2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试8二次函数与幂函数课件苏教版

合集下载

2021版高考数学一轮复习第一部分基础与考点过关第二章函数与导数学案20210807214

2021版高考数学一轮复习第一部分基础与考点过关第二章函数与导数学案20210807214

2021版高考数学一轮复习第一部分基础与考点过关第二章函数与导数学案20210807214第1课时函数及其表示(对应学生用书(文)、(理)9~11页)① 本节是函数部分的起始部分,以考查函数概念、三要素及表示法为主,同时考查学生在实际问题中的建模能力.②本节内容曾以多种题型显现在高考试题中,要求相对较低,但专门重要,专门是函数的解析式仍会是2021年高考的重要题型.① 明白得函数的概念,了解构成函数的要素.②在实际情境中,会依照不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.1. (必修1P26练习3改编)下列对应关系中________是函数.(填序号)① A=R+,B=R,关于任意的x∈A,x→x的算术平方根;② A={1,2,3,4,5},B={0,2,4,6,8},关于任意的x∈A,x→2x;③ x→-12x,x∈R;④ x→y,其中y=|x|,x∈R,y∈R;⑤ x→y,其中y为不大于x的最大整数,x∈R,y∈Z.答案:①③④⑤解析:①③④⑤均符合函数的定义,②关于集合A中的元素5,在集合B中找不到元素与之对应.2. (必修1P26练习4改编)下列各组函数中,表示同一函数的是__________.(填序号)① y=x+1和y=x2-1x-1;② y=x0和y=1;③ f(x)=x2和g(x)=(x+1)2;④ f(x)=(x)2x和g(x)=x(x)2.答案:④解析:只有④表示同一函数,①与②中定义域不同,③是对应法则不同.3. (必修1P31习题1改编)设函数f(x)=41-x.若f(a)=2,则实数a=__________.答案:-1解析:由题意可知,f(a)=41-a=2,解得a=-1.4. (必修1P31习题8改编)已知函数f(x)由下表给出,则f(3)=__________.x 1 2 3 4f(x) -3 -2 -4 -1答案:-4解析:由表中函数值得f(3)=-4.5. (必修1P36习题3改编)已知函数f(x)在[-1,2]上的图象如图所示,则f(x)的解析式为____________.答案:f(x)=⎩⎪⎨⎪⎧x +1,-1≤x≤0,-12x ,0<x ≤2解析:观看图象,知此函数是分段函数,同时在每段上均是一次函数,利用待定系数法求出解析式.当-1≤x≤0时,f(x)=x +1;当0<x≤2时,f(x)=-x2.∴ f(x)=⎩⎪⎨⎪⎧x +1,-1≤x≤0,-12x ,0<x ≤2.1. 函数的概念(1) 函数的定义一样地,设A ,B 是两个非空的数集,假如按照某种对应法则f ,关于集合A 中的每一个元素x ,在集合B 中都有唯独的一个元素y 和它对应,如此的对应叫做从A 到B 的一个函数,通常记为y =f(x),x ∈A .(2) 函数的定义域、值域在函数y =f(x),x ∈A 中,所有的输入值x 组成的集合A 叫做函数y =f(x)的定义域;若A 是函数y =f(x)的定义域,则关于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域.(3) 函数的要素函数的构成要素:定义域、对应法则、值域.由于值域是由定义域和对应法则决定的,因此,假如两个函数的定义域和对应法则完全一致,我们就称这两个函数为相同的函数或同一函数.这是判定两函数相等的依据.2. 函数的表示方法表示函数的常用方法有列表法、解析法(解析式法)、图象法. 3. 分段函数在定义域内不同部分上,有不同的解析式,像如此的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.4. 映射的概念一样地,设A ,B 是两个非空的集合,假如按某一个确定的对应关系f ,使关于集合A 中的任意一个元素x ,在集合B 中都有唯独确定的元素y 与之对应,那么就称对应f :A→B 为从集合A 到集合B 的一个映射.函数是映射,但映射不一定是函数.[备课札记], 1 函数的概念), 1) 下列集合A 到集合B 的对应关系中,是从集合A 到集合B 的映射的有________.(填序号)① A =R ,B ={y|y>0},f :x→y=|x|;② A ={x|x≥2,x ∈N *},B ={y|y≥0,y ∈N },f :x→y=x 2-2x +2; ③ A ={x|x>0},B ={y|y∈R },f :x→y=±x ;④ A ={α|α是三角形的内角},B ={y|y∈R },对应法则:y =tan α;⑤ A ={m|m∈Z },B ={y|y =0或y =1},对应法则:y =⎩⎪⎨⎪⎧0,m =2n ,n ∈Z ,1,m =2n +1,n ∈Z ;答案:②⑤解析:① 集合A 中的零元素,在集合B 中没有相应的对应元素. ② 按照对应法则,满足题设条件. ③ 一对多,不满足映射的概念.④ ∵ π2∈A ,但π2的正切值不存在,∴ 此对应不是从集合A 到集合B 的映射.⑤ ∵ 集合A 中的每一个元素在集合B 中都有唯独的元素与之对应,∴ 此对应是从集合A 到集合B 的映射.点评:判定对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯独”;但要注意:① A 中不同元素可有相同的象,即承诺多对一,但不承诺一对多;② B 中元素可无原象,即B 中元素能够有剩余.备选变式(教师专享)已知映射f :A→B,其中A =B =R ,对应法则f :x→y=-x 2+2x ,关于实数k∈B,在集合A 中不存在元素与之对应,则k 的取值范畴是________.答案:(1,+∞)解析:由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴ Δ=4(1-k)<0,∴ k>1时满足题意., 2 函数的解析式), 2) 求下列各题中的函数f(x)的解析式. (1) 已知f(x +2)=x +4x ,求f(x);(2) 已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f(x); (3) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x).解:(1) (解法1)设t =x +2(t≥2),则x =t -2,即x =(t -2)2,∴ f(t)=(t -2)2+4(t -2)=t 2-4,∴ f(x)=x 2-4(x≥2).(解法2)∵ f(x +2)=(x +2)2-4,∴ f(x)=x 2-4(x≥2).(2) 设t =2x +1,则x =2t -1,∴ f(t)=lg 2t -1,即f(x)=lg 2x -1(x>1).(3) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a≠0). 由f(0)=1,得c =1.由f(x +1)=f(x)+2x ,得a(x +1)2+b(x +1)+1=ax 2+bx +1+2x , 整理,得(2a -2)x +a +b =0,由恒等式原理,知⎩⎪⎨⎪⎧2a -2=0,a +b =0⇒⎩⎪⎨⎪⎧a =1,b =-1,∴ f(x)=x 2-x +1. 变式训练依照下列条件分别求出f(x)的解析式. (1) f(x +1)=x +2x ;(2) 二次函数f(x)满足f(0)=3,f(x +2)-f(x)=4x +2.解:(1) 令t =x +1,∴ t ≥1,x =(t -1)2.则f(t)=(t -1)2+2(t -1)=t 2-1,即f(x)=x 2-1,x ∈[1,+∞).(2) 设f(x)=ax 2+bx +c(a≠0),∴ f(x +2)=a(x +2)2+b(x +2)+c , 则f(x +2)-f(x)=4ax +4a +2b =4x +2. ∴ ⎩⎪⎨⎪⎧4a =4,4a +2b =2.∴ ⎩⎪⎨⎪⎧a =1,b =-1. 又f(0)=3,∴ c =3,∴ f(x)=x 2-x +3., 3 分段函数), 3) 如图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA由B 点(起点)向A 点(终点)移动.设P 点移动的路程为x ,△ABP 的面积为y =f(x).(1) 求△ABP 的面积与P 移动的路程间的函数解析式; (2) 作出函数的图象,并依照图象求y 的最大值.解:(1) 那个函数的定义域为(0,12),当0<x≤4时,S =f(x)=12·4·x =2x ;当4<x≤8时,S =f(x)=8;当8<x <12时,S =f(x)=12·4·(12-x)=24-2x.∴ 函数解析式为f(x)=⎩⎪⎨⎪⎧2x ,x ∈(0,4],8,x ∈(4,8],24-2x ,x ∈(8,12).(2) 其图象如图所示,由图知f max (x)=8.变式训练已知函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x<0,则满足不等式f(1-x 2)>f(2x)的x 的取值范畴是____________.答案:(-1,2-1)解析:函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x<0的图象如图所示:f(1-x 2)>f(2x)⇔⎩⎪⎨⎪⎧1-x 2>2x ,1-x 2>0,解得-1<x<2-1. 备选变式(教师专享)关于实数a 和b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b>1,设函数f(x)=(x +2)*(3-x),x ∈R .若方程f(x)=c 恰有两个不同的解,则实数c 的取值范畴是________.答案:(-∞,2)解析:令x +2-(3-x)≤1,求得x≤1,则f(x)=(x +2)*(3-x)=⎩⎪⎨⎪⎧x +2,x ≤1,3-x ,x>1,画出函数f(x)的图象,如图,方程f(x)=c 恰有两个不同的解,即是函数f(x)的图象与直线y =c 有2个交点,数形结合可得c<2.专门提醒:本题要紧考查分段函数的解析式、函数的零点以及新定义问题,属于难题.已知函数零点个数(方程根的个数)求参数取值范畴的三种常用的方法:(1) 直截了当法:直截了当依照题设条件构建关于参数的不等式,再通过解不等式确定参数范畴;(2) 分离参数法:将参数分离,转化成求函数值域问题加以解决;(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数y =g(x),y =h(x)的图象的交点个数问题,画出两个函数的图象,其交点的个数确实是函数零点的个数,二是转化为y =a ,y =g(x)的图象的交点个数问题.1. (2020·溧阳中学周练)若x∈R ,则f(x)与g(x)表示同一函数的是________.(填序号)① f(x)=x ,g(x)=x 2;② f(x)=1,g(x)=(x -1)0;③ f(x)=(x )2x ,g(x)=x(x )2; ④ f(x)=x 2-9x +3,g(x)=x -3.答案:③解析:①中,g(x)=x 2=|x|≠x;②中,g(x)=(x -1)0=1(x≠1);③中,f(x)=(x )2x=1(x>0),g(x)=1(x>0);④中,f(x)=x 2-9x +3=x -3(x≠-3).因此填③.2. 二次函数y =f(x)=ax 2+bx +c(x∈R )的部分对应值如下表:x -4 -3 -2 -1 0 1 2 3 y 6 0 -4 -6 -6 -4 0 6则关于x 答案:[-3,2] 解析:由表格数据作出二次函数的草图,结合数据与图象即可发觉不等式f(x)≤0的解集为[-3,2].3. 为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x-2(x 为明文、y 为密文),假如明文“3”通过加密后得到密文为“6”,再发送,同意方通过解密得到明文“3”,若同意方接到密文为“14”,则原发的明文是________.答案:44. 有一个有进水管和出水管的容器,每单位时刻进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时刻x 与容器中的水量y 之间的关系如图所示.再随后,只放水不进水,水放完为止,则这段时刻内(即x≥20),y 与x 之间的函数关系是____________________.答案:y =-3x +95⎝⎛⎭⎪⎫20≤x≤953 解析:设进水速度为a 1 L/min ,出水速度为a 2 L/min ,则由题意得⎩⎪⎨⎪⎧5a 1=20,5a 1+15(a 1-a 2)=35,解得⎩⎪⎨⎪⎧a 1=4,a 2=3,则y =35-3(x -20),得y =-3x +95.当水放完,时刻为x =953 min ,又知x ≥20,故解析式为y =-3x +95⎝⎛⎭⎪⎫20≤x≤953. 5. 设函数f(x)=⎩⎪⎨⎪⎧2x -4,x >0,-x -3,x <0.若f(a)>f(1),则实数a 的取值范畴是____________.答案:(-∞,-1)∪(1,+∞)解析:由f(1)=-2,则f(a)>-2.当a>0时,有2a-4>-2,则a>1;当a <0时,-a -3>-2,则a <-1.因此实数a 的取值范畴是(-∞,-1)∪(1,+∞).6. 函数f(x)=⎩⎪⎨⎪⎧x 2-x ,x >0,12-|12+x|,x ≤0.若关于x 的方程f(x)=kx -k 至少有两个不相等的实数根,则实数k 的取值范畴是____________.答案:⎣⎢⎡⎭⎪⎫-13,1∪(1,+∞) 解析:如图,作出函数图象,y 2=kx -k 过定点(1,0),临界点⎝ ⎛⎭⎪⎫-12,12和(1,0)连线的斜率为-13,又f′(1)=1,由图象知实数k 的取值范畴是⎣⎢⎡⎭⎪⎫-13,1∪(1,+∞)., 3. 分段函数意义明白得不清致误)典例 已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x ≥1.若f(1-a)=f(1+a),则a 的值为__________.易错分析:(1) 误以为1-a<1,1+a>1,没有对a 进行讨论直截了当代入求解;(2) 求解过程中不记得检验所求结果是否符合要求致误.解析:当a>0时,1-a<1,1+a>1,由f(1-a)=f(1+a)可得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)可得-1+a -2a =2+2a +a ,解得a =-34.答案:-34专门提醒:(1) 注意分类讨论思想在求函数值中的应用,关于分段函数的求值问题,若自变量的取值范畴不确定,应分情形求解;(2) 检验所求自变量的值或范畴是否符合题意,求解过程中,求出的参数的值或范畴并不一定符合题意,因此要检验结果是否符合要求.1. 已知集合A ={a ,b ,c},B ={1,2},那么可建立从A 到B 的映射个数是______,从B 到A 的映射个数是______.答案:8 9解析:依题意,建立从A 到B 的映射,即集合A 中的每一个元素在集合B 中找到对应元素,从而从A 到B 的映射个数为23=8,从B 到A 的映射个数是32=9.因此填写答案依次为:8;9.2. 已知一个函数的解析式为y =x 2,它的值域为{1,4},如此的函数有________个. 答案:9解析:列举法:定义域可能是{1,2}、{-1,2}、{1,-2}、{-1,-2}、{1,-2,2}、{-1,-2,2}、{-1,1,2}、{-1,1,-2}、{-1,1,-2,2}.3. 若函数f(x)=xax +b,f(2)=1,又方程f(x)=x 有唯独解,则f(x)=________.答案:2x x+2解析:由f(2)=1得2 2a+b=1,即2a+b=2;由f(x)=x得xax+b=x,变形得x⎝⎛⎭⎪⎫1ax+b-1=0,解此方程得x=0或x=1-ba,∵方程有唯独解,∴1-ba=0,解得b=1,代入2a+b=2得a=12,∴ f(x)=2xx+2.4. 如图,动点P从单位正方形ABCD顶点A开始,顺次经B,C,D绕边界一周,当x表示点P的行程,y表示PA之长时,求y关于x的解析式,并求f⎝⎛⎭⎪⎫52的值.解:当P在AB上运动时,y=x(0≤x≤1);当P在BC上运动时,y=1+(x-1)2 (1<x≤2);当P在CD上运动时,y=1+(3-x)2(2<x≤3);当P在DA上运动时,y=4-x(3<x≤4). ∴ y=⎩⎪⎨⎪⎧x(0≤x≤1),1+(x-1)2(1<x≤2),1+(3-x)2(2<x≤3),4-x(3<x≤4),∴ f⎝⎛⎭⎪⎫52=52.5. 已知函数f(x)=⎩⎪⎨⎪⎧12x+1,x≤0,-(x-1)2,x>0,则不等式f(x)≥-1的解集是________.答案:[-4,2]解析:f(x)≥-1,等价于⎩⎪⎨⎪⎧x≤0,12x+1≥-1或⎩⎪⎨⎪⎧x>0,-(x-1)2≥-1,解之得-4≤x≤0或0<x≤2,即原不等式的解集是[-4,2].6. (2020·溧阳中学周测)设函数f(x)定义如下表,数列{x n}(n∈N*)满足x1=1,且关于任意的正整数n,均有x n+1=f(x n),求x2 018的值.x 1 2 3 4f(x) 2 3 4 1解:因为x1=1,因此x2=f(x1)=f(1)=2,x3=f(x2)=f(2)=3,x4=f(x3)=f(3)=4,x5=f(x4)=f(4)=1,x6=f(x5)=f(1)=2,…,不难看出数列{x n}是以4为周期的周期数列,因此x2 018=x4×504+2=x2=2.点评:通过观看一些专门的情形,来获得深刻的认识,是探究数学问题的一种重要方法,应注意学习,同时函数的表示也能够利用列表法来给出.1. 函数是专门的映射,其专门性在于集合A与B只能是非空数集,即函数是非空数集A到非空数集B的映射;而映射不一定是函数.从A到B的一个映射,A,B若不是数集,则那个映射不是函数.2. 函数是一种专门的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;②依照给出的对应法则,自变量在定义域中的每一个值,是否都有唯独确定的函数值.3. 函数解析式的求解方法通常有:配凑法、换元法、待定系数法及消去法.用换元法求解时要专门注意新元的范畴,即所求函数的定义域;而消去法表达的方程思想,即依照已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).第2课时函数的定义域和值域(对应学生用书(文)、(理)12~14页)①函数的定义域是研究一切函数的源头,求各种类型函数的定义域是高考中每年必考的试题.②函数的值域和最值问题也是高考的必考内容,一样可不能对值域和最值问题单独命题,要紧是结合其他知识综合考查,专门是应用题;再确实是求变量的取值范畴,要紧是考查求值域和最值的差不多方法.① 会求简单函数的定义域.②把握求函数值域与最值的常用方法.③能运用求值域与最值的常用方法解决实际问题.1. (必修1P25例2改编)函数f(x)=x-2+1x-3的定义域是____________________.答案:[2,3)∪(3,+∞)解析:要使函数有意义,x需满足⎩⎪⎨⎪⎧x-2≥0,x-3≠0,解得x≥2且x≠3.2. (必修1P26练习6(2)(4)改编)函数y=1x2-1+x+1的定义域为__________________.答案:(-1,1)∪(1,+∞)解析:依题意得⎩⎪⎨⎪⎧x2-1≠0,x+1≥0,∴ x>-1且x≠1,故函数的定义域为(-1,1)∪(1,+∞).3. 函数y=1x2+2的值域为________.答案:⎝⎛⎦⎥⎤0,12解析:∵ x2+2≥2,∴ 0<1x2+2≤12.∴ 0<y≤12.4. 若x有意义,则函数y=x2+3x-5的值域是________.答案:[-5,+∞)解析:∵ x有意义,∴ x≥0.又y=x2+3x-5=⎝⎛⎭⎪⎫x+322-94-5,函数y=x2+3x-5在[0,+∞)上单调递增,∴当x=0时,y min=-5.∴ 函数y=x2+3x-5的值域是[-5,+∞).5. 函数y=2x-1的定义域是(-∞,1)∪[2,5),则其值域是____________________.答案:(-∞,0)∪⎝⎛⎦⎥⎤12,2解析:∵ x∈(-∞,1)∪[2,5),∴ x -1∈(-∞,0)∪[1,4).当x -1∈(-∞,0)时,2x -1∈(-∞,0);当x -1∈[1,4)时,2x -1∈⎝ ⎛⎦⎥⎤12,2.1. 函数的定义域(1) 函数的定义域确实是使函数表达式有意义的所有的输入值x 组成的集合.在解决函数问题时,必须树立起“定义域优先”的观念.(2) 求定义域的步骤① 写出使函数有意义的不等式(组). ② 解不等式(组).③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见差不多初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数中被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sin x ,y =cos x 的定义域均为R .⑤ y =tan x 的定义域为{x|x≠kπ+π2,k ∈Z }.⑥ 函数f(x)=x 0的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与定义域中输入值x 对应的y 的值叫做输出值,所有输出值y 组成的集合叫做函数的值域.(2) 差不多初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a,+∞);当a<0时,值域为(-∞,4ac -b24a ].③ y =kx (k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R .⑥ y =sin x ,y =cos x 的值域是[-1,1]. ⑦ y =tan x 的值域是R . 3. 函数的最值一样地,设y =f(x)的定义域为A. (1) 假如存在x 0∈A ,使得关于任意的x∈A,都有f (x)≤f(x 0),那么称f(x 0)为y =f(x)的最大值,记为y max =f(x 0).(2) 假如存在x 0∈A ,使得关于任意的x∈A,都有f(x)≥f(x 0),那么称f(x 0)为y =f(x)的最小值,记为y min =f(x 0).4. 值域与最值的关系若函数y =f(x)的最大值为b ,最小值为a ,那么y =f(x)的值域必定是数集[a ,b]的子集,若f(x)能够取到[a ,b]中的一切值,那么其值域确实是[a ,b].5. 复合函数假如函数y =f(u)(u∈A),u =g(x)(x∈B,u ∈A),则y =f(g(x))叫做由函数y =f(u)(u∈A),u =g(x)(x∈B,u ∈A)合成的复合函数,u 叫做中间变量.y =f(u)(u∈A),叫做该复合函数的外层函数,而u =g(x)(x∈B)叫做该复合函数的内层函数.注意:由u =g(x)(x∈B)求出的值域一定是A.即内层函数的值域是外层函数的定义域.6. 函数解析式的表示离不开函数的定义域.[备课札记], 1 求函数的定义域), 1) (1) 已知函数f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12的定义域是__________. (2) 函数y =ln (x +1)-x 2-3x +4的定义域为____________. 答案:(1) ⎣⎢⎡⎦⎥⎤12,32 (2) (-1,1) 解析:(1) 因为函数f(x)的定义域是[0,2],因此函数g(x)=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12中的自变量x 需要满足:⎩⎪⎨⎪⎧0≤x+12≤2,0≤x -12≤2,解得⎩⎪⎨⎪⎧-12≤x≤32,12≤x ≤52.因此12≤x ≤32,因此函数g(x)的定义域是⎣⎢⎡⎦⎥⎤12,32. (2) 由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,得-1<x<1.变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 函数f(x)的定义域是[-1,1],求f(log 2x)的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0,∴ 函数定义域是(-∞,-1)∪(-1,0). (2) ∵ 函数f(x)的定义域是[-1,1],∴ -1≤log 2x ≤1,∴ 12≤x ≤2.故f(log 2x)的定义域为⎣⎢⎡⎦⎥⎤12,2. 备选变式(教师专享) 求下列函数的定义域:(1) y =lg (2-x )12+x -x2+(x -1)0; (2) y =lg sin x +64-x 2. 解:(1) 由题意得⎩⎪⎨⎪⎧2-x>0,12+x -x 2>0x -1≠0,,解得⎩⎪⎨⎪⎧x<2,-3<x<4x≠1,,∴ -3<x<2且x≠1,∴ 所求函数的定义域为{x|-3<x<2且x≠1}.(2) 由题意得⎩⎪⎨⎪⎧sin x>0,64-x 2≥0,解得⎩⎪⎨⎪⎧2k π<x<2k π+π,k ∈Z ,-8≤x≤8. ∴ -2π<x<-π或0<x<π或2π<x ≤8.∴ 所求函数的定义域为(-2π,-π)∪(0,π)∪(2π,8]., 2 求函数的值域), 2) 求下列函数的值域: (1) f(x)=x -1-2x ;(2) y =1-x21+x 2;(3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (解法1:换元法)令1-2x =t ,则t ≥0且x =1-t 22,因此f(t)=1-t22-t=-12(t +1)2+1.由于t≥0,因此f(t)≤12,故函数的值域是⎝⎛⎦⎥⎤-∞,12.(解法2:单调性法)容易判定f(x)为增函数,而其定义域应满足1-2x≥0,即x≤12,因此f(x)≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎝ ⎛⎦⎥⎤-∞,12.(2) y =1-x 21+x 2=21+x2-1.因为1+x 2≥1,因此0<21+x2≤2.因此-1<21+x2-1≤1,即y∈(-1,1].因此函数的值域为(-1,1].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,因此y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (解法2)由y =2x -1x +1,得x =1+y2-y.因为x∈[3,5],因此3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (差不多不等式法)令t =x -1,则x =t +1(t>0),因此y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t-2(t>0).因为t +2t≥2t ·2t=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞). 备选变式(教师专享) 求下列函数的值域:(1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f(x)=1-x +x +3的定义域是[-3,1].令y =f(x),则y≥0,∴ y 2=4+2(1-x )(x +3),即y 2=4+2-(x +1)2+4(-3≤x≤1).令t(x)=-(x +1)2+4(-3≤x≤1).∵ x ∈[-3,1],由t(-3)=0,t(-1)=4,t(1)=0,知0≤t(x)≤4,从而y 2∈[4,8],即y∈[2,22], ∴ 函数f(x)的值域是[2,22].(2) g(x)=x 2-9x 2-7x +12=(x +3)(x -3)(x -3)(x -4)=x +3x -4=1+7x -4(x≠3且x≠4).∵ x ≠3且x≠4,∴ g (x)≠1且g(x)≠-6.∴ 函数g(x)的值域是(-∞,-6)∪(-6,1)∪(1,+∞). (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,log x 3>0,y =log 3x +log x 3-1≥2log 3x ·log x 3-1=1; 当0<x<1时,log 3x<0,log x 3<0,y =log 3x +log x 3-1=-[(-log 3x)+(-log x 3)]-1≤-2-1=-3.∴ 函数的值域是(-∞,-3]∪[1,+∞)., 3 函数值和最值的应用)●典型示例, 3) 已知函数f(x)=x 2+2x +ax,x ∈[1,+∞).(1) 当a =12时,求函数f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范畴.【思维导图】 函数恒成立→不等式恒成立→分类讨论→新函数的最值→a 的取值范畴【规范解答】 解:(1) 当a =12时,f(x)=x +12x+2.∵ f(x)在区间[1,+∞)上为增函数,∴ f(x)在区间[1,+∞)上的最小值为f(1)=72.(2) (解法1)在区间[1,+∞)上,f(x)=x 2+2x +a x>0恒成立,∴ x 2+2x +a>0恒成立.设y =x 2+2x +a ,x ∈[1,+∞).∵ y =x 2+2x +a =(x +1)2+a -1在[1,+∞)上单调递增,∴ 当x =1时,y min =3+a ,当且仅当y min =3+a>0时,函数f(x)>0恒成立,故a>-3.(解法2)f(x)=x +ax+2,x ∈[1,+∞).当a≥0时,函数f(x)的值恒为正;当a<0时,函数f(x)在[1,+∞)上单调递增,故当x =1时,f(x)min =3+a , 当且仅当f(x)min =3+a>0时,函数f(x)>0恒成立,故a>-3. 【精要点评】 解法1运用转化思想把f(x)>0转化为关于x 的二次不等式;解法2运用了分类讨论思想.●总结归纳(1) 求函数的值域此类问题要紧利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.不管用什么方法求函数的值域,都必须考虑函数的定义域.(2) 函数的综合性题目此类问题要紧考查函数值域、单调性、奇偶性等一些差不多知识相结合的题目.此类问题要求具备较高的数学思维能力、综合分析能力以及较强的运算能力.(3) 运用函数的值域解决实际问题此类问题的关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题目要求具有较强的分析能力和数学建模能力.●题组练透1. 函数y =x 2+x +1的值域是____________.答案:⎣⎢⎡⎭⎪⎫32,+∞解析:∵ x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34≥34,∴ y ≥32,∴ 值域为⎣⎢⎡⎭⎪⎫32,+∞.2. 函数y =x +1-2x 的值域是____________.答案:(-∞,1]解析:令1-2x =t(t≥0),则x =1-t 22.∵ y =1-t 22+t =-12(t -1)2+1≤1,∴ 值域为(-∞,1].3. 已知函数f(x)=x 2+4ax +2a +6.(1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域.解:(1) ∵ f(x)的值域是[0,+∞),即f(x)min =0,∴ 4(2a +6)-(4a )24=0,∴a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0,∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32.当-1≤a≤1时,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4;当1<a≤32时,g(a)=-a 2+a +2=-(a -12)2+94,∴ g (a)∈⎣⎢⎡⎭⎪⎫54,2.∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 4. 已知函数y =mx 2-6mx +m +8的定义域为R . (1) 求实数m 的取值范畴;(2) 当m 变化时,若y 的最小值为f(m),求函数f(m)的值域.解:(1) 当m =0时,x ∈R ;当m≠0时,m >0且Δ≤0,解得0<m≤1.故实数m 的取值范畴是0≤m≤1.(2) 当m =0时,f(0)=22;当0<m≤1时,因为y =m (x -3)2+8-8m ,故f(m)=8-8m(0<m≤1).因此f(m)=8-8m (0≤m≤1),其值域为[0,22].1. 函数f(x)=ln (2x -x 2)x -1的定义域为____________.答案:(0,1)∪(1,2)解析:由⎩⎪⎨⎪⎧2x -x 2>0,x -1≠0得0<x <2且x≠1.2. 已知函数y =x 2-2x +a 的定义域为R ,值域为[0,+∞),则实数a 的取值集合为________.答案:{1}解析: x 2-2x +a≥0恒成立,且最小值为0,则满足Δ=0,即4-4a =0,则a =1.3. 函数f(x)=⎩⎪⎨⎪⎧2x ,x ≤0,-x 2+1,x >0的值域为____________. 答案:(-∞,1]解析:可由函数的图象得到函数f(x)的值域为(-∞,1].4. 若函数f(x)=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x>2(a>0且a≠1)的值域是[4,+∞),则实数a 的取值范畴是________.答案:(1,2]解析:当x≤2时,-x +6≥4,要使得函数f(x)的值域为[4,+∞),只需当x >2时,f(x)=3+log a x 的值域在区间[4,+∞)内即可,故a >1,因此3+log a 2≥4,解得1<a≤2,因此实数a 的取值范畴是(1,2].5. 已知函数f(x)=a x+b(a>0且a≠1)的定义域和值域差不多上[-1,0],则a +b =________.答案:-32解析:当a>1时,⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,该方程组无解;当0<a<1时,⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧b =-2,a =12,则a +b =12-2=-32. 6. (2020·南阳一中二模)设g(x)=mx 2+x +1.(1) 若g(x)的定义域为R ,求m 的取值范畴;(2) 若g(x)的值域为[0,+∞),求m 的取值范畴.解:令f(x)=mx 2+x +1.(1) 由题意知f(x)≥0在R 上恒成立.① 当m =0时, f(x)=x +1≥0在R 上不恒成立;② 当m≠0时,要满足题意必有⎩⎪⎨⎪⎧m>0,Δ=1-4m≤0,∴ m ≥14.综上所述,m 的取值范畴是⎣⎢⎡⎭⎪⎫14,+∞. (2) 由题意知,f(x)=mx 2+x +1能取到一切大于或等于0的实数. ① 当m =0时,f(x)=x +1能够取到一切大于或等于0的实数;② 当m≠0时,要满足题意必有⎩⎪⎨⎪⎧m>0,Δ=1-4m≥0,∴ 0<m ≤14.综上所述,m 的取值范畴是⎣⎢⎡⎦⎥⎤0,14. 点睛:本题要紧考查函数的定义域与值域、分类讨论思想,属于中档题.分类讨论思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,专门在解决含参数的问题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,如此才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,期望同学们能够熟练把握并能应用于解题当中.1. 函数f(x)=|x -2|-1log 2(x -1)的定义域为__________.答案:[3,+∞)解析:由题意知⎩⎪⎨⎪⎧log 2(x -1)≠0,x -1>0,|x -2|-1≥0,解得x≥3.2. (2020·溧阳中学周练)函数f(x)=1xln(x 2-3x +2+-x 2-3x +4)的定义域为____________.答案:[-4,0)∪(0,1)解析:函数的定义域必须满足条件:⎩⎪⎨⎪⎧x≠0,x 2-3x+2≥0,-x 2-3x +4≥0,x 2-3x +2+-x 2-3x +4>0,解得x∈[-4,0)∪(0,1).3. 当x =__________________时,函数f(x)=(x -a 1)2+(x -a 2)2+…+(x -a n )2取得最小值.答案:a 1+a 2+…+a nn解析:f(x)=nx 2-2(a 1+a 2+…+a n )x +(a 21+a 22+…+a 2n ),当x =a 1+a 2+…+a nn时,f(x)取得最小值.4. 设函数f(x)=⎩⎪⎨⎪⎧2x+a ,x>2,x +a 2,x ≤2.若f(x)的值域为R ,则实数a 的取值范畴是____________________.答案:(-∞,-1]∪[2,+∞)解析:f(x)的值域为R ,则22+a≤2+a 2,实数a 的取值范畴是(-∞,-1]∪[2,+∞).5. 已知函数f(x)=4|x|+2-1的定义域是[a ,b](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b)共有______个.答案:5解析:由0≤4|x|+2-1≤1,即1≤4|x|+2≤2,解得0≤|x|≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.6. 求函数y =(x +3)2+16+(x -5)2+4的值域.解:函数y =f(x)的几何意义:平面内一点P(x ,0)到两点A(-3,4)和B(5,2)的距离之和确实是y 的值.由平面几何知识,找出点B 关于x 轴的对称点B′(5,-2).连结AB′,交x 轴于一点P ,点P 即为所求的最小值点,y min =AB′=82+62=10.因此函数的值域为[10,+∞).1. 函数的定义域是函数的灵魂,它决定了函数的值域,同时它是研究函数性质的基础,因此,我们一定要树立函数定义域优先的意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法:图象法、配方法、换元法、差不多不等式法、单调性法、分离常数法、导数法等.理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法紧密配合.[备课札记]第1课时函数的单调性(对应学生用书(文)、(理)15~17页)① 函数单调性的概念是函数性质中最重要的概念,仍将会是2021年高考的重点,专门要注意函数单调性的应用.②常见题型:a.求函数的单调区间;b.用定义判定函数在所给区间上的单调性;c.强化应用单调性解题的意识,如比较式子的大小,求函数最值,已知函数的单调性求参数的取值范畴等.① 明白得函数单调性的定义,并利用函数单调性的定义判定或证明函数在给定区间上的单调性.②明白得函数的单调性、最大(小)值的几何意义,会用单调性方法求函数的最大(小)值.③能利用函数的单调性解决其他一些综合性问题.1. 下列函数中,在(-∞,0)上为减函数的是________.(填序号)① y=1x2;② y=x3;③ y=x0;④ y=x2.答案:④解析:∵ 函数y=x2的图象是开口向上的抛物线,对称轴为y轴,∴函数y=x2在(-∞,0)上为减函数.2. (必修1P44习题2改编)(1) 函数f(x)=2x+1的单调增区间是__________;函数g(x)=-3x+2在区间(-∞,+∞)上为________函数.(2) 函数f(x)=x2-2x-1的单调增区间为________,单调减区间为________.(3) 函数f(x)=-1x-1在区间(-∞,0)上是单调________函数.(4) 函数y=1x在区间[1,3]上是单调________函数.答案:(1) (-∞,+∞)单调减(2) [1,+∞)(-∞,1](3) 增(4) 减3. (必修1P54本章测试6改编)若函数y=5x2+mx+4在区间(-∞,-1]上是减函数,在区间[-1,+∞)上是增函数,则m=__________.答案:10解析:函数y=5x2+mx+4的图象为开口向上,对称轴是x=-m10的抛物线,要使函数y=5x2+mx+4在区间(-∞,-1]上是减函数,在区间[-1,+∞)上是增函数,则-m10=-1,∴ m=10.4. 已知函数f(x)=ax+1x+2在区间(-2,+∞)上为增函数,则实数a的取值范畴是__________.答案:⎝⎛⎭⎪⎫12,+∞解析:f(x)=ax +1x +2=a +1-2a x +2,由复合函数的增减性可知,g(x)=1-2ax +2在(-2,+∞)上为增函数,∴ 1-2a<0,∴ a>12.5. 设函数f(x)满足:对任意的x 1,x 2∈R 都有(x 1-x 2)·[f(x 1)-f(x 2)]>0,则f(-3)与f(-π)的大小关系是____________.答案:f(-3)>f(-π)解析:由(x 1-x 2)[f(x 1)-f(x 2)]>0,可知函数f(x)为增函数,又-3>-π,∴ f(-3)>f(-π).1. 增函数和减函数一样地,设函数y =f(x)的定义域为I :假如关于定义域I 内某个区间D 上的任意两个值x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说y =f(x)在区间D 上是单调增函数.(如图①所示)假如关于定义域I 内某个区间D 上的任意两个值x 1,x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说y =f(x)在区间D 上是单调减函数.(如图②所示)2. 单调性与单调区间假如一个函数在某个区间D 上是单调增函数或是单调减函数,那么就说那个函数在那个区间D 上具有单调性(区间D 称为单调区间).3. 判定函数单调性的方法 (1) 定义法利用定义严格判定. (2) 利用函数的运算性质假如f(x),g(x)为增函数,则① f(x)+g(x)为增函数;② 1f (x )为减函数(f(x)>0);③ f (x )为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判定单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在关于原点对称的两个区间上具有相同的单调性;偶函数在关于原点对称的两个区间上具有相反的单调性.4. 函数的单调性的证明方法 已知函数解析式,证明其在某区间上的单调性一样只能严格用定义(或导数)来证明.要紧步骤:(1) 设元; (2) 作差(商);(3) 变形(变形要完全,一样通过因式分解、配方等方法,直到符号的判定专门明显); (4) 判定符号; (5) 结论.[备课札记], 1 函数单调性的判定), 1) 判定函数f(x)=axx 2-1(a≠0)在区间(-1,1)上的单调性. 分析:此函数既不是常见函数,也不是由常见函数通过简单的复合而成,因此要判定其在区间(-1,1)上的单调性,只能用函数单调性的定义.解:任取x 1,x 2∈(-1,1),且x 1<x 2,则f(x 1)-f(x 2)=a (x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1). 由-1<x 1<x 2<1得(x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1)>0,∴ 当a>0时,f(x 1)-f(x 2)>0,f(x 1)>f(x 2),∴ f(x)在(-1,1)上单调递减;同理,当a<0时,f(x)在(-1,1)上单调递增.备选变式(教师专享)证明函数f(x)=x1+x2在区间[1,+∞)上是减函数.证明:设任取x 1,x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1,x 2∈[1,+∞),且x 1<x 2, ∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2).∴ f(x)=x1+x2在[1,+∞)上为减函数.点评:亦可证明函数f(x)=x 1+x 2在区间[-1,1]上是增函数.由于函数f(x)=x1+x2是定义在R 上的奇函数,故利用单调性与奇偶性可作出函数f(x)=x1+x2的图象.同时也可得到函数f(x)=x 1+x 2在[-1,1]上的值域为⎣⎢⎡⎦⎥⎤-12,12. , 2 求函数的单调区间), 2) 求下列函数的单调区间:(1) y =x 2-3|x|+14;(2) y =⎝ ⎛⎭⎪⎫13x 2-2x ; (3) y =log 2(6+x -2x 2).解:(1) ∵ y=x 2-3|x|+14=⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫x -322-2(x≥0),⎝ ⎛⎭⎪⎫x +322-2(x<0),∴ 由图象可知,y 在⎝ ⎛⎦⎥⎤-∞,-32,⎣⎢⎡⎦⎥⎤0,32上为减函数,在⎣⎢⎡⎦⎥⎤-32,0,⎣⎢⎡⎭⎪⎫32,+∞上为增函数.(2) 易得定义域为R ,令u =x 2-2x =(x -1)2-1,则u 在(-∞,1]上为减函数,在[1,+∞)上为增函数.又y =⎝ ⎛⎭⎪⎫13u 在(-∞,+∞)上为减函数,∴ y =⎝ ⎛⎭⎪⎫13x 2-2x 的单调增区间为(-∞,1],单调减区间为[1,+∞).(3) 由题意得6+x -2x 2>0,化简得2x 2-x -6<0,即(2x +3)(x -2)<0,解得-32<x<2,即定义域为⎝ ⎛⎭⎪⎫-32,2.设u =6+x -2x 2=-2⎝ ⎛⎭⎪⎫x -142+498,易知其在⎝ ⎛⎦⎥⎤-32,14上为增函数,在⎣⎢⎡⎭⎪⎫14,2上为减函数,又y =log 2u 在定义域上为增函数,∴ y =log 2(6+x -2x 2)的单调增区间为⎝ ⎛⎦⎥⎤-32,14,单调减区间为⎣⎢⎡⎭⎪⎫14,2. 点评:已知函数的解析式,讨论或求函数的单调区间,应第一确定函数的定义域,然后再依照复合函数单调性的判定规则在函数的定义域内求内层函数相应的单调区间.变式训练函数y =-(x -3)|x|的单调递增区间是____________.答案:⎣⎢⎡⎦⎥⎤0,32 解析:y =⎩⎪⎨⎪⎧-(x -3)x ,x ≥0,(x -3)x ,x<0.画图象如图所示,可知单调递增区间为⎣⎢⎡⎦⎥⎤0,32.备选变式(教师专享)作出函数f(x)=|x 2-1|+x 的图象,并依照函数图象写出函数的单调区间.解:当x≥1或x≤-1时, y =x 2+x -1=⎝ ⎛⎭⎪⎫x +122-54;当-1<x<1时, y =-x 2+x +1=-⎝ ⎛⎭⎪⎫x -122+54.函数图象如图,由函数图象可知函数单调减区间为(-∞,-1],⎣⎢⎡⎦⎥⎤12,1;单调增区间为⎣⎢⎡⎦⎥⎤-1,12,[1,+∞). ,。

