八年级数学数据的分析(20

合集下载

初中数学 第20章数据的分析 全章教案

初中数学 第20章数据的分析 全章教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材P127练习第1,2题。

2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。

2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。

3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。

4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。

5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。

一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳单选题1、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.=6,解得:a=5;解:由题意得:10+3+a+7+55故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.2、某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()答案:D分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=21+22,2∴x=3、y=2,=22,则这组数据的众数为21,平均数为19+20+21×3+22×2+24×2+2610×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,所以方差为110故选D.小提示:本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.3、一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.72答案:C分析:根据求平均数公式即得出关于x的等式,解出x即可.根据题意可知40+37+x+644=53,解得:x=71.故选C.小提示:本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键.4、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.x甲=x乙,s甲2>s乙2B.x甲=x乙,s甲2<s乙2C.x甲>x乙,s甲2>s乙2D.x甲<x乙,s甲2<s乙2答案:A分析:分别计算平均数和方差后比较即可得到答案.解:(1)x甲=110(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴x甲=x乙,s甲2>s乙2,故选:A.小提示:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数答案:D分析:分别计算前后数据的平均数、中位数、众数,比较即可得出答案.(5+3+6+5+10)=5.8;解:追加前的平均数为:15从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:1(5+3+6+5+20)=7.8;5从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.小提示:本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.6、小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8答案:C分析:先求出已知数组的中位数和众数,再根据中位数和众数的定义逐项判断即可.数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A项,去掉5之后,数列的众数不再是5,故A项错误;B项,去掉5之后,数列的众数不再是5,故B项错误;C项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C项正确;D项,去掉7和8之后,新数列的中位数为6,发生变化,故D项错误,故选:C.小提示:本题考查了中位数和众数的知识,掌握中位数和众数的定义是解答本题的关键.7、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81,该组数据的中位数是()A.78B.81C.91D.77.3答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:将这组数据重新排列为:56、61、70、75、75、81、81、91、91、92,=78,则其中位数为75+812故选:A.小提示:本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.9、在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差答案:B分析:去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据中间的数产生影响,即中位数故选B.小提示:本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.10、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.填空题11、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.答案:15.5 15分析:根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.解:这些队员年龄的平均数=13×2+14×6+15×8+16×3+17×2+18×1=15.52+6+8+3++1这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,∴中位数为15小提示:本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.12、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.13、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG ,则DG 的长为__________.答案:√192分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长.解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC .∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=√22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.14、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)答案:甲分析:先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.=(7+6+9+6+7)÷5=7(环),解:x̅甲x̅=(5+9+6+7+8)÷5=7(环),乙=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,s2甲s2=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,所以答案是:甲.小提示:本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.15、在一组数据1, 0, 4, 5, 8中插入一个数据x,使该组数据中位数为3,则插入数据x的值为________.答案:2分析:根据中位数的定义得到数据-1,0,4,5,8中插入一个数据x,共有6个数,最中间的数只能为x和4,然后根据计算它们的中位数为3求出x.解:∵数据-1,0,4,5,8中插入一个数据x,∴数据共有6个数,而4为中间的一个数,∵该组数据的中位数是3,∴x+4=3,2解得x=2.所以答案是:2.小提示:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答题16、绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时,为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.答案:(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.分析:(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售 26 万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),∴总人数为:20÷50%=40(人),∴不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,∴“优秀”人数为:40×15%=6(人),∴得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.小提示:考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.17、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表(其中图①中“10分”所在扇形圆心角为90°).甲校成绩统计表人数11 0 8(1)在图1中,求“7分”所在扇形的圆心角度数:并将2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请求出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?答案:(1)144°,图见解析(2)甲的平均数为8.3分,中位数为7分;乙的平均数为8.3分,中位数为8分;乙校成绩较好;(3)甲校分析:(1)求出“7分”占的百分比,乘以360即可得到结果,根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(2)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(3)利用两校满分人数,比较即可得到结果.(1)解:根据题意得:“7分”所在扇形的圆心角等于360°×(1−25%−20%−15%)=144°;8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(2)×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;解:甲校:平均分为120乙校:平均分为:1×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,20平均数相同,乙校中位数较大,故乙校成绩较好;(3)解:因为甲校有8人满分,而乙校有5人满分,应该选择甲校.小提示:本题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.18、2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:90≤x≤100;B:80≤x<90;C:70≤x<80;D:60≤x<70;E:0≤x<60.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20% ;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:= =(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?答案:(1)74,32,补全条形统计图见解析(2)八年级的学生对防自然灾害知识掌握较好,理由见解析(3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人分析:(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;(2)根据表格中的数据,由中位数和众数的大小判断即可;(3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.(1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,(1−16%−16%−4%)÷2=32%,∴m=32,七年级学生中,测评成绩A级有50×16%=8人,B级有50×16%=8人,C级有50×32%=16人,D级有50×32%=16人,E级有50×4%=2人,测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,可知七年级测评成绩中位数为a=74+74=74,2所以答案是:74,32;八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,故补全条形统计图如图:(2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;=400(人)(3)解:1000×16%+1200×1050答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.小提示:本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.。

八年级数学下册第二十章数据的分析知识汇总笔记(带答案)

八年级数学下册第二十章数据的分析知识汇总笔记(带答案)

