浙教版数学八年级下册2.2一元二次方程的解法(二 )开平方法.docx
新浙教版八年级下2.2一元二次方程的解法(2)
(2)(2x-3)2=7
解:(1)移项,得 3x2 48 (2) 两边都除以3,得 x2 16 2x 3 7,或2x 3 - 7
x 16
x1 4,x2 4
x1
7 3 2
,x2
7 3 2
开平方法解一元二次方程的基本步骤:
(1)将方程变形成 x2 a(a 0)
(2)x1 a,x2 a
开平方法解一元二次方程的基本步骤:
(1)将方程变形成 x2 a(a 0)
(2)x1 a,x2 a
开平方法解一元二次方程的基本步骤:
(1)将方程变形成 x2 a(a 0)
(2) x1 a,x2 a
解下列方程:
这里的x可以
是表示未知数 的字母,也可 以是含未知数 的代数式.
(1)3x2-48=0;
x2-2x+_1__=(___x__-__1_)2 x2 - 4x+_4__=(___x_-___2_)2 x2 - 6x+_9__=(___x_-___3_)2
x2+10x+_2_5_=(__x__+_5___)2 x2 - 10x+_2_5_=(__x__-__5__)2
以上式子有什么共同的特点? 1.二次项系数都是( 1 )
2.常数项是一次项系数的( 一半的平方 )
x2 bx (b )x 16
你能将方程x2-10x=-16 转化成 x a2 b 的形式吗?
把一元二次方程的左边配成一个完全平 方式,右边是一个非负常数然后用开平方法求 解,这种解一元二次方程的方法叫做配方法.
做一做:用开平方法解下列方程:
(1) x2 81 0
(2) 2x2 50
(3) (x 1)2 4
浙教版八下数学各章节知识点及重难点整理
浙教版八下数学各章节知识点及重难点第一章二次根式知识点一:二次根式的概念二次根式的定义:形如(a≥0)的代数式叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七: 最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
八年级数学下册 2.2 一元二次方程的解法 (新版)浙教版
一般地,对于一元二次方程ax 2 bx c 0(a≠0),
如果b2 4ac 0
,那么方程的两个根为x b
b2 4ac 2a
这个公式叫做一元二次方程的求根公式.
利用求根公式,我们可以 由一元二次方程的系数
a,b,c 的值,直接求得方程的根.这种解一元二次方
程的方法叫做公式法.
★一除、二移、三配、四开、五解.
第二页,共17页。
用配方法(fāngfǎ)解下列一元二 次方程
(1) x2 15 10x (2) 3x2 12x 1 0 3
第三页,共17页。
你能用配方法(fāngfǎ)解一般形式的一元 二次方程ax2+bx+c=0(a≠0)吗?
第四页,共17页。
用配方法解一般形式的一元二次方程
当 b2 4ac 0 时,方程有两个不相等的实数根;
当 b2 4ac 0 时,方程有两个相等的实数根;
当 b2 4ac 0时,方程没有实数根.
第十一页,共17页。
动手试一试吧!
解方程:
x
1 2
x
1
x
2
2
这种解法是不是解这两个方程的最好方法? 你是否(shì fǒu)还有其它方法来解?
的解x1与x2.
第九页,共17页。
做一做
1、用公式(gōngshì)法 解下列方程
(1) 2x2 13x 15 0
(2) x2 3 2 3x
(3)
1 2
x2
1 4
x
1
(4) x2 3x 5 0
第十页,共17页。
观察以上(yǐshàng)你所解的方程,方程根的情况与b24ac的值的关系如何?
2.2 一元二次方程的解法(jiě fǎ)
2.2 一元二次方程的解法(2)
首页
上一页
下一页
末页
你能解决这 个问题吗? 3倍有可能相等吗?如果相 一个数的平方与这个数的
x 2 3x.
小亮是这样解的 :
小明是这样解的 :
等,这个数是几?你是怎样求出来的? 小明,小亮都设这个数为x,根据题意得
解 : 方程x 2 3x两 边都同时约去 x, 得. x 3.
(一次项系数为0)(容易x+5
2
25 2 x - 5
x-
2 用配方法解二次项系数是 1 的一元二次方程在时,添 4x+___=(______) 上的常数项与一次项系数之间存在的关系: 2 2 2
常数项是一次项系数的一半的平方 x +6x+___=(______) x-
6x+___=(_______)
2
首页 上一页 下一页 末页
探索发现二:
解方程: x 6 x 1 0
2
只要形成
x m
2
n(n 0)
x 6 x 9 10 0, ( x 3) 10, x 3 10
2 2
x1 3 10, x2 3 10
我们把一元二次方程通 过配方法转换成:
2
形 为
x -2x=8
首页
上一页
下一页
末页
练一练:添上一个适当的数,使下
1 x+1 2 2 x +2x+___=(______) 4 x+2 2 9 x+3
列的多项式成为一个完全平方式:
1 4 x-1 2 x -x - 2
2x+___=(______)
初中数学初二数学下册《一元二次方程的解法》教案、教学设计
(三)情感态度与价值观
1.培养学生勇于探索、善于思考的精神,增强学生克服困难的信心。
2.培养学生合作交流的意识,让学生在合作中学会倾听、表达和尊重他人。
3.培养学生严谨、认真的学习态度,提高学生的数学素养。
4.引导学生体会数学在生活中的应用,感受数学的价值,激发学生学习数学的兴趣。
初中数学初二数学下册《一元二次方程的解法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元二次方程的标准形式,掌握其基本性质。
2.学会使用直接开平方法求解一元二次方程,并掌握其适用条件。
3.学会使用配方法求解一元二次方程,理解其原理和步骤。
4.学会使用公式法求解一元二次方程,并熟练运用公式。
5.能够根据问题情境选择合适的解法求解一元二次方程,提高解决问题的能力。
(2)开展数学实践活动,让学生在实际操作中体验数学的乐趣和价值。
(3)鼓励学生参加数学竞赛、讲座等活动,拓宽学生的知识视野。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
(1)通过一个实际问题引入一元二次方程,如:一块正方形菜地的边长比它的面积多1,求这块菜地的边长。让学生尝试用已学过的知识解决问题,引导学生发现一元一次方程无法解答该问题。
2.难点:
(1)理解并掌握配方法的原理和步骤,特别是如何通过添加和减去同一个数使方程变形。
(2)熟练运用求根公式求解一元二次方程,并理解公式中各个参数的含义。
(3)在实际问题中,能够根据方程的特点选择合适的解法。
(二)教学设想
1.对于重点内容的教授:
(1)通过实际例题引入,让学生感受一元二次方程解法的必要性,激发学生的学习兴趣。
浙教版数学八年级下册 第二章一元二次方程单元综合复习