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试12函数与方程课件苏教版

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试12函数与方程课件苏教版
第一部分 考点通关练
第二章 函数、导数及其应用 考点测试12 函数与方程
高考概览 考纲研读
高考在本考点的常考题型为选择题,分值 5 分,中、高等 难度 结合二次函数的图象,了解函数的零点与方程根的联系, 判断一元二次方程根的存在性及根的个数
第1步 狂刷小题 ·基础练
一、基础小题 1.下列函数图象与 x 轴均有公共点,其中能用二分法求零点的是( )
解析
(2)再研究当 x>1 时,直线 y=-14x+a 与 y=1x的图象只有一个交点的情 况:
①相切时,由 y′=-x12=-14,得 x=2,此时切点为2,12,则 a=1. ②相交时,由图象可知直线 y=-14x+a 从过点 A 向上移动时与 y=1x的 图象只有一个交点.过点 A(1,1)时,1=-14+a,解得 a=54.所以 a≥54. 结合图象可得,所求实数 a 的取值范围为54,94∪{1}.故选 D.
解析 能用二分法求零点的函数必须在给定区间[a,b]上连续不断,并 且有 f(a)·f(b)<0.A,B 中不存在 f(x)<0,D 中函数不连续.故选 C.
解析 答案
2.函数 f(x)=ex+2x-3 的零点所在的一个区间为( )
A.(-1,0) C.12,1
B.0,12 D.1,32
解析 ∵f12=
=f(x)+x=xe, x+xx≤,0x,>0 的大致图象(图略).观察它与直线 y=m 的交点,
得知当 m≤0 或 m>1 时,有交点,即函数 g(x)=f(x)+x-m 有零点.
解析 答案
9.设函数 f(x)=13x-ln x,则函数 f(x)(
)
A.在区间1e,1,(1,e)内均有零点
B.在区间1e

2021-2022年高考数学大一轮复习精品讲义 第二章 函数、导数及其应用(含解析)

2021-2022年高考数学大一轮复习精品讲义 第二章 函数、导数及其应用(含解析)