八年级数学下册第二十章数据的分析知识汇总笔记单选题1、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④答案:D分析:①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据3≤x<4的频率a满足0.20≤a≤0.30,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.解:①日均可回收物回收量(千吨)为1≤x<2时,频数为1,频率为0.05,所以总数m=1÷0.05=20,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D小提示:本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.2、如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个答案:D分析:如图延长E F交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题.解:如图延长E F交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S=S△EBG=2S△BEF,故③正确,四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.小提示:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、自去年9月《北京市打赢蓝天保卫战三年行动计划》发布以来,北京市空气质量呈现“优增劣减”特征,“蓝天”含金量进一步提高,下图是今年5月17日至31日的空气质量指数趋势图.(说明:空气质量指数为0﹣50、51﹣100、101﹣150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优良的天数占45;②在此次统计中,空气质量为优的天数多于轻度污染的天数;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.所有正确结论的序号是( )A .①B .①②C .②③D .①②③ 答案:D分析:根据折线统计图的数据,逐一进行分析即可.解:①在此次统计中,空气质量为优良的天数占1215=45,此项正确;②在此次统计中,空气质量为优的天数5天,多于轻度污染的天数3天,此项正确;③20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,此项正确. 故选:D .小提示:本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题. 4、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A .x+842B .10x+42015C .10x+8415D .10+42015答案:B分析:先求出15人的总成绩,再用15个人的总成绩除以15即可得整个组的平均成绩. 15个人的总成绩10x+5×84=10x+420,所以整个组的平均成绩为:再除以15可求得平均值为10x+420,15故选B.小提示:本题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.5、在风凰山教育共同体数学学科节中,为展现数学的魅力,M老师组织了一个数学沉浸式互动游戏:随机请A,B,C,D,E五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A,B,C,D,E五位同学报出来的数恰好分别是1,2,3,4,5,则D同学心里想的那个数是()A.−3B.−4C.5D.9答案:D分析:设报D的人心里想的数是x,则再分别表示报A,C,E,B的人心里想的数,最后通过平均数列出方程,解方程即可.解:设D同学心里想的那个数是x,报A的人心里想的数是10-x,报C的人心里想的数是x-6,报E的人心里想的数是14-x,报B的人心里想的数是x-12,所以有x-12+x=2×3,解得:x=9.故选:D.小提示:本题考查的知识点有平均数的相关计算及方程思想的运用,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.6、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A .12B .1C .32D .√3 答案:B分析:根据题意求出AB 的值,由D 是AB 中点求出CD 的值,再由题意可得出EF 是△ACD 的中位线即可求出. ∵∠ACB =90°,∠A =30°, ∴BC =12AB . ∵BC =2,∴AB =2BC =2×2=4, ∵D 是AB 的中点, ∴CD =12AB=12 ×4=2.∵E ,F 分别为AC ,AD 的中点, ∴EF 是△ACD 的中位线. ∴EF =12CD =12 ×2=1.故答案选B.小提示:本题考查了直角三角形的性质,三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理. 7、在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:.92 答案:B分析:先求出比赛的10个学生的成绩总和,再除以10得出平均分. 解:80+85×4+90×3+95×2=880,880÷10=88;故选:B.小提示:本题主要考查加权平均数,解题的关键是明确加权平均数的计算方法.8、为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是()答案:A分析:根据中位数、众数的意义求解即可.解:抽查学生的人数为:7+9+11+3=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+8=8,因此中位数是8小时.2故选:A.小提示:本题考查中位数、众数,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的关键.9、为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是().96分,100分答案:B分析:根据中位数的定义和众数的定义分别求解即可.解:由统计表得共有30个数据,第15、16个数据分别是92,96,∴中位数是92+96=94;2由统计表得数据96出现的次数最多,∴众数为96.小提示:本题考查了求一组数据的中位数和众数.中位数是将一组数据由小到大(由大到小)排序后,位于中间位置的数据,当有偶数个数据时,取中间两数的平均数;众数是一组数据出现次数最多的数.10、一组数据:3,2,1,5,2的中位数和众数分别是()A.1和2B.1和5C.2和2D.2和1答案:C分析:根据众数是出现次数最多的数据可求得众数,将所给数据从小到大排列,中位数是最中间位置的数据即可求得中位数.解:该组数据中2出现次数最多,所以众数为2,将所给数据从小到大排列为1,2,2,3,5,最中间位置的数为2,所以中位数为2,故选:C.小提示:本题考查中位数、众数,熟练掌握中位数和众数的求法是解答的关键.