的关系与表示;(3)集合元素的三个基本性质;(4)常用数集的表示;(5)集合的两种表示方法(列举法和描述法);(6)集合的分类.三、集合的含义与表示一般地,指定的某些对象的全体称为集合.集合中的每个对象叫做这个集合的元素.集合用大写字母来表示,集合的元素与小写字母来来表示.四、元素与集合之间的关系与表示a a元素与集合之间是从属关系:若元素在集合A中,就说元素属于集合A,记作;若元素不在集合A中,则称元素不属于集合A,记作.a∈a a Aa∉A要求会判断元素与集合之间的从属关系.五、集合元素的三个基本性质集合中的元素具有确定性、互异性和无序性.确定性给定一个集合,它的的元素必须是确定的.也就是说,给定一个集合,任何一个元素属于或不属于这个集合,也就确定了.互异性给定一个集合,它的元素是互不相同的.即同一个集合中的元素不能重复出现.在用列举法表示集合时,相同的元素算作集合的一个元素.无序性 集合中的元素是没有顺序的.如果构成两个集合的元素是相同的,那么就称这两个集合相等.六、常用数集的表示自然数集N ; 正整数集N +或N *; 整数集Z ; 有理数集Q ; 实数集R .七、集合的两种表示方法集合有两种常用表示方法,即列举法和描述法.此外还有韦恩图法(Venn 图法).列举法把集合的元素一一列举出来,并用大括号“”括起来表示集合的方法叫做列举{}法.用列举法表示集合时要注意以下几点:(1)元素之间必须用逗号隔开;(2)元素不能重复(即集合的元素要满足互异性);(3)元素之间无先后顺序(集合的元素具有无序性);(4)表示有规律的无限集时,必须把元素间的规律表示清楚后才可以使用省略号,如﹛1 , 2 , 3 , … ﹜;(5)注意与的表示是有区别的:表示的是一个元素,表示的是只有一个a {}a a {}a 元素的集合.二者具有从属关系,及.a a A ∈ 列举法常用来表示有限集或有规律的无限集.描述法定义 用集合所含元素的共同特征表示集合的方法叫做描述法.记作,(){}x P I x ∈其中为集合的代表元素,I 表示元素的取值范围,表示集合的元素所具有x x ()x P 的共同特征.第二定义 用确定的条件表示某些对象属于一个集合的方法,称为描述法.注意:“共同特征”或“确定的条件”可以说是方程,也可以是不等式(组)等.如集合,集合.{}0322=--=x x x A {}062<-=x x B 用描述法表示集合时要注意以下几点:(1)写清集合中的代表元素,如实数或有序实数对,从而正确表示数集和点集;(2)用简洁准确的语言表示集合中元素的共同特征;(3)不能出现未被说明的字母,如集合中的未被说明,应正确表示{}n x Z x 2=∈n 为或;{}Z n n x Z x ∈=∈,2{}Z x n x x ∈=,2(4)元素的取值范围,从上、下文来看,如果是明确的,可以省略.如集合,也可以写作.{}02=+∈x x R x {}02=+x x x (5)出现多层描述时,应正确使用“或”、“且”、“非”等逻辑联结词;(6)所有描述的内容都要写在大括号内;(7)识别描述法表示的集合时,要看清代表元素,正确区分数集和点集.当集合所含元素较多或元素的共同特征不明显时,适合用描述法来表示集合.例1. 用两种方法表示二元一次方程组的解. ⎩⎨⎧=-=+152y x y x 注意:二元一次方程组的解是有序实数对,所以在表示二元一次方程组的解时,要表示为点集的形式.解:解二元一次方程组得: ⎩⎨⎧=-=+152y x y x ⎩⎨⎧==12y x 用列举法表示为,用描述法表示为. (){}1,2()⎭⎬⎫⎩⎨⎧⎩⎨⎧==12,y x y x 提示:与表示的是两个不同的集合.(){}1,2(){}2,1例2. 指出集合与集合的区别.{}12-=x y x (){}12,-=x y y x 注意:区分数集和点集的关键在于代表元素.用描述法表示集合时记作,其(){}x P I x ∈中表示的就是代表元素,它可以是一个数字(数集),也可以是有序实数对(点x 集).解:集合表示的是一个数集,它表示函数解析式中自变量的{}12-=x y x 12-=x y 取值范围,所以R ;{}=-=12x y x 集合表示的是一个点集,它表示函数的图象上所有(){}12,-=x y y x 12-=x y 点的坐标.例3. 用合适的方法表示下列集合:(1)文房四宝;(2)2019年9月3日,新乡市平原示范区所辖乡镇;(3)平面直角坐标系中,第二象限的点构成的集合.注意:在用描述法表示集合时,元素之间必须用逗号隔开,不要用错标点符号.点集的代表元素为有序实数对.解:(1);{}砚纸墨笔,,,(2);{}师寨镇桥北乡原武镇韩董庄乡祝楼乡,,,,(3).(){}0,0,><y x y x 且例4. 分别用列举法和描述法表示下列集合:(1)方程的所有实数根组成的集合;022=-x (2)由大于10小于15的所有整数组成的集合.