北京市2019届高三数学(理科)综合练习49 含答案
高三数学上期第三次月考试题(理科附答案)
2019届高三数学上期第三次月考试题(理科附答案) 2019届高三数学上期第三次月考试题(理科附答案)总分150分,考试用时120分钟。
一、选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.1.已知全集集合集合,则集合为( )A. B. C. D.2.已知点,则与同方向的单位向量是( )A. B. C. D.3.命题对随意都有的否定是( )A.对随意,都有B.不存在,使得C.存在,使得D.存在,使得4.已知函数的定义域为,则的定义域为( )A. B. C. D.5.已知角的终边上一点坐标为,则角的最小正值为( )A. B. C. D.6.已知函数的导函数为,且满意关系式,则的值等于( )A.2B.C.D.7.已知向量,,则与夹角的余弦值为( )A. B. C. D.8.已知点在圆上,则函数的最小正周期和最小值分别为( )A. B. C. D.9.函数有零点,则实数的取值范围是( )A. B. C. D.10.设分程和方程的根分别为和,函数,则( )A. B.C. D.二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在答题卡上.11.已知,则的值为13. 中,,,三角形面积,14.已知函数在处取得极值10,则取值的集合为15.若关于的方程有实根,则实数的取值范围是三、解答题:本大题共6小题,共75分.请在答题卡指定区域内作答,解答应写出必要的文字说明.证明过程或演算步骤.16.(本小题满分12分)17.(本小题满分12分)已知函数,其中为使能在时取得最大值的最小正整数.(1)求的值;(2)设的三边长、、满意,且边所对的角的取值集合为,当时,求的值域.18.(本小题满分12分)中,设、、分别为角、、的对边,角的平分线交边于, .(1)求证: ;(2)若,,求其三边、、的值.19.(本小题满分12分)工厂生产某种产品,次品率与日产量 (万件)间的关系( 为常数,且 ),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元(1)将日盈利额 (万元)表示为日产量 (万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注: )20.(本小题满分13分)已知,当时, .(1)证明 ;(2)若成立,请先求出的值,并利用值的特点求出函数的表达式.21.(本小题满分14分)已知函数 ( 为常数,为自然对数的底)(1)当时,求的单调区间;(2)若函数在上无零点,求的最小值;(3)若对随意的,在上存在两个不同的使得成立,求的取值范围.数学(理)参考答案答案DADCBDBBCA11. 12. 13. 14. 15.16.若命题为真明显或故有或5分若命题为真,就有或命题或为假命题时, 12分17.(1) ,依题意有即的最小正整数值为25分(2) 又即即 8分10分故函数的值域是 12分18.(1)即5分(2) ① 7分又② 9分由①②解得 10分又在中12分19.(1)当时,, 2分当时,4分日盈利额 (万元)与日产量 (万件)的函数关系式为5分(2)当时,日盈利额为0当时,令得或 (舍去)当时,在上单增最大值 9分当时,在上单增,在上单减最大值 10分综上:当时,日产量为万件日盈利额最大当时,日产量为3万件时日盈利额最大20.(1) 时4分(2)由得到5分又时即将代入上式得又8分又时对均成立为函数为对称轴 10分又12分13分21.(1) 时,由得得故的减区间为增区间为 3分(2)因为在上恒成立不行能故要使在上无零点,只要对随意的,恒成立即时, 5分令则再令于是在上为减函数故在上恒成立在上为增函数在上恒成立又故要使恒成立,只要若函数在上无零点,的最小值为 8分(3)当时,,为增函数当时,,为减函数函数在上的值域为 9分当时,不合题意当时,故① 10分此时,当改变时,,的改变状况如下0+↘最小值↗时,,随意定的,在区间上存在两个不同的使得成立,当且仅当满意下列条件即②即③ 11分令令得当时,函数为增函数当时,函数为减函数所以在任取时有即②式对恒成立 13分由③解得④由①④ 当时对随意,在上存在两个不同的使成立2019届高三数学上期第三次月考试题就共享到这里了,更多相关信息请接着关注高考数学试题栏目!。
2019北京市高考数学试卷(理科)含答案
4. 已知椭圆
x2 a2
y2 b2
1(a
b 0) 的离心率为 1 ,则 ( 2
)
A. a2 2b2
2
2
B. 3a 4b
C. a 2b
D. 3a 4b
【思路分析 】由椭圆离心率及隐含条件 a 2 b2 c 2 得答案 .
【解析 】:由题意 , c a
1 2
,
得
c2 a2
1
a2 b2
,则 4
a2
1 ,
4
数列 { an} 的任意一项都是 { an } 的长度为 1 的递增子列 .
(Ⅰ) 写出数列 1, 8, 3 ,7 , 5,6 , 9 的一个长度为 4 的递增子列 ;
(Ⅱ) 已知数列 { an } 的长度为 p 的递增子列的末项的最小值为 末项的最小值为 an0 . 若 p q , 求证 : am0 an0 ;
)
A. 充分而不必要条件
B. 必要而不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
8. 数学中有许多形状优美 、 寓意美好的曲线 , 曲线 C : x 2 y 2 1 | x | y 就是其中之一 ( 如
图). 给出下列三个结论 :
①曲线 C 恰好经过 6 个整点 (即横 、 纵坐标均为整数的点 );
E2 5
E2
5 lg E1 , 2 E2 1010.1 .
故选 : A .
【归纳与总结 】本题考查对数的运算性质 , 是基础的计算题 .
4a 2 4b2 a 2 ,即 3a2 4b2 .
故选 : B .
【归纳与总结 】本题考查椭圆的简单性质 , 熟记隐含条件是关键 , 是基础题 .
5. 若 x , y 满足 | x |, 1 y ,且 y… 1, 则 3x y 的最大值为 (
2019年高考理科数学北京卷(附参考答案和详解)
4!数学中 有 许 多 形 状 优 美/寓 意 美 好 的 曲 线# 曲线 .,#$0&$'!0"#"& 就是 其 中 之 一$如 图 %!给 出 下 列 三 个 结 论 ,
曲线 . 恰 好 经 过 & 个 整 点 $即 横/纵 坐 标
均 为 整 数 的 点 %-
第4题图
曲线 . 上任意一点到原点的距离都不超过槡$-
三 解 答 题解答应写出文字说明证明过程或演算步骤
!"!$本小题满 分 !+ 分%在 '+0. 中#''+#(()'$#5290'
(
! $
!
$!%求(#) 的 值 -
$$%求9/: $0(.%的值!
.!( .
!&!$本小题满分!)分%如图#在 四 棱 锥 12+0.5 中#1+& 平
面 +0.5#+5&.5#+5,0.#1+'+5'.5'$#0.'+!
曲线 . 所围成的&心形'区域的面积小于+! 其 中 #所 有 正 确 结 论 的 序 号 是
*% -%
! ! !,% ! ! !.%
$! ! %
第二部分
二 填 空 题本大题共&小题每 小 题 " 分共 +# 分!把 答 案
填在题中横线上
8!函数 *$#%'9/:$$# 的最小正周期是!!!!! !#!设 等 差 数 列!'-"的 前- 项 和 为,-#若'$ ' (+#," ' (!##
2019届人教A版理科数学课时试题及解析(49)双曲线
课时作业(四十九) [第49讲 双曲线][时间:45分钟 分值:100分]基础热身1. 与椭圆+y 2=1共焦点且过点P (2,1)的双曲线方程是( )x 24A.-y 2=1 B.-y 2=1x 24x 22C.-=1 D .x 2-=1x 23y 23y 222. 如图K49-1,已知点P 为双曲线-=1右支上一点,F 1、F 2分别为双曲线的x 216y 29左、右焦点,I 为△PF 1F 2的内心,若△IF 1F 2成立,则λ的值为( )A. B. 5845C. D.43343. 设双曲线的—个焦点为F ,虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. B.23C. D.3+125+124. 已知双曲线-=1(a >0,b >0)与抛物线y 2=8x 有一个公共的焦点F ,且两曲线x 2a 2y 2b2的一个交点为P ,若|PF |=5,则双曲线的渐近线方程为( )A .x ±y =0 B.x ±y =033C .x ±2y =0 D .2x ±y =0能力提升5. 若点O 和点F (-2,0)分别是双曲线-y 2=1(a >0)的中心和左焦点,点P 为双曲线x 2a 2右支上的任意一点,则·的取值范围为( )OP → FP →A .[3-2,+∞)B .[3+2,+∞)33C. D.[-74,+∞)[74,+∞)6. 已知双曲线-=1(a >0,b >0)的一条渐近线方程是y =x ,它的一个焦点在抛x 2a 2y 2b23物线y 2=24x 的准线上,则双曲线的方程为( )A.-=1B.-=1x 236y 2108x 29y 227C.-=1 D.-=1x 2108y 236x 227y 297. 已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程式为( )A.-=1B.-=1x 23y 26x 24y 25C.-=1D.-=1x 26y 23x 25y 248.已知抛物线y 2=2px (p >0)的焦点F 为双曲线-=1(a >0,b >0)的一个焦点,经过x 2a 2y 2b 2两曲线交点的直线恰过点F ,则该双曲线的离心率为( )A. B .1+22C. D .1+339.点P 在双曲线上-=1(a >0,b >0)上,F 1,F 2是这条双曲线的两个焦点,∠F 1PF 2=x 2a 2y 2b290°,且△F 1PF 2的三条边长成等差数列,则此双曲线的离心率是( )A .2B .3C .4D .510.已知双曲线-=1左、右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与双x 2a 2y 2b 2曲线一个交点为P ,且∠PF 1F 2=,则双曲线的渐近线方程为________.π611.双曲线-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作直线交双曲线的x 2a 2y 2b2左支于A ,B 两点,且|AB |=m ,则△ABF 2的周长为__________.12. 已知F 1、F 2分别为双曲线C :-=1的左、右焦点,点A ∈C ,点M 的坐标x 29y 227为(2,0),AM 为∠F 1AF 2的平分线,则|AF 2|=________.13. 已知点(2,3)在双曲线C :-=1(a >0,b >0)上,C 的焦距为4,则它的离心率x 2a 2y 2b2为________.14.(10分) 如图K49-2,已知双曲线x 2-y 2=1的左、右顶点分别为A 1、A 2,动直线l :y =kx +m 与圆x 2+y 2=1相切,且与双曲线左、右两支的交点分别为P 1(x 1,y 1),P 2(x 2,y 2).(1)求k 的取值范围,并求x 2-x 1的最小值;(2)记直线P 1A 1的斜率为k 1,直线k 1k 2是定值吗?证明你的结论.15.(13分)已知两定点F 1(-,0),F 2(,0),满足条件|PF 2|-|PF 1|=2的点P 的22轨迹是曲线E ,直线y =kx -1与曲线E 交于A ,B 两点.如果|AB |=6,且曲线E 上存在3点C ,使+=m ,求m 的值和△ABC 的面积S .OA → OB → OC →难点突破16.(12分) 已知双曲线-=1(a >0,b >0)的右顶点为A ,右焦点为F ,直线x =(c =x 2a 2y 2b 2a 2c )与x 轴交于点B ,且与一条渐近线交于点C ,点O 为坐标原点,又=2,·a 2+b 2OA → OB → OA → =2,过点F 的直线与双曲线右支交于点M 、N ,点P 为点M 关于x 轴的对称点.OC →(1)求双曲线的方程;(2)证明:B 、P 、N 三点共线;(3)求△BMN 面积的最小值.课时作业(四十九)【基础热身】1.B [解析] 椭圆+y 2=1的焦点坐标是(±,0).设双曲线方程为-=1(a >0,x 243x 2a 2y 2b 2b >0).因为点P (2,1)在双曲线上,所以-=1,a 2+b 2=3,解得a 2=2,b 2=1,所以所求4a 21b 2的双曲线方程是-y 2=1.x 222.B [解析] 根据S △IPF 1=S △IPF 2+λS △IF 1F 2,即|PF 1|=|PF 2|+λ|F 1F 2|,即2a =λ2c ,即λ==.a c 453.D [解析] 设F 为左焦点,结合图形可知k FB =,而对应与之垂直的渐近线的斜率b c 为k =-,则有=-1,即b 2=ac =c 2-a 2,整理得c 2-ac -a 2=0,两边都除以a 2可b a b c (-b a)得e 2-e -1=0,解得e =,由于e >1,故e =.1±521+524.B [解析] F (2,0),即c =2,设P (x 0,y 0),根据抛物线的定义x 0+2=5,得x 0=3,代入抛物线方程得y =24,代入双曲线方程得-=1,结合4=a 2+b 2,解得a =1,b =,209a 224b23故双曲线的渐近线方程是x ±y =0.3【能力提升】5.B [解析] 因为F (-2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3,所以双曲线方程为-y 2=1.设点P (x 0,y 0),则有-y =1(x 0≥),解得y =-1(x 0≥).因x 23x 20320320x 2033为=(x 0+2,y 0),=(x 0,y 0),所以·=x 0(x 0+2)+y =x 0(x 0+2)+-1=+2x 0-FP → OP → OP → FP → 20x 2034x 2031,此二次函数对应的抛物线的对称轴方程为x 0=-,因为x 0≥,所以当x 0=时,·3433OP → 取得最小值×3+2-1=3+2,故·的取值范围是[3+2,+∞).FP → 4333OP → FP → 36.B [解析] ∵抛物线y 2=24x 的准线方程为x =-6,则在双曲线中有a 2+b 2=(-6)2=36①,又∵双曲线-=1的渐近线为y =x ,∴=②,联立①②解得Error!所以双x 2a 2y 2b 23b a 3曲线的方程为-=1.x 29y 2277.B [解析] 设A (x 1,y 1),B (x 2,y 2),双曲线方程为-=1.∵AB 过F ,N ,∴斜率k AB =1.x 2a 2y 2b 2∵-=1,-=1,∴两式相减,得-=0,∴4b 2=x 21a 2y 21b 2x 2a 2y 2b 2(x 1-x 2)(x 1+x 2)a 2(y 1-y 2)(y 1+y 2)b25a 2,又∵a 2+b 2=9,∴a 2=4,b 2=5.8.B [解析] 设双曲线的一个焦点坐标为(c,0),则=c ,即p =2c ,抛物线方程为y 2=4cx ,p 2根据题意-=1,y 2=4c ·c ,消掉y 得-=1,即c 2(b 2-4a 2)=a 2b 2,即c 2(c 2-5a 2)=a 2(c 2c 2a 2y 2b 2c 2a 24c 2b 2-a 2),即c 4-6a 2c 2+a 4=0,即e 4-6e 2+1=0,解得e 2==3+2,故e =1+.6+322229.D [解析] 不妨设|PF 1|,|PF 2|,|F 1F 2|成等差数列,则4c 2=|PF 1|2+|PF 2|2,由2|PF 2|=2c +|PF 1|,且|PF 2|-|PF 1|=2a ,解得|PF 1|=2c -4a ,|PF 2|=2c -2a ,代入4c 2=|PF 1|2+|PF 2|2,得4c 2=(2c -2a )2+(2c -4a )2,化简整理得c 2-6ac +5a 2=0,解得c =a (舍去)或者c =5a ,故e ==5.c a10.y =±x [解析] 根据已知|PF 1|=且|PF 2|=,故-=2a ,所以=2,=22b 2a b 2a 2b 2a b 2a b 2a 2b a .211.4a +2m [解析] 由Error!⇒|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=4a ,又|AF 1|+|BF 1|=|AB |=m ,∴|AF 2|+|BF 2|=4a +m .则△ABF 2的周长为|AF 2|+|BF 2|+|AB |=4a +2m .12.6 [解析] 根据角平分线的性质,==.又-=6,故=6.|AF 2||AF 1||MF 2||MF 1|12|AF 1||AF 2||AF 2|13.2 [解析] 方法一:点(2,3)在双曲线C :-=1上,则-=1.又由于2c =4,x 2a 2y 2b 24a 29b 2所以a 2+b 2=4.解方程组Error! 得a =1或a =4.由于a <c ,故a =1.所以离心率为e ==2.c a方法二:∵双曲线的焦距为4,∴双曲线的两焦点分别为F 1(-2,0),F 2(2,0),点(2,3)到两焦点的距离之差的绝对值为2,即2a =2,∴a =1,离心率e ==2.c a 14.[解答] (1)∵l 与圆相切,∴1=,|m |1+k 2∴m 2=1+k 2,①由Error!得(1-k 2)x 2-2mkx -(m 2+1)=0,∴Error!∴k 2<1,∴-1<k <1,故k 的取值范围为(-1,1).由于x 1+x 2=,2mk 1-k 2∴x 2-x 1===,(x 1+x 2)2-4x 1x 222|1-k 2|221-k 2∵0≤k 2<1∴当k 2=0时,x 2-x 1取最小值为2.2(2)由已知可得A 1,A 2的坐标分别为(-1,0),(1,0),∴k 1=,k 2=,y 1x 1+1y 2x 2-1∴k 1k 2==y 1y 2(x 1+1)(x 2-1)(kx 1+m )(kx 2+m )(x 1+1)(x 2-1)=k 2x 1x 2+mk (x 1+x 2)+m 2x 1x 2+(x 2-x 1)-1=k 2·m 2+1k 2-1-mk ·2mk k 2-1+m 2m 2+1k 2-1-22k 2-1-1==,m 2k 2+k 2-2m 2k 2+m 2k 2-m 2m 2+1-22-k 2+1k 2-m 2m 2-k 2+2-22由①,得m 2-k 2=1,∴k 1k 2==-(3+2)为定值.