填空题11、某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.答案:2040试题解析:由题意得出:70名同学一共借书:2×5+30×3+20×4+5×15=255(本),×255=2040(本).故该校九年级学生在此次读书活动中共读书:56070故答案为2040.12、某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.分析:根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解;解:设面试成绩为x分,根据题意知,该名老师的综合成绩为80×60%+40%⋅x=84(分)解得x=90所以答案是:90.小提示:本题考查一元一次方程实际问题和加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.[(x1−20)2+(x2−20)2+⋅⋅⋅+(x12−20)2],已知9是这组数据中的一个数据,13、如果一组数据的方差S=112现把9去掉,所得新的一组数据的平均数是______.答案:21分析:由方差可知,这组数据共有12个,平均数为20,进而可知去掉一个数据后共有11个数据,数据总和为12×20−9=231,然后根据平均数的计算公式求解即可.解:由方差可知,这组数据共有12个,平均数为20,∴去掉9后,所得新的一组有11个数据的数据总和为12×20−9=231,∴新的一组数据的平均数为231=21,11所以答案是:21.小提示:本题考查了方差,平均数.解题的关键在于根据方差确定原数据共有12个,平均数为20.14、7名同学1分钟踢毽子比赛成绩如下(单位:个)89,87,36,95,89,80,69,这组数的中位数是______.答案:87分析:先把这组数据从小到大的顺序排列起来,在这组数据中最居中的那个数就是中位数(或最中间两个数据的平均数),解答即可.解:7个数据按从小到大排列:36 、69、80、87、89、89、95,∵第4个数是87,∴这组数的中位数是87.所以答案是:87.小提示:本题考查了学生对中位数的意义的掌握与理解,考查了学生分析观察解决问题的能力.15、睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是_______.答案:8.4小时分析:求出已知三个数据的平均数即可.根据题意得:(7.8+8.6+8.8)÷3=8.4小时,则这三位同学该天的平均睡眠时间是8.4小时,故答案为8.4小时小提示:此题考查了算术平均数,熟练掌握算术平均数的定义是解本题的关键.解答题16、杨梅销售公司在向果农收购相同品种“东魁”杨梅时,按照杨梅单果质量(单位:g)的整体分布情况,确定整批杨梅的等级,并按照不同的等级确定不同的收购价.果农老张和老王各送来一批杨梅,收购员小李在他们送来的杨梅中分别随机抽检了100颗,秤出质量(单位:g),并把收集到的数据整理成下表:(2)从杨梅单果质量的平均数看,你认为老张家杨梅的收购价与老王家杨梅的收购价应该相同吗?请说明理由.(3)结果,收购员小李给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级,你能用统计知识解释小李这样做的合理性吗?答案:(1)86.4(2)应该相同,理由见解析(3)见解析,理由见解析分析:(1)用360°乘以老王家特优杨梅的频率即可;(2)分别求出两家的平均数,即可比较出来;(3)根据所求数据进行分析即可.(1)解:360°×24=86.4°,100所以答案是:86.4;(2)=25(克)解:老张家杨梅的等级的平均数为x1=20×17.5+32×22.5+26×27.5+22×32.5100老王家:x2=14×17.5+26×22.5+36×27.5+24×32.5=26(克)100从平均数看,根据样本估计总体,老张家与老王家的杨梅单颗质量平均数落在同一级别中,所以两家收购价应该相同;(3)解:从中位数角度来看,根据样本估计总体,老张家的杨梅单颗质量中位数落在20≤x<25组,属于一等品;而老王家的杨梅单颗质量中位数落在25≤x<30组,属于优等品,因此收购员小李给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级也是合理的.小提示:本题考查扇形统计图,平均数及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.17、小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.答案:(1)B,C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析分析:(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;所以答案是:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.小提示:本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键.18、为进一步宣传防震减灾科普知识,增强学生应急避险和自救互救能力,某校组织七、八年级各200名学生进行“防震减灾知识测试”(满分100分).现分别在七、八年级中各随机抽取10名学生的测试成绩x(单位:分)进行统计、整理如下:七年级:86,90,79,84,74,93,76,81,90,87八年级:85,76,90,81,84,92,81,84,83,84七八年级测试成绩频数统计表(1)a=,b=,c=.(2)规定分数不低于85分记为“优秀”,估计这两个年级测试成绩达到“优秀”的学生人数.(3)你认为哪个年级的学生掌握防震减灾科普知识的总体水平较好?请说明理由.答案:(1)2,85,84(2)七、八年级测试成绩达到优秀的学生人数分别为100人和60人(3)八年级的学生掌握防震减灾科普知识的总体水平较好,见解析分析:(1)从题目中给出的七,八年级中各随机抽取10名学生的测试成绩中可直接求出a,c的值,根据中位数定义可求出b;(2)分别求出七、八年级优秀的比例,再乘以总人数即可;(3)两组数据的平均数相同,通过方差的大小直接比较即可.(1)解:∵八年级的10名学生中有8名学生成绩低于90分,∴a=10﹣7﹣1=2,由数据可知:84出现次数最多,根据众数的定义可知:c=84,把七年级10名学生的测试成绩排好顺序为:74,76,79,81,84,86,87,90,90,93,根据中位数的定义可知,该组数据的中位数为b=84+862=85,所以答案是:2,85,84;(2)七年级10名学生的成绩中不低于85分的所占比例为510=12,八年级10名学生的成绩中不低于85分的所占比例为310,∴七年级测试成绩达到“优秀“的学生人数为:200×12=100(人),八年级测试成绩达到“优秀“的学生人数为:200×310=60(人),∴七、八年级测试成绩达到“优秀“的学生人数分别为100人和60人;(3)∵七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,则说明八年级的测试成绩更稳定,∴八年级的学生掌握防震减灾科普知识的总体水平较好.小提示:本题考查了频数分布表,平均数、方差的意义,中位数和众数的定义,样本估计总体等知识,掌握各知识点定义、意义及计算方法是解题的关键.。