浙教版数学(八下) 第二单元综合复习一、 一元二次方程的求解1.因式分解法:若A ·B=0,则A=0或B=0.2.开平方法:形如x 2=a(a ≥0),(mx +n)2=b(m ≠0,b ≥0),可用开平方法直接求解.3.配方法:口诀——除移配开求答.(系数化为1)┘ 4.公式法:求根公式x=﹣b ±b 2-4ac2a (a ≠0).【习题一】(2)已知(a 2+b 2-1)(a 2+b 2+3)-12=0,求a 2+b 2的值.【习题二】解方程:x 2-b 2=a(3x -2a +b).【习题三】解方程:(1)(3x +1)2=9(2x +3)2; (2)(3x -11)(x -2)=2;(3) x(x +1)3 -1=(x -1)(x +2)4; (4)(3x -2)(3x +2)=x.【习题四】设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为___________.【习题五】如果x-3是多项式2x 2-5x+m 的一个因式,则m 等于( ) A .6 B .-6 C .3 D .-3 【习题六】用配方法解下列方程时,配方有错误..的是( ) A .x 2-2x -99=0化为(x -1)2=100 B .x 2+8x +9=0化为(x +4)2=25 C .4t 2-4t -5=0化为(2t -1)2=6 D .9y 2+6y -2=0化为(3y +1) 2=3二、根系关系1.求根关系:x =﹣b ±b 2-4ac2a (a ≠0)2.判别式:△=b 2-4ac3.韦达定理:x 1+x 2=﹣b a ,x 1·x 2=ca4.常见题型:(1)已知方程的一根,求另一根.(2)已知两数的和与积,构造一元二次方程解题. (3)求待定系数的值或取值范围. (4)求对称式和非对称式的值.【习题一】已知方程x 2-5x+15=k 2的一个根是2,则k 的值是_________,方程的另一个根为___________.【习题二】若m 为实数,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,则x 2-3x+m=0的根是___________.【习题三】现定义运算“☆”,对于任意实数a 、b ,都有a ☆b=a 2-3a+b ,若x ☆2=6,则实数x 的值是_________.【习题四】若正数a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,则a 的值是___________.【习题五】已知关于x 的一元二次方程ax 2+bx+1=0(a ≠0)有两个相等的实数根,求ab 2(a −2)2+b 2−4的值.【习题六】已知关于x 的方程x 2-(k+2)x+2k=0,若一个等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求这个等腰三角形的周长与面积.【习题七】已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【习题八】若k是自然数,且关于x的二次方程(k-1)x2-px+k=0有两个正整数根,求k kp•(p p+k k)+k k-p+2 +kp+1的值.【习题九】已知α,β是方程x2+2x-7=0的两个实数根,求α2+3β2+4β的值.【习题十】设x1、x2是一元二次方程x2+x-3=0的两个根,求x13-4x22+19的值.三、生活类应用1. 增长(降低)率问题若基数为a ,平均增长(降低)率为x ,则连续增长n 次后为a(1±x)n . 2. 数字问题① 有关三个连续整数(或连续奇数、连续偶数)的问题,设中间一个数为x ,再根据题 目中的条件用含x 的代数式表示其余两个数. ② 多位数的表示方法:a. 两位数=(十位数字)×10+(个位数字);b. 三位数=(百位数字)×100+(十位数字)×10+(个位数字);… 3. 利润问题① 毛利润=售出价-进货价 ② 纯利润=售出价-进货价-其他费用 ③ 利润率=利润成本×100%4. 储蓄问题① 利息=本金×年(月)利润×年(月)数 ② 利息税=利息×税率③ 本息和=[1+年(月)利率×年(月)数]×本金(不计利息税)④ 不计利息税后,且到期后又连本带利一起再存相同时间,且年利率不变时,本息和=本金×(1+年利率)年数【习题一】某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .100(1+x)2=81B .100(1-x)2=81C .100(1-x%)2=81D .100x 2=81【习题二】三个连续自然数的平方和为50,求这三个数.在这个问题中,设中间的自然数为x ,则其余两个自然数为_________、_________,根据题意,可列出方程:________________________________.【习题三】某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x)(4-0.5x)=15 B .(x+3)(4+0.5x)=15 C .(x+4)(3-0.5x )=15 D .(x+1)(4-0.5x)=15【习题四】近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.【习题五】某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【习题六】某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【习题七】明在2013年暑假帮某服装店买卖体恤衫时发现,在一段时间内,体恤衫每件80元销售时,每天销售量是20件,单价每降低4元,每天就可以多售出8件,已知该体恤衫进价是每件40元,请问服装店一天能赢利1200元吗?如果设每件降低x元,那么所列方程正确的是()A.(80-x)(20+x)=1200 B.(80-x)(20+2x)=1200C.(40-x)(20+x)=1200 D.(40-x)(20+2x)=1200【习题八】某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【习题九】某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?四、几何应用1.常用勾股定理,面积公式,图形特点,平移,数形结合,三边关系等解题.【习题一】要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A.5个 B.6个 C.7个 D.8个【习题二】某初三一班学生上军训课,把全班人数的18排成一列,这样排成一个正方形的方队后还有7人站在一旁观看,此班有学生________人.【习题三】如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=356习题三图习题四图【习题四】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A.0.5cm B.1cm C.1.5cm D.2cm【习题五】一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,当AE=_____米时,有DC2=AE2+BC2.【习题六】百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价_________元,那么平均每天就可多售出_________件,现在一天可售出_________件,每件盈利_________元.【习题七】配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a2≥0,所以3a2-1≥-1,即:3a2-1就有最小值-1.只有当a=0时,才能得到这个式子的最小值-1.同样,因为-3a2≤0.