注意:在用描述法表示集合时,代表元素的取值范围,如果从上、下文来看是明确的,可以省略.解:(1)列举法:;{}2,2-描述法:或.{}022=-∈x R x {}022=-x x (2)列举法:﹛11 , 12 , 13 , 14﹜;描述法:.{}1511<<∈x Z x 八、集合的分类集合按所含元素个数的多少可以分为有限集、无限集和空集含有有限个元素的集合叫做有限集.含无限个元素的集合叫做无限集. 不含任何元素的集合叫做空集,记作.∅ 如方程的实数根组成的集合就是一个空集,即012=+x {}012=+∈x R x .{}∅==+∈012x R x 九、重要结论:判断形如的方程的实数根的个数的方法是:02=++c bx ax (1)当时,方程可化为的形式:0=a 0=+c bx①当时,方程有唯一一个实数根; 0≠b bc x -=②当时,方程有无数个实数根;0,0==c b ③当时,方程没有实数根;0,0≠=c b (2)当时,原方程为关于的一元二次方程:0≠a x ①若,则方程有两个不相等的实数根;042>-=∆ac b ②若,则方程有两个相等的实数根(此种情况下表示方程的实数042=-=∆ac b 根组成的集合时,集合只有一个元素);③若,则方程没有实数根.042<-=∆ac b 提示:在讨论集合元素的个数时,一定要注意分类讨论.例4. 已知集合.{}R a x ax R x A ∈=++∈=,0122(1)若A 中只有一个元素,求的值;a (2)若A 中至多有一个元素,求的取值范围.a 分析:先弄清楚集合A 的本质.集合A 是由方程的实数根组成的集0122=++x ax 合,该方程中含有参数,为含参方程.a (1)集合A 中只有一个元素,指的是方程只有一个实数根,该方0122=++x ax 程可以说一次方程,也可以是二次方程,注意分类讨论;()0=a ()0≠a (2)集合A 中至多有一个元素,指的是方程只有一个实数根或没0122=++x ax 有实数根.解:(1)当时,原方程可化为:,解之得:,集合,符合0=a 012=+x 21-=x ⎭⎬⎫⎩⎨⎧-=21A 题意;当时,∵只有一个实数根0≠a 0122=++x ax ∴,解之得:044=-=∆a 1=a 综上,当或时, A 中只有一个元素;0=a 1=a (2)当A 中只有一个元素时,由(1)可知:或;0=a 1=a 当A 中没有元素时,即方程没有实数根0122=++x ax ∴,解之得:044<-=∆a 1>a 综上,当或≥1时,A 中至多有一个元素.0=a a例5. 实数集A 满足条件:,若,则. A ∉1A a ∈A a∈-11(1)若,求A ; A ∈2(2)集合A 能否为单元素集合?若能,求出A ;若不能,请说明理由;(3)求证:. A a∈-11分析:本题重点考查集合元素的三个基本性质:确定性、互异性和无序性. (1)解:∵, ∴ A ∈212≠A ∈-=-1211∵ ∴ 11,1≠-∈-A ()A ∈=--21111∵ ∴ 121,21≠∈A A ∈=-22111∴﹛2 , , ﹜; =A 1-21(2)解:A 不能为单元素集合.理由如下:若A 为单元素集合,则有,整理得: aa -=11012=+-a a ∵ ()031412<-=⨯--=∆∴方程没有实数根012=+-a a ∴A 不能为单元素集合;(3)证明:若,则 A a ∈A a ∈-11∴. A aa a a ∈-=-=--1111111习题1. 已知集合.{{}0232=+-=x ax x A (1)若A 为空集,求的取值范围;a (2)若A 中只有一个元素,求的值;a (3)若A 中至多有一个元素,求的取值范围.a。
集合的含义与表示_3
1.学校小超市进了两次货,第一这次两进道的题的 是圆珠笔、钢笔、橡皮、笔记本、方算便法面与、我们 汽水共6种,第二次进的货是火腿肠、以圆前珠学笔过的、 方便面、铅笔共4种,问两次一共进了有几没种有货不同?
的地方?
2.学校先举行了一次田径比赛, 103班 有8名同学参加,又举办了一次球类比赛, 这个班有12名同学参加,两次比赛都参加 的有3人,问两次比赛中这个班有多少名同 学参加比赛?
含义:在集合A中满足条件P(x)的 x的集合。
{ x∈A | P(x) }
可以是多个呵
代表元
满足的条件
{ x | P(x)}
例2.请用描述法表示下列集
合:
(1)方程 x2 2 0 的所有解
组成集合.
(2)大于10小于20的所有整数组 成的集合.
3. 图示法(Venn图)
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
试试看,行吗?
1.方程组
x
x
y y
2 5
的解集用列举法表示
为________;用描述法表示为 .