-13-22215.[解答] 由双曲线的定义可知,曲线E 是以F 1(-,0),F 2(,0)为焦点的双曲22线的左支,且c =,a =1,易知b =1,2故曲线E 的方程为x 2-y 2=1(x <0).设A (x 1,y 1),B (x 2,y 2),由题意建立方程组Error!消去y ,得(1-k 2)x 2+2kx -2=0,又已知直线与双曲线左支交于两点A ,B ,有Error!解得-<k <-1.2又∵|AB |=·|x 1-x 2|1+k 2=·1+k 2(x 1+x 2)2-4x 1x 2=·1+k 2(-2k 1-k 2)2-4×-21-k 2=2,(1+k 2)(2-k 2)(1-k 2)2依题意得2=6,整理后得(1+k 2)(2-k 2)(1-k 2)2328k 4-55k 2+25=0,∴k 2=或k 2=,又-<k <-1,∴k =-,5754252故直线AB 的方程为x +y +1=0.52设C (x c ,y c ),由已知+=m ,OA → OB → OC → 得(x 1,y 1)+(x 2,y 2)=(mx c ,my c ),∴(x c ,y c )=(m ≠0).(x 1+x 2m ,y 1+y 2m)又x 1+x 2==-4,y 1+y 2=k (x 1+x 2)-2=-2==8,2k k 2-152k 2k 2-12k 2-1∴点C ,将点C 的坐标代入曲线E 的方程,得-=1,得m =±4,(-45m ,8m)80m 264m 2但当m =-4时,所得的点在双曲线的右支上,不合题意,∴m =4,C 点的坐标为(-,2),C 到AB 的距离为=,5|52×(-5)+2+1|(52)2+1213∴△ABC 的面积S =×6×=.123133【难点突破】16.[解答] (1)由题意得Error!解得Error!∴b 2=c 2-a 2=12,∴双曲线方程为-=1.x 24y 212(2)证明:由(1)可知得点B (1,0),设直线l 的方程为:x =ty +4,由Error!可得(3t 2-1)y 2+24ty +36=0.设M (x 1,y 1),N (x 2,y 2),则P (x 1,-y 1),所以Error!所以=(x 1-1,-y 1),=(x 2-1,y 2),BP → BN →因为(x 1-1)y 2+y 1(x 2-1)=x 1y 2+y 1x 2-y 1-y 2=2ty 1y 2+3(y 1+y 2)=2t +3363t 2-1-24t 3t 2-1=0,所以向量,共线.所以B ,P ,N 三点共线.BP → BN →(3)因为直线l 与双曲线右支相交于M ,N ,所以x 1x 2=(ty 1+4)(ty 2+4)>0,所以t 2<,13S △BMN =|BF ||y 1-y 2|==,12181+t 2|3t 2-1|633+3t 21-3t 2令u =1-3t 2,u ∈(0,1],S △BMN =6=634-u u 34u 2-1u=6,34(1u -18)2-116由u ∈(0,1],所以∈[1,+∞),1u 当=1,即t =0时,△BMN 面积的最小值为18.1u。
2019年北京市高考数学试卷(理科)含答案
2019 年北京市高考数学试卷(理科)一、选择题 共 8 小题,每小题 5 分,共 40 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1 .已知复数 z2 i ,则 z z ()A . 3B . 5C .3D .52 .执行如图所示的程序框图,输出的 s 值为 ()A . 1B . 2C . 3D .43x1 3t , .已知直线 l 的参数方程为2 (t 为参数),则点 (1,0) 到直线 l 的距离是 ()y4tA . 1B .2C .4D . 655554 .已知椭圆x 2y21,则() a2b 21(a b 0) 的离心率为2A . a22b2B . 3a 2 4b 2C . a 2bD . 3a 4b5 .若 x , y 满足 | x |, 1y ,且 y ⋯ 1 ,则 3x y 的最大值为 ( )A . 7B . 1C . 5D .76 .在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m m 5 lg E 1 ,其中星等为k 的星的亮度为 k (k 1,2) .已知太阳的星等是 26.7 ,天2 1 E 2 m E 2狼星的星等是1.45 ,则太阳与天狼星的亮度的比值为()A . 10.1B . 10.1C . lg10.1 10.110D .107 .设点 A , B , C 不共线,则“ AB 与 AC 的夹角为锐角”是“ |AB AC| |BC|”的 ()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8 .数学中有许多形状优美、寓意美好的曲线,曲线22| x | y 就是其中之一(如C : xy 1 图).给出下列三个结论:①曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点);②曲线 C 上任意一点到原点的距离都不超过 2 ;③曲线 C 所围成的“心形”区域的面积小于 3 .其中,所有正确结论的序号是()A .①B.②C.①② D .①②③二、填空题共 6小题,每小题 5 分,共 30 分。
2019北京高考理科数学试题及答案详解共10页
2019北京高考理科数学试题第一部分 (选择题 共40分)选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={-1,0,1},B={x|-1≤ x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为A.1B.23C.1321D.610987 5.函数f(x)的图象向右平移1个单位长度,所得图象与y=ex 关于y 轴对称,则f(x)=A.1e x +B. 1e x -C. 1e x -+D. 1e x -- 6.若双曲线22221x y a b -=,则其渐近线方程为A.y=±2xB.y=C.12y x =±D.2y x =± 7.直线l 过抛物线C: x2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于A.43B.2C.83D.38.设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m 的取值范围是 A.4,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭ 第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsinθ=2的距离等于 .10.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q= ;前n 项和Sn= .11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D.若PA=3,916PD DB =::,则PD= ;AB= . 12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示.若c=λa +μb (λ,μ∈R),则λμ= .14.如图,在棱长为2的正方体ABCD -A1B1C1D1中,E 为BC 的中点,点P 在线段D1E 上,点P 到直线CC1的距离的最小值为 .三、解答题共6小题,共80分。
(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
海淀区2019届高三一模数学(理)试题及答案
海淀区高三年级第二学期期中练习数学(理科) 2019.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}04P x x =<<,且M P ⊆,则M P ⊆可以是 (A) {}1,2 (B) {}2,4 (C) {}1,2- (D) {}0,5(2)若角α的终边在第二象限,则下列三角函数值中大于零的是(A) sin(+)2πα (B) s(+)2co πα (C) sin()πα+ (D) s()co πα+(3)已知等差数列{}n a 满足324=3a a ,则{}n a 中一定为零的项是 (A) 6a (B) 8a (C) 10a (D)12a (4)已知x y >,则下列各式中一定成立的是 (A)11x y< (B) 12x y +>(C) 11()()22x y > (D) 222x y -+>(5)执行如图所示的程序框图,输出的m 值为(A)18 (B) 16(C) 516(D) 13(6)已知复数()z a i a R =+∈,则下面结论正确的是 (A) z a i =-+ (B) 1z ≥(C) z 一定不是纯虚数 (D)在复平面上,z 对应的点可能在第三象限(7)椭圆221:14x C y +=与双曲线22222:1x y C a b-=的离心率之积为1,则双曲线2C 的两条渐近线的倾斜角分别为(A)6π,6π- (B) 3π,3π- (C) 6π,56π (D) 3π,23π (8)某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如下表所示,张毅选择三个科目(A)8种 (B) 10种 (C) 12种 (D) 14种第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)已知,4,a c 成等比数列,且0a >,则22log log a c +=____. (10)在△ABC 中,14,5,cos 8a b C ===,则=c ,ABC S ∆= ( 11)已知向量a =(1,-2),同时满足条件①a ∥b ,②a b a +<的一个向量b 的坐标 为( 12)在极坐标系中,若圆2cos a ρθ=关于直线cos sin 10ρθθ+=对称,则a =(13)设关于,x y 的不等式组00,1x y y kx ≥⎧⎪≥⎨⎪≥+⎩,表示的平面区域为Ω.记区域Ω上的点与点(0,1)A -距离的最小值为()d k ,则(I)当=1k 时,(1)=d ; (Ⅱ)若()d k ≥,则k 的取值范围是____.( 14)已知函数()f x x =,2()g x ax x =-,其中0a >.若12[1,2],[1,2]x x ∀∈∃∈,使得1()f x 2()f x 1()g x =2()g x 成立,则a =____.三、解答题共6小题,共80分.解答应写出文字说明~演算步骤或证明过程。
十年高考真题汇编(北京卷,含解析)之不等式
十年高考真题(2011-2020)(北京卷)专题08不等式本专题考查的知识点为:不等式,历年考题主要以选择填空题型出现,重点考查的知识点为:不等式的性质,基本不等式,不等式的实际应用等,预测明年本考点题目会比较稳定,会有所变化,备考方向以不等式的性质及其实际应用为重点较佳.1.【2019年北京理科05】若x ,y 满足|x |≤1﹣y ,且y ≥﹣1,则3x +y 的最大值为( ) A .﹣7 B .1C .5D .72.【2019年北京理科08】数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x |y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过√2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③3.【2017年北京理科04】若x ,y 满足{x ≤3x +y ≥2y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .94.【2016年北京理科02】若x ,y 满足{2x −y ≤0x +y ≤3x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .55.【2016年北京理科05】已知x ,y ∈R ,且x >y >0,则( )A .1x−1y>0 B .sin x ﹣sin y >0C .(12)x ﹣(12)y <0 D .lnx +lny >06.【2015年北京理科02】若x ,y 满足{x −y ≤0x +y ≤1x ≥0,则z =x +2y 的最大值为( )A .0B .1C .32D .27.【2014年北京理科06】若x ,y 满足{x +y −2≥0kx −y +2≥0y ≥0,且z =y ﹣x 的最小值为﹣4,则k 的值为() A .2B .﹣2C .12D .−128.【2013年北京理科08】设关于x ,y 的不等式组{2x −y +1>0,x +m <0,y −m >0表示的平面区域内存在点P (x 0,y 0),满足x 0﹣2y 0=2,求得m 的取值范围是( ) A .(−∞,43) B .(−∞,13)C .(−∞,−23)D .(−∞,−53)9.【2019年北京理科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 10.【2018年北京理科12】若x ,y 满足x +1≤y ≤2x ,则2y ﹣x 的最小值是 .11.【2017年北京理科13】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为 .1.若a ,b 是任意实数,且a >b ,则() A .a 2>b 2B .ba<1C .a −b >1D .(12)a <(12)b2.【2020届北京市丰台区高三一模】“x>1”是“1x<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件3.【2020届北京市顺义区高三第一次模拟】若b>a>1,则下列不等式一定正确的是()A.ab>2B.a+b<2C.1a <1bD.ba+ab>24.【北京市丰台区2018年高三年级一模】已知a<b<0,则下列不等式中恒成立的是A.1a >1bB.√−a<√−b C.2a>2b D.a3>b35.【2020届北京怀柔区高三下学期适应性练习】已知a<b<0,则下列不等式成立的是()A.a2<b2B.a2<ab C.1a <1bD.ba<16.【2020届陕西省汉中市高三下学期第二次模拟】若a<b<0,则下列不等式不能成立的是()A.1a >1bB.1a−b>1aC.|a|>|b|D.a2>b27.【北京市首都师范大学附属中学2019届高三一模】在各项均为正数的等比数列{a n}中,a6=3,则a4+ a8=()A.有最小值6B.有最大值6C.有最大值9D.有最小值38.【2020届北京市第四中学高三第二学期统练】已知a>0,b>0,a+b=1,若α=a+1a ,β=b+1b,则α+β的最小值是()A.3B.4C.5D.69.【北京市一五九中学2019-2020学年高一第一学期期中】设x∈R,则“x>12”是“2x2+x−1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.【2020届山西省高三(4月)适应性考试】已知a>0,b>0,m∈R,则“a≤b”的一个必要不充分条件是()A.a m≤b m B.am2≤bm2C.am2≤bm2D.a+m2≤b+m211.【北京市海淀区2019届高三第二学期期中练习(一模)】已知x>y,则下列各式中一定成立()A.1x <1yB.x+1y>2C.(12)x>(12)y D.2x+2−y>212.【2020届北京市西城区第十五中学高三模拟(一)】已知a、b∈R,且a>b,则()A.1a <1bB.sina>sinb C.(13)a<(13)b D.a2>b213.【北京市陈经纶中学2019-2020学年高一上学期期中】设a,b∈R且ab≠0,则ab>1是a>1b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要14.【2020届北京理工大附中高三上学期9月开学】“x>0,y>0”是“yx +xy≥2”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件15.【北京市朝阳区2019届高三第一次综合练习】已知a,b,c∈R,给出下列条件:①a2>b2;②1a <1b;③ac2>bc2,则使得a>b成立的充分而不必要条件是()A.①B.②C.③D.①②③16.【2020届北京市人民大学附属中学高考模拟(4月份)】设a,b,c为非零实数,且a>c,b>c,则()A.a+b>c B.ab>c2C.a+b2>c D.1a+1b>2c17.【北京工业大学附属中学2018-2019学年度第一学期摸底】已知a>0,b>0,a+b=2,则y=1a +4b的最小值是( )A.72B.4C.92D.518.【2020届北京市东城区高三一模】已知x<−1,那么在下列不等式中,不成立的是()A.x2−1>0B.x+1x<−2C.sinx−x>0D.cosx+x>0 19.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯一B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一20.【北京师范大学附中2018届高三下学期第二次模拟】已知a>0,b>0,并且1a ,12,1b成等差数列,则a+9b的最小值为()A.16B.9C.5D.421.【2020届北京市第四中学高三第二学期统练】已知x>0,y>0,且2x +1y=1,若x+2y>m2+2m恒成立,则实数m的取值范围是______.22.【北京五中2020届高三(4月份)高考数学模拟】若三角形三边成等比数列,则公比q的范围是____ _.23.【北京市西城区2017-2018学年高二下学期期末】已知x>1,则f(x)=x+1x−1的最小值是_________ _.24.