所以-3a2+1≤1,即:-3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=________时,代数式-2(x+1)2-1有最________值(填“大”或“小”值为______. (2)当x=________时,代数式 2x 2+4x+1有最________值(填“大”或“小”)值为______. (3)矩形自行车场地ABCD 一边靠墙(墙长10m ),在AB 和BC 边各开一个1米宽的小门(不用木板),现有能围成14m 长的木板,当AD 长为多少时,自行车场地的面积最大?最大面积是多少?【习题八】在长方形ABCD 中,AB=16cm ,BC=6cm ,点P 从A 点开始沿AB 边向点B 以3cm/s 的速度移动,点Q 从点C 开始沿CD 边向点D 以2cm/s 的速度移动,点P 、Q 从出发开始,经过几秒时,点P 、Q 、D 组成的三角形是等腰三角形?浙教版数学(八下) 第二单元综合复习参考答案一、一元二次方程的求解习题一.(1)m=﹣1;x 1=﹣1+72 ,x 2=﹣1-72.(2) a 2+b 2=3【解答】设a 2+b 2=n(n ≥0),则原方程变形为(n-1)(n-3)-12=0.整理,得n 2+2n-15=0,即(n+5)(n-3)=0,,∴n 1=﹣5(不合题意,舍去),n 2=3,∴a 2+b 2=3. 习题二.x 1=2a+b ,x 2=a-b 【解答】x 2-b 2=a(3x-2a +b) x 2-b 2=3ax-2a 2+ab x 2-3ax+ 94-a 2=14-a 2+b 2+ab(x-32a)2=(12a+b)2∴x-32a=12a+b 或x-32a=-(12a+b)∴x 1=2a+b ,x 2=a-b.习题三.(1)x 1=﹣83 ,x 2=﹣109;(2)x 1=53 ,x 2=4;(3)x 1=2,x 2=﹣3;(4)x 1=1,x 2=﹣23 .习题四. 3【解答】∵a ,b 是一个直角三角形两条直角边的长, 设斜边为c ,∴(a 2+b 2)(a 2+b 2+1)=12,根据勾股定理得:c 2(c 2+1)-12=0,即(c 2-3)(c 2+4)=0, ∵c 2+4≠0, ∴c 2-3=0,解得c= 3 或c=﹣ 3 (舍去). 则直角三角形的斜边长为 3 . 习题五. D【分析】x-3是多项式2x 2-5x+m 的一个因式,即方程2x 2-5x+m=0的一个解是3,代入方程求出m 的值. 习题六. B二、根系关系习题一. ±3,3【解答】已知方程x 2-5x+15=k 2的一个根为x l =2,设另一根是x 2, 则x 1+x 22,则另一个根x 2=3,k=±3.习题二【解答】解方程x 2+3x-3=0的根是,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,因而方程x 2+3x-3=0的一个根的相反数是方程x 2-3x+m=0的一个根,则x 2-3x+m=0的根是﹣(﹣3±21 2 )即3±212.习题三. 4或-1【解答】x ☆2=6,∴x 2-3x+2=6, ∴x 2-3x-4=0,∴(x-4)(x+1)=0, ∴x-4=0,x+1=0,∴x 1=4,x 2=-1. 习题四. 5 【解答】∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②, ①+②,得2(a 2-5a)=0, ∵a >0,∴a=5. 习题五.4【解答】∵ax 2+bx+1=0(a ≠0)有两个相等的实数根, ∴△=b 2-4ac=0,即b 2-4a=0,∴b 2=4a ,∵ab 2(a −2)2+b 2−4 =ab 2a 2−4a+4+b 2−4 =ab 2a 2−4a+b 2 =ab 2a 2 , ∵a ≠0,∴ab 2a 2 = b 2a =4aa =4.习题六. 周长=5,面积=154. 【解答】∵x 2-(k+2)x+2k=0,∴(x-k)(x-2)=0,解得:x 1=2,x 2=k , ∵三角形是等腰三角形,当k=1时,不能围成三角形;当k=2时,周长为5. 如图:设AB=AC=2,BC=1, 过点A 作AD ⊥BC 于D , ∴BD=CD=12BC=12 ,∴AD=AB 2−BD 2 =152∴S △ABC =12×1×15 2 =154.习题七. (1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m 无论取何值,(m-2)2+4>0,即△>0,∴关于x 的方程x 2-(m+2)x+(2m-1)=0恒有两个不相等的实数根. (2) 另一根=3,周长=4+10 或4+2 2 【解答】根据题意,得12-1×(m+2)+(2m-1)=0,解得,m=2, 则方程的另一根为:m+2-1=2+1=3.①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为10 , 该直角三角形的周长为1+3+10 =4+10 ;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2 2 ,则该直角三角形的周长为1+3+2 2 = 4+2 2 .k是自然数,∴kk-p+2 +kp+1三、生活类应用习题一 .B习题二 .x-1 x+1 (x-1)2+x2+(x+1) 2=50习题三. A习题四.(1)20% (2)能实现【解答】(1)设每年平均增长的百分率为x.6000(1+x)2=8640,(1+x)2=1.44,∵1+x>0,∴1+x=1.2,x=20%.(2)2012年该县教育经费为8640×(1+20%)=10368(万元)>9500万元.故能实现目标.习题五.0.3或0.2【解答】设应将每千克小型西瓜的售价降低x元.习题六. 定价60元,进货100个 【解答】设每个商品的定价是x 元,由题意,得(x-40)[180-10(x-52)]=2000,整理,得x 2-110x+3000=0,解得x 1=50,x 2=60.当x=50时,进货180-10(50-52)=200个>180个,不符合题意,舍去; 当x=60时,进货180-10(60-52)=100个<180个,符合题意.∴当该商品每个定价为60元时,进货100个.习题七. D习题八. C习题九.(1)25只 (2) 35只,1950元【解答】(1)∵生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R ,P 与x 的关系式分别为R=500+30x ,P=170-2x ,∴(170-2x )x-(500+30x )=1750,解得 x 1=25,x 2=45(大于每日最高产量为40只,舍去). ∴当日产量为25只时,每日获得利润为1750元.(2)设每天所获利润为W ,由题意得,W=(170-2x )x-(500+30x )=﹣2x 2+140x-500=﹣2(x 2-70x )-500=﹣2(x 2-70x+352-352)-500=﹣2(x 2-70x+352)+2×352-500=﹣2(x-35)2+1950.当x=35时,W 有最大值1950元.四、 几何应用习题一. C【解答】设有x 个队,每个队都要赛(x-1)场,但两队之间只有一场比赛, x (x-1)÷2=21,解得x=7或-6(舍去),∴应邀请7个球队参加比赛. 习题二. 56【解答】设班级学生x 人,依题意,得(18)2+7=x , 整理,得x 2-64x+448=0,解得x 1=56,x 2=8,当x=8时,18x=1,1人不能成为方阵,舍去. ∴此班有学生56人.