2021-2022年高考数学大一轮复习精品讲义第二章函数、导数及其应用(含解析)对应学生用书P12基础盘查一函数的有关概念(一)循纲忆知1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(二)小题查验1.判断正误(1)函数是建立在其定义域到值域的映射( )(2)函数y=f(x)的图象与直线x=a最多有2个交点( )(3)函数f(x)=x2-2x与g(t)=t2-2t是同一函数( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数( )(5)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射( )答案:(1)√(2)×(3)√(4)×(5)×2.(人教A版教材复习题改编)函数f(x)=x-4|x|-5的定义域是________________.答案:[4,5)∪(5,+∞)3.已知函数y =f (n ),满足f (1)=2,且f (n +1)=3f (n ),n ∈N *,则f (4)=________.答案:54基础盘查二 分段函数(一)循纲忆知了解简单的分段函数,并能简单应用(函数分段不超过三段).(二)小题查验1.判断正误(1)函数f (x )=⎩⎨⎧ 1,x ≥0,-1,x <0,是分段函数( )(2)若f (x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,x +1,x >1或x <-1,则f (-x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,-x +1,x >1或x <-1( )答案:(1)√ (2)√ 2.分段函数的定义域等于各段函数的定义域的________,其值域等于各段函数的值域的________.答案:并集 并集3.已知函数f (x )=⎩⎨⎧ 4x ,x ≤1,-x ,x >1,若f (x )=2,则x =________.答案:12对应学生用书P12[必备知识]1.函数的定义设A 、B 为两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ).2.函数的三要素[题组练透]1.下列四组函数中,表示同一函数的是( )A .y =x -1与y =x -12B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列所给图象是函数图象的个数为( )A.1 B.2C.3 D.4解析:选B ①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象,故选B.[类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t -1,h(m)=2m-1均表示同一函数.考点二函数的定义域问题(常考常新型考点——多角探明)[多角探明]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域;(2)求抽象函数的定义域;(3)已知定义域确定参数问题.角度一:求给定函数解析式的定义域1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________. 解析:由⎩⎨⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎨⎧ 0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]2.(xx·安徽高考)函数y =ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________. 解析:要使函数有意义,需⎩⎨⎧ 1+1x >0,1-x 2≥0,即⎩⎨⎧ x +1x >0,x 2≤1,即⎩⎨⎧ x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1].答案:(0,1] 角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 014],则函数g (x )=f x +1x -1的定义域是( )A .[0,2 013]B .[0,1)∪(1,2 013]C .(1,2 014]D .[-1,1)∪(1,2 013]解析:选B 令t =x +1,则由已知函数的定义域为[1,2 014],可知1≤t ≤2 014.要使函数f (x +1)有意义,则有1≤x +1≤2 014,解得0≤x ≤2 013,故函数f (x +1)的定义域为[0,2 013].所以使函数g (x )有意义的条件是⎩⎨⎧ 0≤x ≤2 013,x -1≠0,解得0≤x <1或1<x ≤2013.故函数g (x )的定义域为[0,1)∪(1,2 013].故选B.4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为( )A .[-1,1]B .[1,2]C .[10,100]D .[0,lg 2]解析:选C 因为f (x 2+1)的定义域为[-1,1],则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100].故选C.角度三:已知定义域确定参数问题5.(xx·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0][类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)已知f (x )的定义域是[a ,b ],求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ].考点三 求函数的解析式(重点保分型考点——师生共研)[必备知识](1)函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法求出的解析式,不注明定义域往往导致错误.[典题例析](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1, 又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1,x >1. (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎨⎧ 2a +b =b +1,a +b =1,解得a =b =12. 所以f (x )=12x 2+12x ,x ∈R . (4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x 代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )1x-1, 将f ⎝ ⎛⎭⎪⎫1x =2f x x -1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中, 可求得f (x )=23x +13. [类题通法]求函数解析式常用的方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(4)消去法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[演练冲关]1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1,∴f (x +1)=(x +1)2-1,x +1≥1,即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2,f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点四 分段函数(重点保分型考点——师生共研)[必备知识]若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[提醒] 分段函数虽然由几部分组成,但它表示的是一个函数.[典题例析]1.已知f (x )=⎩⎨⎧ log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2.2.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-34[类题通法]分段函数“两种”题型的求解策略 (1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[演练冲关](xx·榆林二模)已知f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-x -12, x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]对应B 本课时跟踪检测四一、选择题1.(xx·大同调研)设全集为R ,函数f (x )=ln 1+x1-x 的定义域为M ,则∁R M =( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1]∪[1,+∞)D .[-1,1]解析:选C 由f (x )=ln 1+x 1-x ,得到1+x1-x >0,即(x +1)(x -1)<0,解得-1<x <1,即M =(-1,1), ∵全集为R ,∴∁R M =(-∞,-1]∪[1,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x+ax ,x >1,若f (f (1))=4a ,则实数a 等于( ) A.12 B.43 C .2D .4解析:选C ∵f (1)=2,∴f (f (1))=f (2)=4+2a =4a ,解得a =2.故选C.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B (待定系数法)设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,选B.4.函数f (x )=10+9x -x2lg x -1的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义, 则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg x -1≠0,即⎩⎪⎨⎪⎧-1≤x ≤10,x >1,x ≠2,所以不等式组的解集为(1,2)∪(2,10].故选D.5.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,c A ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c4=c2=30.② 联立①②解得c =60,A =16.6.创新题具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x=f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.二、填空题7.(xx·太原月考)已知y =f (2x)的定义域为[-1,1],则y =f (log 2x )的定义域是________.解析:∵函数f (2x)的定义域为[-1,1], ∴-1≤x ≤1,∴12≤2x≤2.∴在函数y =f (log 2x )中,12≤log 2x ≤2,∴2≤x ≤4.答案:[2,4]8.设函数f (x )满足f (x )=1+f ⎝ ⎛⎭⎪⎫12log 2x ,则f (2)=________. 解析:由已知得f ⎝ ⎛⎭⎪⎫12=1-f ⎝ ⎛⎭⎪⎫12·log 22,则f ⎝ ⎛⎭⎪⎫12=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32. 答案:329.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3],∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]10.(xx·岳阳模拟)已知奇函数f (x )=⎩⎪⎨⎪⎧3x+a ,x ≥0,g x ,x <0,则f (-2)的值为________.解析:因为函数f (x )为奇函数,所以f (0)=30+a =0,即a =-1.所以f (-2)=g (-2)=-f (2)=-(32-1)=-8.答案:-8 三、解答题11.(1)如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0且x ≠1时,求f (x )的解析式;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式. 解:(1)令1x =t ,得x =1t(t ≠0且t ≠1),∴f (t )=1t 1-1t=1t -1,∴f (x )=1x -1(x ≠0且x ≠1).(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.第二节函数的单调性与最值对应学生用书P15基础盘查一 函数的单调性 (一)循纲忆知1.理解函数的单调性及其几何意义.2.会运用基本初等函数的图象分析函数的性质. (二)小题查验 1.判断正误(1)所有的函数在其定义域上都具有单调性( ) (2)函数f (x )为R 上的减函数,则f (-3)>f (3)( )(3)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”( )(4)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞)( )(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞)( ) 答案:(1)× (2)√ (3)× (4)× (5)×2.(人教A 版教材习题改编)函数y =x 2-2x (x ∈[2,4])的增区间为________. 答案:[2,4]3.若函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则k 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫-∞,-12 基础盘查二 函数的最值 (一)循纲忆知1.理解函数最大值、最小值及其几何意义. 2.会运用函数图象理解和研究函数的最值. (二)小题查验 1.判断正误(1)所有的单调函数都有最值( ) (2)函数y =1x 在[1,3]上的最小值为13( )答案:(1)× (2)√2.(人教A 版教材例题改编)已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为________.答案:2对应学生用书P15考点一 函数单调性的判断(基础送分型考点——自主练透)[必备知识]1.定义法设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则有: (1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.导数法在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间上单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间上单调递减.[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 2.判断函数g (x )=-2xx -1在(1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2x 1-x 2x 1-1x 2-1,因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数.[类题通法]对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)可以结合定义(基本步骤为取值、作差或作商、变形、判断)求解.(2)可导函数则可以利用导数判断.但是,对于抽象函数单调性的证明,只能采用定义法进行判断.考点二 求函数的单调区间(重点保分型考点——师生共研)[必备知识]单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.[典题例析]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log (x 2-3x +2)的定义域为(-∞,1)∪(2,+∞). 又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log u 在(0,+∞)上是单调减函数,∴y =log(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[类题通法]求函数的单调区间与确定单调性的方法一致(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[演练冲关]1.若将典例(1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f x ,f x ≤k ,k ,fx >k ,取函数f (x )=2-|x |.当k =12时,求函数f k (x )的单调递增区间.解:由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以f (x )=⎩⎪⎨⎪⎧2-x,x ≥1,12,-1<x <1,2x,x ≤-1.故f (x )的单调递增区间为(-∞,-1).考点三 函数单调性的应用(常考常新型考点——多角探明)[必备知识]函数的最值(1)函数最大(小)值的几何意义:函数的最大值对应图象最高点的纵坐标;函数的最小值对应图象最低点的纵坐标.(2)利用函数单调性求最值的常用结论:如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最小值f (b ).[多角探明]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.函数单调性的应用,归纳起来常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值. 角度一:求函数的值域或最值 1.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选 B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧a -2x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2解析:选B 由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,a -2×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,138 . [类题通法]函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. (4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.对应A 本课时跟踪检测五一、选择题1.(xx·北京高考)下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |解析:选B 因为对数函数y =ln x 的定义域不是R ,故首先排除选项C ;因为指数函数y =e -x ,即y =⎝ ⎛⎭⎪⎫1ex ,在定义域内单调递减,故排除选项A ;对于函数y =|x |,当x ∈(-∞,0)时,函数变为y =-x ,在其定义域内单调递减,因此排除选项D ;而函数y =x 3在定义域R 上为增函数.故选B.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.(xx·黑龙江牡丹江月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x-1,则( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 解析:选B 由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫1+12=f ⎝ ⎛⎭⎪⎫1-12=f ⎝ ⎛⎭⎪⎫12,又13<12<23<1, ∴f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫23,即f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫23.4.创新题定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.故选A.6.(xx·长春调研)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,且在(-∞,0)上单调递增,如果x 1+x 2<0且x 1x 2<0,则f (x 1)+f (x 2)的值( )A .可能为0B .恒大于0C .恒小于0D .可正可负解析:选C 由x 1x 2<0不妨设x 1<0,x 2>0. ∵x 1+x 2<0,∴x 1<-x 2<0.由f (x )+f (-x )=0知f (x )为奇函数.又由f (x )在(-∞,0)上单调递增得,f (x 1)<f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)<0.故选C.二、填空题7.已知函数f (x )为R 上的减函数,若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1),则实数x 的取值范围是________.解析:由题意知f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1); 则⎪⎪⎪⎪⎪⎪1x >1,即|x |<1,且x ≠0.故-1<x <1且x ≠0. 答案:(-1,0)∪(0,1)8.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 9.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)10.使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________________.解析:由y =log 3(x -2)的定义域为(2,+∞),且为增函数,故在(3,+∞)上是增函数.又函数y =2x +k x -2=2x -2+4+k x -2=2+4+kx -2,使其在(3,+∞)上是增函数, 故4+k <0,得k <-4. 答案:(-∞,-4) 三、解答题 11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述知a 的取值范围是(0,1].12.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节函数的奇偶性及周期性对应学生用书P17基础盘查一 函数的奇偶性(一)循纲忆知1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. (二)小题查验 1.判断正误(1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0( ) (2)偶函数图象不一定过原点,奇函数的图象一定过原点( )(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数( ) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件( ) 答案:(1)√ (2)× (3)√ (4)√2.(人教A 版教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.答案:x (1-x )3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:13基础盘查二 函数的周期性 (一)循纲忆知了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. (二)小题查验 1.判断正误(1)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期( )(2)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数( )答案:(1)√ (2)√2.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-1对应学生用书P18考点一 函数奇偶性的判断(基础送分型考点——自主练透)[必备知识]函数的奇偶性的定义如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )[或f (-x )=-f (x )],那么函数f (x )就叫做偶函数(奇函数).[提醒] 定义域关于原点对称是函数具有奇偶性的一个必要条件.[题组练透]判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x; (4)f (x )=4-x 2|x +3|-3;(5)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x2|x +3|-3=4-x 2x +3-3=4-x2x,∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[类题通法]判定函数奇偶性的常用方法及思路1.定义法:2.图象法:3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.考点二函数的周期性(题点多变型考点——全面发掘)[必备知识]1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[一题多变][典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解] (1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1.又∵f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0,∴f(0)+f(1)+f(2)+…+f(2 015)=0.[题点发散1] 本例条件若改为:设定义在R上的函数f(x)满足f(x+2)=f(x),且当x∈[0,2)时,f(x)=2x-x2.试计算f(0)+f(1)+f(2)+…+f(2 015)的值.解:因为f(x+2)=f(x),所以周期T=2.又f(0)=0,f(1)=1,所以f(0)=f(2)=f(4)=…=f(2 014)=0,f(1)=f(3)=f(5)=…=f(2 015)=1,所以f(0)+f(1)+f(2)+…+f(2 015)=1 008.[题点发散2] 若本例中条件变为“f(x+2)=-1f x”,求函数f(x)的最小正周期.解:∵对任意x∈R,都有f(x+2)=-1f x,∴f(x+4)=f(x+2+2)=-1f x+2=-1-1f x=f(x),∴f(x)是以4为周期的周期函数.[题点发散3] 在本例条件下,求f(x)(x∈[2,4])的解析式.解:当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2.∴f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8. 故x∈[2,4]时,f(x)=x2-6x+8.[类题通法] 1.判断函数周期性的两个方法(1)定义法.(2)图象法.2.周期性三个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f x,则T=2a;(3)若f(x+a)=-1f x,则T=2a.(a>0)[提醒] 应用函数的周期性时,应保证自变量在给定的区间内.考点三函数性质的综合应用(常考常新型考点——多角探明)[多角探明]高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、单调性的综合考查.归纳起来常见的命题角度有:(1)单调性与奇偶性结合;(2)周期性与奇偶性结合;(3)单调性、奇偶性与周期性结合.角度一:单调性与奇偶性结合1.(xx·洛阳统考)下列函数中,既是偶函数又在(-∞,0)上单调递增的是( ) A.y=x2B.y=2|x|C.y=log21|x|D.y=sin x解:选C 函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减, ∴f (x )在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 解得-2<m <1.②综合①②可知,-1≤m <1. 即实数m 的取值范围是[-1,1). 角度二:周期性与奇偶性结合3.(xx·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0) C .(-1,0)D .(-1,2)解:选A ∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4,故选A.角度三:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解:选D ∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, ∴f (x )在区间[-2,2]上是增函数,∴f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).[类题通法]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.对应B 本课时跟踪检测六一、选择题1.(xx·河南信阳二模)函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数解析:选 C 易知函数的定义域为{}x |x ≠k π,k ∈Z ,关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg|sin x |是最小正周期为π的偶函数.2.(xx·大连测试)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.3.(xx·唐山统考)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ).则当x <0时,f (x )=( )A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x )D .-x 3+ln(1-x )解析:选C 当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-[(-x )3+ln(1-x )],∴f (x )=x 3-ln(1-x ).4.(xx·长春调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )。

2021最新精选高三人教A版数学一轮复习练习:第二章 函数导数及

2021最新精选高三人教A版数学一轮复习练习:第二章 函数导数及

2021最新精选高三人教A版数学一轮复习练习:第二章函数、导数及题型归纳最好先从平时经常出错的知识点开始,找出它们,并将这些知识点对应的考题提取出来,研究这些题主要从哪些角度进行考察,这类知识点的题怎样入手解题,容易出错的点有哪些。

归纳完经常错的知识点后,可以翻看一下近几年的高考真题,看看大题一般是考察哪些类型的题目,归纳一下这些题型的解题方法。

在此过程中,如果对某个知识很模糊,立即回归课本,翻看课本知识。

【2021最新】精选高三人教A版数学一轮复习练习:第二章函数、导数及其应用第3节1.(导学号14577113)(2021・长春市二模)下列函数中,既是奇函数又在(0,+∞)单调递增的函数是( )A.y=ex+e-x C.y=B.y=ln(|x|+1) D.y=x-x1解析:D [选项A、B中的函数为偶函数;选项C中的函数虽然是奇函数,但是在(0,+∞)上不是单调递增函数.故选D.]2.(导学号14577114)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数 C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:C [因为f(x)是奇函数,g(x)是偶函数,所以有f(-x)=-f(x),g(-x)=g(x),于是f(-x)・g(-x)=-f(x)g(x),即f(x)g(x)为奇函数,A错;|f(-x)|g(-x)=|f(x)|g(x),即|f(x)|g(x)为偶函数,B错;f(-x)|g(-x)|=-f(x)|g(x)|,即f(x)|g(x)|为奇函数,C正确;|f(-x)g(-x)|=|f(x)g(x)|,即f(x)g(x)为偶函数,所以D也错.]3.(导学号14577115)(2021・保定市一模)已知函数f(x)=1 / 8题型归纳最好先从平时经常出错的知识点开始,找出它们,并将这些知识点对应的考题提取出来,研究这些题主要从哪些角度进行考察,这类知识点的题怎样入手解题,容易出错的点有哪些。

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试6函数的单调性课件苏教版

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试6函数的单调性课件苏教版

D.f(x)=sin|x|
解析 作出函数 f(x)=|cos2x|的图象,如图.由图象可知 f(x)=|cos2x|
解析 由题意得 m2+1>-m+1,故 m2+m>0,解得 m<-1 或 m>0.故
选 D.
解析 答案
5.函数 f(x)=-x+1x在-2,-13上的最大值是(
)
3 A.2
B.-83
C.-2
D.2
解析 因为 f(x)=-x+1x在-2,-13上为减函数,所以当 x=-2 时, f(x)取得最大值,且为 2-12=32.故选 A.
A.递减
B.递增
C.先递减后递增
D.先递增后递减
解析 由函数 y=x2-6x+10 的图象开口向上,对称轴为直线 x=3,知
y=x2-6x+10 在(2,4)上先递减后递增,故选 C.
解析 答案
3.若函数 f(x)=(2a-1)x+b 是 R 上的减函数,则实数 a 的取值范围为
()
A.12,+∞
A.-131,-3 C.[-3,-2 2]
B.[-6,-4] D.[-4,-3]
解析 由于 f(x)为 R 上的偶函数,因此只需考虑函数 f(x)在(0,+∞)
上的单调性即可.由题意知 f(x)在[3,+∞)上为增函数,在[1,2]上为减函数,
故-a2∈[2,3],即 a∈[-6,-4].
解析 答案
9.若 f(x)=-x2+2ax 与 g(x)=x+a 1在区间[1,2]上都是减函数,则 a 的
取值范围是( )
A.(-1,0)∪(0,1]
B.(-1,0)∪(0,1)
C.(0,1)
D.(0,1]
解析 f(x)=-(x-a)2+a2,当 a≤1 时,f(x)在[1,2]上是减函数;g(x)=

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试13函数模型及其应用课件苏教版

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试13函数模型及其应用课件苏教版
答案
解析 对于 A 选项,从图中可以看出当乙车的行驶速度大于 40 km/h 时的燃油效率大于 5 km/L,故乙车消耗 1 升汽油的行驶路程可大于 5 千米, 所以 A 错误.对于 B 选项,由图可知甲车消耗汽油最少.对于 C 选项,甲 车以 80 km/h 的速度行驶时的燃油效率为 10 km/L,故行驶 1 小时的路程为 80 千米,消耗 8 L 汽油,所以 C 错误.对于 D 选项,当最高限速为 80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更 省油,所以 D 正确.
解析
11.已知某房地产公司计划出租 70 套相同的公寓房.当每套房月租金 定为 3000 元时,这 70 套公寓房能全部租出去;当月租金每增加 50 元时(设 月租金均为 50 元的整数倍),就会多一套房子不能出租.设已出租的每套房 子每月需要公司花费 100 元的日常维修等费用(设没有出租的房子不需要花 这些费用),则要使公司获得最大利润,每套房月租金应定为________元.
其中 p0 为 t=0 时的污染物数量.又测得当 t∈[0,30]时,污染物数量的变化 率是-10ln 2,则 p(60)=( )
A.150 毫克/升
B.300 毫克/升
C.150ln 2 毫克/升
D.300ln 2 毫克/升
解析 因为当 t∈[0,30]时,污染物数量的变化率是-10ln 2,所以-10ln
解析
15.(2015·四川高考)某食品的保鲜时间 y(单位:小时)与储藏温度 x(单
位:℃)满足函数关系 y=ekx+b(e=2.718…为自然对数的底数,k,b 为常数).若
A.f(x)>g(x)>h(x)
B.g(x)>f(x)>h(x)

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版

考点测试10 对数与对数函数高考概览高考在本考点的常考题型为选择题,分值5分,中、低等难度考纲研读1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点 3.体会对数函数是一类重要的函数模型4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数一、基础小题1.计算log 29×log 34+2log 510+log 50.25=( ) A .0 B .2 C .4 D .6答案 D解析 由对数的运算公式和换底公式可得log 29×log 34+2log 510+log 50.25=2log 23×log 24log 23+log 5(102×0.25)=4+2=6.故选D.2.设函数f (x )=⎩⎪⎨⎪⎧4x-1,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫12=( )A .-1B .1C .-12D .22答案 A解析 f ⎝ ⎛⎭⎪⎫12=log 212=-1,故选A. 3.函数f (x )=lg (x +1)+lg (x -1)( ) A .是奇函数 B .是偶函数C .是非奇非偶函数D .既是奇函数又是偶函数答案 C解析 函数f (x )的定义域为{x |x >1},定义域不关于原点对称,故该函数是非奇非偶函数,故选C.4.若lg 2,lg (2x +1),lg (2x+5)成等差数列,则x 的值等于( ) A .1 B .0或18C .18D .log 23答案 D解析 由题意知lg 2+lg (2x+5)=2lg (2x+1),2(2x+5)=(2x+1)2,(2x )2-9=0,2x=3,x =log 23.故选D.5.已知a ,b ,c 分别是方程2x =-x ,log 2x =-x ,log 2x =x 的实数解,则( ) A .b <c <a B .a <b <c C .a <c <b D .c <b <a答案 B解析 由2a=-a >0,得a <0,由log 2b =-b <0,得0<b <1,由log 2c =c >0,得c >1,综上可知,a <b <c ,故选B.6.设m =log 0.30.6,n =12log 20.6,则( )A .m -n >m +n >mnB .m -n >mn >m +nC .m +n >m -n >mnD .mn >m -n >m +n答案 A解析 m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,mn <0.1m +1n =log 0.60.3+log 0.64=log 0.61.2<log 0.60.6=1,即m +nmn<1,故m +n >mn .又(m -n )-(m +n )=-2n >0,所以m -n >m +n .故m -n >m +n >mn ,所以选A.7.已知log 23=a ,log 37=b ,则log 4256=( ) A.3+ab1+a +abB .3a +ba +a 2+bC.3+b1+a +bD .1+a +ab 3+ab答案 A解析 log 4256=log 256log 242=3+log 271+log 23+log 27=3+log 23·log 371+log 23+log 23·log 37=3+ab1+a +ab.故选A.8.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,则a 的取值范围是( )A .[1,2)B .[1,+∞)C .[2,+∞)D .(-∞,-2]∪[1,+∞)答案 B解析 函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,可得⎩⎪⎨⎪⎧a <2,e a -1≥1或⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,解⎩⎪⎨⎪⎧a <2,e a -1≥1,可得1≤a <2;解⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,可得a ≥2.综上a ≥1.故选B.9.设x ,y ,z 均为大于1的实数,且log 2x =log 3y =log 5z ,则x 3,y 5,z 2中最小的是( ) A .z 2B .y 5C .x 3D .三个数相等答案 C解析 因为x ,y ,z 均为大于1的实数,所以log 2x =log 3y =log 5z >0,不妨设log 2x =log 3y =log 5z =t ,则t >0,x =2t,y =3t,z =5t,所以x 3=23t=8t ,y 5=35t =243t ,z 2=52t =25t,又y =x t 在(0,+∞)上单调递增,故x 3最小.故选C.10.计算:912-log95=________.答案 35解析 912-log 95=912×9-log 95=3×15=35.11.已知2x =72y=A ,且1x +1y=2,则A 的值是________.答案 7 2解析 由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.12.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.答案 9解析 因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n =2,得n =9,则m =19.此时-log 3m 2=4>2,不满足题意.综上可得n m=9.二、高考小题13.(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案 A解析 因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.14.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.15.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x )答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于直线x =1对称的点还是(1,0),只有y =ln (2-x )过此点,故选B.16.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误;∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故选C.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 均是错误的,只有C 正确.17.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意,有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2016·浙江高考)已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.答案 4 2解析 令log a b =t ,∵a >b >1,∴0<t <1,由log a b +log b a =52得,t +1t =52,解得t =12或t =2(舍去),即log a b =12,∴b =a ,又a b =b a ,∴a a =(a )a ,即a a =a a 2,亦即a =a2,解得a =4,∴b =2.三、模拟小题19.(2020·湖南湘潭高三阶段测试)如果2log a (P -2Q )=log a P +log a Q ,那么P Q的值为( )A.14 B .4 C .6 D .4或1答案 B解析 由题意知P >0,Q >0,P >2Q .由2log a (P -2Q )=log a P +log a Q 可得log a (P -2Q )2=log a (PQ ),所以(P -2Q )2=PQ ,可化为P 2-5PQ +4Q 2=0,又因为Q >0,所以⎝ ⎛⎭⎪⎫P Q 2-5P Q+4=0,解得P Q =4或P Q=1(舍去).故选B.20.(2019·广州市高三年级调研)已知实数a =2ln 2,b =2+2ln 2,c =(ln 2)2,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析 因为ln 2=log e 2,所以0<ln 2<1,所以c =(ln 2)2<1,而20<2ln 2<21,即1<a <2,b =2+2ln 2>2,所以c <a <b .故选B.21.(2019·大庆模拟)设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,若a +b ≥0,则( )A .f (a )+f (b )≤0B .f (a )+f (b )≥0C .f (a )-f (b )≤0D .f (a )-f (b )≥0答案 B解析 设f (x )=x 3+log 2(x +x 2+1),其定义域为R ,f (-x )=-x 3+log 2(-x +x 2+1)=-x 3-log 2(x +x 2+1)=-f (x ),所以f (x )是奇函数,且在[0,+∞)上单调递增,故f (x )在R 上单调递增,那么a +b ≥0,即a ≥-b 时,f (a )≥f (-b ),得f (a )≥-f (b ),可得f (a )+f (b )≥0.故选B.22.(2019·安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .答案 D解析 函数f (x )=log a x 的定义域与值域相同等价于方程log a x =x 有两个不同的实数解.因为log a x =x ⇔ln x ln a =x ⇔ln a =ln x x ,所以问题等价于直线y =ln a 与函数y =ln x x 的图象有两个交点.作函数y =ln x x 的图象,如图所示.根据图象可知,当0<ln a <1e 时,即1<a <e 1e 时,直线y =ln a 与函数y =ln xx的图象有两个交点.故选D.23.(2019·陕西咸阳高三联考)已知函数f (x )=x ·ln 1+x 1-x ,a =f ⎝ ⎛⎭⎪⎫-1π,b =f ⎝ ⎛⎭⎪⎫1e ,c=f ⎝ ⎛⎭⎪⎫14,则以下关系成立的是( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b答案 A解析 因为f (x )=x ·ln 1+x1-x=x [ln (1+x )-ln (1-x )],所以f (-x )=(-x )[ln (1-x )-ln (1+x )]=x [ln (1+x )-ln (1-x )]=f (x ),所以f (x )为偶函数,所以a =f ⎝ ⎛⎭⎪⎫-1π=f ⎝ ⎛⎭⎪⎫1π.当0<x <1时,易知f (x )为增函数.又0<14<1π<1e <1,所以f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫1π<f ⎝ ⎛⎭⎪⎫1e ,即c <a <b ,故选A.24.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c 是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________. 答案 (16,36)解析 作出函数f (x )的图象如图所示.当x >4时,由f (x )=3-x =0,得x =3,得x =9,若a ,b ,c 互不相等,不妨设a <b <c ,因为f (a )=f (b )=f (c ),所以由图象可知0<a <2<b <4,4<c <9,由f (a )=f (b ),得1-log 2a =log 2b -1,即log 2a +log 2b =2,即log 2(ab )=2,则ab =4,所以abc =4c ,因为4<c <9,所以16<4c <36,即16<abc <36,所以abc 的取值范围是(16,36).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2020·湖北黄冈摸底)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x ) =log 2[(1+x )(3-x )] =log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=2. 2.(2019·福建漳州模拟)已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解 (1)∵f (x )+f (-x )=log 21-x 1+x +log 21+x 1-x =log 21=0,∴f ⎝ ⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019=0.(2)函数f (x )存在最小值.f (x )的定义域为(-1,1), ∵f (x )=-x +log 2⎝⎛⎭⎪⎫-1+2x +1, 当x ∈(-1,1)时,f (x )为减函数,∴当a ∈(0,1),x ∈(-a ,a ]时,f (x )单调递减. ∴当x =a 时,f (x )min =-a +log 21-a1+a .3.(2019·渭南模拟)已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln mx -17-x恒成立,求实数m 的取值范围. 解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数.(2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln mx -17-x恒成立,∴x +1x -1>m x -17-x>0恒成立, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,当x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,∴当x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值范围为(0,7).4.(2019·大庆模拟)已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)当a >1时,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +a x-2在[2,+∞)上是增函数,∴f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +ax-2>1对x ∈[2,+∞)恒成立, ∴a >3x -x 2,令h (x )=3x -x 2,则h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94,又h (x )在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2,∴a的取值范围为(2,+∞).。

2021年高考数学一轮复习 导数及其应用(含积分)备考试题

2021年高考数学一轮复习 导数及其应用(含积分)备考试题

2021年高考数学一轮复习 导数及其应用(含积分)备考试题一、选择题1、(xx 年江西高考)若则A. B. C. D.12、(xx 年江西高考)若则的大小关系为A. B.C. D.3、(乐安一中xx 届高三上学期开学考试)定义在上的单调递减函数,若的导函数存在且满足,则下列不等式成立的是( )A .B .C .D .4、(南昌二中xx 届高三上学期第一次考)定义在上的可导函数,当时,恒成立,若, , ,则的大小关系是( )A .B .C .D .5、(南昌三中xx 届高三上学期第一次月考)设,若,则( )A. B. C. D.6、(南昌市八一中学xx 届高三8月月考)已知函数f (x )在R 上满足f (1+x )=2f (1﹣x )﹣x 2+3x+1,则曲线y=f (x )在点(1,f (1))处的切线方程是( )A . x ﹣y ﹣2=0B . x ﹣y=0C . 3x+y ﹣2=0D . 3x ﹣y ﹣2=07、(南昌市新建二中xx 届高三9月月考)设是定义在R 上的可导函数,且满足,对任意的正数,下面不等式恒成立的是( ).A. B. C. D .8、(遂川中学xx 届高三上学期第一次月考)由直线,,与曲线所围成的封闭图形的面积为( )A .12B .1C .32D . 3 9、(南昌三中xx 届高三第七次考试)已知二次函数的导函数为,且>0,的图象与x轴恰有一个交点,则的最小值为 ( )A .3B .32C .2D .5210、(吉安一中xx届高三下学期第一次模拟)设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A. 4B.C. 2D.二、填空题1、(xx年江西高考)若曲线上点处的切线平行于直线,则点的坐标是________.2、(xx年江西高考)设函数在内可导,且,则3、(xx年江西高考)计算定积分___________。

4、(红色六校xx届高三第一次联考)如图,矩形OABC内的阴影部分由曲线及直线与轴围成的区域,向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则.5、(乐安一中xx届高三上学期开学考试)函数的图象不过第Ⅱ象限,则的取值范围是6、(南昌三中xx届高三上学期第一次月考)若曲线的一条切线方程为,则实数的值为7、(南昌市新建二中xx届高三9月月考)已知函数没有极值点,则实数的取值范围是_______.8、(遂川中学xx届高三上学期第一次月考)曲线在点处的切线方程为三、解答题1、(xx年江西高考)已知函数.(1)当时,求的极值;(2)若在区间上单调递增,求b的取值范围.2、(xx年江西高考)若函数h(x)满足(1)h(0)=1,h(1)=0;(2)对任意,有h(h(a))=a;(3)在(0,1)上单调递减。