已知x,y∈R+,且满足x3+y4=1,则xy的最大值为____________________.25.若对任意x>−1,不等式x+1x2+2x+2≤a恒成立,则a的取值范围是______.26.若实数x,y满足xy=1,则x2+4y2的最小值为______.27.【2020届北京市丰台区高三一模】若x>1,则函数f(x)=x+1x−1的最小值为______,此时x=______.28.【浙江省绍兴一中2018届高三下学期5月高考模拟】已知x,y>0,且x+y+1x +12y=194,则3x−716y的最小值是________.29.已知首项与公比相等的等比数列{a n}中,若m,n∈N∗,满足a m a n2=a42,则2m +1n的最小值为__________.30.已知a , b∈R,且a−3b+6=0,则2a+18b的最小值为_____________.1.【2019年北京理科05】若x ,y 满足|x |≤1﹣y ,且y ≥﹣1,则3x +y 的最大值为( ) A .﹣7 B .1C .5D .7【答案】解:由{|x|≤1−y y ≥−1作出可行域如图,联立{y =−1x +y −1=0,解得A (2,﹣1),令z =3x +y ,化为y =﹣3x +z ,由图可知,当直线y =﹣3x +z 过点A 时,z 有最大值为3×2﹣1=5. 故选:C .2.【2019年北京理科08】数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x |y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过√2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③【答案】解:将x 换成﹣x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,﹣1);当x >0时,方程变为y 2﹣xy +x 2﹣1=0,所以△=x 2﹣4(x 2﹣1)≥0,解得x ∈(0,2√33], 所以x 只能取整数1,当x =1时,y 2﹣y =0,解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(﹣1,0),(﹣1,1), 故曲线一共经过6个整点,故①正确. 当x >0时,由x 2+y 2=1+xy得x 2+y 2﹣1=xy ≤x 2+y 22,(当x =y 时取等),∴x 2+y 2≤2,∴√x 2+y 2≤√2,即曲线C 上y 轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过√2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误. 故选:C .3.【2017年北京理科04】若x ,y 满足{x ≤3x +y ≥2y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .9【答案】解:x ,y 满足{x ≤3x +y ≥2y ≤x的可行域如图:由可行域可知目标函数z =x +2y 经过可行域的A 时,取得最大值,由{x =3x =y ,可得A (3,3),目标函数的最大值为:3+2×3=9. 故选:D .4.【2016年北京理科02】若x ,y 满足{2x −y ≤0x +y ≤3x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5【答案】解:作出不等式组{2x −y ≤0x +y ≤3x ≥0对应的平面区域如图:(阴影部分).设z =2x +y 得y =﹣2x +z , 平移直线y =﹣2x +z ,由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大, 此时z 最大.由{2x −y =0x +y =3,解得{x =1y =2,即A (1,2),代入目标函数z =2x +y 得z =1×2+2=4. 即目标函数z =2x +y 的最大值为4. 故选:C .5.【2016年北京理科05】已知x ,y ∈R ,且x >y >0,则( ) A .1x−1y >0 B .sin x ﹣sin y >0C .(12)x ﹣(12)y <0 D .lnx +lny >0【答案】解:∵x ,y ∈R ,且x >y >0,则1x<1y,sin x 与sin y 的大小关系不确定,(12)x <(12)y ,即(12)x −(12)y<0,lnx +lny 与0的大小关系不确定.故选:C .6.【2015年北京理科02】若x ,y 满足{x −y ≤0x +y ≤1x ≥0,则z =x +2y 的最大值为( )A .0B .1C .32D .2【答案】解:作出不等式组{x −y ≤0x +y ≤1x ≥0表示的平面区域,当l 经过点B 时,目标函数z 达到最大值 ∴z 最大值=0+2×1=2. 故选:D .7.【2014年北京理科06】若x ,y 满足{x +y −2≥0kx −y +2≥0y ≥0,且z =y ﹣x 的最小值为﹣4,则k 的值为( )A .2B .﹣2C .12D .−12【答案】解:对不等式组中的kx ﹣y +2≥0讨论,可知直线kx ﹣y +2=0与x 轴的交点在x +y ﹣2=0与x 轴的交点的右边,故由约束条件{x +y −2≥0kx −y +2≥0y ≥0作出可行域如图,当y =0,由kx ﹣y +2=0,得x =−2k , ∴B (−2k ,0).由z =y ﹣x 得y =x +z .由图可知,当直线y =x +z 过B (−2k ,0)时直线在y 轴上的截距最小,即z 最小. 此时z min =0+2k=−4,解得:k =−12.故选:D .8.【2013年北京理科08】设关于x ,y 的不等式组{2x −y +1>0,x +m <0,y −m >0表示的平面区域内存在点P (x 0,y 0),满足x 0﹣2y 0=2,求得m 的取值范围是( ) A .(−∞,43) B .(−∞,13)C .(−∞,−23)D .(−∞,−53)【答案】解:先根据约束条件{2x −y +1>0,x +m <0,y −m >0画出可行域,要使可行域存在,必有m <﹣2m +1,要求可行域包含直线y =12x ﹣1上的点,只要边界点(﹣m ,1﹣2m ) 在直线y =12x ﹣1的上方,且(﹣m ,m )在直线y =12x ﹣1的下方, 故得不等式组{m <−2m +11−2m >−12m −1m <−12m −1,解之得:m <−23. 故选:C .9.【2019年北京理科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】解:①当x =10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元), 即有顾客需要支付140﹣10=130(元); ②在促销活动中,设订单总金额为m 元, 可得(m ﹣x )×80%≥m ×70%, 即有x ≤m8,由题意可得m ≥120, 可得x ≤1208=15,则x 的最大值为15元. 故答案为:130,1510.【2018年北京理科12】若x ,y 满足x +1≤y ≤2x ,则2y ﹣x 的最小值是 . 【答案】解:作出不等式组对应的平面区域如图: 设z =2y ﹣x ,则y =12x +12z ,平移y =12x +12z ,由图象知当直线y =12x +12z 经过点A 时, 直线的截距最小,此时z 最小,由{x +1=y y =2x 得{x =1y =2,即A (1,2),此时z =2×2﹣1=3, 故答案为:311.【2017年北京理科13】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为 .【答案】解:设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题, 则若a >b >c ,则a +b ≤c ”是真命题,可设a ,b ,c 的值依次﹣1,﹣2,﹣3,(答案不唯一), 故答案为:﹣1,﹣2,﹣31.若a ,b 是任意实数,且a >b ,则() A .a 2>b 2 B .ba<1C .a −b >1D .(12)a <(12)b【答案】D 【解析】A.取a =1,b =−2,则a 2<b 2,所以该选项错误;B.取a =−1,b =−2,则ba >1,所以该选项错误;C.取a =2,b =32,则a −b <1,所以该选项错误;D.由于指数函数y =(12)x 为R 上的减函数,∵a >b ,∴(12)a <(12)b ,所以该选项正确.故选:D.2.【2020届北京市丰台区高三一模】“x>1”是“1x<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【答案】A【解析】解:因为1x <1等价于x−1x>0等价于x>1或x<0,又“x>1”是“x>1或x<0”的充分而不必要条件,即“x>1”是“1x<1”的充分而不必要条件,故选:A.3.【2020届北京市顺义区高三第一次模拟】若b>a>1,则下列不等式一定正确的是()A.ab>2B.a+b<2C.1a <1bD.ba+ab>2【答案】D【解析】因为:b>a>1对于A:当a=32,b=43,所以ab=32×43=2,故A错误;对于B:因为b>a>1,所以a+b>2,故B错误;对于C:因为b>a>1,所以0<1b <1a<1,故C错误;对于D:因为b>a>1,所以ba +ab≥2√ba⋅ab=2,又因为b>a>1,则ba ≠ab,故不取等,即ba+ab>2,故D正确;故选:D4.【北京市丰台区2018年高三年级一模】已知a<b<0,则下列不等式中恒成立的是A.1a >1bB.√−a<√−b C.2a>2b D.a3>b3【答案】A 【解析】构造函数y=1x 在(−∞,0)上是减函数,已知a<b<0,则1a>1b,故A正确;√−a>√−b,故B不正确;C构造函数y=2a是增函数,故2a<2b,故选项不正确;D.a3>b3,构造函数y=x3是增函数,故a3<b3,所以选项不正确.故答案为A.5.【2020届北京怀柔区高三下学期适应性练习】已知a<b<0,则下列不等式成立的是()A.a2<b2B.a2<ab C.1a <1bD.ba<1【答案】D【解析】a2−b2=(a+b)(a−b)>0,∴a2>b2,所以A选项是错误的. a2−ab=a(a−b)>0,∴a2>ab.所以B选项是错误的.1 a −1b=b−aab>0,∴1a>1b.所以C选项是错误的.b a −1=b−aa<0,∴ba<1.所以D选项是正确的.故选:D.6.【2020届陕西省汉中市高三下学期第二次模拟】若a<b<0,则下列不等式不能成立的是()A.1a >1bB.1a−b>1aC.|a|>|b|D.a2>b2【答案】B 【解析】选项A:由于a<b<0,即ab>0,b−a>0,所以1a −1b=b−aab>0,所以1a>1b,所以成立;选项B:由于a<b<0,即a−b<0,所以1a−b −1a=ba(a−b)<0,所以1a−b<1a,所以不成立;选项C:由于a<b<0,所以−a>−b>0,所以|a|>|b|,所以成立;选项D:由于a<b<0,所以−a>−b>0,所以|a|>|b|,所以a2>b2,所以成立.故选:B.7.【北京市首都师范大学附属中学2019届高三一模】在各项均为正数的等比数列{a n}中,a6=3,则a4+ a8=()A.有最小值6B.有最大值6C.有最大值9D.有最小值3【答案】A【解析】设等比数列{a n}的公比为q(q>0)∵a6=3∴a4=a6q2=3q2,a8=a6q2=3q2∴a4+a8=3q2+3q2≥2√3q2⋅3q2=6当且仅当3q2=3q2即q=1时上式等号成立本题正确选项:A8.【2020届北京市第四中学高三第二学期统练】已知a>0,b>0,a+b=1,若α=a+1a ,β=b+1b,则α+β的最小值是()A.3B.4C.5D.6【答案】C【解析】∵a>0,b>0,a+b=1,∴α+β=a+1a+b+1b=1+1ab≥1+1(a+b2)2=5,当且仅当a=b=12时取“=”号.答案:C9.【北京市一五九中学2019-2020学年高一第一学期期中】设x∈R,则“x>12”是“2x2+x−1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】由题意得,不等式2x2+x−1>0,解得x<−1或x>12,所以“x>12”是“2x2+x−1>0”的充分而不必要条件,故选A.10.【2020届山西省高三(4月)适应性考试】已知a>0,b>0,m∈R,则“a≤b”的一个必要不充分条件是()A.a m≤b m B.am2≤bm2C.am2≤bm2D.a+m2≤b+m2【答案】C【解析】由题知a >0,b >0,a ≤b ⇔a m ≤b m ,故A 是“a ≤b ”的既不充分也不必要条件; 因为m 2≥0,所以1m 2>0(m ≠0),所以a ≤b ⇔am 2≤b m 2,故B 是“a ≤b ”的充要条件; 因为m 2≥0,所以a ≤b ⇒am 2≤bm 2, 若m 2=0,则am 2≤bm 2⇒a ≤b , 故C 是“a ≤b ”的必要不充分条件;a ≤b ⇔a +m 2≤b +m 2,故D 是“a ≤b ”的充要条件. 故选:C.11.【北京市海淀区2019届高三第二学期期中练习(一模)】已知x >y ,则下列各式中一定成立() A .1x <1y B .x +1y >2C .(12)x >(12)yD .2x +2−y >2【答案】D 【解析】x ,y 的符号不确定,当x =2,y =-1时,x >y , 对于A ,1x <1y 不成立,所以错误; 对于B 、x +1y =2−1=1>2也错;对于C ,y =(12)x 是减函数,所以,(12)x >(12)y 也错;对于D ,因为x −y >0,所以,2x +2−y ≥2√2x ·2−y =2√2x−y >2√20=2,正确, 故选D12.【2020届北京市西城区第十五中学高三模拟(一)】已知a 、b ∈R ,且a >b ,则() A .1a<1bB .sina >sinbC .(13)a <(13)bD .a 2>b 2【答案】C 【解析】对于A 选项,取a =1,b =−1,则a >b 成立,但1a >1b ,A 选项错误;对于B 选项,取a =π,b =0,则a >b 成立,但sinπ=sin0,即sina =sinb ,B 选项错误; 对于C 选项,由于指数函数y =(13)x 在R 上单调递减,若a >b ,则(13)a <(13)b ,C 选项正确;对于D选项,取a=1,b=−2,则a>b,但a2<b2,D选项错误.故选:C.13.【北京市陈经纶中学2019-2020学年高一上学期期中】设a,b∈R且ab≠0,则ab>1是a>1b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要【答案】D【解析】若“ab>1”当a=﹣2,b=﹣1时,不能得到“a>1b”,若“a>1b”,例如当a=1,b=﹣1时,不能得到“ab>1“,故“ab>1”是“a>1b”的既不充分也不必要条件,故选:D.14.【2020届北京理工大附中高三上学期9月开学】“x>0,y>0”是“yx +xy≥2”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【答案】A【解析】当x>0,y>0时,由均值不等式yx +xy≥2成立.但yx+xy≥2时,只需要xy>0,不能推出x>0,y>0.所以是充分而不必要条件.选A.15.【北京市朝阳区2019届高三第一次综合练习】已知a,b,c∈R,给出下列条件:①a2>b2;②1a <1b;③ac2>bc2,则使得a>b成立的充分而不必要条件是()A.①B.②C.③D.①②③【答案】C【解析】由①a2>b2,得:|a|>|b|,不一定有a>b成立,不符;对于②,当a=−1,b=1时,有1a <1b,但a>b不成立,所以不符;对于③,由ac2>bc2,知c≠0,所以,有a>b成立,当a>b成立时,不一定有ac2>bc2,因为c可以为0,符合题意;本题选择C选项.16.【2020届北京市人民大学附属中学高考模拟(4月份)】设a,b,c为非零实数,且a>c,b>c,则()A.a+b>c B.ab>c2C.a+b2>c D.1a+1b>2c【答案】C【解析】a>c,b>c,故a+b>2c,a+b2>c,故C正确;取a=−1,b=−1,c=−2,计算知ABD错误;故选:C.17.【北京工业大学附属中学2018-2019学年度第一学期摸底】已知a>0,b>0,a+b=2,则y=1a +4b的最小值是( )A.72B.4C.92D.5【答案】C 【解析】由题意可得:y=1a+4b=12×(a+b)(1a+4b)=12×(5+ba+4ab)≥12×(5+2√ba×4ab)=92,当且仅当a=23,b=43时等号成立.即y=1a +4b的最小值是92.故选:C.18.【2020届北京市东城区高三一模】已知x<−1,那么在下列不等式中,不成立的是()A.x2−1>0B.x+1x<−2C.sinx−x>0D.cosx+x>0【答案】D【解析】∵x<−1,则x2−1=(x−1)(x+1)>0,x+1x +2=x2+2x+1x=(x+1)2x<0,又∵sinx、cosx∈[−1,1],∴sinx−x>0,cosx+x<0.可得:ABC成立,D不成立.故选:D.19.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯一B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一【答案】A【解析】正数a,b,c,d满足a+b=cd=4,∴4=a+b≥2√ab,即ab≤4,当且仅当a=b=2时,“=”成立;又4= cd≤(c+d2)2,∴c+d≥4,当且仅当c=d=2时,“=”成立;综上得ab≤c+d,且等号成立时a,b,c,d的取值都为2,选A.20.