2. {(x, y) | x y 6, x N, y N}
用列举法表示为
.
3. 设A={x,x2,xy}, B={1,x,y}, 且A=B,求实数x,y的值.
数学作业常规:
1.列举法:把集合中的元素一一列 举出来的方法用”{ }”括号起来表示集 合的方法.
[例1] 用列举法表示下列集合; (1)小于10的所有自然数组成的集合; (2)方程 x2=x所有实数根组成的集合; (3)由1~20以内所有的质数所组成的集合;
解: A={0,1,2,3,,4,5,6,7,8,9}
新教材高一数学必修一教案,集合的定义
《集合的含义与表示》教案(一)教学目标1 •知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义•理解集合相等的含义(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2. 过程与方法(1)通过实例,初步体会元素与集合的属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法•3. 情感、态度与价值观(1)了解集合的含义,体会元素与集合的属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合. 通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识概念形成第一组实例(幻灯片一):(1)“小于10”的自然数0,1 ,2, 3,……, 9.(2)满足3x - >x+3的全体实数.(3)所有直角二角形.(4 )到两定点距离的和等于两定点间的距离的点.(5 )咼一(1)班全体同学.(6)参与中国加入WTO谈判的中方成员.1.集合:一般地,把一些能够确定的不冋的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).2 .集合的兀素(或成员):即构成集合的每个对象(或成员),教师提问:①以上各例(构成集合)有什么特点?请大家讨论.学生讨论交流,得出集合概念的要点,然后教师肯定或补充.②我们能否给出集合一个大体描述?……学生思考后回答,然后教师总结.③上述六个例子中集合的元素各是什么?④请同学们自己举一些集合的例子.通过实例,引导学生经历并体会集合(描述性)概念形成的过程,引导学生进一步明确集合及集合元素的概念,会用自然语言描述集合.概念深化第二组实例(幻灯片二):(1 )参加亚特兰大奥运会的所有中国代表团的成员构成的集合.(2)方程x2 = 1的解的全体构成的集合.(3)平行四边形的全体构成的集合.(4)平面上与一定点0的距离等于r 的点的全体构成的集合.3.兀素与集合的关系:教师要求学生看第二组实例,并提问:①你能指出各个集合的元素吗?②各个集合的兀素与集合之间是什么关系?③例(2)中数0,- 是这个集合的元素吗?学生讨论交流,弄清兀素与集合之间是从属关系,即“属于”或“不属于”关系.引入集合语言描述集合.(1)小于10的所有自然数组成的集合;(2)方程x2 = X的所有实数根组成的集合;(3 )由1〜20以内的所有质数组成的集合•描述法:定义:用集合所含元素的共同特征表示集合的方法称为描述法•具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例2试分别用列举法和描述法表示下列集合:(1)方程x2乞=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合•由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举法•例如:A = {9 , 8, 7, 6, 5, 4, 3, 2, 1 , 0}.(2)设方程x2 = x的所有实数根组成的集合为B,那么B = {0,1}.(3)设由1〜20以内的所有质数组成的集合为C,那么C = {2 , 3, 5, 7, 11, 13, 17, 19}.例2解答:(1)设方程x2 -2 = 0的实数根为x,并且满足条件x -2 =0,因此,用描述法表示为2A = {x€ R| x - = 0}.方程x2- = 0有两个实数根 2 , -2,因此,用列举法表示为A = { 2,—. 2}.(2)设大于10小于20的整数为x,它满足条件x€ Z,且10v x v 20. 因此,用描述法表示为B = {x€ Z | 10v x v 20}.大于10小于20的整数有11, 12, 13, 14, 15, 16, 17, 18, 19,因此,用列举法表示为B = {11 , 12, 13, 14, 15, 16, 17,备选例题例1 (1 )禾9用列举法表法下列集合:①{15的正约数}:②不大于10的非负偶数集(2)用描述法表示下列集合:①正偶数集;②{1,-3, 5,-7,…,439, 41}.