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试15导数的应用(一)(含解析)

2021高考数学一轮复习第一部分考点通关练第二章函数、导数及其应用考点测试15导数的应用(一)(含解析)

考点测试15 导数的应用(一)高考 概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值5分、12分,中、高等难度考纲 研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次) 3.会用导数解决实际问题一、基础小题1.函数f (x )=1+x -sin x 在(0,2π)上是( ) A .增函数 B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增 答案 A解析 f ′(x )=1-cos x >0,∴f (x )在(0,2π)上单调递增. 2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4答案 C解析 f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或x =2(舍去).所以f (x )在[-1,0)上是增函数,f (x )在(0,1]上是减函数,所以当x =0时,f (x )max =f (0)=2.故选C.3.已知函数f (x )=2e f ′(e)ln x -xe (e 是自然对数的底数),则f (x )的极大值为( )A .2e -1B .-1eC .1D .2ln 2答案 D解析 由题意知f ′(x )=2e f ′ex-1e ,∴f ′(e)=2e f ′e e -1e ,f ′(e)=1e,∴f ′(x )=2x -1e,令f ′(x )=0,得x =2e ,∴f (x )在(0,2e)上单调递增,在(2e ,+∞)上单调递减,∴f (x )的极大值为f (2e)=2ln (2e)-2=2ln 2,选D.4.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .[-3,3]B .(-3,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3) 答案 A解析 ∵函数f (x )=-x 3+ax 2-x -1的导函数为f ′(x )=-3x 2+2ax -1,且函数f (x )在(-∞,+∞)上是单调函数,∴在(-∞,+∞)上f ′(x )≤0恒成立,即-3x 2+2ax -1≤0恒成立,∴Δ=4a 2-12≤0,解得-3≤a ≤3,∴实数a 的取值范围是[-3,3].故选A.5.直线y =a 分别与曲线y =e x,y =ln x +1交于两点M ,N ,则|MN |的最小值为( ) A .1 B .1-ln 2 C .ln 2 D .1+ln 2答案 A解析 分别令e x=a ,ln x +1=a ,其中a >0,则x 1=ln a ,x 2=ea -1,从而|MN |=|x 1-x 2|=|ln a -e a -1|,构造函数h (a )=ln a -e a -1,求导得h ′(a )=1a -e a -1,当a ∈(0,1)时,h ′(a )>0,h (a )单调递增;当a ∈(1,+∞)时,h ′(a )<0,h (a )单调递减.所以h (a )有极大值h (1)=-1.因此|MN |的最小值为|h (1)|=1.故选A.6.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值,在x =e 处取得极大值; ③函数f (x )在x =c 处取得极大值,在x =e 处取得极小值;④函数f (x )的最小值为f (d ). A .③ B .①② C .③④ D .④答案 A解析 由导函数图象可知在(-∞,c ),(e ,+∞)上,f ′(x )>0,在(c ,e )上,f ′(x )<0,所以函数f (x )在(-∞,c ),(e ,+∞)上单调递增,在(c ,e )上单调递减,所以f (a )<f (b )<f (c ),①错误;函数f (x )在x =c 处取得极大值,在x =e 处取得极小值,②错误,③正确;f (d )>f (e ),④错误.故选A.7.已知函数f (x )=ax-1+ln x ,存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是( )A .(2,+∞)B .(-∞,-3)C .(-∞,1]D .[3,+∞) 答案 C解析 由于函数f (x )的定义域是(0,+∞),不等式f (x )=a x-1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解.令h (x )=x -x ln x ,则h ′(x )=1-(ln x +1)=-ln x ,令h ′(x )=0,得x =1,当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0,可得当x =1时,函数h (x )=x -x ln x 取得最大值,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只需a ≤h (x )max =h (1)即可,即a ≤1.8.若函数f (x )=x ln x -a2x 2-x +1有两个极值点,则a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令g (x )=ln x -ax ,则g ′(x )=1x -a ,当a ≤0时,g ′(x )>0恒成立,则f ′(x )在(0,+∞)上单调递增,当x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→+∞,所以f (x )只有一个极值点,不符合题意.当a >0时,可得f ′(x )有极大值点x =1a,由于x →0时f ′(x )→-∞;当x →+∞时,f ′(x )→-∞,因此原函数要有两个极值点,只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e .二、高考小题9.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1答案 A解析 由题意可得f ′(x )=e x -1[x 2+(a +2)x +a -1].∵x =-2是函数f (x )=(x 2+ax-1)ex -1的极值点,∴f ′(-2)=0,∴a =-1,∴f (x )=(x 2-x -1)ex -1,f ′(x )=ex -1(x 2+x-2)=ex -1(x -1)(x +2),∴x ∈(-∞,-2),(1,+∞)时,f ′(x )>0,f (x )单调递增;x∈(-2,1)时,f ′(x )<0,f (x )单调递减.∴f (x )极小值=f (1)=-1.故选A.10.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.答案 -1 (-∞,0]解析 ∵f (x )=e x +a e -x(a 为常数)的定义域为R ,且f (x )为奇函数. ∴f (0)=e 0+a e -0=1+a =0,∴a =-1. ∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0].11.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin2x ,则f (x )的最小值是________. 答案 -332解析 f ′(x )=2cos x +2cos2x =4cos 2x +2cos x -2=4(cos x +1)⎝ ⎛⎭⎪⎫cos x -12,所以当cos x ≤12时函数单调递减,当cos x ≥12时函数单调递增,从而得到函数的单调递减区间为⎣⎢⎡⎦⎥⎤2k π-5π3,2k π-π3(k ∈Z ),函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ),所以当x =2k π-π3,k ∈Z 时,函数f (x )取得最小值,此时sin x =-32,sin2x =-32,所以f (x )min=2×⎝ ⎛⎭⎪⎫-32-32=-332. 12.(2018·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.答案 -3解析 ∵f (x )=2x 3-ax 2+1,∴f ′(x )=6x 2-2ax =2x (3x -a ).若a ≤0,则x >0时,f ′(x )>0,∴f (x )在(0,+∞)上为增函数,又f (0)=1,∴f (x )在(0,+∞)上没有零点,不符合题意,∴a >0.当0<x <a 3时,f ′(x )<0,f (x )为减函数;当x >a3时,f ′(x )>0,f (x )为增函数,∴x >0时,f (x )有极小值,为f ⎝ ⎛⎭⎪⎫a 3=-a 327+1.∵f (x )在(0,+∞)内有且只有一个零点, ∴f ⎝ ⎛⎭⎪⎫a 3=0,∴a =3.∴f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1).∴最大值与最小值的和为-3. 三、模拟小题13.(2019·济南一模)已知函数f (x )=⎩⎪⎨⎪⎧13x 3-12x 2,x <0,e x ,x ≥0,则f (3-x 2)>f (2x )的解集为( ) A .(-∞,-3)∪(1,+∞) B .(-3,1) C .(-∞,-1)∪(3,+∞) D .(-1,3)答案 B解析 易知,当x <0时,f ′(x )=x 2-x >0,f (x )为增函数,当x ≥0时,f (x )=e x也为增函数,且x <0时,f (x )<0,x ≥0时,f (x )≥1,故f (x )在R 上为单调递增函数.故f (3-x 2)>f (2x )等价于3-x 2>2x ,解得-3<x <1,故选B.14.(2019·河南郑州质检)函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .a =3,b =-3 答案 C解析 由题意,得f ′(x )=3x 2-2ax -b ,则f ′(1)=0,即2a +b =3 ①.f (1)=1-a-b +a 2=10,即a 2-a -b =9 ②.联立①②,解得⎩⎪⎨⎪⎧a =-4,b =11(有极值)或⎩⎪⎨⎪⎧a =3,b =-3(舍去,无极值).15.(2019·成都市高三第一次诊断考试)已知定义在R 上的函数f (x )的图象关于直线x=a (a >0)对称,且当x ≥a 时,f (x )=ex -2a.若A ,B 是函数f (x )图象上的两个动点,点P (a,0),则当PA →·PB →的最小值为0时,函数f (x )的最小值为( )A .e -12B .e -1C .e -32D .e -2答案 B解析 当x <a 时,2a -x >a ,则由函数f (x )的图象关于直线x =a 对称,得f (x )=f (2a -x )=e(2a -x )-2a=e -x,由此作出函数f (x )的图象,如图所示,则当PA →·PB →取得最小值0时,直线PA ,PB 关于直线x =a 对称,且其中一直线的倾斜角为π4,此时A ,B 分别位于直线x =a的左、右两侧,且直线PA ,PB 都与函数f (x )的图象相切,设A (x 0,y 0)(x 0<a ),则f ′(x )=(e -x)′=-e -x,所以-e -x 0=-1,所以x 0=0,y 0=1,此时切线PA 的方程为y =-x +1,所以a =1.由图象知,当x =a =1时,函数f (x )取得最小值e -1,故选B.16.(2019·武邑中学二调)设函数f (x )=x 3-3x 2-ax +5-a ,若存在唯一的正整数x 0,使得f (x 0)<0,则a 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤13,54 解析 设g (x )=x 3-3x 2+5,h (x )=a (x +1), 则g ′(x )=3x 2-6x =3x (x -2), ∴当0<x <2时,g ′(x )<0, 当x <0或x >2时,g ′(x )>0,∴g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增, ∴当x =2时,g (x )取得极小值g (2)=1, 作出g (x )与h (x )的函数图象如图:显然当a ≤0时,g (x )>h (x )在(0,+∞)上恒成立, 即f (x )=g (x )-h (x )<0无正整数解;要使存在唯一的正整数x 0,使得f (x 0)<0,显然x 0=2.∴⎩⎪⎨⎪⎧g 1≥h 1,g 2<h 2,g 3≥h 3,即⎩⎪⎨⎪⎧3≥2a ,1<3a ,5≥4a ,解得13<a ≤54.17.(2019·江苏南通重点中学模拟)若函数f (x )在定义域D 内某区间H 上是增函数,且f x x在H 上是减函数,则称y =f (x )在H 上是“弱增函数”.已知函数g (x )=x 2+(4-m )x +m 在(0,2]上是“弱增函数”,则实数m 的值为________.答案 4解析 根据题意,若函数f (x )在定义域D 内某区间H 上是增函数,且f xx在H 上是减函数,则称y =f (x )在H 上是“弱增函数”,已知函数g (x )=x 2+(4-m )x +m 在(0,2]上是“弱增函数”,则g (x )在给定区间上是递增函数,开口向上,则对称轴直线x =-4-m 2≤0,∴m ≤4,g x x=x 2+4-m x +m x =x +m x +4-m 在(0,2]上单调递减,那么⎝ ⎛⎭⎪⎫g x x ′=⎝ ⎛⎭⎪⎫x +m x +4-m ′=1-m x 2≤0,x ∈(0,2],∴1-m 4≤0,m ≥4.综上可得m =4.一、高考大题1.(2019·全国卷Ⅱ)已知函数f (x )=(x -1)ln x -x -1. 证明:(1)f (x )存在唯一的极值点;(2)f (x )=0有且仅有两个实根,且两个实根互为倒数. 证明 (1)f (x )的定义域为(0,+∞).f ′(x )=x -1x +ln x -1=ln x -1x.因为y =ln x 在(0,+∞)上单调递增, y =1x在(0,+∞)上单调递减,所以f ′(x )在(0,+∞)上单调递增.又f ′(1)=-1<0,f ′(2)=ln 2-12=ln 4-12>0,故存在唯一x 0∈(1,2),使得f ′(x 0)=0. 又当x <x 0时,f ′(x )<0,f (x )单调递减, 当x >x 0时,f ′(x )>0,f (x )单调递增, 因此,f (x )存在唯一的极值点.(2)由(1)知f (x 0)<f (1)=-2,又f (e 2)=e 2-3>0, 所以f (x )=0在(x 0,+∞)内存在唯一根x =α. 由α>x 0>1得1α<1<x 0.又f ⎝ ⎛⎭⎪⎫1α=⎝ ⎛⎭⎪⎫1α-1ln 1α-1α-1=f αα=0, 故1α是f (x )=0在(0,x 0)的唯一根.综上,f (x )=0有且仅有两个实根,且两个实根互为倒数. 2.(2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+2. (1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围. 解 (1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a3,+∞时,f ′(x )>0, 当x ∈⎝ ⎛⎭⎪⎫0,a 3时,f ′(x )<0,故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,a3上单调递减; 若a =0,则f (x )在(-∞,+∞)上单调递增; 若a <0,则当x ∈⎝⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0, 当x ∈⎝ ⎛⎭⎪⎫a3,0时,f ′(x )<0,故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫a3,0上单调递减.(2)当0<a <3时,由(1)知,f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a3,1上单调递增,所以f (x )在[0,1]的最小值为f ⎝ ⎛⎭⎪⎫a 3=-a 327+2,最大值为f (0)=2或f (1)=4-a . 于是m =-a 327+2,M =⎩⎪⎨⎪⎧4-a ,0<a <2,2,2≤a <3.所以M -m =⎩⎪⎨⎪⎧2-a +a 327,0<a <2,a327,2≤a <3.当0<a <2时,可知y =2-a +a 327单调递减,所以M -m 的取值范围是⎝ ⎛⎭⎪⎫827,2. 当2≤a <3时,y =a 327单调递增,所以M -m 的取值范围是⎣⎢⎡⎭⎪⎫827,1. 综上,M -m 的取值范围是⎣⎢⎡⎭⎪⎫827,2. 3.(2019·天津高考)设函数f (x )=e xcos x ,g (x )为f (x )的导函数. (1)求f (x )的单调区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,证明f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x ≥0; (3)设x n 为函数u (x )=f (x )-1在区间⎝ ⎛⎭⎪⎫2n π+π4,2n π+π2内的零点,其中n ∈N ,证明2n π+π2-x n <e-2n πsin x 0-cos x 0.解 (1)由已知,有f ′(x )=e x(cos x -sin x ). 因此,当x ∈⎝ ⎛⎭⎪⎫2k π+π4,2k π+5π4(k ∈Z )时,有sin x >cos x ,得f ′(x )<0,则f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫2k π-3π4,2k π+π4(k ∈Z )时,有sin x <cos x , 得f ′(x )>0,则f (x )单调递增.所以,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-3π4,2k π+π4(k ∈Z ),f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ). (2)证明:记h (x )=f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x .依题意及(1),有g (x )=e x(cos x -sin x ), 从而g ′(x )=-2e xsin x .当x ∈⎝⎛⎭⎪⎫π4,π2时,g ′(x )<0,故h ′(x )=f ′(x )+g ′(x )⎝ ⎛⎭⎪⎫π2-x +g (x )(-1) =g ′(x )⎝ ⎛⎭⎪⎫π2-x <0.因此,h (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递减,进而h (x )≥h ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫π2=0. 所以,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x ≥0. (3)证明:依题意,u (x n )=f (x n )-1=0,即e xn cos x n =1.记y n =x n -2n π,则y n ∈⎝ ⎛⎭⎪⎫π4,π2,且f (y n )=e yn cos y n =e xn -2n πcos(x n -2n π)=e -2n π(n ∈N ).由f (y n )=e-2n π≤1=f (y 0)及(1),得y n ≥y 0.由(2)知,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,g ′(x )<0, 所以g (x )在⎣⎢⎡⎦⎥⎤π4,π2上为减函数, 因此g (y n )≤g (y 0)<g ⎝ ⎛⎭⎪⎫π4=0. 又由(2)知,f (y n )+g (y n )⎝⎛⎭⎪⎫π2-y n ≥0,故π2-y n ≤-f y n g y n =-e -2n πg y n ≤-e-2n πg y 0 =e -2n πe y 0sin y 0-cos y 0<e-2n πsin x 0-cos x 0.所以2n π+π2-x n <e-2n πsin x 0-cos x 0.二、模拟大题4.(2019·株洲模拟)已知函数f (x )=ln x +12ax 2-(a +1)x (其中a >0).(1)讨论f (x )的单调性;(2)若g (x )=-a +12x 2+f (x ),设x 1,x 2(x 1<x 2)是函数g (x )的两个极值点,若a ≥32,且g (x 1)-g (x 2)≥k 恒成立,求实数k 的最大值.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x+ax -(a +1)=x -1ax -1x.①若0<a <1,则1a >1.由f ′(x )>0得0<x <1或x >1a ;由f ′(x )<0得1<x <1a,∴f (x )在区间(0,1),⎝ ⎛⎭⎪⎫1a,+∞上单调递增,在区间⎝⎛⎭⎪⎫1,1a 上单调递减;②若a =1,则f ′(x )≥0,∴f (x )在(0,+∞)上单调递增;③若a >1,则0<1a <1,由f ′(x )>0得0<x <1a 或x >1;由f ′(x )<0得1a<x <1,∴f (x )在⎝⎛⎭⎪⎫0,1a ,(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)∵g (x )=ln x +12x 2-(a +1)x ,g ′(x )=1x +x -(a +1)=x 2-a +1x +1x ,由g ′(x )=0得x 2-(a +1)x +1=0,由a ≥32,知Δ>0,∴x 1+x 2=a +1,x 1x 2=1, ∴x 2=1x 1,∵a ≥32,x 1<x 2.∴⎩⎪⎨⎪⎧x 1+1x 1≥52,0<x 1<1x 1,解得0<x 1≤12,∴g (x 1)-g (x 2)=ln x 1x 2+12(x 21-x 22)-(a +1)(x 1-x 2)=2ln x 1-12⎝⎛⎭⎪⎫x 21-1x 21.设h (x )=2ln x -12⎝ ⎛⎭⎪⎫x 2-1x 2⎝ ⎛⎭⎪⎫0<x ≤12,则h ′(x )=2x-x -1x3=-x 2-12x 3<0,∴h (x )在⎝ ⎛⎦⎥⎤0,12上单调递减; 当x 1=12时,h (x )min =h ⎝ ⎛⎭⎪⎫12=158-2ln 2,∴k ≤158-2ln 2,∴k 的最大值为158-2ln 2.5.(2019·张掖一诊)已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值.(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解 (1)因为f (x )=ln x +ax 2+bx , 所以f ′(x )=1x+2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0. 当a =1时,b =-3, f ′(x )=2x 2-3x +1x=2x -1x -1x,f ′(x ),f (x )随x 的变化情况如下表: x ⎝ ⎛⎭⎪⎫0,1212 ⎝ ⎛⎭⎪⎫12,1 1 (1,+∞)f ′(x ) + 0 - 0 + f (x )增极大值减极小值增所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,2,(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫12,1. (2)因为f ′(1)=1+2a +b =0,所以b =-1-2a , 所以f (x )=ln x +ax 2-(1+2a )x , 所以f ′(x )=2ax -1x -1x.令f ′(x )=0,得x 1=1,x 2=12a.因为f (x )在x =1处取得极值,所以x 2=12a ≠x 1=1,当12a<0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. 当a >0时,x 2=12a >0;当12a <1时,f (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,e)上单调递增.所以最大值1可能在x =12a或x =e 处取得,而f ⎝ ⎛⎭⎪⎫12a =ln 12a +a ⎝ ⎛⎭⎪⎫12a 2-(2a +1)12a =ln 12a -14a -1<0,所以f (e)=ln e +a e 2-(2a+1)e =1,解得a =1e -2. 当1≤12a <e 时,f (x )在区间(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,e 上单调递增,所以最大值1可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 所以f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1≤12a <e 矛盾,当12a≥e 时,f (x )在区间(0,1)上单调递增,在(1,e)上单调递减,所以最大值1可能在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,不符合题意.综上所述,a =1e -2或a =-2.6.(2020·柳州市高三摸底考试)已知函数f (x )=ln x +a -1x ,g (x )=a sin x +1-2x,a ∈R .(1)求函数f (x )的极小值;(2)求证:当-1≤a ≤1时,f (x )>g (x ). 解 (1)f ′(x )=1x -a -1x2=x -a -1x 2(x >0),当a -1≤0,即a ≤1时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,无极小值. 当a -1>0,即a >1时,由f ′(x )<0,得0<x <a -1,函数f (x )在(0,a -1)上单调递减; 由f ′(x )>0,得x >a -1,函数f (x )在(a -1,+∞)上单调递增.f (x )极小值=f (a -1)=1+ln (a -1).综上所述,当a ≤1时,f (x )无极小值; 当a >1时,f (x )极小值=1+ln (a -1). (2)证明:令F (x )=f (x )-g (x ) =ln x +a -1x -a sin x +1-2x=x ln x -a sin x +1x(x >0),当-1≤a ≤1时,要证f (x )>g (x ),即证F (x )>0,即证x ln x -a sin x +1>0. 证法一:要证x ln x -a sin x +1>0,即证x ln x >a sin x -1. ①若0<a ≤1,令h (x )=x -sin x (x >0),则h ′(x )=1-cos x ≥0,所以h (x )在(0,+∞)上单调递增,故h (x )>0,即x >sin x (x >0). 所以ax -1>a sin x -1(x >0),(*)令q (x )=x ln x -x +1,则q ′(x )=ln x ,当x ∈(0,1)时,q ′(x )<0,q (x )在(0,1)上单调递减; 当x ∈(1,+∞)时,q ′(x )>0,q (x )在(1,+∞)上单调递增. 故q (x )≥q (1)=0,即x ln x ≥x -1,当且仅当x =1时取等号.又0<a ≤1,所以x ln x ≥x -1≥ax -1,(**) 由(*),(**)可知x ln x ≥x -1≥ax -1>a sin x -1, 所以当0<a ≤1时,x ln x >a sin x -1.②若a =0,即证x ln x >-1.令m (x )=x ln x ,则m ′(x )=ln x +1,m (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,m (x )min =m ⎝ ⎛⎭⎪⎫1e =-1e>-1,故x ln x >-1.③若-1≤a <0,当x ∈(0,1]时,a sin x -1<-1,由②知m (x )=x ln x ≥-1e ,而-1e >-1,故x ln x >a sin x-1;当x ∈(1,+∞)时,a sin x -1≤0,由②知当x >1时,m (x )=x ln x >m (1)=0,故x ln x >a sin x -1.所以当x ∈(0,+∞)时,x ln x >a sin x -1. 综合①②③可知,当-1≤a ≤1时,f (x )>g (x ).证法二:①当x >1时,易知x ln x >0,a sin x -1≤0,故x ln x -a sin x +1>0. ②当x =1时,0-a sin1+1>0显然成立,故x ln x -a sin x +1>0. ③当0<x <1时,sin x >0,故-sin x ≤a sin x ≤sin x ,令h (x )=x -sin x (x >0),则h ′(x )=1-cos x ≥0,所以h (x )在(0,+∞)上单调递增, 故h (x )>0,即x >sin x (x >0),故x >a sin x (x >0), 只需证q (x )=x ln x -x +1>0,q ′(x )=ln x , 当x ∈(0,1)时,q ′(x )<0,q (x )在(0,1)上单调递减, 故当0<x <1时,q (x )>0,故x ln x -a sin x +1>0. 综合①②③可知,当-1≤a ≤1时,f (x )>g (x ).。

(山东专用)2021版高考数学一轮复习第二章函数、导数及其应用第八讲函数的图象学案(含解析)

(山东专用)2021版高考数学一轮复习第二章函数、导数及其应用第八讲函数的图象学案(含解析)