【北京师范大学附中2018届高三下学期第二次模拟】已知a>0,b>0,并且1a ,12,1b成等差数列,则a+9b的最小值为()A.16B.9C.5D.4【答案】A【解析】根据题意,a>0,b>0,且1a ,12,1b成等差数列,则1a +1b=2×12=1;则a+9b=(a+9b)(1a +1b)=10+9ba+ab≥10+2√9ba×ab=16;当且仅当9ba =ab,即a=4,b=43时取到等号,∴a+9b的最小值为16;故选A.21.【2020届北京市第四中学高三第二学期统练】已知x>0,y>0,且2x +1y=1,若x+2y>m2+2m恒成立,则实数m的取值范围是______.【答案】(−4,2)【解析】因为x +2y =(x +2y)(2x +1y )=4+4y x+xy≥4+2×2=8,要使x +2y >m 2+2m 恒成立,所以m 2+2m <8,解得−4<m <2. 故答案为:(−4,2).22.【北京五中2020届高三(4月份)高考数学模拟】若三角形三边成等比数列,则公比q 的范围是_____.【答案】(√5−12,1+√52);【解析】设三边:a 、qa 、q 2a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ⩾1时a +qa >q 2a ,等价于解二次不等式:q 2−q −1<0, 由于方程q 2−q −1=0两根为:1−√52,1+√52,故得解:1−√52<q <1+√52且q ⩾1,即1⩽q <1+√52(2)当q <1时,a 为最大边,qa +q 2a >a 即得q 2+q −1>0, 解之得q >√5−12或q <−1+√52且q >0即q >√5−12综合(1)(2),得:q ∈(√5−12,1+√52)故答案为:(√5−12,1+√52)23.【北京市西城区2017-2018学年高二下学期期末】已知x >1,则f(x)=x +1x−1的最小值是__________. 【答案】3 【解析】 ∵x >1∴x −1>0由基本不等式可得,f(x)=x +1x−1=x −1+1x−1+1≥2√(x −1)�1x−1+1=3, 当且仅当x −1=1x−1即x −1=1时,x =2时取等号“=” 答案为3.24.已知x,y ∈R +,且满足x3+y4=1,则xy 的最大值为____________________. 【答案】3 【解析】本题考查了基本不等式求最值,考查了同学们的转化能力.因为1=x 3+y 4≥2√x 3.y 4=2√xy 12=√xy3,所以xy ≤3,当且仅当x 3=y 4,即x =32,y =2时取等号,所以xy 的最大值为3. 25.若对任意x >−1,不等式x+1x 2+2x+2≤a 恒成立,则a 的取值范围是______. 【答案】[12,+∞) 【解析】因为x >−1,则x +1>0依题意得:设y =x+1x 2+2x+2=x+1(x+1)2+1=1(x+1)+1(x+1)所以y =(x +1)+1(x+1)≥2√(x +1)⋅1(x+1)=2 得y =1(x+1)+1x+1≤12,即y ⩽12当且仅当x +1=1x+1时,即x =0时,取得最大值为12, 又因为x+1x 2+2x+2≤a 恒成立,即y max ≤a ,得a ≥12, 故答案为:[12,+∞).26.若实数x ,y 满足xy =1,则x 2+4y 2的最小值为______. 【答案】4 【解析】若实数x,y 满足xy =1,则x 2+4y 2≥2⋅x ⋅2y =4xy =4, 当且仅当x =2y =±√2时,上式取得最小值4 故答案为:427.【2020届北京市丰台区高三一模】若x >1,则函数f(x)=x +1x−1的最小值为______,此时x =______. 【答案】32 【解析】f(x)=x −1+1x −1+1⩾2√(x −1)⋅1x −1+1=3 当且仅当x −1=1x−1,即x =2时,取等号 即函数f(x)=x +1x−1的最小值为3,此时x =2 故答案为:3;228.【浙江省绍兴一中2018届高三下学期5月高考模拟】已知x,y >0,且x +y +1x +12y =194,则3x −716y的最小值是________. 【答案】−14 【解析】因为x +y +1x +12y =194,所以3x −716y =3x −716y +x +y +1x +12y −194=x +4x +y +116y −194≥92−194=−14,当且仅当x =4x ,y =116y ,即x =2,y =14时,取等号.故答案为:−1429.已知首项与公比相等的等比数列{a n }中,若m ,n ∈N ∗,满足a m a n 2=a 42,则2m +1n 的最小值为__________. 【答案】1 【解析】设等比数列{a n }公比为q ,则首项a 1=q由a m a n 2=a 42得:a 1q m−1⋅(a 1q n−1)2=(a 1q 3)2 则:q m+2n =q 8∴m +2n =8∴2m +1n =18⋅(2m +1n )(m +2n)=18⋅(2+4n m +m n +2)=18⋅(4+4n m +mn) ∵m,n ∈N ∗∴4n m >0,mn>0 则4n m+m n≥2√4n m ⋅m n=4(当且仅当4n m =mn ,即2n =m 时取等号)∴(2m +1n )min =18×(4+4)=1 本题正确结果:130.已知a , b ∈R ,且a −3b +6=0,则2a +18b 的最小值为_____________.【答案】14 【解析】由a −3b +6=0可知a −3b =−6,且:2a +18b =2a +2−3b ,因为对于任意x ,2x >0恒成立,结合均值不等式的结论可得:2a +2−3b ≥2×√2a ×2−3b =2×√2−6=14.当且仅当{2a =2−3b a −3b =−6,即{a =−3b =1时等号成立.综上可得2a +18b 的最小值为14.。
北京市2019届高三数学(理科)综合练习13 含答案
北京市2017届高三综合练习数学(理)一、选择题(本大题共8小题,每小题5分,共40分.)1.(5分)抛物线y2=﹣8x的准线方程为()A.x=2 B.x=﹣2 C.y=2 D.y=﹣22.(5分)双曲线﹣y2=1的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x3.(5分)已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()A.B.C.D.4.(5分)“m<8”是“方程﹣=1表示双曲线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)若椭圆+=1(a>b>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=16.(5分)设椭圆C:+=1(a>b>0)两个焦点分别为F1,F2,若C上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则椭圆C的离心率等于()A.B.C.D.7.(5分)已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点,则|PA|+|PM|的最小值是()A.5B.C.4D.AD8.(5分)若有两个焦点F1,F2的圆锥曲线上存在点P,使|PF1|=3|PF2|成立,则称该圆锥曲线上存在“α”点,现给出四个圆锥曲线:①﹣=1 ②x2﹣=1 ③+=1④+=1,其中存在“α”点的圆锥曲线有()A.①③B.①④C.②③D.②④二、填空题(本大题共6小题,每小题5分,共30分.)9.(5分)抛物线y2=4x的焦点到准线的距离是.10.(5分)命题“∃x∈R,x2+x﹣8>0”的否定为.11.(5分)已知双曲线的中心在原点,焦距为2,实轴长为2,则该双曲线的标准方程是.12.(5分)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=,∠F1PF2的大小为.13.(5分)过点(0,﹣4)且与直线y=4相切的圆的圆心轨迹方程是.14.(5分)已知椭圆+=1(a>b>0)的右焦点为F,斜率为1的直线过F且交椭圆于A、B两点,若+与=(3,﹣1)共线,则此椭圆的离心率为.三、解答题(本大题共3小题,每小题10分,共30分.)15.(10分)已知椭圆C的中心在坐标原点,长轴在x轴上,离心率为,且C上一点到C的两个焦点的距离之和为4.(1)求椭圆C的方程;(2)已知斜率为的直线l与C相切,求直线l的方程.16.(10分)若抛物线C:y2=2px的焦点在直线l:2x+y﹣2=0上.(1)求抛物线C的方程;(2)求直线l被抛物线C所截的弦长.17.(10分)已知椭圆C:(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.一、选择题(本大题共3小题,每小题5分,共15分.)18.(5分)命题p:∃t∈R,使得直线x﹣y+t=0与圆x2+y2=1相交;命题q:∀m>0,双曲线﹣=1的离心率为.则下面结论正确的是()A.p是假命题B.¬q是真命题C.p∧q是假命题D.p∧q是真命题19.(5分)设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF (O为坐标原点)的面积为4,则抛物线方程为()A.y2=±4x B.y2=4x C.y2=±8x D.y2=8x20.(5分)过抛物线C:y=ax2(a>0)的焦点F作直线交C于P,Q两点,若线段PF与QF 的长度分别为m,n,则m2+n2的最小值为()A.B.2a2C.a2D.二、填空题(本大题共3小题,每小题5分,共15分.)21.(5分)经过点A(3,1)作直线l,它与双曲线﹣y2=1只有一个公共点,这样的直线l有条.22.(5分)曲线的极坐标方程ρ=sinθ﹣cosθ化为直角坐标方程为.23.(5分)抛物线y=﹣x2+3上存在关于直线y=x对称的相异两点A,B,则|AB|等于.三、解答题(本大题共2小题,每小题10分,共20分.)24.(10分)已知椭圆C:+=1(a>b>0)经过点(1,),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线y=k(x﹣1)(k≠0)与椭圆C交于A,B两点,点M是椭圆C的右顶点.直线AM 与直线BM分别与y轴交于点P,Q,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.25.(10分)设椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于表中:x 3 ﹣2 4y ﹣20 ﹣4 ﹣(1)求C1、C2的标准方程;(2)设直线l与椭圆C1交于不同两点M、N,且,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,说明理由.数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.)1.(5分)抛物线y2=﹣8x的准线方程为()A.x=2 B.x=﹣2 C.y=2 D.y=﹣2考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:抛物线y2=﹣8x的开口向左,2p=8,从而可得抛物线y2=﹣8x的准线方程.解答:解:抛物线y2=﹣8x的开口向左,2p=8,∴抛物线y2=﹣8x的准线方程为x==2故选A.点评:本题考查抛物线的性质,考查学生的计算能力,属于基础题.2.(5分)双曲线﹣y2=1的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出双曲线﹣y2=1的a,b,由双曲线﹣=1的渐近线方程为y=x,即可得到.解答:解:双曲线﹣y2=1的a=,b=1,由双曲线﹣=1的渐近线方程为y=x,则所求渐近线方程为y=±x.故选D.点评:本题考查双曲线的方程和性质,考查渐近线方程的求法,考查运算能力,属于基础题.3.(5分)已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()A.B.C.D.考点:点的极坐标和直角坐标的互化.专题:计算题.分析:由于和是终边相同的角,故点M的极坐标也可表示为.解答:解:点M的极坐标为,由于和是终边相同的角,故点M的坐标也可表示为,故选D.点评:本题考查点的极坐标、终边相同的角的表示方法,是一道基础题.4.(5分)“m<8”是“方程﹣=1表示双曲线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:圆锥曲线的定义、性质与方程;简易逻辑.分析:根据双曲线的定义以及充分条件和必要条件的定义进行判断即可得到结论.解答:解:若方程﹣=1表示双曲线,则(m﹣10)(m﹣8)>0,即m>10或m<8.∴“m<8”是“方程﹣=1表示双曲线”的充分而不必要条件,故选:A.点评:本题主要考查充分条件和必要条件的判断,利用双曲线的定义求出m的取值范围是解决本题的关键,比较基础.5.(5分)若椭圆+=1(a>b>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=1考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先根据抛物线的方程求得焦点坐标,进而求得椭圆的半焦距c,根据椭圆的离心率求得a,最后根据a和c的关系求得b.解答:解:抛物线y2=8x,∴p=4,焦点坐标为(2,0),∵椭圆的右焦点与抛物线y2=8x的焦点相同,∴椭圆的半焦距c=2,即a2﹣b2=4,∵e==,∴a=4,b==2,∴椭圆的标准方程为+=1,故选:B.点评:本题主要考查了椭圆的标准方程的问题.同时考查抛物线的方程和性质,要熟练掌握椭圆方程中a,b和c的关系,求椭圆的方程时才能做到游刃有余.6.(5分)设椭圆C:+=1(a>b>0)两个焦点分别为F1,F2,若C上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则椭圆C的离心率等于()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:据|PF1|:|F1F2|:|PF2|=4:3:2,不妨设|PF1|=4m,|F1F2|=3m,|PF2|=2m,再进行分类讨论,确定曲线的类型,从而求出曲线r的离心率.解答:解:根据|PF1|:|F1F2|:|PF2|=4:3:2,不妨设|PF1|=4m,|F1F2|=3m,|PF2|=2m,∴|PF1|+|PF2|=6m>|F1F2|=3m,此时曲线为椭圆,且曲线r的离心率等于=.故选:A.点评:本题主要考查了圆锥曲线的共同特征.关键是利用圆锥曲线的定义来解决.属于基础题,7.(5分)已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点,则|PA|+|PM|的最小值是()A.5B.C.4D.AD考点:抛物线的定义.专题:计算题.分析:先根据抛物线的方程求得焦点坐标和准线方程,延长PM交准线于H点推断出|PA|=|PH|,进而表示出|PM|,问题转化为求PF|+|PA|的最小值,由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,直线FA与抛物线交于P0点,可得P0,分析出当P重合于P0时,|PF|+|PA|可取得最小值,进而求得|FA|,则|PA|+|PM|的最小值可得.解答:解:依题意可知焦点F(,0),准线x=﹣,延长PM交准线于H点.则|PF|=|PH|.|PM|=|PH|﹣=|PF|﹣,|PM|+|PA|=|PF|+|PA|﹣,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,),另一交点(﹣,)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=.则所求为|PM|+|PA|==.故选B.点评:本题主要考查了抛物线的简单性质.考查了考生分析问题的能力,数形结合的思想的运用.8.(5分)若有两个焦点F1,F2的圆锥曲线上存在点P,使|PF1|=3|PF2|成立,则称该圆锥曲线上存在“α”点,现给出四个圆锥曲线:①﹣=1 ②x2﹣=1 ③+=1④+=1,其中存在“α”点的圆锥曲线有()A.①③B.①④C.②③D.②④考点:双曲线的简单性质;椭圆的简单性质.专题:计算题;阅读型;圆锥曲线的定义、性质与方程.分析:分别求出曲线①②③④的焦点坐标,设出P(x,y),运用两点的距离公式化简整理得到P的轨迹方程,联立曲线方程,消去y,解关于x的方程,注意曲线的范围,判断即可得到.解答:解:对于①,﹣=1的焦点F1(﹣4,0),F2(4,0),设P(x,y),则由|PF1|=3|PF2|可得(x+4)2+y2=9,化简得x2+y2﹣10x+16=0,代入双曲线的方程,消去y,得3x2﹣(10x﹣16﹣x2)=12,即为2x2﹣5x+2=0,解得x=2或,由双曲线的范围可得x≥2,故存在P,则①正确;对于②,x2﹣=1的焦点F1(﹣4,0),F2(4,0),则P(x,y)的轨迹方程为x2+y2﹣10x+16=0,代入双曲线的方程,消去y,得15x2﹣(10x﹣16﹣x2)=15,即为16x2﹣10x+1=0,解得x=或,由双曲线的范围为x≥1,故不存在点P,则②不正确;对于③,+=1的焦点F1(﹣,0),F2(,0),设P(x,y),则由|PF1|=3|PF2|可得(x+)2+y2=9,化简得x2+y2﹣x+2=0,代入椭圆方程,消去y得2x2﹣x+81=0,可得判别式大于0,两根之积为>9,由椭圆的范围可得|x|≤3,故不存在P,则③不正确;对于④,+=1的焦点F1(﹣2,0),F2(2,0),设P(x,y),则由|PF1|=3|PF2|可得(x+2)2+y2=9,化简得x2+y2﹣5x+8=0,代入椭圆方程,消去y得2x2﹣15x+36=0,可得x=6或,由椭圆的范围可得|x|,即有x=成立,故存在P,则④正确.故选B.点评:本题考查椭圆和双曲线的方程和性质,考查轨迹方程的求法,注意联立方程求解时,别忽视圆锥曲线的范围,具有一定的运算量,属于中档题和易错题.二、填空题(本大题共6小题,每小题5分,共30分.)9.(5分)抛物线y2=4x的焦点到准线的距离是2.考点:抛物线的简单性质.专题:计算题.分析:根据抛物线的方程求得抛物线的焦点坐标和准线的方程,进而利用点到直线的距离求得焦点到准线的距离.