习题三. C【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.习题四. B【解答】设AC 交A ′B ′于H ,∵∠A=45°,∠D=90°,∴△A ′HA 是等腰直角三角形,设AA ′=x ,则阴影部分的底长为x ,高A ′D=2-x ,∴x •(2-x )=1,∴x=1,即AA ′=1cm .习题五. 143 【解答】如图,连接CD ,设AE=x 米, ∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12-x )米,∵正方形DEFH 的边长为2米,即DE=2米,∴DC 2=DE 2+EC 2=4+(12-x)2,AE 2+BC 2=x 2+36,∵DC 2=AE 2+BC 2,∴4+(12-x)2=x 2+36,解得:x=143米. 习题六. x 2x 20+2x 40-x每件应降20元【解答】设每件童装降价x 元,则(40-x)(20+2x)=1200即:x 2-30x+200=0,解得:x 1=10,x 2=20,∵要扩大销售量,减少库存,∴舍去x 1=10∴每件童装应降价20元.习题七.(1)-1,大,-1 (2) -1,小,-1(3)设AD=x ,S=x(16-2x)=-2(x-4)2+32,当AD=4m 时,面积最大值为32m 2.习题八. 2秒 或 16−243 7 秒 或 16+247 7 秒 或 ﹣32+659 5秒. 【解答】如图1,设时间为ts ,过P 作PM ⊥CD 于M ,过Q 作QN ⊥AB 于N ,∵四边形ABCD 是矩形,∴DC=AB=16cm ,AD=BC=PM=QN=6cm ,∠A=∠C=∠B=∠ADC=90°, 则DM=AP=3t cm ,CQ=BN=2t cm ,分为三种情况:①当DP=PQ 时,则DM=MQ=3t cm ,∵3t+3t+2t=16,解得:t=2.②当∠PQD 为锐角时,DQ=PQ 时,在Rt △PNQ 中,由勾股定理得:(16-2t)2=62+(16-3t-2t)2,7t 2-32t+12=0,解得:t=32±443 14 =16±243 7, ∵t=16+243 7 >163 (舍去),∴t=16-243 7.当∠PQD 为钝角时,如图2,QD=PQ ,则AP-DQ ≥0,即3t-(16-2t )≥0,∴165 ≤t ≤163. ∵DQ=16-2t ,PH=6,QH=AP-DQ=5t-16,∴(16-2t)2=36+(5t-16)2,解得t=16±247 7 , ∵t ≥165 ,∴t=16+247 7. ③当DP=DQ 时,在Rt △DAP 中,由勾股定理得:(16-2t)2=62+(3t)2,即5t 2+64t-220=0,解得t=−64±1259 10 =﹣32±659 5, ∵﹣32-659 5 <0,∴t=﹣32+659 5. 综上,经过2秒、16−243 7 、16+247 7 、﹣32+659 5秒时,点P 、Q 、D 组成的三角形是等腰三角形.。
2。2一元二次方程的解法(共3)
2.2 一元二次方程的解法(1)【例1】用开平方法解下列方程:(1) 3x 2-4=0; (2) (2x -1)2-9=0. 【变式训练】1. 用开平方法解下列方程: (1) x 2-2=0;(2) 4(6x -1)2=36.【例2】用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为………………( )A. 44)2(22mn m x -=+B.44)2(22n mm x -=+C.24)2(22n mm x -=+ D.24)2(22mn m x -=+【变式训练】2. 用配方法解方程:x 2+2x -2=0.【例3】用配方法证明对于任何实数x ,二次三项式x 2-22x +5-2的值恒大于零. 【变式训练】3. 求二次三项式x 2+5x +7的最小值. 练习:1.一元二次方程(x -1)2=2的解是……………………………………( )A. x 1=-1-2,x 2=-1+2B. x 1=1-2,x 2=1+2C. x 1=3,x 2=-1D. x 1=1,x 2=-32. 下列一元二次方程中,能直接用开平方法解的是……………………………( ) A. (2x +3)2=2008 B. (x -1)2=1+x C. x 2=x D. x 2+1=03. 如果x 2+bx+c =(x -32)2,则b ,c 的值是…………………………………………( )A. b =34,c =94 B. b =32-,c =94 C. b =34-,c =94 D. b =34-,c =94-4. 已知关于x 的一元二次方程(x +m )2=n 有实数根,则…………………………( ) A. n >0 B. n ≥0 C. n ≠0 D. n 为任何实数5. 如果关于x 的方程x 2+kx =2配方后得到(x -1)2=3,那么k 的值为 . 6. 若2(x 2+3)的值与3(1-x 2)的值互为相反数,则x 的值为 . 7. 选择适当的方法解下列一元二次方程:(1) x 2+2x =0; (2) x 2+4x -1=0; (3) (x -3)2=(5x +2)2.8. 若(x 2+y 2-5)2=4,则x 2+y 2= .9. 如果关于x 的二次三项式x 2+mx+m 是一个完全平方式,求m 的值.10. 已知代数式x 2+y 2+22x -4y +42,这个代数式是否存在最大值或最小值?请说明理由.11.用长为23cm 的铁丝围成一个面积为S(c m 2)的矩形. (1)设矩形的长为xcm ,写出用x 的代数式表示S 的等式; (2)求当x 为多少时,S 最大,其最大值是多少?12.填上适当的数,使下列等式成立,然后与O 比较大小:(1)∵x 2-2x +3=(x -______)2+______, ∴x 2--2x +3______0; (2)∵2x 2+8x +8=2(x +______)2,∴2x 2+8x +8______0.13.一块长方形草地,长比宽多5m ,面积是104m 2,设草地宽为xm ,依题意列得方程为 __________________,解得它的长为______m ,宽为______m .2.2 一元二次方程的解法(2)【例1】用配方法解方程:2x 2-x -1=0. 【变式训练】1. 用配方法解方程:2x 2+5x -3=0.【例2】阅读下面的材料,然后再解答后面的问题: 例:解方程:x 2-|x |-2=0.解:(1) 当x ≥0时,原方程化为x 2-x -2=0,解得x 1=2,x 2=-1(不合题意,舍去); (2) 当x <0时,原方程化为x 2+x -2=0,解得x 1=-2,x 2=1(不合题意,舍去); ∴原方程的解是x 1=2,x 2=-2.请参照原方程的解法,解方程:x 2-|x -1|-1=0. 【变式训练】2.阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ……①,那么原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4. 当y =1时,x 2-1=1,∴x 2=2,∴x =2±;当y =4时,x 2-1=4,∴x 2=5,∴x =5±,故原方程的解为x 1=2,x 2=2-,x 3=5,x 4=5-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用_________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x 4-x 2-6=0. 