【分析】考查集合的两种表示方法的概念及其应用【解析】(1)①{1 , 3, 5, 15}②{0 , 2, 4, 6, 8, 10}(2)①{x | x = 2n, n € N*}②{x | x = ( -) n-• (2n -1), n€ N*且n< 21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集例2用列举法把下列集合表示出来:9(1)A = {x € N € N };9 _x(2) B = {9€ N | x € N };9 -x(3) C :={ y = y = - + 6 , x € N , y € N }; (4) D : 2 ={(x , y) | y =+6 , x € N }; (5) E = p ={x 1= x , p + q = 5 , p € N , q € N *}qA 的元素是自然数 x ,它必须满足条件 -L 也9—x是自然数;集合 B 中的元素是自然数匕,它必须满足条件 x 也是自然数;集合 C 中的元素9—x是自然数y ,它实际上是二次函数 y = — + 6 (x € N )的函数值;集合 D 中的元素是点,这些点 必须在二次函数y = -2+ 6 (x € N )的图象上;集合E 中的元素是x,它必须满足的条件是 x =卫,q 其中 p +q = 5,且 p € N , q € N *.【解析】(1)当x = 0, 6, 8这三个自然数时, —=1, 3, 9也是自然数.9—x(5 )依题意知 p + q = 5 , p € N , q € N * ,则 p =0, P =1, p =2, p =3, p =4, q =5,q =4, q =3,q =2, q =1.Px 要满足条件x =-,q• E = {0,丄,2, 3 , 4}.4 3 2【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3已知-€ A = {a -3 , 2a -1, a 2 + 1},求a 的值及对应的集合 A.-3€ A ,可知是集合的一个元素,则可能 a 43 =3 或2a -1 =-,求出a ,再代入A , 求出集合A.【解析】由占€ A ,可知,a H3 = 或2a - =£,当a£ =,即a = 0时,A = {,-,1}【分析】先看五个集合各自的特点:集合•-A = {0 , 6, 9}(2 )由(1)知,B = {1 , 3, 9}.(3 )由 y = — + 6 , x € N , y € N 知 y < 6.••• x = 0 , 1 , 2 时,y = 6 , 5 , •-C = {2 , 5 , 6}.(4)点{x , y}满足条件 x =0, x =1, x =2, y =6, y =5,y =2.• D = {(0 , 6) (1, 5) (2 ,2符合题意. 2承 + 6 , x € N , y € N ,则有:2) }当2a -1 = H3,即a =-时,A = { -4 , £ , 2}.以此展开讨【评析】元素与集合的关系是确定的,43 € A,则必有一个式子的值为论,便可求得a.。
高一数学集合的含义与表示
⑴上课前要预习
⑵上课时要认真 ⑶关于作业 ⑷自己整理问题集
集合的有关概念
元素(element)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
注:组成集合的元素可以是物,数,图,点等
集合三大特性:
(1)确定性:集合中的元素必须是确定 的.
(2)互异性:集合中的元素必须是互不相同 的。
(3)无序性:集合中的元素是无先后顺序的. 集合中的任何两个元素都可以交换位置.
只要构成两个集合的元素是一样 的,我们就称这两个集合是相等 的
;钣金加工 钣金激光切割 / 钣金加工 钣金激光切割
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
中国的直辖市
√
身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
重要数集:
(1) N: 自然数集(含0) 即非负整数集
练一练:用符号“∈”或“ ”
填空:
(1) 3.14__∈_____Q
(2) π_______Q
(3) 0__∈_____N
(4) 0_______N+
(5) (-0.5)0__∈_____Z (6) 2__∈_____R
集合的分类
有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含任何元素的集合
高一数学集合的含义与表示
作业
教材P.11
T1~4.
;高佣联盟 ;
晚一去到目の地就感觉不对劲,一味听见旁边有介绍有机蔬菜,明摆着希望他们成为第一批客人.不管蔬菜の味道如何,朋友关系掺了杂质总是让人心里不痛快.幸亏这些不是他朋友.余岚の小农场早就搞好了,就等今年开春正式播种有机种子.“这也难怪,做生意本来就是先从熟 人做起.我们是外来户,在她们眼里人脉广,能帮忙打开缺口总比她们摸石子过河の靠谱.”陆易站在商人角度来分析.“外人怎样跟我们无关,我们按计划行事.”柏少华一脸の无所谓.柏少君双腿搁在茶几上打嬉戏,身边发生の事他一概不理.德力踢他一脚,“喂,你怎么看?那 些可是你朋友.”这小子最单纯容易上钩.柏少君两耳不闻窗外事,“我不管,谁家の好吃吃谁家の.”他最好命,一向随遇而安.第二天,陆羽又提起那截大羊腿对准四只汪の饭盆开始削肉条拌饭.这时,门外一声呼喊,“陆陆!”“哎.”陆羽应了声,吩咐小福,“开门.”几只护院 神犬是她の得力好帮手.“你在干嘛?”柏少君进入院子一看,惊讶道.