解答:解:根据题意可知焦点F(1,0),准线方程x=﹣1,∴焦点到准线的距离是1+1=2故答案为2.点评:本题主要考查了抛物线的简单性质.考查了学生对抛物线标准方程的理解和运用.属基础题.10.(5分)命题“∃x∈R,x2+x﹣8>0”的否定为∀x∈R,x2+x﹣8≤0.考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题写出结果即可.解答:解:因为特称命题的否定是全称命题.所以,命题“∃x∈R,x2+x﹣8>0”的否定为:∀x∈R,x2+x﹣8≤0.故答案为:∀x∈R,x2+x﹣8≤0.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.11.(5分)已知双曲线的中心在原点,焦距为2,实轴长为2,则该双曲线的标准方程是x2﹣y2=1或y2﹣x2=1.考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知得,由此能求出双曲线方程.解答:解:由已知得,解得a=1,c=,∴b==1,∴当焦点在x轴时,双曲线方程为x2﹣y2=1.当焦点在y轴时,双曲线方程为y2﹣x2=1.故答案为:x2﹣y2=1或y2﹣x2=1.点评:本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线简单性质的合理运用.12.(5分)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=2,∠F1PF2的大小为120°.考点:椭圆的简单性质.专题:计算题;压轴题.分析:第一问用定义法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二问如图所示:角所在三角形三边已求得,用余弦定理求解.解答:解:∵|PF1|+|PF2|=2a=6,∴|PF2|=6﹣|PF1|=2.在△F1PF2中,cos∠F1PF2===﹣,∴∠F1PF2=120°.故答案为:2;120°点评:本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,难度不大,考查灵活,特别是对曲线的定义和性质考查的很到位.13.(5分)过点(0,﹣4)且与直线y=4相切的圆的圆心轨迹方程是x2=﹣16y.考点:轨迹方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:先设出动圆圆心的坐标,根据题意可知圆心到定点(0,﹣4)到直线y=4的距离都等于半径,进而利用抛物线的定义可求得x和y的关系式.解答:解:设动圆圆心坐标为(x,y)∵动圆过定点(0,﹣4)且与直线y=4相切,∴圆心到定点(0,﹣4)到直线y=4的距离都等于半径,∴根据抛物线的定义可知动圆圆心的轨迹方程是x2=﹣16y故答案为:x2=﹣16y点评:本题考查轨迹方程,利用抛物线的定义来求轨迹方程是关键.14.(5分)已知椭圆+=1(a>b>0)的右焦点为F,斜率为1的直线过F且交椭圆于A、B两点,若+与=(3,﹣1)共线,则此椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率.解答:解:设椭圆方程为,则直线AB的方程为y=x﹣c,代入椭圆方程的,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,∵+=(x1+x2,y1+y2),与=(3,﹣1)共线∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴x1+x2=c,∴= c∴a2=3b2.∴c==a,故离心率e==.故答案为:.点评:考查向量共线为圆锥曲线提供已知条件;处理直线与圆锥曲线位置关系常用的方法是直线与圆锥曲线方程联立用韦达定理.三、解答题(本大题共3小题,每小题10分,共30分.)15.(10分)已知椭圆C的中心在坐标原点,长轴在x轴上,离心率为,且C上一点到C的两个焦点的距离之和为4.(1)求椭圆C的方程;(2)已知斜率为的直线l与C相切,求直线l的方程.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆C的标准方程为,由离心率公式和a,bc的关系和椭圆的定义,得到方程组,解得a,b,即可得到椭圆方程;(2)设直线为y=,则由题意得,根据直线与曲线相切得△=0,求得直线.解答:解:(1)设椭圆C的标准方程为,由题意解得a=2,b=1.所以椭圆C的标准方程(2)设直线为y=,则由题意得得2x2+4mx+4m2﹣4=0△=16m2﹣8(4m2﹣4)=0解得m=故直线方程为.点评:本题主要考查椭圆方程的求法,和直线与圆锥曲线的综合问题,属于中档题目.16.(10分)若抛物线C:y2=2px的焦点在直线l:2x+y﹣2=0上.(1)求抛物线C的方程;(2)求直线l被抛物线C所截的弦长.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求出抛物线的焦点坐标,代入即可求得p=2,进而得到抛物线的方程;(2)联立直线和抛物线方程,运用韦达定理,结合抛物线的定义,即可求得弦长.解答:解:(1)抛物线C:y2=2px的焦点为(,0),由题意可得,p﹣2=0,解得p=2,即有抛物线方程为y2=4x;(2)由直线2x+y﹣2=0和抛物线y2=4x,消去y,可得x2﹣3x+1=0,设A(x1,y1),B(x2,y2),即有x1+x2=3,由抛物线的定义可得|AB|=x1+x2+p=3+2=5.则直线l被抛物线C所截的弦长为5.点评:本题考查抛物线的定义、方程和性质,主要考查定义法的运用,同时考查直线方程和抛物线方程联立,运用韦达定理,属于中档题.17.(10分)已知椭圆C:(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;圆锥曲线中的最值与范围问题.分析:(Ⅰ)由离心率为,即可得a2=2b2,从而C:,再把点代入椭圆方程即可求得b2,进而得到a2.(Ⅱ)由(Ⅰ)写出焦点F1,F2的坐标,设直线MN的方程为y=k(x+2),由直线MN与直线PQ互相垂直得直线PQ的方程为,设M(x1,y1),N(x2,y2).联立直线MN与椭圆方程消掉y得x的二次方程,由韦达定理及弦长公式可用k表示|MN|,同理可表示出|PQ|,计算即可得到为定值.解答:(Ⅰ)解:由已知,得.所以a2=2b2.所以C:,即x2+2y2=2b2.因为椭圆C过点,所以,得b2=4,a2=8.所以椭圆C的方程为.(Ⅱ)证明:由(Ⅰ)知椭圆C的焦点坐标为F1(﹣2,0),F2(2,0).根据题意,可设直线MN的方程为y=k(x+2),由于直线MN与直线PQ互相垂直,则直线PQ的方程为.设M(x1,y1),N(x2,y2).由方程组消y得(2k2+1)x2+8k2x+8k2﹣8=0.则,.所以|MN|===.同理可得|PQ|=.所以==.点评:本题考查直线与圆锥曲线的综合问题及椭圆方程的求解,韦达定理及弦长公式是解决该类题目的基础,应熟练掌握.一、选择题(本大题共3小题,每小题5分,共15分.)18.(5分)命题p:∃t∈R,使得直线x﹣y+t=0与圆x2+y2=1相交;命题q:∀m>0,双曲线﹣=1的离心率为.则下面结论正确的是()A.p是假命题B.¬q是真命题C.p∧q是假命题D.p∧q是真命题考点:复合命题的真假.专题:简易逻辑.分析:根据直线与圆的位置关系判断出命题p的真假,根据双曲线的性质判断出命题q的真假,进而得到答案.解答:解:由得:2x2+2tx+t2﹣1=0,△=﹣4t2+8,∃t∈R,使得判别式△≥0,故命题p是真命题;∵双曲线﹣=1中a=b=|m|=m,∴c=m,∴e==,故命题q为真命题.故p∧q是真命题,故选:D.点评:本题考查了直线与圆的位置关系以及双曲线的性质,考查了复合命题的判断,是一道基础题.19.(5分)设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF (O为坐标原点)的面积为4,则抛物线方程为()A.y2=±4x B.y2=4x C.y2=±8x D.y2=8x考点:抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先根据抛物线方程表示出F的坐标,进而根据点斜式表示出直线l的方程,求得A的坐标,进而利用三角形面积公式表示出三角形的面积建立等式取得a,则抛物线的方程可得.解答:解:抛物线y2=ax(a≠0)的焦点F坐标为,则直线l的方程为,它与y轴的交点为A,所以△OAF的面积为,解得a=±8.所以抛物线方程为y2=±8x,故选C.点评:本题主要考查了抛物线的标准方程,点斜式求直线方程等.考查学生的数形结合的思想的运用和基础知识的灵活运用.20.(5分)过抛物线C:y=ax2(a>0)的焦点F作直线交C于P,Q两点,若线段PF与QF 的长度分别为m,n,则m2+n2的最小值为()A.B.2a2C.a2D.考点:抛物线的简单性质.专题:不等式的解法及应用;圆锥曲线的定义、性质与方程.分析:求出抛物线的焦点和准线方程,设出直线PQ的方程,代入抛物线方程,运用韦达定理,结合抛物线的定义,求得m,n的式子,以及m+n,mn的关系式,运用配方,即可得到最小值.解答:解:抛物线C:y=ax2(a>0)的焦点F(0,),准线方程为y=﹣,设PQ直线方程是y=kx+,则x1,x2是方程ax2﹣kx﹣的两根,可设x1>0,x2<0,P(x1,ax12),Q(x2,ax22),x1+x2=,x1x2=﹣,由抛物线的定义可得m=ax12+,n=ax22+,m+n=a(x1+x2)2﹣2ax1x2+=+,mn=a2x12x22++(x12+x22)=++×=,则m2+n2=(m+n)2﹣2mn=﹣=≥,当且仅当k=0,取得最小值,且为.故选:D.点评:本题考查抛物线的定义、方程和性质,主要考查直线和抛物线方程联立,运用韦达定理,具有一定的运算量,属于中档题和易错题.二、填空题(本大题共3小题,每小题5分,共15分.)21.(5分)经过点A(3,1)作直线l,它与双曲线﹣y2=1只有一个公共点,这样的直线l有2条.考点:双曲线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:分为两类考虑:直线的斜率不存在;与渐近线平行的直线,即可得到结论.解答:解:①当直线l的斜率不存在时,直线的方程为x=3,直线与双曲线相切,满足题意;②因为a=3,b=1,所以双曲线的渐近线方程为y=x,则A在渐近线y=x上,可作出一条与渐近线y=﹣x平行的直线,即与双曲线只有一个交点;故满足条件的直线共有2条.故答案为:2.点评:本题考查了直线与双曲线有一个公共点的情况,做题时极容易丢平行渐近线的情况,做题时一定要细心.属于基础题型.22.(5分)曲线的极坐标方程ρ=sinθ﹣cosθ化为直角坐标方程为x2+y2+x﹣y=0.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:直接利用x2+y2=ρ2,ρsinθ=y,ρcosθ=x把曲线的极坐标方程转化成直角坐标方程.解答:解:由于曲线的极坐标方程ρ=sinθ﹣cosθ,所以:ρ2=ρsinθ﹣ρcosθ由于:x2+y2=ρ2,ρsinθ=y,ρcosθ=x所以曲线的直角坐标方程为:x2+y2=y﹣x即:x2+y2+x﹣y=0故答案为:x2+y2+x﹣y=0点评:本题考查的知识要点:曲线的极坐标方程与直角坐标方程的转化,属于基础题型.23.(5分)抛物线y=﹣x2+3上存在关于直线y=x对称的相异两点A,B,则|AB|等于3.考点:二次函数的性质.专题:函数的性质及应用.分析:设AB的方程为y=x+b,代入抛物线y=﹣x2+3化简利用根与系数的关系可得x1+x2=﹣1,x1•x2=b﹣3,根据AB的中点(﹣,﹣+b)在直线x+y=0上,求出b值,由|AB|=•求得结果.解答:解:由题意可得,可设AB的方程为y=x+b,代入抛物线y=﹣x2+3化简可得x2+x+b﹣3=0,∴x1+x2=﹣1,x1•x2=b﹣3,故AB的中点为(﹣,﹣+b),根据中点在直线x+y=0上,∴﹣+(﹣+b)=0,∴b=1,故x1•x2=﹣2,∴|AB|=•=3,故答案为:3.点评:本题考查直线和圆的位置关系,一元二次方程根与系数的关系,弦长公式的应用,求得x1+x2=﹣1,x1•x2=﹣2,是解题的关键.三、解答题(本大题共2小题,每小题10分,共20分.)24.(10分)已知椭圆C:+=1(a>b>0)经过点(1,),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线y=k(x﹣1)(k≠0)与椭圆C交于A,B两点,点M是椭圆C的右顶点.直线AM 与直线BM分别与y轴交于点P,Q,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆C:+=1(a>b>0)经过点(1,),离心率为,建立方程组,即可求椭圆C的方程;(Ⅱ)直线y=k(x﹣1)(k≠0)代入椭圆方程,求出P,Q的坐标,利用以线段PQ为直径的圆过x轴上的定点N(x0,0),则等价于=0恒成立,即可得出结论.解答:解:(Ⅰ)由题意得,解得a=2,b=1.所以椭圆C的方程是.…(4分)(Ⅱ)以线段PQ为直径的圆过x轴上的定点.直线y=k(x﹣1)(k≠0)代入椭圆可得(1+4k2)x2﹣8k2x+4k2﹣4=0.设A(x1,y1),B(x2,y2),则有x1+x2=,x1x2=.又因为点M是椭圆C的右顶点,所以点M(2,0).由题意可知直线AM的方程为y=(x﹣2),故点P(0,﹣).直线BM的方程为y=(x﹣2),故点Q(0,﹣).若以线段PQ为直径的圆过x轴上的定点N(x0,0),则等价于=0恒成立.又因为=(x0,),=(x0,),所以•=x02+•=0恒成立.又因为(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=,y1y2=k(x1﹣1)(x2﹣1)=,所以x02+•=﹣3=﹣0.解得x0=.故以线段PQ为直径的圆过x轴上的定点(,0).…(14分)点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查恒过定点问题,综合性强.25.(10分)设椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于表中:x 3 ﹣2 4y ﹣20 ﹣4 ﹣(1)求C1、C2的标准方程;(2)设直线l与椭圆C1交于不同两点M、N,且,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:(1)设抛物线C2:y2=2px(p≠0),由题意知C2:y2=4x(2分).设,把点(﹣2,0)(,)代入得解得,由此可知C1的方程.(2)假设存在这样的直线l过抛物线焦点F(1,0),设其方程为x﹣1=my,设M(x1,y1),N(x2,y2),由.得x1x2+y1y2=0.由消去x,得(m2+4)y2+2my﹣3=0,然后由根的判别式和根与系数的关系可知假设成立,即存在直线l过抛物线焦点Fl的方程为:2x±y﹣2=0.解答:解:(1)设抛物线C2:y2=2px(p≠0),则有,据此验证5个点知只有(3,)、(4,﹣4)在统一抛物线上,易求C2:y2=4x(2分)设,把点(﹣2,0)(,)代入得解得∴C1方程为(5分)(2)假设存在这样的直线l过抛物线焦点F(1,0)设其方程为x﹣1=my,设M(x1,y1),N(x2,y2),由.得x1x2+y1y2=0(*)(7分)由消去x,得(m2+4)y2+2my﹣3=0,△=16m2+48>0∴①x1x2=(1+my1)(1+my2)=1+m(y1+y2)+m2y1y2;百度文库,精选习题=②(9分)将①②代入(*)式,得解得(11分),∴假设成立,即存在直线l过抛物线焦点Fl的方程为:2x±y﹣2=0(12分)点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.试题习题,尽在百度。
北京市2019届高三数学(理科)综合练习25 含答案