练习1. 将二次三项式3x 2+8x -3配方,结果为………………………………………( )A. 3(x +38)2+355 B. 3(x +34)2-3 C. 3(x +34)2325-D. (3x +4)2-192. 如果ax 2+4x +c =(2x +m )2,则a ,c ,m 的值分别为………………………( ) A. a =4,c =12,m =14B. a =4,c =1,m =1C. a =4,c =12,m =1 D. a =1,c =4,m =13. 已知(x +y )(x +y -2)-8=0,则x+y 的值是…………………………( ) A. –4或2 B. –2或0 C. 2或-3 D. 4或-24. 已知三角形的两边长分别是2,3,第三边的长是方程x 2-5x +4=0的根,那么这个三角形的周长为……………………………………………………………………( )A. 1或4B. 6或9C. 6D. 95.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( )A .x(x +1)=1035;B .x(x -1)=1035×2;C .x(x -1)=1035;D .2x(x +1)=1035 6.一块长方形草地,长比宽多5m ,面积是104m 2,设草地宽为xm ,依题意列得方程为 __________________,解得它的长为______m ,宽为______m . 7. 用配方法解下列一元二次方程: (1) x 2-x -1=0;(2) 3x 2-5x +1=0.8. 在正数范围内定义一种新运算“★”,其规则为:a ★b =ab+a+b . 根据这个规则,请你求方程x ★(x +1)=11的解.9. 用换元法解方程11+-+x x xx +3=0时,设xx 1+=y ,则原方程可化为…………( )A. y 2-y +3=0B. y 2+3y -1=0C. 3y 2+y -1=0D. 3y 2-y +1=0 10. 若方程2x 2-8x +7=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是 .11.将进货单价为40元的商品按50元出售时,能卖出500个,已知这样商品每个涨价1元,其销售量就减少10个,则为了赚得8000元利润,售价应是为多少?12.已知x 1,x 2 是关于x 的方程(x -2)(x -m )=(p -2)(p -m )的两个实数根. (1)求x 1,x 2 的值;(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.2.2 一元二次方程的解法(3)【例1】用公式法解下列方程:(1) x 2-3x +2=0; (2) 2x 2-6=2x . 【变式训练】1. 用公式法解下列方程:(1) x 2-2x -3=0; (2) 4x 224-x =-2. 【例2】给下列方程选择适当的方法:(1)32312=⎪⎭⎫ ⎝⎛-y 可选用 法;(2) 5x 22-x =0可选用 法; (3) x 2-2x =9999可选用 法; (4)(5x -1)2=3(5x -1) 可选用 法; (5)5x 2-11x +5=0可选用 法. 【变式训练】2. 用适当的方法解下列方程: (1) 2x 2+12x =0; (2) 4(x +3)2=(x -2)2; (3) x 2+4x =21.【例3】若关于x 的一元二次方程x 2+2x -k =0没有实数根,求k 的取值范围. 【变式训练】3. 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是……………( )A. 210x +=B.2210x x ++=C. 2230x x ++=D. 2230x x +-=练习1.方程x(x 2+1)=0的实数根的个数是 ( ) A .1 B .2 C .3 D. 02.在方程ax 2+bx +c =0(a≠0)中,当b 2-4ac =0时,方程的解是( ) A .±b 2a B .±b a C .-b 2aD .b2a3. 一种药品经两次降价,由每盒50元调至40.5元,则每次降价的百分率是 ( ) A. 5% B .10% C .15% D .20% 4.已知(x 2+y 2+1)2=4,则x 2+y 2=______.5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值是( )A. 1m <B. 1m >-C.1m >D.1m <- 6. 如果方程x 2+bx+c =0的两根互为相反数,那么…………………………………( ) A. b =0 B. c =0 C. b =0,c <0 D. b =0,c >07. 一元二次方程2210x x --=的根的情况为………………………………( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根8. 选择适当的方法解下列方程:(1) (2)(3)20x x ++=; (2) x 2+3=3(x +1); (3) (x -1)2-5=0.9. 若x =0是方程0823)2(22=-+++-m m x x m 的解,则m = . 10. 先阅读,再填空解答:方程x 2-3x -4=0的根是:x 1=-1,x 2=4,则x 1+x 2=3,x 1x 2=-4; 方程3x 2+10x +8=0的根是:x 1=-2,x 2=34-,则x 1+x 2=310-,x 1x 2=38.(1) 方程2x 2+x -3=0的根是:x 1= ,x 2= ,则x 1+x 2= ,x 1x 2= ;(2) 若x 1,x 2是关于x 的一元二次方程ax 2+bx+c =0 (a ≠0,且a ,b ,c 为常数)的两个实数根,那么x 1+x 2,x 1x 2与系数a ,b ,c 的关系是:x 1+x 2= ,x 1x 2= ;(3) 如果12x x ,是方程x 2+x -3=0的两个根,根据(2)所得结论,求x 12+x 22的值.11. 甲、乙两同学分别解同一道一元二次方程,甲把一次项系数看错了,解得方程的两根为-2和3,乙把常数项看错了,解得两根为31-,则原方程是…………()1+和3A. x2+2x-6=0B. x2-2x+6=0C. x2+2x+6=0D. x2-2x-6=0 12.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-l=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①解得y1=1,y2=4当y=1时,x2-1=1.∴x2=2.∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5。
浙教版数学八下课件2.2一元二次方程解法
(3) x2 1(a 0) a
例3、解方程:16(x-3)2=25 分析:用换元法,(x-3)看成一个整体。 练习1、解方程9(2x+3)2=(x-3)2
2、方程ax2=c有实根的条件是————
配方法 先把方程的常数项移到方程的右边,再把左边 配成一个完全平方式,如果右边是非负数,就 可以进一步通过直接开平方法来求出它的解.