“给小福它们加菜.”用刀顺着肉の纹理削下去会轻松很多.女人の力度弱得惨不忍睹.柏少君夺过大羊腿,一把水果刀挥得银芒闪闪眼花缭乱,看不清哪儿跟哪儿,只见肉片一丝一块地往下掉.陆羽帮忙换盆 子,直到四只汪都有才罢手.至于小吉,它有猫粮和小鱼干,各得其所.“对了,你找我干嘛?”重新收起羊腿,陆羽问他.削了四份肉丝,柏少君像是不费吹灰之力,脸不红气不喘.“植树,去不去?我们订了好多果树苗到了,趁现在天气好赶紧种.”咦?种树造林可是惠国惠民の好 事,日后上山随手摘果子.“好,等我换身衣服.”陆羽忙回房换一身简便又保暖の休闲服,她好多年没过植树节了,没想到今年有机会.这群邻居真会玩,如果接下来他们肯种田就更好了,她以后买米买菜不用跑外边了,哈哈哈...“对了,种完树我们开始种菜,你门口の地是你の 吧?要不要开荒?一起种.”陆羽闻言缩一下肩,耶?她也要种?第86部分在云岭村,植树节提前了.松溪边种了几棵柳树,距离老远才有一棵,因为河边本来就种有梅树和一些别の.这些人不动原生态,尽可能不改变村里の格局添加几棵,完善田园风光罢了.他们说,烟笼翠濛,裹 雨拖风,河边种柳意境深重.听得陆羽无比惊诧,“你们好厉害,都是从小学の华语?”“少华说の,他说多种几棵明年这里の景致会更加美丽.”德力脚踩铁铲稍一用力,挑起一铲泥土填进树坑里.少华?陆羽脑子里映出那晚认真研究菜谱の男人来,他当时专注の模样很好看.都 说认真の男人帅气,而帅气の男人会厨艺不仅帅气,还快绝迹了吧?极品啊!没想到这山窝窝里藏着三个,难怪外边の女生常常跑进来围观.“陆陆.”陆易那边の坑挖好了,情深の呼唤她带着树苗过去.“哦,来了.”陆羽忙给他拿了两棵,柏少君那儿也要一棵.没错,这几天她根 本做不了什么,除了给大家分分棵苗之外.等她挖坑?半天挖不了一个,一天种一棵她能种到夏天.美化居住环境,人人参与多出一分力.树是少华掏の钱,所以他很悠闲,偶尔出来逛逛充当一下监工,然后回去给大家煮一顿美餐犒赏一下.几个男人做事肯定比她一个女人有效率,两 三天功夫,他们买回来の几车树苗就种完了.除了松溪边,他们租の田边各种几棵,村路两旁也种了榉树,并且得到老村长の认可.这种树高大,盛夏荫凉,秋叶红艳,很有观赏价值.种在村里の有花,也有果树,譬如海棠、玉兰之类,零散不规则地种.山里の树本来就多,他们只种了几 棵红叶枫在山边,并且在那里插下一块温馨提示牌,说明林里不属于村庄范围,有猛禽出没等字样.他们基本上都在自己の地盘种,不侵犯别人の田地.休闲居和少华家周围种了银杏,庭园种下五棵黑樱桃.“你家要不要来几棵?”柏少君问陆羽.陆羽忙摇头,“不用不用.”她院里 の树还不够多吗?宅子旁边の树也有些年头长得十分茂盛,夏天坐在门外の平地乘凉,看看田野,望望山,特别の舒心养眼,足够了.“话说,那些银杏种得活吗?”她反而有些担心这个.“种不活再说.”少君满不在乎地耸耸肩,这一点他从来没想过.种完树,勉强挖了几个坑の陆 羽全身酸痛,邻居却没事人似の第二天一大早又开始忙活.他们用除草机除草,用松土机翻泥松土,顺便给她の也翻了一遍,不像以前の农民那么费劲.她院里の菜圃也挖过了,去他们店取了些菜种回来自己搞,剩下门口那块地不知种什么好.瘦田无人耕,耕开有人争,借了两亩地给 别人,剩下一亩她自己要了.虽然她不会耕田,可看见别人种,自己也总想种些什么.邻居们不种水稻、小麦之类,平常吃の米和面仍要从外边进货.至于地里,他们种の是蔬菜、瓜果之类,方便餐厅取用.云岭村在大动土,老村长喜闻乐见,经常和老伴过来逛逛.二老喜欢年轻人兴致 高昂地开荒耕田,眼里仿佛看到未来几年の光景.年前の时候,休闲居の人曾找过他租耕地,可惜儿媳不同意,嫌弃他们给の租金太低.这年头,手里有地,心不慌.何玲在等他们提价回头,等他们开始开荒播种才知道,原来他们不声不响地找到那些离乡多年の原居民租下一大片丢荒 の田地和好几栋土坯房,前不久正推倒重建.这消息险些把她气出病来.现在她逢人便说这些城里人吃饱撑の乱找乐子,说是种地,不定哪天就扔了.像陆羽那样,院里の菜园子长期营养不良,浪费种子啥の.当然,这一切只在外界流传,云岭村の新居民对此一无所知.得 知云岭村忙得热火朝天,余家妹子和小伙伴们也经常来玩.商业上の事跟生活是分开の,做不成生意大家还是朋友嘛.开春要做の事很多,余岚の小农场也很忙,平时无事很少来,倒是余薇空闲得很.“干嘛不统一种?我正想跟我妈说与你们云岭村共同开发,将村里の树全部改成梅 树或者桃树呢.何玲也有这个意向,可你们今天这么搞不太好吧?何玲一家能同意?”她眉宇之间微微蹙起,像是不满,更像充满忧虑.“干嘛要她同意?我们在自己の地方种,又不在她家门口.”柏少君趁中午休息の功夫,和陆羽蹲在她门口平地の边缘,审视下边那亩地琢磨着种 什么好.本来有三亩の,两亩借给他们了.“村子是大家の,当然要统一意见.”余薇不悦地盯着两个靠得太近の人,眼珠一转,硬往两人中间蹲下把柏少君挤开老远,“陆陆,村子开发对大家都好,应该齐心协力の对吧?”陆羽仍在苦苦思索,心不在焉道:“就这样我挺喜欢の,够 安静.”嘿,就等她这句话,小心思得逞の余薇心花怒放.一天傍晚,陆羽喂完猫狗,然后在院子里逗那几只出来散步の小奶猫玩.它们会走路了,尾巴像竖起の一根小天线喵喵地在院里走来走去,对这个世界充满了好奇.主宠玩得正开心时,何玲来了.她以往来の时候笑容满面,今天 却气势汹汹不太友善.“我说杏子,听说你把定康家の地借给别人了?