八年级数学下册《第二十章 数据的分析》解答题练习-附答案(人教版)

八年级数学下册《第二十章 数据的分析》解答题练习-附答案(人教版)

八年级数学下册《第二十章数据的分析》解答题练习-附答案(人教版) 1.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:(1)这个班级捐款总数是多少元?(2)求这30名同学捐款的平均数.2.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?3.某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:(1)这次共抽查了名学生;(2)所抽查的学生一周平均参加体育锻炼多少小时?(3)已知该校有1 200名学生,估计该校有多少名学生一周参加体育锻炼的时间超过6小时?4.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:依据以上统计信息,解答下列问题:(1)求得m=________,n=__________;(2)这次测试成绩的中位数落在______组;(3)求本次全部测试成绩的平均数.5.在上学期的几次测试中,小张和小王的几次数学成绩(单位:分)如下表:平时成绩期中成绩期末成绩小张82 85 91小王84 89 86(1)小张可能是根据什么来判断的?小王可能是根据什么来判断的?(2)你能根据小张的想法设计一种方案使小张的成绩比小王的高吗?写出你的方案.6.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.7.某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)餐厅所有员工的平均工资是多少?(2)所有员工工资的中位数是多少?(3)用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当?(4)去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?8.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.9.为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图分数段频数50≤x<60 260≤x<70 670≤x<80 980≤x<90 1890≤x≤100 15(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?10.某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?11.某中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图所示为根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3∶4∶5∶8∶6,又知此次调查中捐款25元和30元的学生一共有42人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,请估计全校学生的总捐款数.12.某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(1)在图①中,m的值为,表示“2小时”的扇形的圆心角为度;(2)求统计的这组学生户外运动时间的平均数、众数和中位数.13.某教育局为了解本地八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)α=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该地共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?14.中考低于测试前,某区教育局为了了解选报引体向上的九年级男生的成绩情况,随机抽查了本区部分选报引体向上项目的九年级男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,本次抽测中,成绩为6个的学生有名.(2)求这次抽测中,测试成绩的平均数,众数和中位数;(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考选报引体向上的男生能获得满分的有多少名?15.迎接学校“元旦”文艺汇演,八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.16.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队 178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示: 整理、描述数据: 平均数 中位数 众数 方差 甲队 178 178 b 0.6 乙队178a178c(1)表中a = ,b = ,c = ;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.17.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):运动员 \ 环数 \ 次数12 345甲 10 8 9 10 8 乙10 9 9ab某同学计算出了甲的成绩平均数是9,方差是s 2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来; (2)若甲、乙射击成绩平均数都一样,则a +b = ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a,b 的所有可能取值,并说明理由.18.我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率七年级m 3.41 90% 20%八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:八年级成绩的标准差,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=,n=;(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.19.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.质量(g) 73 74 75 76 77 78甲的数量 2 4 4 3 1 1乙的数量 2 3 6 2 1 1根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.73.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?20.甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙7 b 8 c(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?参考答案1.解:(1)这个班级捐款总数为5×11+10×9+15×6+20×2+25×1+30×1=330(元).(2)这个班级捐款总数是330元,这30名同学捐款的平均数为11元.2.解:(1)18×(33+32+28+32+25+24+31+35)=30(听). (2)181×30=5 430(听).3.解:(1)60(2)4×15+5×10+7×15+8×2060=6.25(时); (3)1 200×15+2060=700(名). 4.解:(1)30,19%. (2)B(或70<x ≤80).(3)本次全部测试成绩的平均数为:1200×(2 581+5 543+5 100+2 796)=80.1(分). 5.解:(1)小张可能是根据加权平均数来判断的,小王可能是根据算术平均数来判断的.(2)参考方案:平时成绩、期中成绩、期末成绩所占的百分比分别为30%,30%,40%,这样小张的综合成绩就是86.5分,小王的综合成绩就是86.3分.6.解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次).因为100.8>100所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.7.解:(1)平均工资为4350元(2)工资的中位数为2000元(3)由(1)(2)可知,用中位数描述该餐厅员工工资的一般水平比较恰当(4)去掉经理和厨师甲的工资后,其他员工的平均工资是2062.5元,和(3)的结果相比较,能反映餐厅员工工资的一般水平8.解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额所以去掉周六、日的营业额对平均数的影响较大故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额当月的营业额为30×780=23400(元).9.解:(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90∴这次抽取的学生成绩的中位数在80≤x<90的分数段中这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%故答案为:80≤x<90,12%;(3)105.答:该年级参加这次比赛的学生中成绩“优”等的约有105人.10.解:(1)∵总人数为18÷45%=40人∴C等级人数为40﹣(4+18+5)=13人则C对应的扇形的圆心角是117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级故答案为:B.(4)估计足球运球测试成绩达到A级的学生有30人.11.解:(1)设捐款25元的有8x人,则捐款30元的有6x人.根据题意列方程,得8x +6x =42,解得x =3∴他们一共调查了3x +4x +5x +8x +6x =78(人).(2)由图象可知,众数为25元.由于本组数据的个数为78,按从小到大的顺序排列,处于中间位置的两个数都是25元,故中位数为25元.(3)全校学生的总捐款数约为(3×3×10+3×4×15+3×5×20+3×8×25+3×6×30)×156078=34200(元).12.解:(1)m%=1﹣40%﹣25%﹣15%=20%,即m 的值是20表示“2小时”的扇形的圆心角为:360°×15%=54°故答案为:20、54;(2)这组数据的平均数是:=众数是:1,中位数是:1.13.解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%圆心角的度数为360°×10%=36°;(2)众数是5天,中位数是6天;(3)2000×(25%+10%+5%)=800(人).答:估计“活动时间不少于7天”的学生人数大约有800人.14.解:(1)a=1﹣30%﹣15%﹣10%﹣20%=25%成绩为6的学生有:20÷10%×25%=50(名)故答案为:25,50;(2)平均数是:3×10%+4×15%+5×30%+6×25%+7×20%=5.3众数是:5个,中位数是:5个;(3)1800×(25%+20%)=810(名)答:该区体育中考选报引体向上的男生能获得满分的有810名.15.解:(1)∵15÷30%=50∴该班共有50人;(2)∵∵捐15元的同学人数为50﹣(10+15+5+)=20∴学生捐款的众数为10元又∵第25个数为10,第26个数为15∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为36°.故答案为:50,15,12.5,36.16.解:(1)乙队共10名队员,中位数落在第3组,为178,即a =178;甲队178出现的次数最多,故众数为178,即b =178;c =110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8; (2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.17.解:(1)如图所示;(2)[由题意,知15(10+9+9+a +b)=9,∴a +b =17.] (3)在(2)的条件下,a,b 的值有四种可能:第①种和第②种方差相等:s 2乙=15(1+0+0+4+1)=1.2>s 2甲 ∴甲比乙的成绩较稳定.第③种和第④种方差相等:s 2乙=15(1+0+0+0+1)=0.4<s 2甲 ∴乙比甲的成绩稳定.因此,a=7,b=10或a=10,b=7时,甲比乙的成绩较稳定.18.解:(1)∵八年级成绩的方差=110[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41∴八年级成绩的标准差<年级成绩的标准差;七年级成绩为3,6,6,6,6,6,7,8,9,10∴中位数为6,即m=6;八年级成绩为5,5,6,7,7,8,8,8,8,9∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好.19.解:(1)75;75.(2)解:=(73×2+74×4+75×4+76×3+77+78)÷15=75=≈1.87∵=,>∴两家加工厂的鸡腿质量大致相等,但乙加工厂的鸡腿质量更稳定.因此快餐公司应该选购乙加工厂生产的鸡腿.20.解:(1)a=7,b=7.5,c=4.2(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参赛的话,可选择乙参赛,因为乙获得高分的可能更大。