第八讲 函数的图象ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测知识梳理知识点 函数的图象1.利用描点法作函数图象的流程2.平移变换y =f (x )―――――――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )―――――――――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . 3.伸缩变换4.对称变换y =f (x )――→关于x 轴对称y =-f (x ); y =f (x )――→关于y 轴对称y =f (-x ); y =f (x )――→关于原点对称y =-f (-x ).5.翻折变换y =f (x )―――――――→去掉y 轴左边图象,保留y 轴右边图象将y 轴右边的图象翻折到左边y =f (|x |); y =f (x )―――――――→留下x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.重要结论1.函数对称的重要结论(1)若f (m +x )=f (m -x )恒成立,则y =f (x )的图象关于直线x =m 对称.(2)设函数y =f (x )定义在实数集上,则函数y =f (x -m )与y =f (m -x )(m >0)的图象关于直线x =m 对称.(3)若f (a +x )=f (b -x ),对任意x ∈R 恒成立,则y =f (x )的图象关于直线x =a +b2对称.(4)函数y =f (a +x )与函数y =f (b -x )的图象关于直线x =b -a2对称.(5)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称. (6)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称. 2.函数图象平移变换八字方针(1)“左加右减”,要注意加减指的是自变量. (2)“上加下减”,要注意加减指的是函数值.双基自测题组一 走出误区1.(多选题)下列结论不正确的是( ABCD ) A .函数y =f (x +1)是由y =f (2x )左移1个单位得到B .函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到C .若函数y =f (x +2)是偶函数,则有f (x +2)=f (-x -2)D .若函数y =f (x )满足f (x +1)=f (x -1),则函数y =f (x )的图象关于直线x =1对称 题组二 走进教材2.(必修1P 73T1改编)函数y =log a x 与函数y =log 1ax 的图象关于直线x 轴对称;函数y=a x 与y =(1a)x 的图象关于直线y 轴对称;函数y =log 2x 与函数y =2x的图象关于直线y =x对称.3.(必修4P 55T2(1)改编)为了得到函数f (x )=log 2x 的图象,只需将函数g (x )=log 2x8的图象向上平移3个单位.将函数f (x )=log 2x 左移2个单位得到解析式为y =log 2(x +2).4.(必修1P 36T2改编)已知图甲中的图象对应的函数y =f (x ),则图乙中的图象对应的函数在下列给出的四式中只可能是( C )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)[解析] 由图可知当x ≤0时,y =f (x ),故选C .题组三 考题再现5.(2019·课标Ⅰ,5,5分)函数f (x )=sin x +xcos x +x2在[-π,π]的图象大致为( D )[解析] ∵f (-x )=sin -x -x cos -x +-x2=-sin x +x cos x +x2=-f (x ),∴f (x )是奇函数.又∵f (π)=sin π+πcos π+π2=π-1+π2>0,∴选D .6.(2015·北京,7,5分)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( C )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}[解析] 作出函数y =log 2(x +1)的图象,如图所示:其中函数f (x )与y =log 2(x +1)的图象的交点为D (1,1),结合图象可知f (x )≥log 2(x +1)的解集为{x |-1<x ≤1},故选C .KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点 函数的图象考向1 作函数的图象——自主练透例1 作出下列函数的图象: (1)y =(12)|x |;(2)y =|x -2|·(x +1); (3)y =2x -1x -1;(4)y =|log 2(x +1)|.[分析] (1)先由函数的奇偶性画出y 轴右侧图象,再画左侧;(2)先对绝对值分类讨论,将原函数化成分段函数的形式,再分段作图即可; (3)先化简解析式,分离常数,再利用图象变换画出图象;(4)将y =log 2x 的图象向左平移1个单位→y =log 2(x +1)的图象→将y =log 2(x +1)的图象位于x 轴下方的部分向上翻折→y =|log 2(x +1)|的图象.[解析](1)先作出函数y =(12)x 的图象,保留函数y =(12)x的图象中x ≥0的部分,再作出函数y=(12)x 的图象中x >0部分关于y 轴的对称部分,即得函数y =(12)|x |的图象,如图实线部分.(2)先化简,再作图.y =⎩⎪⎨⎪⎧x 2-x -2,x ≥2,-x 2+x +2,x <2,图象如图实线所示.(3)∵y =2x -1x -1=2x -1+1x -1=2+1x -1,∴其图象可由y =1x的图象沿x 轴向右平移1个单位,再沿y 轴向上平移2个单位得到,其图象如图所示.(4)利用函数y =log 2x 的图象进行平移和翻折变换,图象如图实线所示.名师点拨 ☞函数图象的画法(1)直接法:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数来画图象. (3)图象变换法:若函数图象可由某个基本函数的图象经过平移、伸缩、翻折、对称等变换得到,可利用图象变换作出.注:y =ax +b cx +d (c ≠0)的图象是以(-d c ,a c )为对称中心以直线x =-d c ,y =ac为渐近线的双曲线.易错提醒:(1)画函数的图象一定要注意定义域.(2)利用图象变换法时要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.考向2 识图与辨图——师生共研例2 (1)(2019·课标Ⅲ,7,5分)函数y =2x32x +2-x 在[-6,6]的图象大致为( B )(2)右图可能是下列哪个函数的图象( C )A .y =2x -x 2-1 B .y =2xsin x 4x +1C .y =(x 2-2x )e xD .y =xln x(3)(2020·荆州质检)若函数y =f (x )的曲线如图所示,则函数y =f (2-x )的曲线是( C )[解析] (1)设f (x )=2x 32x +2-x (x ∈[-6,6]),则f (-x )=2-x32-x +2x =-f (x ),∴f (x )为奇函数,排除选项C ;当x =-1时,f (-1)=-45<0,排除选项D ;当x =4时,f (4)=12816+116≈7.97,排除选项A .故选B .(2)函数图象过原点,所以D 排除;当x >0开始时函数值是负数,而B 项原点右侧开始时函数值为正数,所以B排除;当x<0时,2x<1,∴2x-x2-1<0,所以A排除;而C都满足,故选C.(3)解法一:先关于y轴对称,得到y=f(-x)的图象,再向右平移两个单位,即可得到y=f(-(x-2))=f(2-x)的图象.所以答案为C.(注意,左右平移是针对字母x变化,上下平移是针对整个式子变化).解法二:由f(0)=0知y=f(2-x)的图象过点(2,0),排除B、D.又f(1)=f(2-1)>0即y=f(2-x)在x=1处的函数值大于0,排除A,故选C.名师点拨☞函数图象的识辨可从以下几方面入手(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图象的循环往复.(5)从函数的特征点,排除不合要求的图象.〔变式训练1〕(1)(2020·湖北荆州中学模拟)函数f(x)=x2-1co s πx|x|的部分图象为( D )(2)(2020·河南信阳高级中学模拟)已知某函数图象如图所示,则该图象所对应的函数可能是( D )A .y =x2|x |B .y =2|x |-2 C .y =e |x |-|x | D .y =2|x |-x 2(3)已知函数f (x )=⎩⎪⎨⎪⎧3xx ≤1,log 13x x >1,则函数y =f (1-x )的大致图象是( D )[解析] (1)已知函数f (x )=x 2-1cos πx|x |,定义域为(-∞,0)∪(0,+∞).因为f (-x )=[-x2-1]cos π-x |-x |=x 2-1cos πx |x |=f (x ),所以函数f (x )为偶函数,故排除A ,C ;当0<x <12时,x 2-1<0,cos πx >0,此时f (x )<0,故排除B ,故选D .(2)对于A ,函数y =x2|x |,当x >0时,y >0;当x <0时,y <0,所以不满足题意.对于B ,函数y =2|x |-2,当x ≥0时,f (x )单调递增,不满足题意.对于C ,函数y =e |x |-|x |,当x ≥0时,f (x )>0,不满足题意.对于D ,函数y =2|x |-x 2为偶函数,且当x >0时,函数有两个零点,满足题意.故选D .(3)解法一:先画出函数f (x )=⎩⎪⎨⎪⎧3xx ≤1,log 13x x >1的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象,故选D .解法二:由已知函数f (x )的解析式,得y =f (1-x )=⎩⎪⎨⎪⎧31-xx ≥0,log 131-x x <0,故该函数图象过点(0,3),排除A ;过点(1,1),排除B ;在(-∞,0)上单调递增,排除C .选D .考向3 函数图象的应用——多维探究 角度1 函数图象的对称性例3 (1)(2018·课标全国Ⅲ,7)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( B )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )(2)已知函数f (2x +1)是奇函数,则函数y =f (2x )的图象关于下列哪个点成中心对称?( C )A .(1,0)B .(-1,0)C .(12,0)D .(-12,0)[解析] (1)本题考查函数图象的对称性.解法一:y =ln x 图象上的点P (1,0)关于直线x =1的对称点是它本身,则点P 在y =ln x 图象关于直线x =1对称的图象上,结合选项可知,B 正确.故选B .解法二:设Q (x ,y )是所求函数图象上任一点,则其关于直线x =1的对称点P (2-x ,y )在函数y =ln x 图象上.∴y =ln(2-x ).故选B .(2)f (2x +1)是奇函数,所以图象关于原点成中心对称,而f (2x )的图象是由f (2x +1)的图象向右平移12个单位得到的,故关于点(12,0)成中心对称.[小题巧解] 对特殊点的对称性解决函数图象的对称性问题. 角度2 利用函数图象研究函数性质例4 (多选题)已知函数f (x )=2xx -1,则下列结论正确的是( AB ) A .函数f (x )的图象关于点(1,2)中心对称 B .函数f (x )在(-∞,1)上是减函数C .函数f (x )的图象上至少存在两点A ,B ,使得直线AB ∥x 轴D .函数f (x )的图象关于直线x =1对称 [解析] 因为y =2x x -1=2x -1+2x -1=2x -1+2.所以该函数图象可以由y =2x的图象向右平移1个单位长度,向上平移2个单位长度得到,所以函数f (x )的图象关于点(1,2)中心对称,在(-∞,1)上为减函数,A 、B 正确,D 错误;易知函数f (x )的图象是由y =2x的图象平移得到的,所以不存在两点A ,B 使得直线AB ∥x 轴,C 错误.故选A 、B .角度3 利用函数图象研究不等式例 5 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -xx<0的解集为( D )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)[解析] f (x )为奇函数,f x -f -x x <0⇔f xx<0⇔xf (x )<0,由题意可知f (x )的大致图象如图所示,所以所求不等式的解集为(-1,0)∪(0,1).[引申]若将“奇函数f (x )”改为“偶函数f (x )”,不等式f x +f -xx<0的解集为(-∞,-1)∪(0,1).名师点拨 ☞(1)利用函数的图象研究函数的性质对于已知解析式,易画出其在给定区间上图象的函数,其性质常借助图象研究: ①从图象的最高点、最低点,分析函数的最值、极值; ②从图象的对称性,分析函数的奇偶性;③从图象的走向趋势,分析函数的单调性、周期性. (2)利用函数的图象研究不等式思路当不等式问题不能用代数法求解,但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题,从而利用数形结合求解.〔变式训练2〕(1)(角度1)已知f (x )=ln(1-x ),函数g (x )的图象与f (x )的图象关于点(1,0)对称,则g (x )的解析式为g (x )=-ln(x -1).(2)(角度1)设函数y =f (x )的定义域为实数集R ,则函数y =f (x -1)与y =f (1-x )的图象关于( D )A .直线y =0对称B .直线x =0对称C .直线y =1对称D .直线x =1对称(3)(角度2)(多选题)对于函数f (x )=lg(|x -2|+1),则下列说法正确的是( ABD ) A .f (x +2)是偶函数B .f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数C .f (x )没有最小值D .f (x )没有最大值(4)(角度3)函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f xcos x<0的解集为(-π2,-1)∪(1,π2).[解析] (1)设P(x,y)为函数y=g(x)上任意一点,则点P(x,y)关于点(1,0)的对称点Q(2-x,-y)在函数y=f(x)图象上,即-y=f(2-x)=ln(x-1),所以y=-ln(x-1),所以g(x)=-ln(x-1).(2)解法一:设t=x-1,则y=f(t)与y=f(-t),关于t=0对称,即关于x=1对称.故选D.解法二:y=f(x-1)与y=f(1-x)的图象分别由y=f(x)与y=f(-x)的图象同时向右平移一个单位而得,又y=f(x)与y=f(-x)的图象关于y轴对称,所以y=f(x-1)与y=f(1-x)的图象关于直线x=1对称.故选D.(3)对于A,f(x+2)=lg(|x|+1)是偶函数;对于B,当x∈(-∞,2)时,f(x)=lg(3-x)是减函数,当x∈(2,+∞)时,f(x)=lg(x-1)是增函数;对于C,f(x)=lg(|x-2|+1)≥0有最小值0;对于D,没有最大值.故选A、B、D.(4)在(0,π2)上,y=cos x>0,在(π2,4)上,y=cos x<0.由f(x)的图象知,在(1,π2)上,f xcos x<0.因为f(x)为偶函数,y=cos x也是偶函数,所以y=f xcos x为偶函数,所以f xcos x <0的解集为(-π2,-1)∪(1,π2).MING SHI JIANG TAN SU YANG TI SHENG名师讲坛·素养提升利用数形结合思想解题例6 (2016·课标Ⅱ,12,5分)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1x与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则i=1m(x i+y i)=( B ) A.0 B.mC.2m D.4m[分析] 分析出函数y =f (x )和y =x +1x的图象都关于点(0,1)对称,进而得两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,从而得出结论.[解析] 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x +1x =1+1x 的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,∴ i =1m(x i +y i )=0×m 2+2×m2=m .故选B .名师点拨 ☞〔变式训练3〕函数y =ln|x -1|的图象与函数y =-2cos πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( B )A .3B .6C .4D .2[解析] 由图象变换的法则可知,y =ln x 的图象关于y 轴对称后的图象和原来的一起构成y =ln |x |的图象,向右平移1个单位长度得到y =ln|x -1|的图象;y =-2cos πx 的周期T =2.如图所示,两函数的图象都关于直线x =1对称,且有3对交点,每对交点关于直线x =1对称,故所有交点的横坐标之和为2×3=6.。

2021-2022年高考数学一轮复习第二章函数、导数及其应用第八节函数与方程习题理

2021-2022年高考数学一轮复习第二章函数、导数及其应用第八节函数与方程习题理

2021年高考数学一轮复习第二章函数、导数及其应用第八节函数与方程习题理[基础达标]一、选择题(每小题5分,共35分)1.下列函数的零点不能用二分法求解的是()A.f(x)=x3-1B.f(x)=ln x+3C.f(x)=x2+4x+6D.f(x)=-x2+4x-11.C【解析】对于C,f(x)=(x+2)2+2≥0,不能用二分法.2.(xx·雅安模拟)函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是() A.f(x)=e x-1 B.f(x)=(x-1)2C.f(x)=4x-1D.f(x)=ln2.C【解析】由于g=2+1-2>0,g-2<0,且g(x)=4x+2x-2连续,所以g(x)=4x+2x-2的零点在上,而f(x)=e x-1的零点为0,f(x)=(x-1)2的零点为1,f(x)=4x-1的零点为,f(x)=ln的零点为,故选项C正确.3.(xx·嘉兴测试)已知函数f(x)= -cos x,则f(x)在[0,2π]上的零点个数为()A.1B.2C.3D.43.C【解析】函数f(x)= -cos x的零点个数为方程-cos x=0,即=cos x的根的个数,即函数h(x)=与g(x)=cos x的图象的交点个数.如图所示可知,函数h(x)与g(x)在区间[0,2π]上的交点个数为3.4.已知f(x)=x-ln x在区间(1,2)内有一个零点x0,若用二分法求x0的近似值(精确度0.1),则需要将区间等分的次数为() A.3 B.4 C.5 D.64.B【解析】设至少需要计算n次,由题意知<0.1,即2n>10,因为23=8,24=16,所以需将区间等分4次.5.已知定义在R上的周期为2的偶函数f(x),当x∈[0,1]时,f(x)=x-2x2,则f(x)在区间[0,xx]上零点的个数为()A.3019B.2020C.3024D.30255.D【解析】本题考查函数的周期性、奇偶性和函数的零点.当x∈[0,1]时,f(x)=0得x=0或x=.由函数f(x)为偶函数知,f(x)在区间[-1,0)上的零点为x=-,则函数f(x)在区间(1,2]上的零点为x=和x=2,故函数f(x)在区间(0,2]上的零点数为3,因此函数f(x)在区间[0,xx]上的零点个数为n=3×+1=3025.6.(xx·北京东城区期末考试)已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则() A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>06.B【解析】设g(x)=,由于函数g(x)= =-在(1,+∞)上单调递增,函数h(x)=2x在(1,+∞)上单调递增,故函数f(x)=h(x)+g(x)在(1,+∞)上单调递增,所以函数f(x)在(1,+∞)上只有唯一的零点x0,且在(1,x0)内f(x1)<0,在(x0,+∞)上f(x2)>0.7.(xx·菏泽一模)已知函数f(x)=若函数f(x)在R上有两个零点,则a的取值范围是()A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)7.D【解析】由函数可得函数的左半部分为指数函数的一部分,且随着a的变化而上下平移,右半部分为直线的一部分,且是固定的,如图所示,结合图象分析可得:当左半部分函数图象介于两虚线之间时符合题意,而y=e x+a(x≤0)的图象与y轴的交点纵坐标为a+1,所以0≤a+1<1,解得-1≤a<0.二、填空题(每小题5分,共15分)8.若a>3,则函数f(x)=x2-ax+1在区间(0,2)内恰有个零点.8.1【解析】f(0)=1>0,f(2)=4-2a+1=5-2a,当a>3时,f(2)<0,所以恰好有1个零点.9.(xx·湖北八校联考)设函数f(x)=则方程f(x)=的零点个数为.9.3【解析】作出函数f(x)=的图象与直线y=的交点个数即为零点个数,从图中易知零点个数为3.10.(xx·湖南怀化一模)已知函数f(x)=有3个零点,则实数a的取值范围是.10. 【解析】因为f(x)=有3个零点,所以a>0,且y=ax2+2x+1在(-2,0)内有两个零点,即解得<a<1.[高考冲关]1.(5分)(xx·郑州质检)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是f(x),g(x)的零点,则() A.g(a)<0<f(b) B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<01.A【解析】因为f(x)=e x+2x-4,g(x)=ln x+2x2-5,所以f(x),g(x)在各自定义域内单调递增(如图所示),又f(1)=e-2>0,g(1)=0+2-5<0,若实数a,b分别是f(x),g(x)的零点,所以a<1,b>1,故有g(a)<g(1)<0,f(b)>f(1)>0.2.(5分)(xx·昆明调研)已知函数f(x)=ax2-ln x,若f(x)存在两个零点,则实数a的取值范围是()A.B.(0,1) C.D.(-∞,-1]2.A【解析】由题意可知,f'(x)=2ax-=0在(0,+∞)上有解,则a>0,解为x=,则f(x)在内单调递减,在上单调递增;则函数f(x)=ax2-ln x存在两个零点可化为f<0,即-ln<0,解得实数a的取值范围是.3.(5分)若方程x3-x+1=0在区间(a,b)(a,b是整数,且b-a=1)上有一根,则a+b=.3.-3【解析】设f(x)=x3-x+1,则f(-2)=-5<0,f(-1)=1>0可得a=-2,b=-1,故a+b=-3.4.(10分)(xx·北京高考)设函数f(x)=(1)若a=1,则f(x)的最小值为;(2)若f(x)恰有两个零点,则实数a的取值范围是.4.(1)-1;(2)∪[2,+∞)【解析】(1)当a=1时,f(x)=结合图象易知f(x)min=f=4×=-1.(2)令函数g(x)=2x-a(x<1),h(x)=4(x-a)(x-2a)(x≥1).①若函数g(x)与x轴有一个交点,则a>0,并且当x=1时,g(1)=2-a>0,则0<a<2,此时函数h(x)与x轴有一个交点,所以2a≥1且a<1,即≤a<1;②若函数g(x)与x轴无交点,则a≤0或即a≤0或a≥2,则函数h(x)须与x轴有两个交点.当a≤0时,g(x)与x轴无交点,h(x)与x轴也无交点,不合题意;当a≥2时,h(x)与x轴有两个交点a和2a,由于a≥2,两交点横坐标均满足a≥1;综上所述,a的取值范围是≤a<1或a≥2.。

山东2021新高考数学一轮复习第二章函数导数及其应用课时作业8指数与指数函数课件

山东2021新高考数学一轮复习第二章函数导数及其应用课时作业8指数与指数函数课件
∴当 n=2 时,ymin=4a-4a+1-b=1, 当 n=4 时,ymax=16a-8a+1-b=9,∴a=1,b=0.
(2)由(1)知,4x-2·2x+1-k·4x≥0 在 x∈[-1,1]时有解.设
2x=t,∵x∈[-1,1],∴t∈12,2. ∴t2-2t+1-kt2≥0 在 t∈12,2时有解, ∴k≤t2-2t2t+1=1-2t +t12,t∈12,2. 再令1t =m,则 m∈12,2, ∴k≤m2-2m+1=(m-1)2≤1,即 k≤1, 故实数 k 的取值范围是(-∞,1].
(2)由(1)知 f(x)为偶函数, ∴只需讨论 x>0 时的情况,当 x>0 时,要使 f(x)>0, 则ax-1 1+12x3>0,即ax-1 1+12>0, 即2aaxx+-11>0,则 ax>1. 又∵x>0,∴a>1.∴当 a∈(1,+∞)时,f(x)>0.
13.已知函数 f(x)=a·4x-a·2x+1+1-b(a>0)在区间[1,2]上有 最大值 9 和最小值 1.
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们 眼睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
三、解答题
12.已知函数 f(x)=ax-1 1+12x3(a>0,且 a≠1). (1)讨论 f(x)的奇偶性; (2)求 a 的取值范围,使 f(x)>0 在定义域上恒成立.
解:(1)由于 ax-1≠0,则 ax≠1,得 x≠0, ∴函数 f(x)的定义域为{x|x≠0}. 对于定义域内任意 x,有 f(-x)=a-x1-1+12(-x)3=1-axax+12(-x)3 =-1-ax-1 1+12(-x)3=ax-1 1+12x3=f(x),∴函数 f(x)是 偶函数.