哎哟,你怎能做这种事呢?虽然你租了房子,可地你没租啊!我前些日子正和定康商量着租给那些游客种些什么.现在好了,地没了,你看怎么办吧.”摊摊手,似是一脸の无奈.陆羽无语了会儿,“玲姐,我租房 の合同上清楚写明这些地也包括在内,”关键是,“而且借给少君他们时,我特地约了定康叔过来说这事,他亲口同意并且另签了合同,不信咱们打电筒问他.”就前几天の事,邻居们得知她不想种地,便半开玩笑地说让她给他们种算了.租也可以,总之丢空太可惜.事关田地房产, 别说陆羽多了一段经历,时下の小青年们哪个敢不慎重对待?分分钟掉坑里烦死你.况且,她就是利用这一招对付亲哥の,敢草率吗?第87部分所以,她回去打了电筒问卓文鼎.卓大律师说屋归屋,田归田,建议她直接约房东周定康出来与邻居们洽谈,重新拟定一份田地租赁合同. 钱给了,新合同也签了.如今何玲这么说,不知是房东见利起心觉得钱少要反悔,还是何玲睁着眼睛说瞎话,以为她一个城里小姑娘考虑不周容易出漏子.“怎么可能?!”何玲脸色不好看了,“就算你跟他谈过,也不能擅作主张同意他们在村里乱搞.你要清楚自己の身份只是一名 租客,没资格对我们村指手划脚の.”这段话口气冲得很,像要跟她吵架.“我没指手划脚啊!”陆羽哭笑不得,仍耐着性子说,“玲姐你先消消气,有话慢慢说.”“我没气,你说到底有没这事吧!”谎话被拆穿,何玲显得气急败坏口不择言.“你让我说什么事?你得讲个明白.” 这指责没头没脑の,陆羽有点生气了.“你给我装什么蒜?姓陆の,你扪心自问刚来の时候我帮了你多少.没有我介绍你能租到这么好の房子?没有我公爹他们帮忙,你在村里能住得这么舒服?现在好了,安定下来就看我们不顺眼想赶尽叩绝了是不是?你这叫什么,叫忘恩负义! 没脸没皮...”何玲索性撕了脸皮,坐在院里指着陆羽开骂,将以往积攒下来の浊气,加上在休闲居碰壁受到の难堪一并发泄出来.一只小奶猫对这个物种很是好奇,不断歪着小脑袋望她,小腿噌噌噌地跑过来想凑近看清楚一些.对于骂架,陆羽是吵不赢の,当初冲嫂子叫嚷是趁对 方不觉意.如今何玲声如洪钟般响亮,她开口说话声音绝对被盖过.听她老提以前对自己の帮助,陆羽有些明白了,这人今晚不是来讲道理,而是存心过来找碴发泄の.何玲の不断地捶腿数落,偶尔跺跺脚,眼看那小奶猫就走到她脚边.生怕它被迁怒,陆羽赶紧过去把它抱开.谁知她 一过去,何玲以为她要打自己整个跳将起来.“好啊!你还想打我?!我呸,老娘打架那会儿你还不知道在哪个窝里躺着呢!”本来就想打可惜没机会,如今她一个箭步过来举手冲着陆羽一巴掌,“我打死你个不要脸の小娘皮,道理说不过就想打我?打就打,老娘怕过谁?”陆羽 怎么可能挨打?抱着小奶猫缓步闪过.院里の四只汪见主人挨打,顿时冲着何玲扑来并凶狠地吠起来.小吉本来趴在屋檐下看着孩子们跟主人玩耍,这会儿也跳出来着急地喵喵叫.“不许咬!你们退后.”生怕闹出人命,最终倒霉の是自己和四只汪,陆羽利用轻盈の步伐将另外几 只乱跑の小奶猫全部捡起来放在一旁,命令四只凶性大发の狼狗们,“坐下,看好它们不许乱跑.”主子の命令不可违逆,四只汪无奈地排排坐挡在小奶猫们跟前,冲着原地转圈找人の何玲凶狠地吼,身子不敢动.陆羽の练习一直没落下,她の速度掌控自如,可快可慢,步履轻盈,一 般人完全看不出来.“玲姐,你冷静点.”家里の宠物安全了,陆羽才有功夫应付抓狂发疯の何玲.“我很冷静,你就是个有爹生没娘教の丧门星小娼妇...”“啪!”の一巴掌,将何玲打倒在地.几乎与此同时,有客人在家便一直敞开の院门口冲来一群人,有男
高一数学《集合的含义与表示》教案
诚西郊市崇武区沿街学校仲尼中学高一数学1.1.1集合的含义与表示教案一. 教材分析:本节课程属于高中数学认知的第一节,内容较为单一,知识简单,与初中知识衔接严密,集合语言是现代数学的根本语言,为后续的学习奠定根底。
二. 学情分析:作为高一新生接触的第一批数学语言和数学符号,充满着新颖感,多数同学根本可以通过预习掌握知识点。
我们的目的是让学生体会用集合语言表达数学内容的简洁性,准确性,开展运用集合语言进展交流的才能。
三. 教学目的:l.知识与技能(1)通过实例,理解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)理解集合中元素确实定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的才能.2.过程与方法(1)让学生经历从集合实例中抽象概括出集合一一共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3.情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.四.教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰中选择.五. 教学过程(一)创设情景,提醒课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗引导学生回忆.举例和互相交流.与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢这就是我们这一堂课所要学习的内容.〔二〕研探新知1.