北京市2017届高三综合练习数学(理)一、选择题1. 已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n S 为{}n a 的前n 项和,则2. 已知对称轴为坐标轴的双曲线的渐近线方程为)0,0(,>>±=b a x ay ,若双曲线上有一点()00,M x y ,使||||00x b y a >,那双曲线的焦点( ).A .在x 轴上B .在y 轴上C .当b a >时在x 轴上D .当b a <时在y 轴上3. a 是实常数,函数()f x 对于任何的非零实数x 都有1式()0f x x -≥的解集为( )4. 已知)0,(),0,(21c F c F -为椭圆12222=+by a x 的两个焦点,P 为椭圆上一点且221c PF PF =⋅,则此椭圆离心率的取值范围是 ( )A .B .11[,]32C .D .二、填空题5. 过双曲线2212y x -=的右焦点作直线交双曲线于,A B 两点,且4AB =,则这样的直线有6.设11log )(2+-=x x x f ,∙∈-++=N n nn f n f n f a n ),1()2()1( ,则2011a = . 7.已知2n a n n λ=+,且1n n a a +>对一切正整数n 恒成立,则λ的取值范围 .8. 设n S 是数列{}n a 的前n 项和,若2(*)nnS n N S ∈是非零常数,则称数列{}n a 为“和等比数列”.(1)若数列{2}n b 是首项为2 ,公比为4的等比数列,则数列{}n b (填“是”或“不是”) “和等比数列”;(2)若数列{}n c 是首项为1c ,公差为(0)d d ≠的等差数列,且数列{}n c 是“和等比数列”,则d 与1c 之间满足的关系为三、解答题9.对于函数()f x 和)(x g ,若存在常数,k m ,对于任意x R ∈,不等式)()(x g m kx x f ≥+≥都成立,则称直线y kx m =+是函数)(),(x g x f 的分界线. 已知函数()(1)(x f x e ax e =+为自然对数的底,a R ∈为常数). (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设1a =,试探究函数()f x 与函数2()21g x x x =-++是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.10. 已知点列()0,n n x A 满足:0111n n A A A A a +⋅=-,其中N n ∈,又已知10-=x ,111>=a x ,.(1)若()()*+∈=N n x f x n n 1,求()x f 的表达式; (2)已知点)B,记()*∈=N n BA a n n ,且n n a a <+1成立,试求a 的取值范围;(3)设(2)中的数列{}n a 的前n 项和为n S ,试求:n S <.11.已知抛物线C :24x y =的焦点为F ,过点F 作直线l 交抛物线C 于A 、B 两点;椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =. (1)求椭圆E 的方程;(2)经过A 、B 两点分别作抛物线C 的切线1l 、2l ,切线1l 与2l 相交于点M .证明:MF AB ⊥;(3) 椭圆E 上是否存在一点M ',经过点M '作抛物线C 的两条切线MA ''、MB''(A '、B '为切点),使得直线A B ''过点F ?若存在,求出抛物线C 与切线MA''、MB ''所围成图形的面积;若不存在,试说明理由.一、选择题1、B2、B3、A4、C二、填空题5、36、20107、3λ>-8、是,12d c =三、解答题9.解:(1)()()'1xf x eax a =++, …………2分当0a >时,()'01f x ax a >⇔>--,即11x a>--, 函数()f x 在区间11,a ⎛⎫--+∞ ⎪⎝⎭上是增函数, 在区间1,1a ⎛⎫-∞--⎪⎝⎭上是减函数;………3分 当0a =时,()'0f x >,函数()f x 是区间(),-∞+∞上的增函数; …………5分 当0a <时,()'01f x ax a >⇔>--即11x a<--,函数()f x 在区间1,1a ⎛⎫-∞--⎪⎝⎭上是增函数,在区间11,a ⎛⎫--+∞ ⎪⎝⎭上是减函数.…7分 (2)若存在,则()2121x e x kx m x x +≥+≥-++恒成立,令0x =,则11m ≥≥,所以1m =, …………9分 因此:2121kx x x +≥-++恒成立,即()220x k x +-≥恒成立,由≤△0得到:2k =,现在只要判断()121x e x x +≥+是否恒成立, ………… 11分 设()()()121x x e x x φ=+-+,因为:()()'22x x e x φ=+-, 当0x >时,1,22x e x >+>,()'0x φ>, 当0x <时,()222xx ex e +<<,()'0x φ<,所以()()00x φφ≥=,即()121xe x x +≥+恒成立,所以函数()f x 与函数()221g x x x =-++存在“分界线”. ………… 14分 10. (1)∵)0,1(0-A ,)0,1(1A ,∴)1)(1(1110-+=⋅++n n n n x x A A A A ,∴1)1)(1(1-=-++a x x n n ,∴1)(1++==+n n n n x ax x f x , ∴1)(++=x ax x f . ………………3分(2)∵)0,(a x BA n n -=,∴a x BA a n n n -==.∵a x f a x a n n n -=-=++)(11n n n n n n a a a x a a x x a a x a x )1()1(1)1(1-=-⋅-<-⋅+-=-++=∴要使n n a a <+1成立,只要11≤-a ,即41≤<a∴]4,1(∈a 为所求. ………………6分 (3)∵…)1()1(121<-⋅-<--<-+a x a a x a a n n n 11)1()1(+-=-⋅-<n na a x a ,∴n n a a )1(-< ………………9分∴212(1)(1)(1)n n n S a a a a a a =+++<-+-++-[]aa a n---⋅-=2)1(1)1( ………………11分∵41≤<a ,∴110≤-<a ,∴1)1(0≤-<n a ………13分 ∴aa S n --<21………………14分11. 解:(1)设椭圆E 的方程为 22221(0)x y a b a b+=>>,半焦距为c .由已知条件,得)1,0(F , ∴⎪⎪⎩⎪⎪⎨⎧+===222231c b a a cb解得 1,2==b a .所以椭圆E 的方程为:1422=+y x . …………4分(2)显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不合题意, 故可设直线l 的方程为 1+=kx y ,112212(,),(,)()A x y B x y x x ≠,由⎩⎨⎧=+=yx kx y 412 消去y 并整理得 2440x kx --=,∴ 421-=x x . …………5分∵抛物线C 的方程为241x y =,求导得12y x '=,∴过抛物线C 上A 、B 两点的切线方程分别是)(21111x x x y y -=-, )(21222x x x y y -=-, 即 2114121x x x y -= , 2224121x x x y -=,解得两条切线1l 、2l 的交点M 的坐标为)4,2(2121x x x x +,即)1,2(21-+x x M ,……7分 ∴122121(,2)(,)2x x FM AB x x y y +⋅=-⋅--0)4141(2)(2121222122=---=x x x x ∴MF AB ⊥. …………8分.(3)假设存在点M '满足题意,由(2)知点M '必在直线1-=y 上,又直线1-=y 与椭圆E 有唯一交点,故M '的坐标为)1,0(-'M ,设过点M '且与抛物线C 相切的切线方程为:)(21000x x x y y -=-,其中点),(00y x 为切点.令1,0-==y x 得,)0(214110020x x x -=--, 解得20=x 或20-=x , (10)分故不妨取)1,2(),1,2(B A '-',即直线B A ''过点F .综上所述,椭圆E 上存在一点)1,0(-'M ,经过点M '作抛物线C 的两条切线A M ''、B M '' (A '、B '为切点),能使直线B A ''过点F .此时,两切线的方程分别为1y x =--和1-=x y . …………11分 抛物线C 与切线A M ''、B M ''所围成图形的面积为222320011142(1)2()41223S x x dx x x x ⎡⎤=--=-+=⎢⎥⎣⎦⎰ . …………13分。
北京市2019届高三数学(理科)综合练习32 含答案
北京市2017届高三综合练习数学(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}2|4A x x =∈<N ,{}2|230B x x x =∈--<R ,则A B =( )、A .{}101-,,B .{}01,C .{}|12x x -<<D .{}|23x x -<<2. 已知复数z 满足()12z i ⋅-=,其中i 为虚数单位,则z =( )A .1i +B .1i -C .1i -+D .1i -- 3.一个几何体的三视图如下,其中主视图和俯视图都是边长为2的正方形,则该几何体的体积是( )A .4B .8C .43D .834.已知向量a b ,满足1a b a b ==+=,则向量a b ,夹角的余弦值为( ) A .12 B .12-CD .5.已知数列{}n a 是等差数列,38a =,44a =,则前n 项和n S 中最大的是( )A .3SB .4S 或5SC .5S 或6SD .6S6.已知双曲线()2222100x y a b a b-=>>,的渐近线方程为2y x =±,则其离心率为()ABCD.5或7.已知x y ,满足()2221x y x y y a x ⎧-⎪+⎨⎪-⎩≥≤≥,且z x y =+能取到最小值,则实数a 的取值范围是( )A .1a <-B .2a ≥C .12a -<≤D .1a <-或2a ≥8.已知函数:①()12f x x =,②()πsin2x f x =,③()1ln 12f x x =+.则以下四个命题对已知的三个函数都能成立的是( )命题():1p f x +是偶函数; 命题():1q f x +在()01,上是增函数; 命题():r f x 恒过定点()11,; 命题11:22s f ⎛⎫> ⎪⎝⎭.A .命题p 、qB .命题q 、rC .命题r 、sD .命题s 、p第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分,把答案填写在题中横线上.9. 51x ⎫⎪⎭的二项展开式中x 项的系数为 .10.已知直线():12l y k x =++,圆2cos 1:2sin x C y θθ=+⎧⎨=⎩,则圆心C 的坐标是 ;若直线l 与圆C 有公共点,则实数k 的取值范围是 .11.如图,已知PAB 是O ⊙的割线,点C 是PB 的中点,且PA AC =,PT 是O ⊙的切线,TC 交O ⊙于点D ,8TC =,7CD =,则PT 的长为 .12.如图所示程序图运行的结果是 .13.一艘轮船在江中向正东方向航行,在点P 观测到灯塔A B ,在一直线上,并与航线成30︒角.轮船沿航线前进1000米到达C 处,此时观测到灯塔A 在北偏西45︒方向,灯塔B 在北偏东15︒方向.则此时轮船到灯塔B 的距离CB 为 米.14.若()f x 是定义在R 上的奇函数,且对0x ∀≥,总存在正常数T ,使得()T f x +()T f x =+成立,则称()f x 满足“性质P ”.已知函数()g x 满足“性质P”,且()g x 在[]0T ,上的解析式为()2g x x =,则常数T = ;若当[]3T 3T x ∈-,时,函数()y g x kx =-恰有9个零点,则k = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15. (本小题满分13分)已知函数()22sin cos 444x x xf x =-⑴ 求函数()f x 的最大值,并写出相应的x 取值集合;⑵ 令π3f a ⎛⎫+= ⎪⎝⎭,且()0πα∈,,求tan 2α的值.16.如图所示,在四棱锥P ABCD -中,四边形ABCD 为菱形,PAD △为等边三角形,平面PAD ⊥平面ABCD ,且602DAB AB ∠=︒=,,E 为AD 的中点.⑴ 求证:AD PB ⊥;⑵ 求二面角A PD C --的余弦值;⑶ 在棱PB 上是否存在点F ,使EF ∥平面PDC ?并说明理由.17.(本小题满分13分)如图,某工厂2011年生产的A B C D ,,,四种型号的产品产量用条形图表示,现用分层抽样的方法从中抽取50件样品参加今年五月份的一个展销会.⑴ 问A B C D ,,,型号的产品各抽取了多少件?⑵ 从50件样品中随机抽取2件,求这2件产品恰好是不同型 号的产品的概率;⑶ 在50件样品中,从A C ,两种型号的产品中随机抽取3件,其中A 种型号的产品有X 件,求随机变量X 的分布列和数学期望()E X .18.(本小题满分13分)已知函数()()2121ln 12f x mx x x =-+++.⑴ 当32m =-时,求函数()f x 的极值点;⑵ 当1m ≤时,曲线():C y f x =在点()01P ,处的切线l 与C 有且只有一个公共点,求实数m 的范围.19.(本小题满分14分)已知椭圆()22122:10x y C a b a b +=>>经过点312M ⎛⎫ ⎪⎝⎭,,且其右焦点与抛物线22:4C y x =的焦点F 重合.⑴ 求椭圆1C 的方程;⑵ 直线l 经过点F 与椭圆1C 相交于A B ,两点,与抛物线2C 相交于C D ,两点.求AB CD的最大值.20.(本小题满分13分)已知集合{}12320112012S =,,,,,,设A 是S 的至少含有两个元素的子集,对于A 中任意两个不同的元素()x y x y >,,若x y -都不能...整除x y +,则称集合A 是S 的“好子集”.⑴ 分别判断数集{}2468P =,,,与{}147Q =,,是否是集合S 的“好子集”,并说明理由;⑵ 求集合S 的“好子集”A 所含元素个数的最大值;⑶ 设123m A A A A ,,,,是集合S 的m 个“好子集”,且两两互不包含,记集合i A 的元素个数为()12i k i m =,,,,求证:()1!2012!2012!mi i i k k =⋅-∑≤数学参考答案(理科)一、选择题二、填空题三、解答题15、(I )()f x 的最大值为2,相应的x 取值集合为π|4π,3x x k k ⎧⎫=+∈⎨⎬⎩⎭Z ;(II )24tan 27α=-.16、(I )略;(II )二面角A PD C --的余弦值为 (III )在棱PB 上存在点F ,使EF ∥平面PDC .17、(I )A 型号的产品10件,B 型号的产品20件,C 型号的产品5件,D 型号的产品15件;(II )这两件产品恰好是不同类型的产品的概率为57;(III )随机变量X 的分布列为18、(I )()f x 的极大值点为13x =-;(II )m 的取值范围为(]{},01-∞.19、(I )椭圆的方程为22143x y +=;(II )AB CD 的最大值为34.20、(I )P 不是S 的“好子集”;Q 是S 的“好子集”;(II )A 的最大值为671; (III )略. 提示:(II )考虑1,2a b -≠,作S 的模3同余类,可构造{}1,4,7,,2011A =即可.(III )12,,,m A A A 是S 的“好子集”的条件多余,可直接改为“子集”;考虑2012个数的全排列即可.。
西城区2019年高三数学理科试题答案
2019年北京市西城区高三统一测试 数学(理科)参考答案及评分标准 2019.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.D 4.C 5.C 6.A 7.B 8.B二、填空题:本大题共6小题,每小题5分,共30分.9.1122n --10.311. π;a 12.4313.答案不唯一,如110α=,20β= 14.32注:第11题第一问3分,第二问2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)当3m =时,由题可知 2223a c b ac +-=,由余弦定理2222cos b a c ac B =+-, ……………… 3分得2223cos 22a cb B ac +-==. ……………… 4分 这与cos [1,1]B ∈-矛盾,所以m 不可能等于3 . ……………… 6分(Ⅱ)由(Ⅰ),得 1cos 22m B ==-,所以2π3B =. ……………… 7分因为b =4c =,222a c b ac +-=-, 所以216284a a +-=-,解得6a =-(舍)或2a =. ……………… 9分在△ABC 中,由正弦定理sin sin a bA B=, ……………… 11分得sinsina BAb===………………13分16.(本小题满分14分)解:(Ⅰ)由底面ABCD为平行四边形,知//AB CD,又因为AB⊄平面CDE,CD⊂平面CDE,所以//AB平面CDE. ………………2分同理//AF平面CDE,又因为AB AF A=,所以平面//ABF平面CDE. ………………3分又因为BF⊂平面ABF,所以//BF平面CDE. ………………4分(Ⅱ)连接BD,因为平面ADEF⊥平面ABCD,平面ADEF平面ABCD AD=,D E AD⊥,所以DE⊥平面ABCD. 则D E D B⊥.又因为D E AD⊥,AD BE⊥,DE BE E=,所以AD⊥平面BDE,则AD BD⊥.故,,DA DB DE两两垂直,所以以,,DA DB DE所在的直线分别为x轴、y轴和z轴,如图建立空间直角坐标系,………………6分则(0,0,0)D,(1,0,0)A,(0,1,0)B,(1,1,0)C-,(0,0,2)E,(1,0,1)F,所以(0,1,2)BE=-,(1,0,1)EF=-,(0,1,0)=n为平面DEF的一个法向量.设平面BEF的一个法向量为(,,)x y z=m,由0BE⋅=m,0EF⋅=m,得20,0,y zx z-+=⎧⎨-=⎩令1z=,得(1,2,1)=m. ………………8分所以cos,||||⋅<>==m nm nm n.如图可得二面角B EF D--为锐角,所以二面角B EF D--(Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩……………… 12分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, ……………… 13分 解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. …… 14分17.(本小题满分13分)解:(Ⅰ)甲组10名学生阅读量的平均值为12681011121217211010+++++++++=,乙组10名学生阅读量的平均值为124412131616(10)20981010a a+++++++++++=. ……………… 2分由题意,得981010a+>,即2a <. ……………… 3分 故图中a 的取值为0或1. ……………… 4分 (Ⅱ)由图可知,甲组“阅读达人”有2人,乙组“阅读达人”有3人.由题意,随机变量X 的所有可能取值为:1,2,3. ……………… 5分且212335C C 3(1)C 10P X ⋅===,122335C C 3(2)C 5P X ⋅===, 3335C 1(3)C 10P X ===. …… 8分 所以随机变量的分布列为:……………… 9分所以3319()123105105E X =⨯+⨯+⨯=. ………………10分 X(Ⅲ)222102s s s <<. ……………… 13分18.