(1)当每辆车的月租金定3600元时,能租出多少辆?
100-(3600-3000)÷50=88(辆)
(2)当每辆车的月租金定为多少元时,租赁公司的月收益
(租金收入扣除维护费)可达到306600元?
设月租金定为x元,得:
(x 150)(100 x 3000) 306600 (3)3x2=4
x1+x2=3;x1·x2=0 x1+x2=0;x1·x2=-4/3
例3 已知方程x2-(k+1)x+3k=0的一个根是2,求 它的另一个根和k的值.
解:设方程的另一个根为x1 把x=2代入方程,得 4-2(k+1)+3k=0, 解这个方程,得 k=-2,
9.某种药品原价为36元/盒,经过连续两次降价后售价
为25元/盒。设平均每次降价的百分率为x,根据题意所
列方程正确的是() C
A.36(1-x)2=36-25 B.36(1-2x)=25
C.36(1-x)2=25
D.36(1-x2)=25
12.如果关于x的一元二次方程kx2-x+1=0有两个不相 等的实数根,那么k的取值范围是() D
怎样解形如与ax 2 0
ax2 c 0
的一元二次方程呢?
2.2一元二次方程的解法(2)课件2004年浙教版八年级下
(1)2 x 18 0
2
(2)(3 x 1) 4
2
倍 速 课 时 学 练
(3)2( x 1) 8
2
一般地,对于形如
(a≥0)的 x a
2
方程,根据平方根的意义,可解得
x a, x a
1 2
倍 速 课 时 学 练
这种解一元二次方程的方法叫做开平 (square root extraction)法
1 (1)5(t 1) 0 5
2
(2)(2 x 3) 5
2
倍 速 课 时 学 练
1、方程 x 2 0.25 的根是
;
2、方程 2 x
2
18 的根是
2
;
;
3、 方程(2 x 1) 9 的根是
倍 速 课 时 学 练
课内练习P30 T3
x 10 x 25 9 变形为 ( x 5) 9
2
(2) x 6 5 x
2
倍 速 课 时 学 练
课内练习P30 T4
倍 速 课 时 学 练
2
2
x 6x 7 0
2
倍 速 课 时 学 练
变 形 为
这种方 程怎样 解?
的形式.(a为非负常数)
2
a
把一元二次方程的左边配成一 个完全平方式,然后用开平方法 求解,这种解一元二次方程的方 法叫做配方法.
倍Hale Waihona Puke 速 课 时 学 练例题2(1) y 6 y 4 0
新教材浙教版八年级下册初中数学全册教案
新教材浙教版八年级下册初中数学全册教案一、教学内容详细内容:1. 掌握一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法。
2. 理解不等式的性质,掌握一元一次不等式组的解法。
3. 理解函数的概念,掌握函数的表示方法,研究函数的性质。
4. 掌握一次函数与反比例函数的图像和性质。
5. 掌握二次函数的图像和性质,理解二次函数与一元二次方程的关系。
6. 认识几何图形,为后续几何学习打下基础。
二、教学目标1. 让学生掌握一元二次方程、不等式、函数等基本概念,提高解决问题的能力。
2. 培养学生的逻辑思维能力和空间想象力,提高对数学知识的理解和应用能力。
3. 培养学生的团队协作能力,激发学生的学习兴趣。
三、教学难点与重点教学难点:一元二次方程的解法、函数的性质、二次函数的图像与性质。
教学重点:一元二次方程、不等式、函数的基本概念,几何图形的初步认识。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教学模型等。
2. 学具:学生用书、练习本、圆规、直尺、三角板等。
五、教学过程1. 实践情景引入:通过生活中的实际问题,引出一元二次方程、不等式、函数等概念。
2. 例题讲解:讲解典型例题,分析解题思路,引导学生掌握解题方法。
3. 随堂练习:设计有针对性的练习题,巩固所学知识。
4. 知识拓展:介绍一元二次方程、不等式、函数在实际生活中的应用。
6. 课后作业布置:布置适量、有针对性的作业。
六、板书设计1. 一元二次方程的解法2. 不等式的性质与解法3. 函数的概念与表示方法4. 一次函数与反比例函数的图像与性质5. 二次函数的图像与性质6. 几何图形的初步认识七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 1,x + 4 < 5(3)函数图像的绘制:y = 2x + 1(4)二次函数图像的性质:y = x^2 2x 32. 答案:(1)x1 = 2,x2 = 3(2)x > 2,x < 1(3)直线,斜率为2,y轴截距为1(4)开口向上,顶点坐标为(1,4),与x轴的交点为(1,0)和(3,0)八、课后反思及拓展延伸1. 反思:本节课教学过程中,注意观察学生的学习情况,及时调整教学方法,提高教学效果。
2.2(2)一元二次方程的解法
5 ∴ x 1= 3
或x2= -1/3
用配方法解一元二次方程的基本步骤: 用配方法解一元二次方程的基本步骤: ax2+bx+c=0
1.方程两边同时除以 得 x2+ b x+ c =0 方程两边同时除以a,得 方程两边同时除以 a a 2.移项,得 移项, 移项 x 2+ b x= - c a a
b2-4ac b 2 b 3.方程两边都加上 2a ) ,得 x2+ a x+( b )2= 4a2 方程两边都加上( 方程两边都加上 2a 4.用开平方法,解得答案。 用开平方法,解得答案。 用开平方法
2.2一元二次方程的解法 一元二次方程的解法(2) 一元二次方程的解法
x 2 + bx + c = 0
复习回顾
一元二次方程开平方法和配方法(a=1)解法的 一元二次方程开平方法和配方法( ) 区别与联系. 区别与联系
开平方法:形如 开平方法:形如x2=b(b≥0);(x-a)2=b(b≥0)。 ( )( - ) ( )。 配方法: 先把方程 移项得x 配方法:①先把方程x2+bx+c=0移项得 2+bx=-c. 移项得 ②方程两边同时加一次项系数一半的平方,得 方程两边同时加一次项系数一半的平方, x2+bx+ ( b )2 = -c + ( b )2 2 2 2-4c b ) 2= b 即: (x+ 2 4 ③当 b2-4c>0 时,就可以通过开平方法求出 方程的方程 (1) 2x2+4x-3=0
解:方程两边同除以2,得 方程两边同除以 ,
(2) 3x2-8x-3=0
解:方程两边同除以2,得 方程两边同除以 ,
浙教版数学八年级下册《因式分解法、直接开平方法、配方法》教学设计2
浙教版数学八年级下册《因式分解法、直接开平方法、配方法》教学设计2一. 教材分析浙教版数学八年级下册的《因式分解法、直接开平方法、配方法》是整式与方程单元的重要内容。