八年级数学第二十章《数据的分析》基础测试题含答案

八年级数学第二十章《数据的分析》基础测试题含答案

八年级数学第二十章《数据的分析》基础测试题测试1 平均数(一)学习要求了解加权平均数的意义和求法,会求实际问题中一组数据的平均数.课堂学习检测一、填空题1.一组数据中有3个7,4个11和3个9,那么它们的平均数是______.2.某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为______次,在平均成绩之上的有______人.3.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,9.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是______分.二、选择题4.如果数据2,3,x,4的平均数是3,那么x等于( ).(A)2 (B)3 (C)3.5 (D)45.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).(A)41度(B)42度(C)45.5度(D)46度三、解答题6.甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178 177 179 178 177 178 177 179 178 179;乙队:178 179 176 178 180 178 176 178 177 180.(1)(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.7假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?综合、运用、诊断一、填空题8.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.9.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.10.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大. 二、选择题 11.为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中的用水情况,其中用水15吨的有3家,用水20吨的有5家,用水30吨的有7家,那么平均每家企业1个月用水( ). (A)23.7吨 (B)21.6吨 (C)20吨 (D)5.416吨 12.m 个x 1,n 个x 2和r 个x 3,由这些数据组成一组数据的平均数是( ).(A)3321x x x ++(B)3r n m ++ (C ) 3321rx nx mx ++ (D)r n m rx nx mx ++++321 三、解答题13.从1月15日起,小明连续8天每天晚上记录了家中天然气表显示的读数(如下表):日期 15日 16日 17日 18日 19日 20日 21日 22日 天然气表读数(单位:m 3)220229241249259270279290小明的父亲买了一张面值600元的天然气使用卡,已知天然气每立方米1.70元,请估计这张卡是否够小明家用一个月(按30天计算),将结果填在后面的横线上.(只填“够”或“不够”)结果为:______.并说明为什么.14.四川汶川大地震发生后,某中学八年级(1)班共有40名同学参加了“我为灾区献爱心”的活动.活动结束后,生活委员小林将捐款情况进行了统计,并绘制成如右的统计图.(1)求这40名同学捐款的平均数;(2)该校共有学生1200名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?15.某地为了解从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学习能力优秀的学生.调查时,每名学生可在动手能力、表达能力、创造能力、解题技巧、阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:(1)学生获得优秀人数最多的一项和最有待加强的一项各是什么?(2)这1000名学生平均每人获得几个项目优秀?(3)若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?测试2 平均数(二)学习要求加强实际问题中平均数的计算,体会用样本平均数估计总体平均数的思想.课堂学习检测一、填空题1.已知7,4,5和x的平均数是5,则x=______.2.某校12名同学参加数学科普活动比赛,其中8名男同学的平均成绩为85分,其余的女同学的平均成绩为76分,则该校12名同学的平均成绩为______分.3.某班50名学生平均身高168cm,其中30名男生平均身高170cm,则20名女生的平均身高为______cm.二、选择题4.如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是( ).(A)-1 (B)3 (C)5 (D)95那么这次知识问答全班的平均成绩是( )(结果保留整数).(A)80分(B)81分(C)82分(D)83分三、解答题6.某班有学生52人,期末数学考试平均成绩是72分.有两名同学下学期要转学,已知他俩的成绩分别为70分和80分.求他俩转学后该班的数学平均分.7.某瓜农采用大棚栽培技术种植了1亩地的两种西瓜,共产出了约600个西瓜.在西瓜上计算这10个西瓜的平均质量,并估计这1亩地的西瓜产量是多少千克.综合、运用、诊断一、填空题8.如果一组数据中有3个6、4个-1,2个-2、1个0和3个x,其平均数为x,那么x=______.9若该小组的平均成绩为7.7环,则成绩为8环的人数是______.二、选择题10.一次考试后,某学习小组组长算出全组5位同学数学的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均数为N,那么M∶N 为( ).(A)5∶6 (B)1∶1 (C)6∶5 (D)2∶111.某辆汽车从甲地以速度v 1匀速行驶至乙地后,又从乙地以速度v 2匀速返回甲地,则汽车在这个行驶过程中的平均速度是( ).(A)2121v v v v +(B) 2121v v vv + (C)221v v + (D) 21212v v vv +12.某同学在用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此算出的平均数与实际平均数的差为( ). (A)3 (B)-3 (C)3.5 (D)-3.5 三、解答题13.我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭每月使用塑料袋的数量,结果如下(单位:只)65 70 85 75 79 74 91 81 95 85 (1)计算这10名学生所在家庭平均每月使用塑料袋多少只?(2)“限塑令”执行后,家庭每月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1000名学生所在家庭每月使用塑料袋可减少多少只?拓展、探究、思考一、解答题14.某中学为了了解本校学生的身体发育情况,抽测了同年龄的40名女学生的身高情况,统计人员将上述数据整理后,列出了频数分布表如下:根据以上信息回答下列问题: (1)频数分布表中的A =______;(2)这40名女学生的平均身高是______cm(精确到0.1cm). 15.某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图1,图2.图1 图2根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是______亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是______万人;(3)根据第(2)小题中的信息,请把图2补画完整.测试3 中位数和众数(一)学习要求了解中位数和众数的意义,掌握它们的求法.课堂学习检测一、填空题1.学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______.2.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的棵数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它的中位数是______棵.3.已知数据1,2,x和5的平均数是2.5,则这组数据的众数是______.