(本小题满分13分)解:(Ⅰ)由函数()f x 是偶函数,得()()f x f x -=,即22e ()3e 3x x m x m x ---+=-+对于任意实数x 都成立,所以0m =. ……………… 2分 此时3()()3h x xf x x x ==-+,则2()33h x x '=-+.由()0h x '=,解得1x =±. ……………… 3分 当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-上单调递增. …………… 5分 所以()h x 有极小值(1)2h -=-,()h x 有极大值(1)2h =. ……………… 6分(Ⅱ)由2()e 30xf x m x =-+=,得23ex x m -=.所以“()f x 在区间[2,4]-上有两个零点”等价于“直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点”. ……………… 8分对函数()g x 求导,得223()e xx x g x -++'=. ……………… 9分由()0g x '=,解得11x =-,23x =. ……………… 10分 当x 变化时,()g x '与()g x 的变化情况如下表所示:所以()g x 在(2,1)--,(3,4)上单调递减,在(1,3)-上单调递增. …………… 11分 又因为2(2)e g -=,(1)2e g -=-,36(3)(2)e g g =<-,413(4)(1)e g g =>-,所以当4132e em -<<或36e m =时,直线y m =与曲线23()e x x g x -=,[2,4]x ∈-有且只有两个公共点. 即当4132e em -<<或36e m =时,函数()f x 在区间[2,4]-上有两个零点. ……… 13分19.(本小题满分14分)解:(Ⅰ)由题意,得244a m ==, 解得1m =. ……………… 2分所以椭圆W 方程为2214x y +=. ……………… 3分 当0n =,及直线CD ⊥x 轴时,易得(0,1)C ,(0,1)D -. 且(2,0)A -,(2,0)B . 所以||4AB =,||2CD =,显然此时四边形ACBD 为菱形,所以四边形ACBD 的面积为14242⨯⨯=. …… 5分(Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为1x =, 代入椭圆W的方程,得C,(1,D , 易得CB的方程为2)y x =-.则(4,M,(6,AM =,(3,AD =, 所以2AM AD =,即,,A D M 三点共线. ……………… 7分当直线CD 的斜率k 存在时,设CD 的方程为(1)(0)y k x k =-≠,11(,)C x y ,22(,)D x y , 联立方程22(1),1,4y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(41)8440k x k x k +-+-=. ……… 9分 由题意,得0∆>恒成立,故2122841k x x k +=+,21224441k x x k -=+. …………… 10分 直线CB 的方程为11(2)2y y x x =--. 令4x =,得112(4,)2y M x -. ……………… 11分又因为(2,0)A -,22(,)D x y , 则直线AD ,AM 的斜率分别为222AD y k x =+,113(2)AM y k x =-, …………… 12分 所以21211221123(2)(2)23(2)3(2)(2)AD AM y y y x y x k k x x x x --+-=-=+--+. 上式中的分子 211221123(2)(2)3(1)(2)(1)(2)y x y x k x x k x x --+=----+ 121225()8kx x k x x k =-++22224482584141k k k k k k k -=⨯-⨯+++ 0=, 所以0AD AM k k -=.所以,,A D M 三点共线. ……………… 14分20.(本小题满分13分) 解:(Ⅰ)答案不唯一. 如:……………… 3分(Ⅱ)假设存在10行10列的完美数表A .根据完美数表的定义,可以得到以下两个结论:(1)把完美数表的任何一列的数变为其相反数(即1+均变为1-,而1-均变为1+),得到的新数表是完美数表;(2)交换完美数表的任意两列,得到的新数表也是完美数表. ……………… 5分 完美数表A 反复经过上述两个结论的变换,前三行可以为如下形式:x 共列y 共列z 共列w 共列在这个新数表中,设前三行中的数均为1的有x 列,前三行中“第1, 2行中的数为1,且第3行中的数为-1”的有y 列,前三行中“第1, 3行中的数为1,且第2行中的数为-1”的有z 列,前三行中“第1行中的数为1,且第2, 3行中的数为-1”的有w 列(如上表所示), 则10x y z w +++= ○1由120p =,得x y z w +=+; ○2 由130p =,得x z y w +=+; ○3 由230p =,得x w y z +=+. ○4 解方程组○1,○2,○3,○4,得52x y z w ====. 这与,,,x y z w ∈N 矛盾,所以不存在10行10列的完美数表. ……………… 8分 (Ⅲ)记第1列前l 行中的数的和112111l a a a X +++=,第2列前l 行中的数的和12222la a a X +++= ,……,第n 列前l 行中的数的和12n n ln n a a a X +++=,因为对于任意的1,2,,i l =L 和1,2,,j k =L ,都有1ij a =, 所以12k X X X l ====. ……………… 9分又因为对于任意,s t (s t ¹),都有0st p =,所以22212n X X X ln +++=. ……………… 11分又因为22222221212n k X X X X X X l k ++++++=≥,所以2ln l k ≥,即kl n ≤. ……………… 13分。
北京市2019届高三数学(理科)综合练习16 含答案
北京市2017届高三综合练习数学(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)若a ,b ∈R ,i 是虚数单位,且(2)i 1i a b +-=+,则a b +的值为(A )1 (B )2 (C )3 (D )4(2)若集合},0{2m A =,}2,1{=B ,则“1=m ”是“}2,1,0{=B A ”的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(3)若实数x ,y 满足不等式组1,2,0,y x y x y +≤⎧⎪-≤⎨⎪≥⎩则y x z 2-=的最小值为(A )27-(B ) 2- (C )1 (D ) 25(4)右图给出的是计算1001...81614121+++++的一个程序框图, 其中判断框内应填入的条件是(A )50<i (B )50>i (C )25<i (D ) 25>i(5)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起, 那么不同的停放方法的种数为 (A )16 (B )18 (C )24 (D )32(6)已知x ,y ,z ∈R ,若1-,x ,y ,z ,3-成等比数列,则xyz 的值为 C (A )3- (B )3± (C)-(D)±(7)在直角梯形ABCD 中,已知BC ∥AD ,AB AD ⊥,4AB =,2BC =,4AD =,若P 为CD 的8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲中点,则PA PB ⋅的值为(A )5- (B )4- (C )4 (D )5(8)已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是(A )(),1-∞ (B )(],1-∞ (C )()0,1 (D )[)0,+∞第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分. (9)命题“000(0,),tan sin 2x x x π∃∈>”的否定是 .(10)在极坐标系中,圆2=ρ的圆心到直线cos sin 2ρθρθ+=的距离为 . (11)在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是 组.(12)如图,AB 是⊙O 的直径,直线DE 切⊙O 于点D ,且与AB 延长线交于点C ,若CD =1CB =,则ADE ∠= .(13)抛物线2y x =的准线方程为 ;经过此抛物线的焦点是和点(1,1)M ,且 与准线相切的圆共有 个.(14)如图,在边长为3的正方形ABCD 中,点M 在AD 上,正方形ABCD 以轴逆时针旋转θ角)3π(0≤≤θ到11AB C D 的位置 ,同时点M 沿着AD 从点A 运动到点D ,11MN DC =,点Q 在1MN 上,在运动过程中点Q 始终满足QM 1cos =θ,记点Q 在面ABCD 上的射影为0Q ,则在运动过程中向量0BQ 与切的最大值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)已知函数22()(sin2cos2)2sin 2f x x x x =+-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度,再向上平移1个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值. (16)(本小题共13分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列; (Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.(17)(本小题共13分)如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使二面角1A EF B --成直二面角,连结1A B ,1A P .(如图2) (Ⅰ)求证:E A 1⊥平面BEP ;(Ⅱ)求直线E A 1与平面BP A 1所成角的大小.图1 图2(18)(本小题共14分)已知函数221()2e 3e ln 2f x x x x b =+--在0(,0)x 处的切线斜率为零. (Ⅰ)求0x 和b 的值;(Ⅱ)求证:在定义域内()0f x ≥恒成立; (Ⅲ) 若函数()()aF x f x x'=+有最小值m ,且2e m >,求实数a 的取值范围.(19)(本小题共13分)已知椭圆C :()222210x y a b a b+=>>的离心率是12,其左、右顶点分别为1A ,2A ,B为短轴的端点,△12A BA 的面积为 (Ⅰ)求椭圆C 的方程;(Ⅱ)2F 为椭圆C 的右焦点,若点P 是椭圆C 上异于1A ,2A 的任意一点,直线1AP ,2A P 与直线4x =分别交于M ,N 两点,证明:以MN 为直径的圆与直线2PF 相切于点2F .(20)(本小题共14分)若对于正整数k ,()g k 表示k 的最大奇数因数,例如(3)3g =,(10)5g =.设(1)(2)(3)(4)(2)n n S g g g g g =+++++.(Ⅰ)求(6)g ,(20)g 的值; (Ⅱ)求1S ,2S ,3S 的值; (Ⅲ)求数列{}n S 的通项公式.数学参考答案及评分标准 (理科)一、选择题(本大题共8小题,每小题5分,共40分)(1)D (2)A (3)A (4)B (5)C (6)C (7)D (8)A 二、填空题(本大题共6小题,每小题5分,共30分)(9)(0,),tan sin 2x x x π∀∈≤ (10(11)84 乙(12) 60 (13) 14x =-2 (14注:两个空的填空题第一个空填对得2分,第二个空填对得3分. 三、解答题(本大题共6小题,共80分) (15)(共13分)解:(Ⅰ)因为22()(sin 2cos2)2sin 2f x x x x =+-sin 4cos 4x x =+)4x π=+ , …………6分所以函数()f x 的最小正周期为2π. …………8分(Ⅱ)依题意,()y g x ==[4()8x π-4π+]1+)14x π=-+. ………10分因为04x π≤≤,所以34444x πππ-≤-≤. …………11分当442x ππ-=,即316x π=时,()g x 1; 当444x ππ-=-,即0x =时, ()g x 取最小值0. …………13分(16)(共13分)解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-. …………2分 (10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=,(3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =. …………10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分(17)(共13分)(Ⅰ)证明:取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形. 又因为1AE ED ==, 所以EF AD ⊥. …………2分 所以在图2中有1A E EF ⊥,BE EF ⊥.…………3分所以1A EB ∠为二面角1A EF B --的平面角. 图1 又二面角1A EF B --为直二面角,所以1A E BE ⊥. …………5分 又因为BEEF E =,所以1A E ⊥平面BEF ,即1A E ⊥平面BEP . …………6分(Ⅱ)解:由(Ⅰ)可知1A E ⊥平面BEP ,BE EF ⊥,如图,以E 间直角坐标系E x y z -,则(0,0,0)E ,1(0,0,1)A ,(2,0B 0)F .在图1中,连结DP . 因为12CF CP FA PB ==,所以PF ∥BE ,且12PF BE DE ==. 所以四边形EFPD 为平行四边形. 所以EF ∥DP ,且EF DP =.故点P 的坐标为(10). 图2 所以1(2,0,1)A B =-,(1BP =-,1(0,0,1)EA =.…………8分不妨设平面1A BP 的法向量(,,)x y z =n ,则10,0.A B BP ⎧⋅=⎪⎨⋅=⎪⎩n n即20,0.x z x -=⎧⎪⎨=⎪⎩令y =(3,,6)=n . …………10分 所以cos 〈1EA 〉n,11||||14EA EA ⋅===⨯n n . …………12分 故直线1A E 与平面1A BP 所成角的大小为3π. …………13分(18)(共14分)(Ⅰ)解:23e ()2e f x x x'=+-. …………2分由题意有0()0f x '=即2003e 2e 0x x +-=,解得0e x =或03e x =-(舍去).…4分 得(e)0f =即2221e 2e 3e ln e 02b +--=,解得21e 2b =-. …………5分 (Ⅱ)证明:由(Ⅰ)知2221e ()2e 3e ln (0)22f x x x x x =+-+>,()f x '23e (e)(3e)2e (0)x x x x x x-+=+-=>. 在区间(0,e)上,有()0f x '<;在区间(e,)+∞上,有()0f x '>. 故()f x 在(0,e)单调递减,在(e,)+∞单调递增,于是函数()f x 在(0,)+∞上的最小值是(e)0f =. …………9分 故当0x >时,有()0f x ≥恒成立. …………10分(Ⅲ)解: 23e ()()2e a a F x f x x x x-'=+=++(0)x >.当23e a >时,则23e ()2e 2e a F x x x-=++≥,当且仅当x 时等号成立,故()F x的最小值2e m =2e >,符合题意; …………13分当23e a =时,函数()2e F x x =+在区间(0,)+∞上是增函数,不存在最小值,不合题意;当23e a <时,函数23e ()2e a F x x x-=++在区间(0,)+∞上是增函数,不存在最小值,不合题意.综上,实数a 的取值范围是2(3e ,)+∞. …………14分(19)(共13分)(Ⅰ)解:由已知2221,2.c a ab a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩…………2分解得2a =,b = …………4分故所求椭圆方程为22143x y +=. …………5分 (Ⅱ)证明:由(Ⅰ)知()12,0A -,()22,0A ,()21,0F . 设()()00,2P x y x≠±,则22003412x y +=.于是直线1A P 方程为 ()0022y y x x =++,令4x =,得0062My y x =+; 所以(M 4,0062y x +),同理(N 4,0022y x -). …………7分 所以2F M =(3,0062y x +),2F N =(3,0022y x -).所以 22F M F N ⋅=(3,0062y x +)⋅(3,0022y x -) 000062922y y x x =+⨯+- ()220022003123129944x y x x -=+=+-- ()20209499904x x -=-=-=-.所以 22F M F N ⊥,点2F 在以MN 为直径的圆上. …………9分 设MN 的中点为E ,则(4,E 00204(1)4y x x --). …………10分又2F E =(3,00204(1)4y x x --),()2001,,F P x y =- 所以22F E F P ⋅=(3,00204(1)4y x x --)()()()20000020411,314y x x y x x -⋅-=-+-()()()()()200020123131313104x x x x x x --=-+=---=-.