这一部分内容主要让学生掌握因式分解法、直接开平方法和配方法这三种解一元二次方程的方法,培养学生解决实际问题的能力。
教材通过例题和练习题引导学生掌握这三种方法,并在解决实际问题中体会数学的运用价值。
二. 学情分析学生在学习这一部分内容时,已有了一定的代数基础,对一元一次方程的解法有一定的了解。
但一元二次方程相对复杂,需要学生理解和掌握三种不同的解法。
此外,学生需要将所学知识应用于实际问题,提高解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握因式分解法、直接开平方法和配方法这三种解一元二次方程的方法,能灵活运用这些方法解决问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,体会数学在生活中的运用价值。
四. 教学重难点1.重点:因式分解法、直接开平方法和配方法这三种解一元二次方程的方法。
2.难点:如何灵活运用这些方法解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生自主探究、合作交流。
2.运用多媒体辅助教学,直观展示解题过程,提高学生的学习兴趣。
3.通过练习题和实践问题,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关的教学课件和练习题。
2.安排学生进行预习,了解一元二次方程的基本概念。
七. 教学过程通过一个实际问题引入一元二次方程,激发学生的学习兴趣。
例如:一个长方形的长比宽多3米,宽比长少2米,求长方形的面积。
2.呈现(15分钟)呈现因式分解法、直接开平方法和配方法这三种解一元二次方程的方法,引导学生了解各自的特点和适用范围。
3.操练(20分钟)让学生通过练习题熟悉这三种方法,并及时给予指导和反馈。
练习题包括简单的一元二次方程和实际问题。
浙教版数学八下知识点总结易错
浙教版数学八下知识点总结易错浙教版数学八下知识点总结(易错点标注)一、二次根式。
1. 二次根式的概念。
- 一般地,形如√(a)(a≥0)的式子叫做二次根式。
这里a可以是数,也可以是代数式,但必须满足a≥0这个条件。
- 易错点:容易忽略被开方数a≥0这个条件。
例如,当a = - 1时,√(-1)在实数范围内无意义,但有些同学在计算时可能会错误地进行运算。
2. 二次根式的性质。
- √(a^2)=| a|=a(a≥0) -a(a < 0)- (√(a))^2=a(a≥0)- 易错点:- 在计算√(a^2)时,容易直接写成a而忽略a的正负性。
例如,当a=-2时,√((-2)^2)=| - 2| = 2,而不是-2。
- 对于(√(a))^2,容易忘记a≥0这个前提条件就进行运算。
3. 二次根式的运算。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥0,b≥0)- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥0,b > 0)- 易错点:- 在乘法运算中,忽略a≥0,b≥0的条件。
例如,计算√(-2)·√(-3)是错误的,因为被开方数不能为负数。
- 在除法运算中,容易忘记b > 0这个条件,并且在分母有理化时可能出现计算错误。
二、一元二次方程。
1. 一元二次方程的概念。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
- 易错点:- 容易忽略a≠0这个条件。
例如,当a = 0时,方程ax^2+bx + c = 0就不是一元二次方程,而是一元一次方程bx + c = 0。
2. 一元二次方程的解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
- 配方法:将方程ax^2+bx + c = 0(a≠0)转化为(x + m)^2=n(n≥0)的形式,再用直接开平方法求解。
浙教版数学八年级下册2.2一元二次方程的解法(二 )开平方法.docx
2.2一元二次方程的解法(二 )-----------开平方法傅苏球 2014.2.25任务一:1.回忆因式分解法解一元二次方程的步骤:2.用因式分解法解方程:()048312=-x ()()73222=-x ()0161032=+-x x思考:你能否用平方根定义来解上述方程?任务二:1.根据平方根定义方程a x =2的解是什么?2.用开平方法解: ()048312=-x ()()73222=-x归纳:开平方法解一元二次方程的步骤:3.合作学习:探讨怎样用开平方法解()0161032=+-x x ,你能把它化为()b a x =+2的形式吗?请尝试解这个方程.归纳:配方法解一元二次方程的步骤:4.例:用配方法解下列一元二次方程:()1612=+x x ()06522=-+x x任务三:课内练习:1.填空:()_______25.012的根是方程=x ()______18222的根是方程=x 2.填空:()()()()()222222______12323____324____81-=+-⎪⎭⎫ ⎝⎛-=+-+=++x x x x x x x x x 3.选择适当的方法解下列方程:()08112=-x ()50222=x ()()4132=+x4.用配方法解下列方程()91212-=+x x ()03422=-+-x x任务四:拓展与应用1.用配方法解方程11342-=x x2.先用配方法解下列方程:①0122=--x x ② 0422=+-x x ③ 0122=+-x x 然后回答下列问题:(1)你在求解过程中遇到什么问题?你是怎样处理所遇到的问题的?(2)对于形如02=++q px x 这样的方程,在什么条件下才有实数根?初中数学试卷鼎尚图文**整理制作。
浙教版初中数学八年级下册导学案:2.2一元二次方程的解法(2)
浙教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!浙教版初中数学和你一起共同进步学业有成!备课组: 八年级数学 主备人: 孙慧 日期: 2015.3.8 编号: 09班级姓名 ( )学 评价 审核 査武军 课题2.2 一元二次方程的解法(2) 学习目标1.理解直接开平方法解一元二次方程的依据是平方根的意义,并会用 直接开平方法解一元二次方程。
2.理解配方法并会用配方法解二次项系数为1的一元二次方程。
重点难点 重点:掌握直接开平方法及配方法解某些一元二次方程。
难点:理解掌握配方法。
【课前自学 课堂交流】一、自主探究:(1)x 2-9=0 (2)x 2-3=0;1.观察上述两个方程的特征:他们都不含 项。