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试16导数的应用二含解析新人教B版

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试16导数的应用二含解析新人教B版

考点测试16 导数的应用(二)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3.会用导数解决实际问题一、基础小题1.函数f(x)=x-ln x的单调递增区间为( )A.(-∞,0) B.(0,1)C.(1,+∞) D.(-∞,0)∪(1,+∞)答案 C解析函数的定义域为(0,+∞).f′(x)=1-1x,令f′(x)>0,得x>1.故选C.2.已知奇函数f′(x)是函数f(x)(x∈R)的导函数,若x>0时,f′(x)>0,则( ) A.f(0)>f(log32)>f(-log23)B.f(log32)>f(0)>f(-log23)C.f(-log23)>f(log32)>f(0)D.f(-log23)>f(0)>f(log32)答案 C解析因为f′(x)是奇函数,所以f(x)是偶函数.所以f(-log23)=f(log23),而log23>log22=1,0<log32<1,所以0<log32<log23.又当x>0时,f′(x)>0,所以f(x)在(0,+∞)上是增函数,所以f(log23)>f(log32)>f(0),所以f(-log23)>f(log32)>f(0).3.若曲线f(x)=x,g(x)=xα在点P(1,1)处的切线分别为l1,l2,且l1⊥l2,则实数α的值为( )A.-2 B.2C.12D.-12答案 A解析 f ′(x )=12x,g ′(x )=αxα-1,所以曲线f (x ),g (x )在点P 处的切线斜率分别为k 1=12,k 2=α,因为l 1⊥l 2,所以k 1k 2=α2=-1,所以α=-2,选A.4.函数y =x +1ex的图象大致为( )答案 C 解析 因为y =x +1e x ,所以y ′=-xex ,令y ′>0,则x <0,令y ′<0,则x >0,令y ′=0,则x =0,所以函数y =x +1ex在(-∞,0)上为增函数,在(0,+∞)上为减函数,且x =0是函数的极大值点,结合4个函数的图象,故选C.5.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎭⎪⎫1,32C .[1,2)D .⎣⎢⎡⎭⎪⎫32,2 答案 B解析 因为f (x )的定义域为(0,+∞),f ′(x )=4x -1x ,由f ′(x )=0,得x =12.据题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.故选B.6.已知定义在(0,+∞)上的函数f (x ),满足f ′(x )<2f (x )(其中f ′(x )是f (x )的导函数,e 是自然对数的底数),则( )A .e 2f (1)>f (2)B .e 2f (1)<f (2)C .9f (ln 2)<4f (ln 3)D .9f (ln 2)=4f (ln 3)答案 A 解析 令h (x )=f xe2x,则h ′(x )=f ′x -2f xe2x<0,所以函数h (x )在(0,+∞)上单调递减,所以h (1)>h (2),即f 1e2>f 2e4,所以e 2f (1)>f (2),ln 2<ln 3,则h (ln 2)>h (ln3),即f ln 2e2ln 2>f ln 3e2ln 3,所以9f (ln 2)>4f (ln 3).故选A.7.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( )A .-8122B .13 C .2 D .5答案 C解析 由题意,f ′(x )=3ax 2+2bx +c ,因为f ′(x )≤0的解集为{x |-2≤x ≤3},所以a >0,且-2+3=-2b 3a ,-2×3=c3a ,则3a =-2b ,c =-18a ,又f (x )的极小值为f (3)=27a+9b +3c -17=-98,解得a =2,b =-3,c =-36,故选C.8.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.答案 (1,2)解析 ∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,且定义域为(-1,1),又导函数值恒大于0,∴原函数在定义域上单调递增,∴所求不等式变形为f (1-x )<f (x 2-1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).二、高考小题9.(2019·天津高考)已知a ∈R ,设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( )A .[0,1]B .[0,2]C .[0,e]D .[1,e]答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a ,∴当a ≥1时,f (x )min =f (1)=1>0恒成立,当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1.综上,a ≥0.当x >1时,f (x )=x -a ln x ≥0恒成立,即a ≤xln x恒成立.设g (x )=xln x,则g ′(x )=ln x -1ln x2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0,∴g (x )min =g (e)=e ,∴a ≤e.综上,a 的取值范围是0≤a ≤e,即[0,e].故选C.10.(2017·山东高考)若函数e xf (x )(e =2.71828…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x答案 A解析 当f (x )=2-x时,e xf (x )=e x2x =⎝ ⎛⎭⎪⎫e 2x .∵e 2>1,∴当f (x )=2-x 时,e xf (x )在f (x )的定义域上单调递增,故函数f (x )具有M 性质.易知B ,C ,D 不具有M 性质,故选A.11.(2015·全国卷Ⅰ)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B .⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D .⎣⎢⎡⎭⎪⎫32e ,1 答案 D解析 由f (x 0)<0,即e x 0(2x 0-1)-a (x 0-1)<0, 得<a (x 0-1).当x 0=1时,得e<0,显然不成立,所以x 0≠1. 若x 0>1,则a >.令g (x )=ex2x -1x -1,则g ′(x )=2x e x⎝ ⎛⎭⎪⎫x -32x -12.当x ∈⎝ ⎛⎭⎪⎫1,32时,g ′(x )<0,g (x )为减函数, 当x ∈⎝ ⎛⎭⎪⎫32,+∞时,g ′(x )>0,g (x )为增函数,要满足题意,则x 0=2,此时需满足g (2)<a ≤g (3),得3e 2<a ≤52e 3,与a <1矛盾,所以x 0<1.因为x 0<1,所以a <.易知,当x ∈(-∞,0)时,g ′(x )>0,g (x )为增函数, 当x ∈(0,1)时,g ′(x )<0,g (x )为减函数,要满足题意,则x 0=0,此时需满足g (-1)≤a <g (0), 得32e≤a <1(满足a <1).故选D. 12.(2017·江苏高考)已知函数f (x )=x 3-2x +e x-1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-1,12 解析 易知函数f (x )的定义域关于原点对称.∵f (x )=x 3-2x +e x-1ex ,∴f (-x )=(-x )3-2(-x )+e -x -1e -x =-x 3+2x +1ex -e x =-f (x ),∴f (x )为奇函数,又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2=3x 2≥0(当且仅当x =0时,取“=”),从而f (x )在R 上单调递增,∴f (a-1)+f (2a 2)≤0⇔f (a -1)≤f (-2a 2)⇔-2a 2≥a -1,解得-1≤a ≤12.13.(2015·安徽高考)设x 3+ax +b =0,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是__________.(写出所有正确条件的编号)①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2. 答案 ①③④⑤解析 设f (x )=x 3+ax +b .当a =-3,b =-3时,f (x )=x 3-3x -3,f ′(x )=3x 2-3,令f ′(x )>0,得x >1或x <-1;令f ′(x )<0,得-1<x <1,故f (x )在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f (-1)=-1,f (1)=-5,f (3)=15,故方程f (x )=0只有一个实根,故①正确.当a =-3,b =2时,f (x )=x 3-3x +2,易知f (x )在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f (-1)=4,f (1)=0,x →-∞时,f (x )→-∞,从而方程f (x )=0有两个根,故②错误.当a =-3,b >2时,f (x )=x 3-3x +b ,易知f (x )的极大值为f (-1)=2+b >0,极小值为f (1)=b -2>0,x →-∞时,f (x )→-∞,故方程f (x )=0有且仅有一个实根,故③正确.当a =0,b =2时,f (x )=x 3+2,显然方程f (x )=0有且仅有一个实根,故④正确. 当a =1,b =2时,f (x )=x 3+x +2,f ′(x )=3x 2+1>0,则f (x )在(-∞,+∞)上为增函数,易知f (x )的值域为R ,故f (x )=0有且仅有一个实根,故⑤正确.综上,正确条件的编号有①③④⑤.三、模拟小题14.(2019·河南豫南九校联考)设定义在(0,+∞)上的函数f (x )的导函数f ′(x )满足xf ′(x )>1,则( )A .f (2)-f (1)>ln 2B .f (2)-f (1)<ln 2C .f (2)-f (1)>1D .f (2)-f (1)<1答案 A解析 根据题意,函数f (x )的定义域为(0,+∞),则xf ′(x )>1⇒f ′(x )>1x=(ln x )′,即f ′(x )-(ln x )′>0.令F (x )=f (x )-ln x ,则F (x )在(0,+∞)上单调递增,故f (2)-ln 2>f (1)-ln 1,即f (2)-f (1)>ln 2.15.(2019·安阳模拟)已知函数f (x )=x 33+x 22与g (x )=6x +a 的图象有3个不同的交点,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-223,272 B .⎝ ⎛⎭⎪⎫-223,272 C.⎝ ⎛⎦⎥⎤-272,223 D .⎣⎢⎡⎦⎥⎤-272,223 答案 B解析 原问题等价于函数h (x )=x 33+x 22-6x 的图象与直线y =a 有三个不同的交点.h ′(x )=x 2+x -6=(x -2)(x +3),当x ∈(-∞,-3)时,h ′(x )>0,h (x )单调递增;当x ∈(-3,2)时,h ′(x )<0,h (x )单调递减;当x ∈(2,+∞)时,h ′(x )>0,h (x )单调递增.函数h (x )的图象如图所示.又h (-3)=272,h (2)=-223,数形结合可得a 的取值范围是⎝ ⎛⎭⎪⎫-223,272.故选B.16.(2019·沈阳质量监测(三))已知函数f (x )=a ln x -2x ,若不等式f (x +1)>ax -2e x在x ∈(0,+∞)上恒成立,则实数a 的取值范围是( )A .a ≤2B .a ≥2C .a ≤0D .0≤a ≤2答案 A解析 由函数f (x )=a ln x -2x ,得f (e x)=a ln e x-2e x=ax -2e x.f (x +1)>ax -2e x,即f (x +1)>f (e x ),因为x >0时,1<x +1<e x ,所以只需f (x )=a ln x -2x 在(1,+∞)上单调递减,即x >1时,f ′(x )=ax-2≤0恒成立,即a ≤2x 在(1,+∞)上恒成立,所以a ≤2,故选A.17.(2019·安徽淮北、宿迁一模)已知函数f (x )=2x +e2x -k,g (x )=ln (2x +4)-4ek -2x(e为自然对数的底数),若关于x 的不等式f (x )≤g (x )+1有解,则k 的值为( )A .-2-ln 2B .2-ln 2C .-3-ln 2D .3-ln 2答案 C解析 由f (x )≤g (x )+1,得e 2x -k+4ek -2x≤ln (2x +4)-2x +1(x >-2), (*)而e2x -k+4ek -2x≥2e2x -k·4ek -2x=4,当且仅当e2x -k=2,即x =ln 2+k 2.记h (x )=ln (2x +4)-2x +1, 则h ′(x )=1x +2-2,当x ∈⎝⎛⎭⎪⎫-2,-32时,h ′(x )>0,h (x )单调递增, 当x ∈⎝ ⎛⎭⎪⎫-32,+∞时,h ′(x )<0,h (x )单调递减,得h (x )max =h ⎝ ⎛⎭⎪⎫-32=4,若(*)成立,则x =ln 2+k 2=-32,得k =-3-ln 2.故选C.18.(2019·徐州模拟)已知函数f (x )=x 2-x +1x -1,g (x )=ln xx,若函数y =f [g (x )]+a有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2g (x 1)+g (x 2)+g (x 3)的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-2e 2-e ,0解析 由题意,得f ′(x )=x x -2x -12(x ≠1),所以函数f (x )在(0,1),(1,2)上单调递减,在(-∞,0),(2,+∞)上单调递增,由此作出函数f (x )的大致图象如图1所示.因为g ′(x )=1-ln xx2(x >0),所以函数g (x )在(e ,+∞)上单调递减,在(0,e)上单调递增,所以g (x )max =g (e)=1e ,作出函数g (x )的大致图象如图2所示.f ⎝ ⎛⎭⎪⎫1e =1-e +e 2e -e 2.因为f [g (x )]+a =0有三个不同的零点,所以y =f [g (x )]的图象与直线y =-a 有三个不同的交点,所以-a ∈⎝ ⎛⎭⎪⎫1-e +e 2e -e 2,-1,即a ∈⎝⎛⎭⎪⎫1,1-e +e 2e 2-e .令g (x )=t ,则问题等价于方程t 2-t +1t -1+a =0,即t 2+(a -1)t +1-a =0有两个解t 1,t 2,不妨设t 1<t 2,且t 1+t 2=1-a .由图知g (x 2)=g (x 3)=t 2,g (x 1)=t 1,所以2g (x 1)+g (x 2)+g (x 3)=2(t 1+t 2)=2(1-a )∈⎝ ⎛⎭⎪⎫-2e 2-e ,0.一、高考大题1.(2019·全国卷Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 解 (1)证明:设g (x )=f ′(x ),则g (x )=cos x +x sin x -1,g ′(x )=x cos x .当x ∈⎝⎛⎭⎪⎫0,π2时,g ′(x )>0;当x ∈⎝⎛⎭⎪⎫π2,π时,g ′(x )<0, 所以g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递增,在⎝ ⎛⎭⎪⎫π2,π上单调递减.又g (0)=0,g ⎝ ⎛⎭⎪⎫π2>0,g (π)=-2, 故g (x )在(0,π)存在唯一零点. 所以f ′(x )在区间(0,π)存在唯一零点. (2)由题设知f (π)≥a π,f (π)=0,可得a ≤0.由(1)知,f ′(x )在(0,π)只有一个零点,设为x 0,且当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,π)时,f ′(x )<0,所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减.又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax . 因此,a 的取值范围是(-∞,0].2.(2019·天津高考)设函数f (x )=e xcos x ,g (x )为f (x )的导函数. (1)求f (x )的单调区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,证明f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x ≥0; (3)设x n 为函数u (x )=f (x )-1在区间⎝ ⎛⎭⎪⎫2n π+π4,2n π+π2内的零点,其中n ∈N ,证明2n π+π2-x n <e-2n πsin x 0-cos x 0.解 (1)由已知,有f ′(x )=e x(cos x -sin x ). 因此,当x ∈⎝ ⎛⎭⎪⎫2k π+π4,2k π+5π4(k ∈Z )时,有sin x >cos x ,得f ′(x )<0,则f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫2k π-3π4,2k π+π4(k ∈Z )时,有sin x <cos x , 得f ′(x )>0,则f (x )单调递增.所以,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-3π4,2k π+π4(k ∈Z ),f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ). (2)证明:记h (x )=f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x .依题意及(1),有g (x )=e x(cos x -sin x ), 从而g ′(x )=-2e xsin x . 当x ∈⎝⎛⎭⎪⎫π4,π2时,g ′(x )<0,故h ′(x )=f ′(x )+g ′(x )⎝ ⎛⎭⎪⎫π2-x +g (x )(-1) =g ′(x )⎝ ⎛⎭⎪⎫π2-x <0.因此,h (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递减,进而h (x )≥h ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫π2=0.所以,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x ≥0. (3)证明:依题意,u (x n )=f (x n )-1=0,即e xn cos x n =1.记y n =x n -2n π,则y n ∈⎝ ⎛⎭⎪⎫π4,π2,且f (y n )=e yn cos y n =e xn -2n πcos(x n -2n π)=e -2n π(n ∈N ).由f (y n )=e-2n π≤1=f (y 0)及(1),得y n ≥y 0.由(2)知,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,g ′(x )<0, 所以g (x )在⎣⎢⎡⎦⎥⎤π4,π2上为减函数, 因此g (y n )≤g (y 0)<g ⎝ ⎛⎭⎪⎫π4=0. 又由(2)知,f (y n )+g (y n )⎝⎛⎭⎪⎫π2-y n ≥0,故π2-y n ≤-f y n g y n =-e -2n πg y n ≤-e-2n πg y 0=<e-2n πsin x 0-cos x 0.所以2n π+π2-x n <e -2n πsin x 0-cos x 0.3.(2019·浙江高考)已知实数a ≠0,设函数f (x )=a ln x +1+x ,x >0. (1)当a =-34时,求函数f (x )的单调区间;(2)对任意x ∈⎣⎢⎡⎭⎪⎫1e 2,+∞均有f (x )≤x 2a ,求a 的取值范围. 注:e =2.71828…为自然对数的底数.解 (1)当a =-34时,f (x )=-34ln x +1+x ,x >0.f ′(x )=-34x +121+x=1+x -221+x +14x1+x,所以函数f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞). (2)由f (1)≤12a ,得0<a ≤24.当0<a ≤24时,f (x )≤ x 2a 等价于x a 2-2 1+x a-2ln x ≥0. 令t =1a,则t ≥2 2.设g (t )=t2x -2t 1+x -2ln x ,t ≥22, 则g (t )=x ⎝⎛⎭⎪⎫t -1+1x 2-1+xx-2ln x . ①当x ∈⎣⎢⎡⎭⎪⎫17,+∞时, 1+1x≤22,则g (t )≥g (22)=8x -421+x -2ln x . 记p (x )=4x -221+x -ln x ,x ≥17,则p ′(x )=2x-2x +1-1x=2x x +1-2x -x +1x x +1=x -1[1+x 2x +2-1]x x +1x +1x +1+2x.故x 17⎝ ⎛⎭⎪⎫17,1 1 (1,+∞)p ′(x ) - 0 + p (x )p ⎝ ⎛⎭⎪⎫17单调递减极小值p (1)单调递增因此g (t )≥g (22)=2p (x )≥0.②当x ∈⎣⎢⎡⎭⎪⎫1e 2,17时, g (t )≥g ⎝⎛⎭⎪⎫1+1x =-2x ln x -x +1x. 令q (x )=2x ln x +(x +1),x ∈⎣⎢⎡⎦⎥⎤1e 2,17,则q ′(x )=ln x +2x+1>0,故q (x )在⎣⎢⎡⎦⎥⎤1e 2,17上单调递增,所以q (x )≤q ⎝ ⎛⎭⎪⎫17. 由①,得q ⎝ ⎛⎭⎪⎫17=-277p ⎝ ⎛⎭⎪⎫17<-277p (1)=0. 所以q (x )<0. 因此,g (t )≥g ⎝⎛⎭⎪⎫1+1x =-q xx>0. 由①②知对任意x ∈⎣⎢⎡⎭⎪⎫1e 2,+∞,t ∈[22,+∞), g (t )≥0,即对任意x ∈⎣⎢⎡⎭⎪⎫1e2,+∞,均有f (x )≤x 2a. 综上所述,所求a 的取值范围是⎝ ⎛⎦⎥⎤0,24. 二、模拟大题4.(2019·吉林省长春市高三第二次模拟)已知函数f (x )=e x+bx -1(b ∈R ). (1)讨论f (x )的单调性;(2)若方程f (x )=ln x 有两个实数根,求实数b 的取值范围. 解 (1)由题可得,f ′(x )=e x+b ,当b ≥0时,f ′(x )>0,f (x )在(-∞,+∞)上单调递增;当b <0时,若x ≥ln (-b ),则f ′(x )≥0,f (x )在[ln (-b ),+∞)上单调递增; 若x <ln (-b ),则f ′(x )<0,f (x )在(-∞,ln (-b ))上单调递减. (2)令g (x )=e x +bx -1-ln x ,则g ′(x )=e x+b -1x,易知g ′(x )单调递增且一定有大于0的零点, 不妨设为x 0,g ′(x 0)=0, 即,故若g (x )有两个零点,需满足g (x 0)<0,令h (x )=e x -e x x -ln x ,h ′(x )=-e xx -1x<0,所以h (x )在(0,+∞)上单调递减,由h (1)=0,得-x 0-ln x 0<0的解集为(1,+∞),由b =1x 0-,得b <1-e.当b <1-e 时,e x+bx -1-ln x >x +bx -ln x , 有g (e b)>e b+b e b-ln e b=(b +1)e b-b , 令φ(x )=(x +1)e x-x =(x +1)(e x-1)+1, 由于x <1-e ,所以x +1<2-e <0,e x<1, 故φ(x )=(x +1)e x-x >0,所以g (e b )>0, 故g (e b)g (x 0)<0,g (x )在(0,x 0)上有唯一零点,另一方面,在(x 0,+∞)上,当x →+∞时,由e x增长速度大,所以有g (x )>0,即g (x )在(x 0,+∞)上有唯一零点.故当b <1-e 时,g (x )在(0,+∞)上有两个零点,满足题意,即实数b 的取值范围为(-∞,1-e).5.(2019·广州二模)已知函数f (x )=a (x +1)ln (x +1)-x 2-ax (a >0)是减函数. (1)试确定a 的值; (2)已知数列{a n },a n =lnn +1n +1,T n =a 1a 2a 3·…·a n (n ∈N *),求证:ln [(n +2)T n ]<1-n2. 解 (1)f (x )的定义域为(-1,+∞),f ′(x )=a ln (x +1)-2x .由f (x )是减函数得,对任意的x ∈(-1,+∞),f ′(x )=a ln (x +1)-2x ≤0恒成立. 设g (x )=a ln (x +1)-2x , 则g ′(x )=-2⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫a2-1x +1,由a >0知,a2-1>-1,∴当x ∈⎝⎛⎭⎪⎫-1,a2-1时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫a2-1,+∞时,g ′(x )<0,∴g (x )在⎝ ⎛⎭⎪⎫-1,a 2-1上单调递增,在⎝ ⎛⎭⎪⎫a2-1,+∞上单调递减,∴g (x )在x =a2-1处取得最大值.又g (0)=0,∴对任意的x ∈(-1,+∞),g (x )≤g (0)恒成立,即g (x )的最大值为g (0), ∴a2-1=0,解得a =2. (2)证明:由f (x )是减函数,且f (0)=0可得,当x >0时,f (x )<0, ∴f (n )<0,即2(n +1)ln (n +1)<n 2+2n . 两边同时除以2(n +1)2得, lnn +1n +1<12·n n +1·n +2n +1, 即a n <12·n n +1·n +2n +1,从而T n =a 1a 2a 3·…·a n <12n ×⎝ ⎛⎭⎪⎫12×23×34×…×n n +1⎝ ⎛⎭⎪⎫32×43×54×…×n +2n +1=12n +1×n +2n +1, ∴ln [(n +2)T n ]<ln ⎣⎢⎡⎦⎥⎤n +222n +1n +1=2ln (n +2)-ln (n +1)-(n +1)ln 2.①下面证2ln (n +2)-ln (n +1)-(n +1)ln 2+n2-1<0,记h (x )=2ln (x +2)-ln (x +1)-(x +1)ln 2+x2-1,x ∈[1,+∞),∴h ′(x )=2x +2-1x +1-ln 2+12=x x 2+3x +2-ln 2+12=1x +2x+3-ln 2+12. ∵y =x +2x在[2,+∞)上单调递增,∴h ′(x )在[2,+∞)上单调递减,而h ′(2)=16-ln 2+12=13×(2-3ln 2)=13×(2-ln 8)<0,∴当x ∈[2,+∞)时,h ′(x )<0恒成立,∴h (x )在[2,+∞)上单调递减,即x ∈[2,+∞)时,h (x )≤h (2)=2ln 4-ln 3-3ln 2=ln 2-ln 3<0,∴当n ≥2时,h (n )<0.∵h (1)=2ln 3-ln 2-2ln 2-12=ln 98-ln e<0,∴当n ∈N *时,h (n )<0,即2ln (n +2)-ln (n +1)-(n +1)ln 2<1-n2.②由①②可得,ln [(n +2)T n ]<1-n2.。