二、选择题4.对于数据2,4,4,5,3,9,4,5,1,8,其众数、中位数和平均数分别为( ).(A)4 4 6 (B)4 6 4.5 (C)4 4 4.5 (D)5 6 4.55.为了筹备班里的新年联欢会,班长以全班同学最爱吃哪几种水果做民意调查,以决定最终买什么水果.该次调查结果最终应该由数据的( )决定.(A)平均数(B)中位数(C)众数(D)无法确定6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为( )(A)9与8(B)8与9(C)8与8(D)8.5与9三、解答题7.公园里有甲、乙两群游客正在进行团体活动,两群游客的年龄如下(单位:岁):甲群:13 13 14 15 15 15 1 5 16 17 17;乙群:3 4 4 5 5 6 6 54 57.回答下列问题:(1)甲群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征:(2)乙群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征.8.某饮食公司为一学校提供午餐,有3元、4元和5元三种价格的饭菜供师生选择(每人限定一份).如图,是五月份的销售情况统计图,这个月一共销售了10400份饭菜,那么师生购买午餐费用的平均数、中位数和众数各是多少?综合、运用、诊断一、填空题9成绩/米 1.50 1.60 1.65 ⒈70 1.75 1.80 1.85 1.90人数/人 2 3 2 3 4 1 1 1那么运动员成绩的众数是______,中位数是______,平均数是______.10.如果数据20,30,50,90和x的众数是20,那么这组数据的中位数是______,平均数是______.二、选择题11.已知数据x,5,0,3,-1的平均数是1,那么它的中位数是( ).(A)0 (B)2.5 (C)1 (D)0.512.如果一组数据中有一个数据变动,那么( ).(A)平均数一定会变动(B)中位数一定会变动(C)众数一定会变动(D)平均数、中位数和众数可能都不变三、解答题13.某校八年级(1)班50名学生参加2009年贵阳市数学质量监控考试,全班学生的成绩统成绩/分71 74 78 80 82 83 85 86 88 90 91 92 94 人数/人 1 2 3 5 4 5 3 7 8 4 3 3 2 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______;(2)该班学生考试成绩的中位数是______;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.14.某中学要召开运动会,决定从九年级全部的150名女生中选30人,组成一个花队(要求参加花队的同学的身高尽可能接近).现在抽测了10名女生的身高,结果如下(单位:厘米):166 154 151 167 162 158 158 160 162 162.(1)依据数据估计,九年级全体女生的平均身高约是多少?(2)这10名女生的身高的中位数和众数各是多少?(3)请你依据本数据,设计一个挑选参加花队的女生的方案.(要简要说明)拓展、探究、思考一、选择题15.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在( ).(A)B组(B)C组(C)D组(D)A组二、解答题16.为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角 为36°.体育成绩统计表体育成绩/分人数/人百分比/%26 8 1627 2428 152930 m根据上面提供的信息,回答下列问题:(1)写出样本容量、m的值及抽取部分学生体育成绩的中位数;(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.测试4 中位数和众数(二)学习要求进一步理解平均数、中位数和众数所代表的不同的数据特征.课堂学习检测一、填空题1.在一组数据中,受最大的一个数据值影响最大的数据代表是______.2.数据2,2,1,5,-1,1的众数和中位数之和是______.二、选择题3.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )(A)23 25 (B)23 23 (C)25 23 (D)25 254.为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75,70,90,70,70,58,80,55(单位:分钟),那么这组数据的众数、中位数和平均数依次为( ).(A)70 70 71 (B)70 71 70 (C)71 70 70 (D)70 70 70三、解答题5.某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.6(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.综合、运用、诊断一、填空题7.已知a<b<c<d,则数据a,a,b,c,d,b,c,c的众数为______,中位数为______,平均数为______.8.一组数据的中位数是m,众数是n,则将这组数据中每个数都减去a后,新数据的中位数是______,众数是______.二、选择题9.有7个数由小到大排列,其平均数是38.如果这组数中前4个数的平均数是33,后4个数的平均数是42,那么这7个数的中位数是( ).(A)34 (B)1 6 (C)38 (D)20三、解答题10.文艺会演中,参加演出的10个班各派1名代表担任评委给演出打分,1班和2班的成绩如下:评委班级 1 2 3 4 5 6 7 8 9 101班得分8 7 7 4 8 7 8 8 8 82班得分7 8 8 10 7 7 8 7 7 7(1)若根据平均数作为评选标准,两个班谁将获胜?你认为公平吗?为什么?(2)采用怎样的方法,对参赛的班级更为公平?如果采用你提供的方法,两个班谁将获胜?11.某同学为了完成统计作业,对全校的耗电情况进行调查.他抽查了10天中全校每天的耗电量,数据如下(单位:度):度数90 93 102 113 114 120天数 1 1 2 3 1 2(1)写出上表中数据的众数和平均数;(2)由(1)获得的数据,估计该校一个月(按30天计算)的耗电量;(3)若当地每度电的定价是0.5元,写出该校应付的电费y(元)与天数x(取正整数)之间的函数关系式.拓展、探究、思考一、解答题12.在学校组织的“喜迎奥运,知荣明耻.文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中,2班成绩在C级以上(包括C级)的人数为______;(2)平均数/分中位数/分众数/分1班87.6 902班87.6 100(3)①从平均数和中位数的角度来比较1班和2班的成绩;②从平均数和众数的角度来比较1班和2班的成绩;③从B级以上(包括B级)的人数的角度来比较1班和2班的成绩.测试5 极差和方差(一)学习要求了解极差和方差的意义和求法,体会它们刻画数据波动的不同特征.课堂学习检测一、填空题1.一组数据100,97,99,103,101中,极差是______,方差是______. 2.数据1,3,2,5和x 的平均数是3,则这组数据的方差是______. 3.一个样本的方差1212s [(x 1-3)2+(x 2-3)2+…+(x n -3)2],则样本容量是______,样本平均数是______. 二、选择题4.一组数据-1,0,3,5,x 的极差是7,那么x 的值可能有( ). (A)1个 (B)2个 (C)4个 (D)6个 5.已知样本数据1,2,4,3,5,下列说法不正确的是( ). (A)平均数是3 (B)中位数是4 (C)极差是4 (D)方差是2 三、解答题6.甲、乙两组数据如下:甲组:10 9 11 8 12 13 10 7; 乙组:7 8 9 10 11 12 11 12.分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.7.为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛): 5 4 4 4 5 7 3 3 5 5 6 6 3 6 6 (1)这批橡胶制品的抗拉伸程度的极差为______牛;(2)若生产产品的抗拉伸程度的波动方差大于1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.综合、运用、诊断一、填空题8.