教师书写出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大创造;(3)所有的安理会常任理事国;(4)所有的正方形;(5)在2021年9月之前建成的所有立交桥;(6)到一个角的两边间隔相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2021年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的一一共同特征是什么3.每个小组选出——位同学发表本组的讨论结果,在此根底上,师生一一共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元平素用小写字母,,,a b c d …表示.(三)质疑辩论,排难解惑,开展思维1.教师引导学生阅读教材中的相关内容,考虑:集合中元素有什么特点并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生考虑以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的理解.3.让学生自己举出一些可以构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生考虑(1)假设用A表示高—(4)班全体学生组成的集合,用a表示高一(4)班的一位同学,b是高一(5)班的一位同学,那么,a b与集合A分别有什么关系由此引导学生得出元素与集合的关系有两种:属于和不属于.∈.假设a是集合A的元素,就说a属于集合A,记作a A∉.假设a不是集合A的元素,就说a不属于集合A,记作a A(2)假设用A表示“所有的安理会常任理事国〞组成的集合,那么中国.日本与集合A的关系分别是什么请用数学符号分别表示.(3)让学生完成教材第5页练习第1题.5.教师引导学生回忆数集扩大过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题A组第1题.6.教师引导学生阅读教材中的相关内容,并考虑.讨论以下问题:(1)要表示一个集合一一共有几种方式(2)试比较自然语言.列举法和描绘法在表示集合时,各自有什么特点适用的对象是什么(3)如何根据问题选择适当的集合表示法使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
高一数学集合的含义与表示(新编201912)
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
中国的直辖市
√
身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
重要数集:
(1) N: 自然数集(含0) 即非负整数集
φ
集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并用花括号{ } 括起来的方法叫做列举法
• 例1用列举法表示下列集合: • (1)小于10的所有自然数组成的集合; • (2)方程x2=x的所有实数根组成的集合; • (3)由1~20以内的所有质数组成的集合。
几个要求
⑴上课前要预习
⑵上课时要认真 ⑶关于作业 ⑷自己整理问题集
集合的有关概念
元素(element)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
(2) N+或N﹡ : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
•元素对于集合的关系
(1)属于(belong to):如果a是集合A 的元素,就说a属于A,记作a∈A
(2)不属于(not belong to):如果a不 是集合A的元素,就说a不属于A,记作
aA
;
能收到“平凡的人给我以最多感动”的构思之效。皆是得人不得心!因为,他看到这圈铁箍,你看那些竹节," 这三大特征无论哪种特征出现,善念出现时,可
高一数学集合的含义与表示
课堂练习
1.若M={1,3},则下列表示方法
正确的是( C )
A. 3 M B.1 M
C. 1 M D. 1 M且 3 M
2.用符号表示下列集合,并写 出其元素:
(1) 12的质因数集合A;
(2) 大于 11且小于 29 的整数 集B.
课堂小结
1.集合的定义; 2.集合元素的性质:确定性,互
集合的含义与表示
观察下列对:
(1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
1. 定 义 一般地, 指定的某些对象的
全体称为集合. 集合中每个对象叫做这个
集合的元素.
2. 集合的表示法 集合常用大写字母表示,
(2) 若4x=3,则 xN √ (3) 若x Q,则 x R ×
(4)若X∈N,则x∈N+ ×
例2 若方程x2-5x+6=0和方程x2-x -2=0的解为元素的集合为M,则M 中元素的个数为( C )
A.1 B.2 C.3 D.4
例3.已知集合 A={x ax2+4x+4=0,x∈R,a∈R}
元素则常用小写字母表示.
3.集合元素的性质:
(1)确定性:集合中的元素必须 是确定的.
如果a是集合A的元素,就说a
属于集合A,记作a ∈ A;
如果a不是集合A的元素,就
说a不属于集合A,记作aA.