2021版高考数学一轮复习第二章函数与导数课时训练2021080723

2021版高考数学一轮复习第二章函数与导数课时训练2021080723

2021版高考数学一轮复习第二章函数与导数课时训练2021080723第1课时 函数及其表示一、 填空题1. 下列五个对应f ,________是从集合A 到集合B 的函数.(填序号)① A =⎩⎨⎧⎭⎬⎫12,1,32,B ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12=-6,f(1)=-3,f ⎝ ⎛⎭⎪⎫32=1;② A ={1,2,3},B ={7,8,9},f(1)=f(2)=7,f(3)=8; ③ A =B ={1,2,3},f(x)=2x -1; ④ A =B ={x|x≥-1},f(x)=2x +1;⑤ A =Z ,B ={-1,1},n 为奇数时,f(n)=-1,n 为偶数时,f(n)=1. 答案:①②④⑤解析:依照函数定义,即看是否是从非空数集A 到非空数集B 的映射.③中集合A 中的元素3在集合B 中无元素与之对应,故不是A 到B 的函数.其他均满足.2. 设f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f(g(π))的值为________.答案:0解析:依照题设条件,∵ π是无理数,∴ g(π)=0, ∴ f(g(π))=f(0)=0.3. 已知f ⎝ ⎛⎭⎪⎫x 2-1=2x +3,且f(m)=6,则m =________. 答案:-14解析:令2x +3=6,得x =32,因此m =x 2-1=12×32-1=-14.4. 假如f ⎝ ⎛⎭⎪⎫1x =x 1-x ,则当x≠0且x≠1时,f(x)=________.答案:1x -1解析:令t =1x ,得x =1t ,∴ f(t)=1t 1-1t=1t -1,∴ f(x)=1x -1.5. 运算机中常用的十六进制是逢16进1的计数制,采纳数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的对应关系如下表:答案:6E6. 已知g(x)=1-2x ,f(g(x))=1-x 2x 2(x≠0),则f ⎝ ⎛⎭⎪⎫12=__________. 答案:15解析:令g(x)=1-2x =12,得x =14.∴ f ⎝ ⎛⎭⎪⎫12=1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15.7. 函数f(x)对任意x ,y 满足f(x +y)=f(x)+f(y),且f(2)=4,则f(-1)=____________.答案:-2 解析:由f(2)=f(1+1)=f(1)+f(1)=2f(1)=4得f(1)=2,由f(0)=f(0+0)=f(0)+f(0)=2f(0)得f(0)=0,由f(0)=f(-1+1)=f(-1)+f(1)=0,得f(-1)=-f(1)=-2.8. 已知函数f(x)=⎩⎪⎨⎪⎧-x -1(-1≤x<0),-x +1(0<x≤1),则f(x)-f(-x)>-1的解集为______________.答案:⎣⎢⎡⎭⎪⎫-1,-12∪(0,1] 解析:① 当-1≤x<0时,0<-x≤1,现在f(x)=-x -1,f(-x)=-(-x)+1=x +1,∴ f(x)-f(-x)>-1化为-2x -2>-1,解得x<-12,则-1≤x<-12.② 当0<x≤1时,-1≤-x<0,现在,f(x)=-x +1,f(-x)=-(-x)-1=x -1,∴ f(x)-f(-x)>-1化为-2x +2>-1,解得x<32,则0<x≤1.故所求不等式的解集为⎣⎢⎡⎭⎪⎫-1,-12∪(0,1]. 9. 一辆汽车在某段路程中的行驶速度v 与时刻t 的关系如图所示,则该汽车在前3 h 行驶的路程为________km.假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2 006 km ,那么在t ∈[1,2)时,汽车里程表读数s 与时刻t 的函数解析式为____________________.答案:220 s =80t +1 976,且t∈[1,2)解析:前3 h 行驶的路程为50+80+90=220(km).∵ t ∈[1,2)时里程表读数s 是时刻t 的一次函数,可设为s =80(t -1)+b ,当t =1时,s =2 006+50=2 056=b ,∴ s =80(t -1)+2 056=80t +1 976. 二、 解答题10. 如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f(x),并写出它的定义域.解:设AB =2x ,CD ︵=πx ,因此AD =1-2x -πx2,则y =2x·1-2x -πx 2+πx 22,即y =-π+42x 2+x.由⎩⎪⎨⎪⎧2x >0,1-2x -πx 2>0,得0<x <1π+2,∴ 函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 11. 已知函数f(x)对一切实数x ,y 均有f(x +y)-f(y)=x(x +2y +1)成立,且f(1)=0,(1) 求f(0)的值;(2) 试确定函数f(x)的解析式.解:(1) 令x =1,y =0,得f(1)-f(0)=2. 又f(1)=0,故f(0)=-2.(2) 令y =0,则f(x)-f(0)=x(x +1),由(1)知,f(x)=x(x +1)+f(0)=x(x +1)-2=x 2+x -2.12. 据气象中心观看和推测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时刻t(h)的函数图象如图所示,过线段OC 上一点T(t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t(h)内沙尘暴所通过的路程s(km).(1) 当t =4时,求s 的值;(2) 将s 随t 变化的规律用数学关系式表示出来.解:(1) 由图象可知,当t =4时,v =3×4=12,因此s =12×4×12=24.(2) 当0≤t≤10时,s =12·t ·3t =32t 2;当10<t≤20时,s =12×10×30+30(t -10)=30t -150;当20<t≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t-20)=-t 2+70t -550.综上可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10],30t -150,t ∈(10,20],-t 2+70t -550,t ∈(20,35].13. 已知f(x)=⎩⎪⎨⎪⎧1,x ∈[0,1],x -3,x ∈(-∞,0)∪(1,+∞),若f(f(x))=1成立,求x 的取值范畴.解:因为f(f(x))=1,因此0≤f(x)≤1或f(x)-3=1.① 由0≤f(x)≤1,可得0≤x≤1或⎩⎪⎨⎪⎧0≤x-3≤1,x<0或x>1,因此0≤x≤1或3≤x≤4;② 由f(x)-3=1,得f(x)=4,因此x -3=4,∴ x =7. 综合①②知,x 的取值范畴是[0,1]∪[3,4]∪{7}.点评:由于f(x)是分段函数,因此在探求方程f(f(x))=1的解时,需要依照分段函数中相应的限制定义域进行分类讨论.第2课时 函数的定义域和值域一、 填空题1. 函数f(x)=-x 2+x +6x -1的定义域是______________.答案:[-2,1)∪(1,3]解析:依题意有⎩⎪⎨⎪⎧-x 2+x +6≥0,x -1≠0,解得⎩⎪⎨⎪⎧-2≤x≤3,x ≠1,因此定义域为[-2,1)∪(1,3]. 2. 已知f(x)=1x +1,则函数f(f(x))的定义域是________.答案:(-∞,-2)∪(-2,-1)∪(-1,+∞)解析:f(f(x))=1f (x )+1=11x +1+1,∴ ⎩⎪⎨⎪⎧x +1≠0,11+x+1≠0,解得⎩⎪⎨⎪⎧x≠-1,x ≠-2.因此定义域为(-∞,-2)∪(-2,-1)∪(-1,+∞).3. 若函数y =f(x)的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F(x)=f(x)+1f (x )的值域是________. 答案:⎣⎢⎡⎦⎥⎤2,103解析:令t =f(x),则t∈⎣⎢⎡⎦⎥⎤12,3,由F(x)=t +1t 知,F(x)∈⎣⎢⎡⎦⎥⎤2,103,因此函数F(x)的值域为⎣⎢⎡⎦⎥⎤2,103.4. 函数y =4-3+2x -x 2的值域是__________________.答案:[2,4]解析:y =4--(x -1)2+4,∵ 0≤-(x -1)2+4≤4,∴ 0≤-(x -1)2+4≤2,∴ 2≤4--(x -1)2+4≤4, ∴ 所给函数的值域为[2,4].5. 函数y =x -x(x≥1)的值域为________. 答案:(-∞,0]解析:y =-⎝ ⎛⎭⎪⎫x -122+14.因为x ≥1,因此y≤0. 6. 函数y =|x|x+x 的值域是____________________.答案:(-∞,-1)∪(1,+∞)解析:由y =⎩⎪⎨⎪⎧x +1,x>0,x -1,x<0可得值域.7. 若函数y =12x 2-2x +4的定义域、值域差不多上闭区间[2,2b],则b =________.答案:2解析:y =12x 2-2x +4=12(x -2)2+2,明显f(2)=2,因此f(2b)=2b ,结合b>1,得b=2.8. 设f(x)=⎩⎪⎨⎪⎧x 2,|x|≥1,x ,|x|<1,g(x)是定义在R 上的二次函数,若f(g(x))的值域是[0,+∞),则g(x)的值域是________.答案:[0,+∞)解析:若f(g(x))的值域是[0,+∞),则g(x)可取(-∞,-1]∪[0,+∞).又g(x)是定义在R 上的二次函数,定义域连续,其值域也是连续的,因此g(x)的值不可能同时取(-∞,-1]和[0,+∞).又若g(x)的值域为(-∞,-1],则f(g(x))的值域为[1,+∞),因此g(x)的值域只能为[0,+∞).二、 解答题9. 求下列函数的值域: (1) y =2x -x -1; (2) y =x +1-x -1.解:(1) 令x -1=t ,则t≥0,且x =t 2+1≥1,因此y =2x -x -1=2t 2-t +2=2⎝ ⎛⎭⎪⎫t -142+158.因为t≥0,因此y≥158,因此所求函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.(2) y =x +1-x -1=2x +1+x -1,不难证明函数在其定义域[1,+∞)上是减函数,因此其值域为(0,2].点评:利用代换法求值域时,要关注新代换量的取值范畴.10. 已知函数g(x)=x +1,h(x)=1x +3(x∈(-3,a]),其中a 为常数且a>0.令函数f(x)=g(x)·h(x).(1) 求函数f(x)的解析式,并求其定义域;(2) 当a =14时,求函数f(x)的值域.解:(1) f(x)=x +1x +3,x ∈[0,a](a>0). (2) 当a =14时,函数f(x)的定义域为[0,14].令x +1=t ,则x =(t -1)2,t ∈[1,32],则f(x)=F(t)=t t 2-2t +4=1t +4t-2.当t =4t 时,t =±2∉[1,32].又t∈[1,32]时,t +4t 单调递减,∴F(t)单调递增,F(t)∈[13,613],即函数f(x)的值域为[13,613]. 11. 函数f(x)=2x -ax的定义域为(0,1](a∈R ).(1) 当a =-1时,求函数y =f(x)的值域;(2) 若f(x)>5在定义域上恒成立,求a 的取值范畴.解:(1) 当a =-1时,∵ x ∈(0,1],∴ y =f(x)=2x -a x =2x +1x ≥22x ·1x=22,当且仅当x =22时取最小值.∴ 函数y =f(x)的值域为[22,+∞). (2) 若f(x)>5在定义域(0,1]上恒成立,即2x 2-5x>a 在(0,1]上恒成立.设g(x)=2x 2-5x ,∵ g(x)=2x 2-5x =2⎝ ⎛⎭⎪⎫x -542-258,∴ 当x∈(0,1]时,g (x)∈[-3,0).而g(x)=2x 2-5x>a ,∴ 只要a<-3即可,∴ a 的取值范畴是(-∞,-3).12. 已知二次函数f(x)=ax 2+bx(a ,b 是常数,且a≠0)满足条件:f(2)=0,且方程f(x)=x 有等根.(1) 求f(x)的解析式;(2) 是否存在实数m ,n(m<n),使f(x)的定义域和值域分别为[m ,n]和[2m ,2n]?如存在,求出m ,n 的值,如不存在,请说明理由.解:(1) 由题意⎩⎪⎨⎪⎧f (2)=0,f (x )=x 有等根,即 ⎩⎪⎨⎪⎧4a +2b =0,ax 2+(b -1)x =0有等根.∴⎩⎪⎨⎪⎧2a +b =0,(b -1)2=0,解得⎩⎪⎨⎪⎧a =-12,b =1,∴ f(x)=-12x 2+x. (2) 假设存在适合题设条件的实数m ,n ,由(1)知f(x)=-12x 2+x =-12(x -1)2+12≤12,∴ 2n ≤12,即n≤14.而函数f(x)=-12x 2+x 图象的对称轴方程为x =1,∴ 函数f(x)=-12x 2+x 在[m ,n]上为增函数,∴ ⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧-12m 2+m =2m ,-12n 2+n =2n , 解得⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0.又m<n ,∴ ⎩⎪⎨⎪⎧m =-2,n =0,即存在实数m =-2,n =0,使函数f(x)的定义域为[-2,0],值域为[-4,0].13. 等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,如图,直线MN⊥AD 交AD 于点M ,交折线ABCD 于点N ,记AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域和值域.(用分段函数形式表示)解:过点B ,C 分别作AD 的垂线,垂足为点H 和点G ,则AH =a 2,AG =3a2.当点M 位于点H 及其左侧时,AM =MN =x ,则面积y =S △AMN =12x 2⎝⎛⎭⎪⎫0≤x≤a 2;当点M 位于点H ,G 之间时,面积y =S 梯形MNBA =12(AM +BN)·MN=12⎝⎛⎭⎪⎫x +x -a 2·a 2=12ax -a 28⎝ ⎛⎭⎪⎫a 2<x<3a 2; 当点M 位于点G 及其右侧时,面积y =S 梯形ABCD -S △MDN =a +2a 2·a 2-12(2a -x)2=-12x 2+2ax -5a 24⎝ ⎛⎭⎪⎫32a≤x≤2a .综上所述,y =⎩⎪⎨⎪⎧12x 2⎝⎛⎭⎪⎫0≤x ≤a 2,12ax -a 28⎝ ⎛⎭⎪⎫a 2<x<3a 2,-12x 2+2ax -54a 2⎝ ⎛⎭⎪⎫3a 2≤x ≤2a .其定义域为[0,2a],值域为⎣⎢⎡⎦⎥⎤0,34a 2.第3课时 函数的单调性一、 填空题1. 下列四个函数中,在(0,+∞)上为增函数的是______.(填序号)① f(x)=3-x ;② f(x)=x 2-3x ;③ f(x)=-1x +1;④ f (x)=-|x|.答案:③解析:分别画出四个函数的图象易知y =x 2-3x 在⎝ ⎛⎭⎪⎫32,+∞上递增,y =3-x 在(0,+∞)上递减,y =-|x|在(0,+∞)上递减,y =-1x +1在(-1,+∞)上递增.2. 若函数f(x)=(k 2-3k +2)x +b 在R 上是减函数,则实数k 的取值范畴为____________.答案:(1,2)解析:由题意得k 2-3k +2<0,∴ 1<k<2.3. 函数f(x)=x 2-2x -3的单调增区间为________. 答案:[3,+∞)解析:∵ t=x 2-2x -3≥0,∴ x ≤-1或x≥3.当x ∈(-∞,-1]时,t 递减,f(x)递减;当x∈[3,+∞)时,t 递增,f(x)递增.∴ 当x∈(-∞,-1]时,f(x)是减函数;当x∈[3,+∞)时,f(x)是增函数.4. 已知函数f(x)是定义在(-2,2)上的减函数.若f(m -1)>f(2m -1),则实数m 的取值范畴是____________.答案:0<m <32解析:由题意得⎩⎪⎨⎪⎧-2<m -1<2,-2<2m -1<2,m -1<2m -1,解得0<m <32.5. 已知y =x 2+2(a -2)x +5在区间(4,+∞)上是增函数,则实数a 的取值范畴是____________.答案:a≥-2解析:对称轴为x =2-a ,2-a≤4,a ≥-2.6. 函数y =|1+2x|+|2-x|的单调减区间为________.答案:⎝⎛⎦⎥⎤-∞,-12 解析:将函数y =|1+2x|+|2-x|改写成分段函数y =⎩⎪⎨⎪⎧-3x +1,x ∈⎝⎛⎦⎥⎤-∞,-12,x +3,x ∈⎝ ⎛⎭⎪⎫-12,2,3x -1,x ∈[2,+∞).画出函数的图象容易得出其在⎝⎛⎦⎥⎤-∞,-12上为单调减函数.7. 已知函数f(x)=ax 2-x +1在(-∞,2)上是递减的,则a 的取值范畴是____________.答案:⎣⎢⎡⎦⎥⎤0,14 解析:当a =0时,f(x)=-x +1在(-∞,2)上是递减的;当a≠0时,要使f(x)在(-∞,2)上单调递减,则⎩⎪⎨⎪⎧a>0,12a≥2,解得0<a≤14.综上,a 的取值范畴是⎣⎢⎡⎦⎥⎤0,14.8. 已知f(x)=xx -a(x ≠a),若a>0且f(x)在(1,+∞)内单调递减,则实数a 的取值范畴是________.答案:(0,1]解析:任取x 1,x 2∈(1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=x 1x 1-a -x 2x 2-a=-a (x 1-x 2)(x 1-a )(x 2-a ),因为x 1<x 2,且a>0,因此要使f(x 1)-f(x 2)>0,只需(x 1-a)(x 2-a)>0恒成立.又x∈(1,+∞),因此a≤1.综上,实数a 的取值范畴是0<a≤1.9. 已知函数f(x)=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f(2-a 2)>f(a),则实数a 的取值范畴是____________.答案:(-2,1)解析:由f(x)=⎩⎪⎨⎪⎧(x +2)2-4,x ≥0,-(x -2)2+4,x <0的图象知f(x)在(-∞,+∞)上是单调递增函数,由f(2-a 2)>f(a)得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.二、 解答题10. 利用单调性的定义证明函数y =x +2x +1在(-1,+∞)上是递减函数.证明:设x 1>x 2>-1,则x 2-x 1<0,y 1-y 2=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1),∵ x 1>x 2>-1,x 1+1>0,x 2+1>0,x 2-x 1<0,∴ x 2-x 1(x 1+1)(x 2+1)<0,即y 1-y 2<0.∴y 1<y 2. ∴ y =x +2x +1在(-1,+∞)上是递减函数.11. 讨论函数f(x)=axx 2-1(a>0)在x∈(-1,1)上的单调性.解:设-1<x 1<x 2<1,则f(x 1)-f(x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵ -1<x 1<x 2<1,∴ x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. ∵ a>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). ∴ 函数f(x)在(-1,1)上为减函数.12. 已知函数f(x)=1a -1x(a>0,x>0).(1) 求证:f(x)在(0,+∞)上是单调递增函数;(2) 若f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. (1) 证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0.∵ f(x 2)-f(x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴ f(x 2)>f(x 1),∴ f(x)在(0,+∞)上是单调递增函数.(2) 解:∵ f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2, 又f(x)在⎣⎢⎡⎦⎥⎤12,2上单调递增, ∴ f ⎝ ⎛⎭⎪⎫12=12,f(2)=2,解得a =25.13. 已知函数f(x)对任意的m ,n∈R ,都有f(m +n)=f(m)+f(n)-1,同时x>0时,恒有f(x)>1.(1) 求证:f(x)在R 上是增函数;(2) 若f(3)=4,解不等式f(a 2+a -5)<2.(1) 证明:设x 1,x 2∈R ,且x 1<x 2,∴ x 2-x 1>0. ∵ 当x>0时,f(x)>1, ∴ f(x 2-x 1)>1.f(x 2)=f[(x 2-x 1)+x 1]=f(x 2-x 1)+f(x 1)-1, ∴ f(x 2)-f(x 1)=f(x 2-x 1)-1>0,∴f(x 1)<f(x 2), ∴ f(x)在R 上为增函数.(2) 解:∵ m,n ∈R ,不妨设m =n =1,∴ f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴ f(1)=2,∴ f(a 2+a -5)<2=f(1). ∵ f(x)在R 上为增函数,∴ a 2+a -5<1,解得-3<a<2.第4课时 函数的奇偶性及周期性一、 填空题1. 已知奇函数f(x)的定义域为(-2a ,a 2-3),则a =________. 答案:3解析:(-2a)+(a 2-3)=0,且⎩⎪⎨⎪⎧a 2-3>0,-2a <0.得a =3.2. 若函数f(x)=x +ax 2+bx +1在[-1,1]上是奇函数,则f(x)的解析式为______________.答案:f(x)=xx 2+1解析:∵ f(-x)=-f(x),∴ f(-0)=-f(0),f(0)=0,∴ a 1=0,∴ a =0,即f(x)=x x 2+bx +1.∵f(-1)=-f(1),即-12-b =-12+b,∴ b=0.∴ f(x)=xx 2+1.3. 已知函数f(x)是定义在R 上的奇函数,且当x≥0时,f(x)=x 2-2x ,则f(x)的解析式为f(x)=________.答案:x(|x|-2)解析:设x≤0,则-x≥0,∵ 当x≥0时,f(x)=x 2-2x ,∴ f(-x)=(-x)2-2(-x)=x 2+2x.又f(x)是奇函数,∴ f(-x)=-f(x),∴ f(x)=-(x 2+2x),∴ f(x)=⎩⎪⎨⎪⎧x 2-2x (x≥0),-x 2-2x (x<0),即f(x)=x(|x|-2)(x∈R ).4. 设f(x)=g(x)+5,g(x)为奇函数,且f(-7)=-17,则f(7)=________.答案:27解析:由f(-7)=-17得g(-7)=-22,依照g(x)为奇函数得g(7)=22,而f(7)=g(7)+5,因此f(7)=22+5=27.5. 设f(x)是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f(x)=⎩⎪⎨⎪⎧-4x 2+2,-1≤x<0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=_______.答案:1解析:由题意可知f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-122+2=1. 6. 定义在(-1,1)上的奇函数f(x)在整个定义域上差不多上减函数,若f(1-a)+f(1-3a)<0,则实数a 的取值范畴是____________.答案:⎝ ⎛⎭⎪⎫0,12 解析:原不等式化为f(1-3a)<-f(1-a),∵ f(x)是奇函数,∴ -f(1-a)=f(a -1),∴ 原不等式化为f(1-3a)<f(a -1).∵ f(x)是减函数,∴ 1-3a >a -1,∴ a <12①.又f(x)的定义域为(-1,1), ∴ ⎩⎪⎨⎪⎧-1<1-a <1,-1<1-3a <1,解得0<a <23 ②.由①和②得实数a 的取值范畴是⎝ ⎛⎭⎪⎫0,12. 7. 已知f(x)与g(x)差不多上定义在R 上的奇函数,若F(x)=af(x)+bg(x)+3,且F(-2)=5,则F(2)=______.答案:1解析:F(-2)+F(2)=a[f(-2)+f(2)]+b[g(2)+g(-2)]+6=6,∴ F(2)=1. 8. 若定义在R 上的偶函数f(x)满足f(x +1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判定:① f(x)是周期函数;② f(x)的图象关于直线x =1对称; ③ f(x)在[0,1]上是增函数; ④ f(x)在[1,2]上是减函数; ⑤ f(2)=f(0).其中正确的是________.(填序号) 答案:①②⑤解析:∵ f(x+1)=-f(x),∴ f(x)=-f(x +1)=f(x +1+1)=f(x +2),∴ f(x)是周期为2的函数,①正确.∵ f(x +2)=f(x)=f(-x),∴ f(x)=f(2-x),∴ y =f(x)的图象关于直线x =1对称,②正确.∵ f(x)为偶函数,且在[-1,0]上是增函数,∴ f(x)在[0,1]上是减函数.又f(x)的对称轴为x =1,∴ f(x)在[1,2]上为增函数,且f(2)=f(0),故③④错误,⑤正确.9. 已知函数f(x)是定义在R 上的奇函数,且当x ≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是__________.答案:{x|x >4}解析:由题意得f(x)=⎩⎪⎨⎪⎧-x 2-3x ,x ≤0,x 2-3x ,x >0,f(x -1)=⎩⎪⎨⎪⎧-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=⎩⎪⎨⎪⎧-x 2-x +2,x ≤1,x 2-5x +4,x >1.因此不等式f(x -1)>-x +4可化为⎩⎪⎨⎪⎧-x 2-x +2>-x +4,x ≤1,或⎩⎪⎨⎪⎧x 2-5x +4>-x +4,x >1, 解得x >4.10. 设函数f(x)=x 3+2x 2,若函数g(x)的图象与f(x)的图象关于点(2,1)对称,则函数g(x)的解析式为____________________.答案:g(x)=x 3-14x 2+64x -94解析:设P(x ,y)是f(x)图象上任意一点,∴ y =x 3+2x 2①,P 关于点(2,1)的对称点为Q(x′,y ′),则 ⎩⎪⎨⎪⎧x +x′2=2,y +y′2=1,即⎩⎪⎨⎪⎧x =4-x′,y =2-y′,代入①得2-y′=(4-x′)3+2(4-x′)2,化简得y′=(x′)3-14(x′)2+64x′-94,即g(x)=x 3-14x 2+64x -94. 二、 解答题11. 已知函数y =f(x)的定义域为R ,且对任意a ,b ∈R ,都有f(a +b)=f(a)+f(b),且当x>0 时,f(x)<0恒成立,求证:(1) 函数y =f(x)是R 上的减函数; (2) 函数y =f(x)是奇函数.证明:(1) 设x 1>x 2,则x 1-x 2>0,而f(a +b)=f(a)+f(b),∴ f(x 1)=f(x 1-x 2+x 2)=f(x 1-x 2)+f(x 2)<f(x 2),∴ 函数y =f(x)是R 上的减函数.(2) 由f(a +b)=f(a)+f(b)得f(x -x)=f(x)+f(-x),即f(x)+f(-x)=f(0),而f(0)=0,∴ f(-x)=-f(x),即函数y =f(x)是奇函数.12. 已知f(x)是定义在[-6,6]上的奇函数,f(x)在[0,3]上是x 的一次函数,在[3,6]上是x 的二次函数,且满足f(x)≤f(5)=3,f(6)=2,求f(x)的解析式.解:∵ 函数f(x)在[3,6]上是x 的二次函数,且满足f(x)≤f(5)=3,∴当 x∈[3,6]时可设f(x)=a(x -5)2+3.由f(6)=2得a(6-5)2+3=2,解得a =-1,∴ 当x∈[3,6]时,f(x)=-(x -5)2+3=-x 2+10x -22,∴ f(3)=-9+30-22=-1.∵ f(x)在[0,3]上是x 的一次函数,且据奇函数知f(0)=0,∴ 当x∈[0,3]时,可设f(x)=kx(k 为常数).由f(3)=-1得3k =-1,∴ k =-13,∴ 当x∈[0,3]时,f(x)=-13x ,∴ f(x)=⎩⎪⎨⎪⎧-13x ,x ∈[0,3],-(x -5)2+3,x ∈(3,6].又f(x)是奇函数,∴ f(x)=⎩⎪⎨⎪⎧(x +5)2-3,x ∈[-6,-3),-13x ,x ∈[-3,3],-(x -5)2+3,x ∈(3,6].13. 函数f(x)的定义域为D ={x|x≠0},且满足关于任意x 1,x 2∈D ,都有f(x 1·x 2)=f(x 1)+f(x 2).(1) 求f(1)的值;(2) 判定f(x)的奇偶性并证明你的结论;(3) 假如f(4)=1,f(3x +1)+f(2x -6)≤3,且f(x)在(0,+∞)上是增函数,求x 的取值范畴.解:(1) ∵ 关于任意x 1,x 2∈D ,都有f(x 1·x 2)=f(x 1)+f(x 2),∴ 令x 1=x 2=1,得f(1)=2f(1),∴ f(1)=0.(2) f(x)为偶函数.令x 1=x 2=-1,有f(1)=f(-1)+f(-1),∴ f(-1)=12f(1)=0.令x 1=-1,x 2=x 有f(-x)=f(-1)+f(x),∴ f(-x)=f(x),∴ f(x)为偶函数.(3) 依题意有f(4×4)=f(4)+f(4)=2,f (16×4)=f(16)+f(4)=3, ∵ f(3x +1)+f(2x -6)≤3, ∴f((3x +1)(2x -6))≤f(64). ∵ f(x)为偶函数,∴ f(|(3x +1)(2x -6)|)≤f(64).∵ f(x)在(0,+∞)上是增函数,f(x)的定义域为D , ∴ 0<|(3x +1)(2x -6)|≤64.解上式,得3<x≤5或-73≤x<-13或-13<x<3.∴ x 的取值范畴是{x ⎪⎪⎪-73≤x<-13或-13<x<3或3<x ≤5}.第5课时 指数、对数运算一、 填空题1. 