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果:甲x =13,乙x =13,2甲s =3.6,2乙s =15.8,则小麦长势比较整齐的试验田是______.9.把一组数据中的每个数据都减去同一个非零数,则平均数______,方差______.(填“改变”或“不变”) 二、选择题10.关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26 (C)众数为2 (D)平均数为011.某工厂共有50名员工,他们的月工资方差是s 2,现在给每个员工的月工资增加200元,那么他们的新工资的方差( ).(A)变为s2+200 (B)不变(C)变大了(D)变小了12.数据-1,0,3,5,x的极差为7,那么x等于( ).(A)6 (B)-2 (C)6或-2 (D)不能确定三、解答题13.甲、乙两个组各10名同学进行英语口语会话测试,每个人测试5次,每个同学合格的次数分别如下:甲组:4 1 2 2 1 3 3 1 2 1;乙组:4 3 0 2 1 3 3 0 1 3.(1)如果合格3次以上(含3次)为及格标准,请你说明哪个小组的及格率高;(2)请你比较两个小组口语会话的合格次数谁比较稳定.测试6 极差和方差(二)学习要求体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.课堂学习检测一、选择题 1.如图是根据某地2008年4月上旬每天最低气温绘成的折线图,那么这段时间最低气温的极差、众数、平均数依次是( ).A .5° 5° 4°B .5° 5° 4.5°C .2.8° 5° 4°D .2.8° 5° 4.5°2.已知甲、乙两组数据的平均数都是5,甲组数据的方差2甲s =121,乙组数据的方差2乙s =101,那么下列说法正确的是( ).(A)甲组数据比乙组数据的波动大 (B)乙组数据比甲组数据的波动大 (C)甲组数据与乙组数据的波动一样大 (D)甲、乙两组数据的波动大小不能比较 二、填空题3.已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为______. 4.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是______.综合、运用、诊断一、填空题5.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是______.6.已知样本x 1、x 2,…,x n 的方差是2,则样本3x 1+2,3x 2+2,…,3x n +2的方差是_____ ____.7.如图,是甲、乙两地5月上旬的日平均气温统计图,则甲、乙两地这6天日平均气温的方差大小关系为:2甲s ______2乙s (填“<”或“>”号),甲、乙两地气温更稳定的是:______.二、解答题8.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:甲队.年龄13 14 15 16 17人数 2 1 4 1 2乙队:年龄 3 4 5 6 54 57人数 1 2 2 3 1 1(1)根据上述数据完成下表:平均数中位数众数方差甲队游客年龄15 15乙队游客年龄15 411.4(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计数据是_____________________;②平均数能较好地反映乙队游客的年龄特征吗?为什么?9.为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的统计表:月份1月2月3月4月5月6月7月A型销售量/台10 14 17 16 13 14 14B型销售量/台 6 10 14 15 16 17 20(1)完成下表(结果精确到0.1):平均数中位数方差A型销售量14B型销售量14 18.6(2)请你根据七个月的销售情况在图中绘制成折线统计图,并依据折线图的变化趋势,对专卖店今后的进货情况提出建议(字数控制在20~50字).参考答案第二十章 数据的分析测试1 平均数(一)1.9.2. 2.8;2. 3.9.70. 4.B . 5.C . 6.(1)略;(2)178,178;(3)甲队,理由略. 7.小明8.900. 9.1.625. 10.80.4;体育技能测试. 11.A . 12.D . 13.够用;∵30×10×1.7=510<600. 14.(1)41元;(2)49200元.15.(1)解题技巧,动手能力;(2)2.84;(3)7000.测试2 平均数(二)1.4. 2.82. 3.165. 4.B . 5.C . 6.88.715070805272=--⨯(分).7.10个西瓜的平均质量51013.416.429.430.524.515.5=⨯+⨯+⨯+⨯+⨯+⨯ (千克),估计总产量是5×600=3000(千克).8.1. 9.4. 10.B . 11.D . 12.B . 13.(1)80; (2)4000.14.(1)6;(2)158.8. 15.(1)45; (2)220;(3)略.测试3 中位数和众数(一)1.9;9. 2.11. 3.2. 4.C . 5.C . 6.C .7.(1)15,15,15,平均数、中位数和众数;(2)16,5,4、5和6,中位数和众数.8.按百分比计算得这个月3元、4元和5元的饭菜分别销售10400×20%=2080份,10400×65%=6760份,10400×15%=1560份,所以师生购买午餐费用的平均数是95.310400515604676032080=⨯+⨯+⨯元;中位数和众数都是4元.9.1.75;1.70;1.69. 10.30;42. 11.A . 12.A . 13.(1)88;(2)86;(3)不能.因为83小于中位数. 14.(1)平均身高为16010162162160158162167151154166=++++++++(厘米);(2)中位数是161厘米,众数是162厘米;(3)根据(1)(2)的计算可知,大多数女生的身高应该在160厘米和162厘米之间,因此可以选择这部分身高的女生组成花队. 15.B .16.(1)50,5,28;(2)300.测试4 中位数和众数(二)1.平均数. 2.2.5或3.5. 3.D . 4.A .5.(1)样本平均数是80分,中位数是80分,众数是85分;(2)估计全年级平均80分. 6.(1)平均数是209133200350051000115002200013500140001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元); (2)平均数是32883320035005100011500220001185001285001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元).(3)中位数和众数都能反映该公司员工的工资水平.而公司中少数人的工资与大多数人的工资差别较大,导致平均数和中位数偏差较大,所以平均数不能反映该公司员工的工资水平. 7.⋅++++8322;2;dc b a c b c 8.m -a ;n -a . 9.A . 10.(1)3.7101437681=⨯+⨯+⨯=x (分),6.71011067382=⨯+⨯+⨯=x (分),2班将获胜;我认为不公平,因为4号评委给两个班的打分明显有偏差,影响了公正性;(2)可以采取去掉一个最高分和一个最低分后,再计算平均数,这样1班获胜;也可以用中位数来衡量标准,也是1班获胜. 11.(1)众数是113度,平均数是108度;(2)估计一个月的耗电量是108×30=3240(度); (3)解析式为y =54x (x 是正整数).12.(1)21; (2)1班众数:90分;2班中位数:80分;(3)略测试5 极差和方差(一)1.6;4. 2.2. 3.12;3. 4.B . 5.B .6.甲组的极差是6,方差是3.5;乙组的极差是5,方差是3;说明乙组的波动较小. 7.(1)4;(2)方差约是1.5,大于1.3,说明应该对机器进行检修. 8.甲. 9.改变;不变. 10.B . 11.B . 12.C . 13.(1)甲组及格率是30%,乙组及格率是50%,乙组及格率高;(2)甲x =2,乙x =2,2甲s =1,2乙s =1.8,甲组更稳定. 测试6 极差和方差(二)1.B . 2.B. 3.4. 4.8. 5.8. 6.18. 7.>,乙. 8(2)①平均数;②不能;方差太大.9.(1)A 型:平均数 14;方差4.3(约);B 型:中位数 15. (2)略.。