所以 22F E F P ⊥. …………12分因为2F E 是以MN 为直径的圆的半径,E 为圆心,22F E F P ⊥, 故以MN 为直径的圆与直线2PF 相切于右焦点. …………13分(20)(共14分)解:(Ⅰ)(6)3g =,(20)5g =. …………2分 (Ⅱ)1(1)(2)112S g g =+=+=;2(1)(2)(3)(4)11316S g g g g =+++=+++=;3(1)(2)(3)(4)(5)(6)(7)(8)1131537122S g g g g g g g g =+++++++=+++++++=.…………6分 (Ⅲ)由(Ⅰ)(Ⅱ)不难发现对m *∈N ,有(2)()g m g m =. …………8分所以当2n ≥时,(1)(2)(3)(4)(21)(2)n n n S g g g g g g =+++++-+[(1)(3)(5)(21)][(2)(4)(2)]n n g g g g g g g =++++-++++1[135(21)][(21)(22)(22)]n n g g g -=++++-+⨯+⨯++⨯ 11(121)2[(1)(2)(2)]2n n n g g g --+-⨯=++++114n n S --=+ …………11分于是114n n n S S ---=,2,n n *≥∈N . 所以112211()()()n n n n n S S S S S S S S ---=-+-++-+12244442n n --=+++++14(14)4221433n n --=+=+-,2,n n *≥∈N .…………13分又12S =,满足上式,所以对n *∈N ,1(42)3nn S =+. …………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市2017届高三综合练习数学(理)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集R U =,集合{}21x A x =>,{}2340B x x x =-->,则U AB ð=A .{}04x x ≤<B .{}04x x <≤C .{}10x x -≤≤D .{}14x x -≤≤ 2.复数z 满足等式(2i)i z -⋅=,则复数z 在复平面内对应的点所在的象限是A .第一象限B .第二象限C .第三象限D . 第四象限3.已知双曲线2215x y m -=(0m >)的右焦点与抛物线212y x =的焦点相同,则此双曲线的离心率为A .6B .2C .32D . 344.在△ABC 中, 2AB =,3AC =,0AB AC ⋅<,且△ABC 的面积为32,则BAC ∠ 等于A .60或120B .120C .150D .30或150 5.在直角坐标系xOy 中,直线l 的参数方程为,4x t y t =⎧⎨=+⎩(t 为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)4ρθπ=+,则直 线l 和曲线C 的公共点有A .0个B .1个C .2个D .无数个 6.下列命题::p 函数44()sin cos f x x x =-的最小正周期是π;:q 已知向量(1)λ,=a ,2(1),λ=-b ,(11)-,=c ,则(+)//a b c 的充要条件是1λ=-;:r 若111adx =x⎰(1a >),则e =a . 其中所有的真命题是A .rB .,p qC .,q rD .,p r7.直线y x =与函数22,,()42,x m f x x x x m >⎧=⎨++≤⎩的图象恰有三个公共点,则实数m 的取值范围是A .[1,2)-B .[1,2]-C .[2,)+∞D .(,1]-∞- 8.有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是A. 1B.C.D. 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上. 9.二项式25(ax 展开式中的常数项为5,则实数a =_______.10.执行如图所示的程序框图,输出的结果是_______.11.若实数,x y 满足10,0,x y x -+≤⎧⎨≤⎩则22x y +的最小值是 .(第10题图)12.如图,AB 是圆O 的直径,CD AB ⊥于D ,且2AD BD =,E 为AD 的中点,连接CE 并延长交圆O 于F .若CD =则AB =_______, EF =_________.13. 一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加 投资1万元,年产量为x (x *∈N )件.当20x ≤时,年销售总收入为(233x x -)万元;当20x >时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为 ,该工厂的年产量为 件时,所得年利润最大.(年利润=年销售总收入-年总投资)14.在如图所示的数表中,第i 行第j 列的数记为,i j a ,且满足11,,12,j j i a a i -==,1,1,1,(,)N i j i j i j a a a i j *+++=+∈,则此数表中的 第5行第3列的数是 ;记第3行的 数3,5,8,13,22, ⋅⋅⋅ 为数列{}n b ,则数列 {}n b 的通项公式为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.把答案答在答题卡上.15. (本小题满分13分)已知函数()2cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M . (Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B , 求()f A 的取值范围.16. (本小题满分13分)一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.(Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率; (Ⅱ)求取出的3个球中恰有2个球编号相同的概率;(Ⅲ)记X 为取出的3个球中编号的最大值,求X 的分布列与数学期望.第1行 1 2 4 8 … 第2行 2 3 5 9 … 第3行 3 5 8 13 …17. (本小题满分14分)在如图所示的几何体中,四边形ABCD 为正方形,⊥EA 平面ABCD ,//EF AB , =4,=2,=1AB AE EF .(Ⅰ)若点M 在线段AC 上,且满足14CM CA =, 求证://EM 平面FBC ; (Ⅱ)求证:⊥AF 平面EBC ;(Ⅲ)求二面角--A FB D 的余弦值. 18. (本小题满分14分) 已知函数22()ln (0)af x a x x a x=++≠. (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()e 2g a ≤. 19. (本小题满分13分)在平面直角坐标系xOy中,已知点(A,B ,E 为动点,且直线EA 与直线EB 的斜率之积为12-. (Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点(1,0)F 的直线l 与曲线C 相交于不同的两点M ,N .若点P 在y 轴上,且 P M P N =,求点P 的纵坐标的取值范围. 20.(本小题满分13分) 已知数列12:,,,n n A a a a (,2)n n ∈≥*N 满足01==n a a ,且当n k ≤≤2()*N k ∈时,1)(21=--k k a a ,令1()nn i i S A a ==∑.(Ⅰ)写出)(5A S 的所有可能的值; (Ⅱ)求)(n A S 的最大值;(Ⅲ)是否存在数列n A ,使得2(3)()4n n S A -=?若存在,求出数列n A ;若不存在,ECBDMA F说明理由.数学答案(理工类)一、选择题:二、填空题:9.1 10. 13 11.1212. 3 13. 2**32100,020,,160,20,,N N x x x x y x x x ⎧-+-<≤∈=⎨->∈⎩16 14. 16,121n n a n -=++三、解答题:15. (本小题满分13分) 解:(Ⅰ)由()12(cos 21)2f x x x m =-++π1sin(2)62x m =--+.……3分因为点π(,0)12M 在函数()f x 的图象上, 所以ππ1sin(2)01262m ⋅--+=, 解得12m =. ……5分(Ⅱ) 因为cos +cos =2cos c B b C a B ,所以sin cos sin cos C B B C +=2sin cos A B ,所以sin(+)2sin cos B C A B =,即sin 2sin cos A A B =. ……7分 又因为(0,A ∈π),所以sin 0A ≠,所以1cos 2B =. ……8分 又因为(0,B ∈π),所以π3B =,2π3A C +=. ……10分 所以2π03A <<, ππ7π2666A -<-<,所以πsin(2)6A -∈1(,1]2-.…12分所以()f A 的取值范围是1(,1]2-. ……13分16. (本小题满分13分) 解:(Ⅰ)设“取出的3个球颜色相同且编号是三个连续整数”为事件A ,则39325()84P A C +==. 答:取出的3个球的编号恰好是3个连续的整数,且颜色相同的概率为584.…4分 (Ⅱ)设“取出的3个球中恰有两个球编号相同”为事件B ,则114739281()843C C P B C ===.答:取出的3个球中恰有两个球编号相同的概率为13. ……8分 (Ⅲ)X 的取值为2,3,4,5.12212222391(2)21C C C C P X C +===, 12212424394(3)21C C C C P X C +===,12212626393(4)7C C C C P X C +===, 1218391(5)3C C P X C ===. ……11分X 的数学期望234521217321EX =⨯+⨯+⨯+⨯=. ……13分 17. (本小题满分14分)证明:(Ⅰ)过M 作MN BC ⊥于N ,连结FN ,则MN //AB ,又14CM AC =,所以14MN AB =.又EF //AB 且14EF AB =,所以EF //MN ,且EF MN =, 所以四边形EFNM 为平行四边形, 所以EM //FN .又FN ⊂平面FBC ,EM ⊄平面FBC ,所以//EM 平面FBC . ……4分(Ⅱ)因为⊥EA 平面ABCD ,⊥AB AD ,故以A 为原点,建立如图所示的空间直角坐标系-A xyz .由已知可得(0,0,0),(4,0,0),(4,4,0),(0,4,0),A B C D (0,0,2),(1,0,2)E F .显然=(1,0,2),=(0,4,0),=(4,0,-2)AF BC EB .E DCMAFBN则=0,=0⋅⋅AF BC AF EB , 所以,⊥⊥AF BC AF EB .即,⊥⊥AF BC AF EB ,故⊥AF 平面EBC . (Ⅲ)因为EF//AB ,所以EF 与AB 确定平面EABF ,由已知得,=(0,4,0),=(3,0,-2)BC FB ,=(4,4,0)-BD . ……9分 因为⊥EA 平面ABCD ,所以⊥EA BC . 由已知可得⊥AB BC 且=EA AB A ,所以⊥BC 平面ABF ,故BC 是平面ABF 的一个法向量. 设平面DFB 的一个法向量是()n =x,y,z .由0,0,n n ⎧⋅=⎪⎨⋅=⎪⎩BD FB 得440,320,-+=⎧⎨-=⎩x y x z 即32=⎧⎪⎨=⎪⎩y x,z x, 令2=x ,则(2,2,3)n =.所以cos <,n n n⋅>==⋅BC BC BC 由题意知二面角A-FB-D 锐角,故二面角A-FB-D . ……14分 18. (本小题满分14分)解:(I )()f x 的定义域为{|0}x x >.()()22210a a f x x x x '=-+>.根据题意,有()12f '=-,所以2230a a --=,解得1a =-或32a =. ……3分 (II )()()22222222()(2)10a a x ax a x a x a f x x x x x x +--+'=-+==>.(1)当0a >时,因为0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >; 由()0f x '<得()(2)0x a x a -+<,解得0x a <<.所以函数()f x 在(),a +∞上单调递增,在()0,a 上单调递减. (2)当0a <时,因为0x >,由()0f x '>得 ()(2)0x a x a -+>,解得2x a >-; 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-.所以函数()f x 在()0,2a -上单调递减,在()2,a -+∞上单调递增. ……9分 (III )由(Ⅱ)知,当(,0)a ∈-∞时,函数()f x 的最小值为()g a ,且22()(2)ln(2)2ln(2)32a g a f a a a a a a a a =-=-+-=---.2()ln(2)3ln(2)22g a a aa a -'=-+-=---, 令()0g a '=,得21e 2a =-.当a 变化时,()g a ',()g a 的变化情况如下表:2e 2-是()g a 在(,0)-∞上的唯一极值点,且是极大值点,从而也是()g a 的最大值点. 所以()22221111(e )e ln[2(e )]3(e )2222最大值g a g =-=--⨯---2222131e ln e e e 222=-+=.所以,当(,0)a ∈-∞时,21()e 2g a ≤成立.……14分19. (本小题满分13分)解:(Ⅰ)设动点E 的坐标为(,)x y 12=-,整理得221(2x y x +=≠. 所以动点E 的轨迹C 的方程为221(2x y x +=≠. ………5分(II )当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0. ………6分 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2212x y +=并整理得,2222(21)4220k x k x k +-+-=. 2880k ∆=+>.设11(,)M x y ,22(,)N x y ,则2122421k x x k +=+, 21222221k x x k -=+.设MN 的中点为Q ,则22221Q k x k =+,2(1)21Q Q k y k x k =-=-+, 所以2222(,)2121k kQ k k -++. ………9分 由题意可知0k ≠,又直线MN 的垂直平分线的方程为22212()2121kk y x k k k +=--++. 令0x =解得211212P k y k k k==++. .………10分当0k >时,因为12k k +≥04P y <≤=; 当0k <时,因为12k k +≤-0P y >≥= .………12分 综上所述,点P纵坐标的取值范围是[,44-. .………13分 20.(本小题满分13分)解:(Ⅰ)由题设,满足条件的数列5A 的所有可能情况有: (1)01210,,,,.此时5()=4S A ;(2)01010,,,,.此时5()=2S A ; (3)01010,,,,.-此时5()=0S A ;(4)01210,,,,.---此时5()=4S A -; (5)01010,,,,.-此时5()=0S A ;(6)01010,,,,.--此时5()=2S A -; 所以,)(5A S 的所有可能的值为:4,2,0,2-,4-. ……4分(Ⅱ)由1)(21=--k k a a ,可设11k k k a a c ---=,则11k c -=或11k c -=-(n k ≤≤2,k ∈*N ),因为11n n n a a c ---=,所以 11221n n n n n n a a c a c c -----=+=++ 11221n n a c c c c --==+++++.因为01==n a a ,所以1210n c c c -+++=,且n 为奇数,121,,,n c c c -是由21-n 个1和21-n 个1-构成的数列.所以112121()()()n n S A c c c c c c -=+++++++1221(1)(2)2n n n c n c c c --=-+-+++.则当121,,,n c c c -的前21-n 项取1,后21-n 项取1-时)(n A S 最大, 此时)(n A S 11(1)(2)(21)22n n n n +-=-+-++-+++2(1)4n -=.证明如下:假设121,,,n c c c -的前21-n 项中恰有t 项12,,t m m m c c c 取1-,则 121,,,n c c c -的后21-n 项中恰有t 项12,,,t n n n c c c 取1,其中112n t -≤≤, 112i n m -≤≤,112i n n n -<≤-,1,2,,i t =. 所以()n S A 1211212211(1)(2)222n n n n n n n c n c c c c c -+--+-=-+-++++++11(1)(2)(21)22n n n n +-=-+-++-+++122[()()()]t n m n m n m --+-++-122[()()()]t n n n n n n +-+-++-221(1)(1)2()44ti i i n n n m =--=--<∑. 所以)(n A S 的最大值为2(1)4n -. ……9分(Ⅲ)由(Ⅱ)可知,如果121,,,n c c c -的前21-n 项中恰有t 项12,,,t m m m c c c 取1-,百度文库,精选习题试题习题,尽在百度 121,,,n c c c -的后21-n 项中恰有t 项12,,,t n n n c c c 取1,则21(1)()2()4tn i i i n S A n m =-=--∑,若2(3)()4n n S A -=,则122()t i i i n n m =-=-∑,因为n 是奇数,所以2-n 是奇数,而12()ti i i n m =-∑是偶数,因此不存在数列nA ,使得4)3()(2-=n A S n .……13分。