2. 探讨解方程:x 2-9=0 由移项得:x 2=9 ∴x=±9 ∴x=± 即x 1= ,x 2=[思考]:-4x 2=16有解吗?为什么? .[定义]:这种解形如x 2=a(a )的一元二次方程的方法叫做 法。
3.请你仿照例4解下列方程:(1) x 2=0 (2) 3x 2-27=0 (3)(x+3)2=2总结:用开平方法解一元二次方程的前提是用开平方法解一元二次方程的步骤是:①常数项移到等号的 ;②化二次项系数为 ;③方程两边开平方得到x=± 的形式;④写出解x 1= ,x 2=4.怎样解方程:x 2+6x=-7(思考:能不能将它转化成(x+a )2=b 的形式? ) 解: x 2+6x =-7x 2+2x 3+32=-7+32∙∙ (x+ )2=∴x+ =±即x+3=或x+3=- ∴x 1= ,x 2=222[定义]:如果一元二次方程左边变成一个__________,右边变成一个_________,就可以用“开平方法”求解。
这种方法叫做配方法。
思考:用配方法解一元二次方程等式两边同时加怎样的数呢? ____________5.仿照上面格式及例5解下列方程:(1) (2) (3) 182=+x x 2210x x --=265x x =-归纳:用配方法解一元二次方程的步骤:① 等号的左边为 项和 项,等号的右边只有 。
浙教版数学八年级下册2.2一元二次方程的解法(二 )开平方法
2.2一元二次方程的解法(二 )-----------开平方法傅苏球 2014.2.25任务一:1.回忆因式分解法解一元二次方程的步骤:2.用因式分解法解方程:()048312=-x ()()73222=-x ()0161032=+-x x思考:你能否用平方根定义来解上述方程?任务二:1.根据平方根定义方程a x =2的解是什么?2.用开平方法解: ()048312=-x ()()73222=-x归纳:开平方法解一元二次方程的步骤:3.合作学习:探讨怎样用开平方法解()0161032=+-x x ,你能把它化为()b a x =+2的形式吗?请尝试解这个方程.归纳:配方法解一元二次方程的步骤:4.例:用配方法解下列一元二次方程:()1612=+x x ()06522=-+x x任务三:课内练习:1.填空:()_______25.012的根是方程=x ()______18222的根是方程=x 2.填空:()()()()()222222______12323____324____81-=+-⎪⎭⎫ ⎝⎛-=+-+=++x x x x x x x x x 3.选择适当的方法解下列方程:()08112=-x ()50222=x ()()4132=+x4.用配方法解下列方程()91212-=+x x ()03422=-+-x x任务四:拓展与应用1.用配方法解方程11342-=x x2.先用配方法解下列方程:①0122=--x x ② 0422=+-x x ③ 0122=+-x x 然后回答下列问题:(1)你在求解过程中遇到什么问题?你是怎样处理所遇到的问题的?(2)对于形如02=++q px x 这样的方程,在什么条件下才有实数根?初中数学试卷。
浙教版八下 2.2一元二次方程的解法
1.作业本; 2.课后作业选做.
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月2日星期三2022/3/22022/3/22022/3/2 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/22022/3/22022/3/23/2/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/22022/3/2March 2, 2022 4、享受阅读快乐,提高生活质量。2022/3/22022/3/22022/3/22022/3/2
x2-10x+25=9 变形为 (x5)2 9
x2-10x+16=0
变 形 为
这种方 程怎样
解?
•••• 2 a 的形式.(a为非负常数)
把一元二次方程的左边配成一个完全 平方式,右边为一个非负常数,然后用
开平方法求解,这种解一元二次方程的方法
叫做配方法.
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数
; ;
.
用开平方法解下列方程:
(1)3x2-27=0; (2)(x+1)2=4 (3)(2x-3)2=7 (4)x2+2 5 x+5=0
你能用开平方法解下列方程吗?
x2-10x+16=0
(1)x2+8x+ 42 =(x+4)2
(2)x2-3x+(23 )2
=(x-
3 2
)
(3)x2-12x+ 62 =(x- 6 )2
一半的平方;
开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2一元二次方程的解法(二 )-----------开平方法
傅苏球 2014.2.25
任务一:
1.回忆因式分解法解一元二次方程的步骤:
2.用因式分解法解方程:
()048312=-x ()()73222=-x ()0161032
=+-x x
思考:你能否用平方根定义来解上述方程?
任务二:
1.根据平方根定义方程a x =2的解是什么?
2.用开平方法解: ()048312=-x ()()73222
=-x
归纳:开平方法解一元二次方程的步骤:
3.合作学习:探讨怎样用开平方法解()0161032=+-x x ,你能把它化为()b a x =+2
的形式吗?请尝试解这个方程.
归纳:配方法解一元二次方程的步骤:
4.例:用配方法解下列一元二次方程:
()1612=+x x ()06522=-+x x
任务三:课内练习:
1.填空:()_______25.012的根是方程=x ()______18222
的根是方程=x 2.填空:
()()()()()2
22
22
2______12323____324____81-=+-⎪⎭⎫ ⎝⎛-=+-+=++x x x x x x x x x 3.选择适当的方法解下列方程:
()08112=-x ()50222=x ()()4132=+x
4.用配方法解下列方程
()91212-=+x x ()03422=-+-x x
任务四:拓展与应用
1.用配方法解方程11342-=x x
2.先用配方法解下列方程:①0122=--x x ② 0422=+-x x ③ 0122=+-x x 然后回答下列问题:(1)你在求解过程中遇到什么问题?你是怎样处理所遇到的问题的?
(2)对于形如02=++q px x 这样的方程,在什么条件下才有实数根?
初中数学试卷
鼎尚图文**整理制作。