(2)互异性:集合中的元素必须 是互不相同的.
(3)无序性:集合中的元素是无 先后顺序的. 集合中的任何两个 元素都可以交换位置.
4.重要数集:
高一数学知识点:集合的含义与表示
高一数学知识点:集合的含义与表示高一数学知识点:集合的含义与表示常见考点考法1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。
集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。
2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。
设集合给定,若有一具体对象,则要么是的元素,要么不是的元素,二者必居其一,且只居其一。
⑵互异性特征:集合中的元素必须是互不相同的。
设集合给定,的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。
3.集合与元素之间的关系集合与元素之间只有“属于”或“不属于”。
例如:是集合的元素,记作,读作“属于”;不是集合的元素,记作,读作“不属于”。
4.集合的分类集合按照元素个数可以分为有限集和无限集。
特殊地,不含任何元素的集合叫做空集,记作。
5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。
⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。
例如:集合可以用它的特征性质描述为{},这表示在集合中,属于集合的任意一个元素都具有性质,而不属于集合的元素都不具有性质。
除此之外,高二,集合还常用韦恩图来表示,韦恩图是用封闭曲线内部的点来表示集合的方法(有时,也用小写字母分别定出集合中的某些元素)。
高一数学集合知识点总结_3
高一数学集合知识点总结高一数学集合知识点总结高一数学集合知识点总结一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(aA和aA,二者必居其一)、互异性(若aA,bA,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N某2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对某∈A 都有某∈B,则AB(或AB);2)真子集:AB且存在某0∈B但某0A;记为AB(或,且)3)交集:A∩B={某|某∈A且某∈B}4)并集:A∪B={某|某∈A或某∈B}5)补集:CUA={某|某A但某∈U}注意:①A,若A≠,则A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩=,A∩B=B∩A;②A∪A=A,A∪=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:【例1】已知集合M={某|某=m+,m∈Z},N={某|某=,n∈Z},P={某|某=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)大于2的所有整数
(4)函数y=x+1图像上的点
(5)鲜艳的颜色
(6)2017年中考卷中的难题
例2.已知集合 ,则实数m满足的条件是什么?
例3.元素与集合的关系:
2N, 1.414Q, R,-1N, Q,
0N, -4Z, Q, R 0____N+
例4.已知 ,求实数 的值。
课堂练习:
1.课本P5练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合A={x| ∈Z,x∈N},则它的元素是。
4.已知集合A={x|-3<x<3,x∈Z},B={(x,y)|y=x +1,x∈A},则集合B用列举法表示是
三、例题
例1.判断下列每组对象的全体能否构成集合?
(1)我班15岁以下的学生
课题:1.1.1集合的含义与表示
课型
新授课
课时
1
教学目标
知识技能
了解集合、元素的概念,体会集合中元素的三个特征;
过程方法
理解元素与集合的“属于”和“不属于”关系;了解集合的表示方法。
情感态度价值观
掌握常用数集及其记法
教学重点
掌握集合的基本概念
教学难点
元素与集合的关系;
知识结构与教学设计
1.1.1集合的含义与表示
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
(4)方程组 的解组成的集合
阅读课本P2-P3内容
二、新课教学
(一)集合的基本性概念
1.集合的含义
一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
2.集合的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(1)列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
2.各个元素之间要用逗号隔开;
3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程x2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合;
(3)方程组 的解。
思考3:(课本P5思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
四、反馈测评:
1.A={1,3},问3,5哪个是A的元素?
2.B={素质好的人}能否表示成为集合?
3.C={2,2,4}表示是否正确?
4.D={太平洋,大西洋}
E={大西洋,太平洋}
集合D ,E是不是表示相同的集合?
5.给出下列关系:① ② ③ ④ 其中正确的个数为()
A.1 B.2 C.3 D.4
思考2:(课本P4的思考题)得出描述法的定义:
描述法:把集合中的元素的公共属性描述出来,写在花括号{}内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x︳直角三角形},…;
说明:
1.课本P5最后一段话;
2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元也可省略,例如:{x︳整数},即代表整数集Z。
辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
6.设集合A={-2,-1,0,1,2},集合B={x∈A时代数式 的值},则B中的元素是______________
五、反思小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法;介绍了集合的常用表示方法,包括列举法、描述法。
六、作业布置:
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a A
5.集合相等
两个集合中的元素完全相同
6.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R
(二)集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
一、引入课题
二、新课教学
(一)集合的基本性概念
(二)集合的表示方法
三、例题
例1.
例2.
例3.
例4.
四、反馈测评:
五、反思小结:
六、作业布置:
教学主案(教学内容)
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
(2)互异性:集合中的元素互不相同。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
3.集合与元素的字母表示:
集合通常用大写的拉丁字母A,B,C…表示,
集合的元素用小写的拉丁字母a,b,c,…表示。
4.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
1.习题1.1,第3、4题;
2.课后预习集合间的基本关系.