设a≥0,运算(36a 9)2·(63a 9)2的结果是________.答案:a 2解析:在底数不小于零的前提下,幂指数与根指数的公因数能够直截了当约分.2. 化简32-6227+⎝ ⎛⎭⎪⎫-3232-3-(102)2-42的结果是________. 答案:9解析:先将式子中的根式逐个进行化简,然后进行运算即可.原式=3-827+⎝ ⎛⎭⎪⎫-1132-3-216=-23+113+6=9.点评:对多个根式组成的式子进行化简,我们解题的一样原则:先算根号内的,然后进行根式运算;在进行根式运算时,要注意根指数为奇数的情形,如3a :若a>0,则3a>0;若a<0,则3a<0.但对根指数为偶数的根式,如a ,只有当a ≥0时,a 才有意义.3. log 29×log 34=__________. 答案:4解析:log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.4. 方程1+3-x1+3x =3的解是________.答案:x =-1解析:3-x ·3x +3-x 1+3x=3-x=3,x =-1.5. 若f(10x)=x ,则f(5)=________. 答案:lg 5解析:由题意得10x= 5,故x =lg 5,即f(5)=lg 5.6. 设f(x)=4x 4x +2,那么f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫311+…+f ⎝ ⎛⎭⎪⎫1011的值为________. 答案:5解析:∵ f(x)=4x 4x +2=1-24x +2,∴ f(x)+f(1-x)=1-24x +2+1-241-x +2=2-24x+2-241-x +2=2-24x +2-4x2+4x=1.∴ f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫311+…+f ⎝ ⎛⎭⎪⎫1011=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+[f ⎝ ⎛⎭⎪⎫511+f ⎝ ⎛⎭⎪⎫611]=5. 7. 若对数式log (a -2)(5-a)有意义,则实数a 的取值范畴是____________. 答案:(2,3)∪(3,5)解析:由题意得⎩⎪⎨⎪⎧a -2>0,a -2≠1,5-a >0,即⎩⎪⎨⎪⎧a >2,a ≠3,a <5,∴ 2<a<5且a≠3. 8. 已知a 23=⎝ ⎛⎭⎪⎫232(a >0),则log 23a =________. 答案:3解析:由a 23=49得a =⎝ ⎛⎭⎪⎫4932=[(23)2]32=(23)3,因此log 23a =3.9. 若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小顺序是___________.答案:c<a<b解析:a =ln 2,b =ln 33,c =ln 55,则55=1052,2=1025,∴ 55< 2.又2=68,33=69,∴ 33> 2.故c <a <b. 二、 解答题10. 已知a =27,b =52,求a 32b 2-9b 43a 32b -2-6a 34b -13+9b 43·b3a 34+3b 53的值.解:由于a 32b -2-6a 34b -13+9b 43=(a 34b -1-3b 23)2,且a 34<a<b<3b 53,∴ a 34b -1<3b 23,∴ 原式=a 32-9b 103(3b 23-a 34b -1)2·ba 34+3b 53=(a 34+3b 53)(a 34-3b 53)b (3b 23-a 34b -1)(a 34+3b 53)=(a 34-3b 53)b 3b 23-a 34b-1=-b 2=-50.11. 已知a >1,且a +a -1=3,求下列各式的值.(1) a 12-a -12;(2) a -a -1;(3) (a 12-a -12)(a 2+a -2-4)a 4-a -4. 解:(1) (a 12-a -12)2=a +a -1-2=1.∵ a >1,∴ a 12-a -12=1.(2) 由a +a -1=3,得a 2+a -2+2=9,即a 2+a -2=7,∴ (a -a -1)2=a 2+a -2-2=5.∵ a >1,∴ a -a -1= 5.(3) (a 12-a -12) (a 2+a -2-4)a 4-a-4=(a 12-a -12)(a 2+a -2-4)(a -a -1)(a +a -1)(a 2+a -2)=1×(7-4)5×3×7=535. 12. 设x>1,y>1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.解:因为x>1,y>1,因此log x y>0.令t =log x y ,则log y x =1t .因此原式可化为2t -2t+3=0,解得t =12或t =-2(舍去),即log x y =12,因此y =x.因此T =x 2-4y 2=x 2-4x =(x-2)2-4,由于x>1,因此当x =2,y =2时,T 取最小值,最小值为-4.13. 设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.解:依题意,得⎩⎪⎨⎪⎧log a C +log b C =3,log a C ×log b C =1,从而⎩⎪⎨⎪⎧1log C a +1log C b =3,1log C a ×1log C b=1.即⎩⎪⎨⎪⎧log C a +log C b =3,log C a ×log C b =1.因此(log C a -log C b)2=(log C a +log C b)2-4log C a ×log C b =32-4=5,因此 log C a -log C b=± 5.又log a b C =1log C a b=1log C a -log C b =±55,因此log a b C 的值为±55.点评:本题将对数运算、换底公式、根与系数的关系综合于一起,是对学生数学运算能力、应用能力的综合考查.如何利用对数的运算性质,在已知条件和待求的式子间建立联系是解决本题的关键.第6课时 指 数 函 数一、 填空题1. 函数f(x)=2x-4的定义域为__________. 答案:[2,+∞)解析:由2x-4≥0,得x≥2.2. 函数y =3-|x -2|的单调递增区间是__________. 答案:(-∞,2]解析:y =⎝ ⎛⎭⎪⎫13|x -2|,t =|x -2|的单调减区间(-∞,2]确实是所给函数的单调增区间. 3. 函数y =e x-1e x +1的值域是________.答案:(-1,1)解析:y =e x-1e x +1,则e x=1+y 1-y>0,则-1<y<1.4. 若指数函数y =a x在[-1,1]上的最大值与最小值的差是1,则底数a =____________.答案:5±12解析:若0<a <1,则a -1-a =1,即a 2+a -1=0,解得a =-1+52或a =-1-52(舍去);若a >1,则a -a -1=1,即a 2-a -1=0,解得a =1+52或a =1-52(舍去).综上,a =5±12. 5. 要使g(x)=3x +1+t 的图象不通过第二象限,则实数t 的取值范畴是_________. 答案:t≤-3解析:要使g(x)=3x +1+t 的图象不通过第二象限,只要g(0)=31+t≤0,即t≤-3.6. 函数y =3x 与y =-3-x的图象关于__________对称. 答案:原点解析:由y =-3-x 得-y =3-x,(x ,y )→(-x ,-y),即关于原点对称.7. 若关于x 的方程⎝ ⎛⎭⎪⎫34x =3a +25-a 有负根,则实数a 的取值范畴是________.答案:⎝ ⎛⎭⎪⎫34,5 解析:函数y =⎝ ⎛⎭⎪⎫34x 的定义域为R ,由于方程⎝ ⎛⎭⎪⎫34x =3a +25-a 有负根,因此应有3a +25-a >1,解得34<a<5.8. 已知函数y =a 2x +2a x-1(a >0且a≠1)在区间[-1,1]上的最大值是14,则a =__________.答案:3或13解析:设t =a x ,t ∈(0,+∞),则y =t 2+2t -1=(t +1)2-2=f(t),对称轴方程为t =-1.当0<a <1时,∵ -1≤x≤1,∴ a ≤t≤1a ,现在,y 关于t 单调递增,∴ y max =f ⎝ ⎛⎭⎪⎫1a =1a 2+2a -1=14,即1a 2+2a -15=0,∴ a =13或a =-15(舍去);当a >1时,∵ -1≤x≤1,∴ 1a≤t ≤a ,现在,y 关于t 单调递增,∴ y max =f(a)=a2+2a -1=14,即a 2+2a -15=0,∴ a =3或a =-5(舍去).综上,a =3或a =13.9. 设函数f(x)=⎩⎪⎨⎪⎧3x -1,x <1,2x , x≥1.则满足f(f(a))=2f(a)时a 的取值范畴是____________.答案:⎣⎢⎡⎭⎪⎫23,+∞ 解析:由f(f(a))=2f(a)可知f(a)≥1,则⎩⎪⎨⎪⎧a≥1,2a ≥1或⎩⎪⎨⎪⎧a <1,3a -1≥1,解得a≥23.二、 解答题10. 求函数y =4x -2·2x+5,x ∈[0,2]的最大值和最小值.解:令t =2x ,则t∈[1,4].y =t 2-2t +5,t∈[1,4].∵ y=t 2-2t +5在区间t∈[1,4]上是单调递增函数,∴ t =1即x =0时,y 有最小值4,t =4即x =2时,y 有最大值13.11. 已知f(x)=x ⎝ ⎛⎭⎪⎫12x -1+12(x≠0).(1) 判定f(x)的奇偶性; (2) 求证:f(x)>0.(1) 解:∵f(x)=x ⎝ ⎛⎭⎪⎫12x -1+12=x 2·2x +12x -1, f(-x)=-x 2·2-x +12-x -1=x 2·2x+12x -1=f(x),∴ f(x)为偶函数.(2) 证明:f(x)=x 2·2x+12x -1,当x>0时,2x -1>0,即f(x)>0;当x<0时,2x-1<0,即f(x)>0,∴ f(x)>0.12. 已知9x -10·3x+9≤0,求函数y =⎝ ⎛⎭⎪⎫14x -1-4·⎝ ⎛⎭⎪⎫12x +2的最大值和最小值.解:由9x -10·3x +9≤0得(3x -1)(3x-9)≤0,解得1≤3x≤9,∴ 0≤x ≤2. 令⎝ ⎛⎭⎪⎫12x =t ,则14≤t ≤1,y =4t 2-4t +2=4⎝ ⎛⎭⎪⎫t -122+1,当t =12时,y min =1,现在,x =1;当t =1时,y max =2,现在,x =0.13. 已知函数f(x)=2x(x∈R ),且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数.(1) 求g(x),h(x)的解析式;(2) 若不等式2a·g(x)+h(2x)≥0对任意x ∈[1,2]恒成立,求实数a 的取值范畴.解:(1) 由⎩⎪⎨⎪⎧f (x )=g (x )+h (x )=2x,f (-x )=g (-x )+h (-x )=2-x, 得⎩⎪⎨⎪⎧g (x )+h (x )=2x,-g (x )+h (x )=2-x, 解得g(x)=12(2x -2-x),h(x)=12(2x +2-x ).(2) 由2a·g(x)+h(2x )≥0,得a(2x -2-x)+12(22x +2-2x )≥0对任意x∈[1,2]恒成立.令t =2x -2-x ,由于t 在x∈[1,2]上单调递增,因此t =2x -2-x ∈⎣⎢⎡⎦⎥⎤32,154.因为22x+2-2x =(2x -2-x )2+2=t 2+2,因此a≥-t 2+22t =-12⎝ ⎛⎭⎪⎫t +2t 在t∈⎣⎢⎡⎦⎥⎤32,154上恒成立.设φ(t)=-12⎝ ⎛⎭⎪⎫t +2t ,t ∈⎣⎢⎡⎦⎥⎤32,154,由φ′(t)=-12⎝ ⎛⎭⎪⎫1-2t 2=2-t 22t 2<0,知φ(t)在t∈⎣⎢⎡⎦⎥⎤32,154上为单调减函数,因此[φ(t)]max =φ⎝ ⎛⎭⎪⎫32=-1712,因此a≥-1712.第7课时 对 数 函 数一、 填空题1. 在下列四个图象中,能够表示函数y =a x与y =-log a x(a>0,a ≠1)在同一坐标系中的图象的是________.(填序号)答案:①解析:将y =-log a x(a>0,a ≠1)第一改为y =log 1ax(a>0,a ≠1),结合函数的定义域第一排除②,当a>1时,0<1a<1,函数y =a x单调递增,y =log 1ax 单调递减,①中图象正确,③中图象错误,当0<a<1时,1a>1,函数y =a x单调递减,y =log 1ax 单调递增,④中图象错误.2. 函数y =ln(x 2-x -2)的定义域是________. 答案:(-∞,-1)∪(2,+∞)解析:由x 2-x -2>0,解得x >2或x<-1.3. 函数f(x)=log 2(-x 2+22)的值域为________.答案:⎝⎛⎦⎥⎤-∞,32 解析:由-x 2+22≤22,得f(x)≤log 222=32,函数f(x)的值域为⎝⎛⎦⎥⎤-∞,32.4. 函数f(x)=1-2log 6x 的定义域为__________.答案:(0,6]解析:由1-2log 6x ≥0,得log 6x ≤12,即0<x≤6,故所求的定义域为(0,6].5. 函数y =ln(1-x)的图象大致为________.(填序号)答案:③解析:由1-x>0,知x<1,排除①②;设t =1-x(x<1),因为t =1-x 为减函数,而y=ln t 为增函数,因此y =ln(1-x)为减函数,故选③.6. 已知函数y =log 12(x 2-2kx +k)的值域为R ,则实数k 的取值范畴是____________.答案:(-∞,0]∪[1,+∞)解析:要想满足题意,则t =x 2-2kx +k 要能取到所有正实数,抛物线要与坐标轴有交点,因此Δ=4k 2-4k≥0,解得k ≥1或k≤0.7. 已知3是不等式log a (1+x)>log a (2x +3)的一个解,则此不等式的解集为____________.答案:{x|x >-1}解析:将x =3代入不等式log a (1+x)>log a (2x +3),得log a 4>log a 9,则0<a<1.可得⎩⎪⎨⎪⎧1+x >0,2x +3>0,1+x <2x +3,解得x >-1.则不等式的解集为{x|x >-1}.8. 设f(x)=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,且在x =0处有意义,则使f(x)<0的x 的取值范畴是________.答案:(-1,0)解析:∵ f(x)为奇函数,且在x =处有意义,∴ f(0)=0,解得a =-1.∴ f(x)=lg 1+x 1-x .令f(x)<0,则0<1+x1-x<1,∴ x ∈(-1,0).9. 若函数y =log 2(x 2-ax -a)在区间(-∞,1-3)上是减函数,则实数a 的取值范畴是________.答案:[2-23,2]解析:令u =g(x)=x 2-ax -a ,∵ 函数y =log 2u 在区间(-∞,1-3)上为单调增函数,∴ u =g(x)=x 2-ax -a 在区间(-∞,1-3)上是单调减函数,且满足u>0,∴ ⎩⎪⎨⎪⎧a 2≥1-3,g (1-3)≥0,解得2-23≤a ≤2. 二、 解答题10. 已知函数f(x)=log 12(x 2-2ax +3).(1) 若函数f(x)的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2) 若函数f(x)的定义域为R ,值域为(-∞,-1],求实数a 的值; (3) 若函数f(x)在(-∞,1]上为单调增函数,求实数a 的取值范畴.解:(1) 由x 2-2ax +3>0的解集为(-∞,1)∪(3,+∞),得2a =1+3,因此a =2,即实数a 的值为2.(2) 因为f(x)的定义域为R ,因此y =x 2-2ax +3>0在R 上恒成立.由Δ<0,得-3<a <3,又f(x)的值域为(-∞,-1],则f(x)max =-1,因此y =x 2-2ax +3的最小值为y min =2,由y =x 2-2ax +3=(x -a)2+3-a 2,得3-a 2=2,因此a 2=1,因此a =±1.(3) f(x)在(-∞,1]上为单调增函数,则y =x 2-2ax +3在(-∞,1]上为单调减函数,且y>0,因此⎩⎪⎨⎪⎧a≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a≥1,a<2,即1≤a<2.因此实数a 的取值范畴是[1,2).11. 已知f(x)=log a x(a>0且a≠1).假如关于任意的x∈⎣⎢⎡⎦⎥⎤13,2都有|f(x)|≤1成立,试求a 的取值范畴.解:因为f(x)=log a x ,因此y =|f(x)|的图象如图.由图知,要使x∈⎣⎢⎡⎦⎥⎤13,2时恒有|f(x)|≤1, 只需⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫13≤1,即-1≤log a 13≤1, 即log a a -1≤log a 13≤log a a.当a>1时,得a -1≤13≤a ,即a≥3;当0<a<1时,得a -1≥13≥a ,即0<a≤13.综上所述,a 的取值范畴是⎝ ⎛⎦⎥⎤0,13∪[3,+∞). 12. 已知f(x)=2+log 3x ,x ∈[1,9],求y =f 2(x)+f(x 2)的最大值及y 取最大值时x 的值.解:∵ f(x)=2+log 3x ,∴ y =f 2(x)+f(x 2)=(2+log 3x)2+2+log 3x 2=(log 3x)2+6log 3x +6=(log 3x +3)2-3. ∵ 函数f(x)的定义域为[1,9],∴ 要使函数y =f 2(x)+f(x 2)有意义,必须使⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,∴ 1≤x ≤3,∴ 0≤log 3x ≤1,∴ 6≤(log 3x +3)2-3≤13.当log 3x =1,即x =3时,y max =13.∴ 当x =3时,函数y =f 2(x)+f(x 2)取最大值13.13. 已知函数f(x)=log a (x +1)-log a (1-x),a>0且a≠1. (1) 求f(x)的定义域;(2) 判定f(x)的奇偶性并予以证明; (3) 若a>1,求使f(x)>0的x 的解集.解:(1) f(x)=log a (x +1)-log a (1-x),则⎩⎪⎨⎪⎧x +1>0,1-x>0,解得-1<x<1.故所求函数f(x)的定义域为{x|-1<x<1}.(2)由(1)知f(x)的定义域为{x|-1<x<1},且f(-x)=log a (-x +1)-log a (1+x)=-[log a (x +1)-log a (1-x)]=-f(x),故f(x)为奇函数.(3) 因为当a>1时,f(x)在定义域{x|-1<x<1}内是增函数,因此f(x)>0,即x +11-x>1,解得0<x<1.因此使f(x)>0的x 的解集是{x|0<x<1}.第8课时 二次函数与幂函数一、 填空题1. 函数y =x 2+bx +c(x∈[0,+∞))是单调函数,则b 的取值范畴是____________. 答案:[0,+∞)解析:考虑对称轴和区间端点,结合二次函数图象易得-b2≤0,故b≥0.2. 若函数f(x)是幂函数,且满足f (4)f (2)=3,则f ⎝ ⎛⎭⎪⎫12的值为________. 答案:13解析:依题意设f(x)=x α(α∈R ),则有4α2α=3,即2α=3,得α=log 23,则f(x)=xlog 23,因此f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log 23=2-log 23=2log 213=13.3. 已知n∈{-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-15n ,则n 的值为________. 答案:-1或2解析:能够逐一进行检验,也可利用幂函数的单调性求解.4. 已知函数f(x)=ax 2+(1-3a)x +a 在区间[1,+∞)上单调递增,则实数a 的取值范畴是________.答案:[0,1]解析:若a =0,则f(x)=x ,满足题意;若a≠0,则a >0且-1-3a2a≤1,解得0<a≤1,因此0≤a≤1.5. 已知a =x α,b =x α2,c =x 1α,x ∈(0,1),α∈(0,1),则a ,b ,c 的大小顺序是__________.答案:c<a<b解析:∵ α∈(0,1),∴ 1α>α>α2.又∵ x∈(0,1),∴ x 1α<x α<x α2,即c<a<b.6. 若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范畴是________.答案:⎣⎢⎡⎦⎥⎤32,3 解析:因为函数y =x 2-3x -4即y =(x -32)2-254,其图象的对称轴为直线x =32,其最小值为-254,同时当x =0及x =3时,y =-4,若定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则32≤m ≤3. 7. 已知幂函数f(x)=xm 2-2m -2(m∈N )为奇函数且在区间(0,+∞)上是单调减函数,则m =________.答案:1解析:由幂函数f(x)=xm 2-2m -2在区间(0,+∞)上是单调减函数,得m 2-2m -2<0,又m∈N ,故m =0,m =1,m =2,当m =0和2时,f(x)=x -2为偶函数,当m =1时,f(x)=x -3为奇函数,故m =1.8. 设函数f(x)=⎩⎪⎨⎪⎧-2, x >0,x 2+bx +c ,x ≤0.若f(-4)=f(0),f(-2)=0,则关于x 的不等式f(x)≤1的解集为____________.答案:{x|-3≤x≤-1或x>0}解析:由f(-4)=f(0),得b =4.又f(-2)=0,可得c =4,∴ ⎩⎪⎨⎪⎧x≤0,x 2+4x +4≤1或⎩⎪⎨⎪⎧x >0,-2≤1,可得-3≤x≤-1或x>0. 9. 如图,已知二次函数y =ax 2+bx +c(a ,b ,c 为实数,a ≠0)的图象过点C(t ,2),且与x 轴交于A ,B 两点.若AC⊥BC,则a =________.答案:-12解析:设y =a(x -x 1)(x -x 2),由图象过点C(t ,2)可得a(t -x 1)(t -x 2)=2.又AC⊥BC,利用斜率关系得2t -x 1·2t -x 2=-1,因此a =-12.二、 解答题10. 已知函数h(x)=(m 2-5m +1)x m +1为幂函数,且为奇函数. (1)求m 的值;(2)求函数g(x)=h(x)+1-2h (x )在x∈⎣⎢⎡⎦⎥⎤0,12上的值域. 解:(1)∵ 函数h(x)=(m 2-5m +1)x m +1为幂函数, ∴m 2-5m +1=1,解得m =0或5. ∵函数h(x)为奇函数,∴m =0.(2)由(1)可知h(x)=x ,∴ g(x)=x +1-2x ,x ∈⎣⎢⎡⎦⎥⎤0,12. 令1-2x =t ,则t∈[0,1],g(x)=f(t)=-12t 2+t +12,可求得其值域为⎣⎢⎡⎦⎥⎤12,1.从而函数g(x)在x∈⎣⎢⎡⎦⎥⎤0,12上的值域为⎣⎢⎡⎦⎥⎤12,1. 11. 已知关于x 的函数y =(m +6)x 2+2(m -1)x +m +1的图象与x 轴总有交点. (1) 求m 的取值范畴;(2) 若函数图象与x 轴的两个交点的横坐标的倒数和等于-4,求m 的值. 解:(1) 当m +6=0,即m =-6时,函数y =-14x -5与x 轴有一个交点;当m +6≠0,即m≠-6时,有Δ=4(m -1)2-4(m +6)(m +1)=4(-9m -5)≥0,解得m≤-59,即当m ≤-59且m≠-6时,函数图象与x 轴有一个或两个交点. 综上可知,当m≤-59时,此函数的图象与x 轴总有交点.(2) 设x 1,x 2是方程(m +6)x 2+2(m -1)x +m +1=0的两个根,则x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6.∵ 1x 1+1x 2=-4,即x 1+x 2x 1x 2=-4,∴ -2(m -1)m +1=-4,解得m =-3.当m =-3时,m +6≠0,Δ>0,符合题意,∴ m 的值是-3.12. 已知函数f(x)=ax -32x 2的最大值不大于16,又当x ∈⎣⎢⎡⎦⎥⎤14,12时,f (x)≥18,求实数a 的值.解:f(x)=-32⎝ ⎛⎭⎪⎫x -a 32+16a 2,f(x)max =16a 2≤16,得-1≤a≤1,函数f(x)的对称轴是直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析 答案
9.已知二次函数 f(x)的二次项系数为 a,且不等式 f(x)>-2x 的解集为
(1,3).若方程 f(x)+6a=0 有两个相等的根,则实数 a=( )
A.-15
B.1
C.1 或-15
D.-1 或-15
解析 因为 f(x)+2x>0 的解集为(1,3),设 f(x)+2x=a(x-1)(x-3),且
A.-1<m<0<n<1 B.-1<n<0<m C.-1<m<0<n D.-1<n<0<m<1
答案
解析 在第一象限作出幂函数 y=x,y=x0 的图象,在(0,1)内作直线 x =x0 与各图象有交点,如图,由“点低指数大”,知-1<n<0<m<1,故选 D.
解析
5.若函数 f(x)=x2-2x+2 的定义域和值域都是[1,b],则实数 b=( )
第一部分 考点通关练
第二章 函数、导数及其应用 考点测试8 二次函数与幂函数
高考在本考点的常考题型为选择题、填空题,分值 5 分,中等难 高考概览
度 1.了解幂函数的概念 2.结合函数 y=x,y=x2,y=x3,y=x-1,y= 的图象,了解 考纲研读 它们的变化情况 3.理解并掌握二次函数的定义、图象及性质 4.能用二次函数、方程、不等式之间的关系解决简单问题
间[1,2]上递减,不符合要求.综上可得,实数 k 的取值范围是[2,+∞).
解析 答案
7.已知点a,12在幂函数 f(x)=(a-1)xb 的图象上,则 f(x)是(
)
A.奇函数
B.偶函数
C.定义域内的减函数
D.定义域内的增函数
解析 ∵点a,12在幂函数 f(x)=(a-1)xb 的图象上,∴a-1=1,解得 a =2,则 2b=12,∴b=-1,∴f(x)=x-1,∴f(x)是定义域(-∞,0)∪(0,+ ∞)上的奇函数,且在每一个区间内都是减函数.故选 A.
10.已知幂函数 f(x)=x-m2+2m+3(m∈Z)在区间(0,+∞)上单调递
增,且 f(x)的图象关于 y 轴对称,则 f(-2)的值为( )
A.16
B.8
C.-16
D.-8
解析 ∵幂函数 f(x)=x-m2+2m+3(m∈Z)的图象关于 y 轴对称,∴f(x)
为偶函数,又幂函数 f(x)=x-m2+2m+3(m∈Z)在区间(0,+∞)上单调递
a≠0
时,f(x)的对称轴为直线
3-a x= 2a ,由
f(x)在[-1,+∞)上单调递减,
a<0,
知32-aa≤-1,
解得-3≤a<0.综上,实数 a 的取值范围为[-3,0].
解析 答案
12.已知二次函数 f(x)的图象经过点(4,3),它在 x 轴上截得的线段长为 2,并且对任意 x∈R,都有 f(2-x)=f(2+x),则 f(x)=________.
第1步 狂刷小题 ·基础练
一、基础小题
1.若
,则 a,b,c 的大小关系是( )
A.a<b<c C.b<c<a 解析 因为
B.c<a<b D.b<a<c 在第一象限内是增函数,所以 a=
以 b<a<c.
,因为 y=12x 是减函数,所以 a=
,所
解析 答案
2.在函数 f(x)=ax2+bx+c 中,若 a,b,c 成等比数列,且 f(0)=-4,
解析 答案
8.已知函数 f(x)=ax2+bx+c(a≠0),且 2 是 f(x)的一个零点,-1 是>0 的解集是( )
A.(-4,2)
B.(-2,4)
C.(-∞,-4)∪(2,+∞) D.(-∞,-2)∪(4,+∞)
解析 依题意,知 f(x)的图象开口向上,对称轴为直线 x=-1,方程 ax2+bx+c=0 的一个根是 2,另一个根是-4.因此 f(x)=a(x+4)(x-2)(a>0), 由 f(x)>0,解得 x>2 或 x<-4.
则 f(x)( )
A.有最小值-4
B.有最大值-4
C.有最小值-3
D.有最大值-3
解析 由 a,b,c 成等比数列且 f(0)=-4,得cb=2=-ac4., 显然 a<0, 故 f(x)有最大值,最大值为4ac4-a b2=4ac4-a ac=34c=-3,故选 D.
解析 答案
3.已知函数
f(x)=x2-2x+m,若
增,∴-m2+2m+3 是偶数,且-m2+2m+3>0,∵m∈Z,∴m=1,∴幂
函数 f(x)=x4,f(-2)=16.故选 A.
解析 答案
11.函数 f(x)=ax2+(a-3)x+1 在区间[-1,+∞)上单调递减,则实数
a 的取值范围是________.
答案 [-3,0] 解析 当 a=0 时,f(x)=-3x+1 在[-1,+∞)上单调递减,满足条件.当
A.3
B.2 或 3
C.2
D.1 或 2
解析 二次函数的对称轴为直线 x=1,它在[1,b]上为增函数,所以
f1=1, fb=b2-2b+2=b, b>1,
解得 b=2.故选 C.
解析 答案
6.若二次函数 y=kx2-4x+2 在区间[1,2]上单调递增,则实数 k 的取
值范围为( )
A.[2,+∞)
a<0,所以 f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.由方程 f(x)+6a=0
得 ax2-(2+4a)x+9a=0.因为方程有两个相等的根,所以 Δ=[-(2+4a)]2
-4a·9a=0,解得 a=1 或 a=-15.由于 a<0,则 a=-15.故选 A.
解析 答案
f(x1)=f(x2)(x1≠x2),则
fx1+x2的值 2
为( )
A.1
B.2
C.m-1
D.m
解析
由题意知,函数的对称轴为直线
x=x1+2 x2=1,所以
fx1+x2= 2
f(1)=m-1.故选 C.
解析 答案
4.幂函数 y=x-1,y=xm 与 y=xn 在第一象限内的图象如图所示,则 m 与 n 的取值情况为( )
B.(2,+∞)
C.(-∞,0)
D.(-∞,2)
解析 二次函数 y=kx2-4x+2 的对称轴为直线 x=2k,当 k>0 时,要使
y=kx2-4x+2 在区间[1,2]上是增函数,只需2k≤1,解得 k≥2.当 k<0 时,2k<0,
此时二次函数图象的对称轴在区间[1,2]的左侧,该函数 y=kx2-4x+2 在区
相关文档
最新文档