八年级数学下册第二十章数据的分析20.2数据的波动程度第2课时方差的实际应用与变化规律课件新版新人教版

八年级数学下册第二十章数据的分析20.2数据的波动程度第2课时方差的实际应用与变化规律课件新版新人教版

第2课时 方差的实际应用与变化规律
(3)①乙车间样品的合格率比甲车间的高,所以乙车间生产的新产品更好. ②甲、乙两车间样品的平均数相等,且均在合格范围内,而乙车间样品的方 差小于甲车间样品的方差,说明乙车间生产的产品比甲车间的稳定,所以乙 车间生产的新产品更好.(其他理由合理也可)
第2课时 方差的实际应用与变化规律
第二十章 数据的分析
20. 2 方差的实际应用与变 化规律
第二十章 数据的分析
第2课时 方差的实际应用与 变化规律
A知识要点分类练
B规律方法综合练
C拓广探究创新练
第2课时 方差的实际应用与变化规律
A知识要点分类练
知识点 1 方差的实际应用
1.甲、乙、丙、丁四名跨栏运动员在为某运动会积极准备.在 某天“110 米跨栏”训练中,每人各跑 5 次,据统计,他们的平 均成绩都是 13.2 秒,甲、乙、丙、丁的成绩的方差分别是 0.11, 0.03,0.05,0.02.则当天这四名运动员“110 米跨栏”的训练成绩 最稳定的是( D ) A.甲 B.乙 C.丙 D.丁
图 20-2-4
第2课时 方差的实际应用与变化规律
解:(1)∵A 种品牌冰箱各月的销售量(单位:台)分别为 13,14,15,16,17;B 种 品牌冰箱各月的销售量(单位:台)分别为 10,14,15,16,20, ∴该商场这段时间内 A,B 两种品牌冰箱月销售量的中位数分别为 15 台、15 台. ∵ xA=51(13+14+15+16+17)=15(台),xB=15(10+14+15+16+20)=15(台), ∴sA2=15 [(13-15)2+(14-15)2+(15-15)2+(16-15)2+(17-15)2]=2,
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计
(1)求以下数列的平均数:3,6,9,12,15。
(2)已知某班级学生的平均身高为1.6米,若增加一名身高为1.8米的学生,求新的平均身高。
(3)已知一组数据的平均数为20,求这组数据总和的2倍。
2.提高拓展题
为了提高学生的数据分析能力和解决实际问题的能力,布置以下提高拓展题:
(4)某商店进行促销活动,活动期间,顾客平均每人消费金额为100元。若一名顾客消费了150元,求此时顾客的平均消费金额。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平均数的定义及其求解方法,平均数在实际问题中的应用。
2.难点:理解平均数的含义,掌握平均数与其他统计量的关系,以及如何根据数据特点选择合适的平均数作为数据代表值。
(二)教学设想
1.创设情境,导入新课
结合生活实际,设计一个与学生生活密切相关的问题,如班级同学身高、体重等数据的分析,引导学生通过求解平均数来描述数据集中趋势,激发学生学习的兴趣。
让学生分组讨论,尝试用自己的语言描述平均数的含义,并举例说明。在此过程中,教师巡回指导,了解学生的思考情况。
3.教师引导
在学生讨论的基础上,教师进行引导总结,给出平均数的定义,并强调平均数在描述数据集中趋势方面的重要作用。
(二)讲授新知
1.平均数的定义与性质
教师详细讲解平均数的定义,即总数除以个数,强调平均数反映了数据集的总体特征。同时,介绍平均数的性质,如受极端值影响较大等。
本章节教学设计以人教版八年级数学下册第二十章数据的分析20.1.1平均数为依据,结合学科特点和课程内容,注重培养学生的知识技能、过程与方法以及情感态度与价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使他们在原有基础上得到提高。同时,注重理论与实践相结合,让学生在实际问题中感受数学的魅力,提高他们运用数学知识解决实际问题的能力。

八年级数学下册 第二十章 数据的分析 数据的集中趋势0平均数 平均数和加权平均数

八年级数学下册 第二十章 数据的分析 数据的集中趋势0平均数 平均数和加权平均数
听、说、读、写的成绩(chéngjì)按照2:1:3:4的比确定.
重要程度 不一样!
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
第六页,共二十五页。
解:x 甲 = 8 5 2 2+ 7 8 2 + 11 1 + + 8 3 + 5 4 3 3+ 7 3 4 4 = ,7 9 . 5 权
x 乙 = 7 3 2 + 8 0 2 + 1 1 + + 3 8 + 2 4 3 + 8 3 4 = 8 0 . 4 .
因为(yīn wèi)乙的成绩比甲高,所以应该录取乙.
2 :1 :
应试者 听 说
3:4
读写
甲 85 78 85 73 乙 73 80 82 83
第七页,共二十五页。
思考(sīkǎo):能把这种加权平均数的计算方法推广到一般吗?
n
加权平均数:1. x=x1ww 1+1+xw 2w22++
+xnwn +wn
2. xx1f1x2f2xkfk n
第二十三页,共二十五页。
第二十四页,共二十五页。
内容(nèiróng)总结
20.1.1 平均数。2.掌握加权平均数的计算方法. (重点、难点)。一般地,对于n个数x1, x2,。叫做这n个数的算 术平均数,简称(jiǎnchēng)平均数.。因为乙的成绩比甲高,所以应该录取乙.。(4)与问题(1)、(2)、 (3)比较,你能体会到。数据的权能够反映数据的相对重要程度。由上可知选手B获得第一名,选手A获得第 二名.。某公司欲招聘一名公关人员.对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如下表所 示.。做一做

人教版八年级数学下册第20章数据的分析(教案)

人教版八年级数学下册第20章数据的分析(教案)
2.培养学生通过实际数据计算、分析、解决问题的能力,提高数学应用意识;
3.培养学生合作交流、探索发现的能力,提升逻辑思维和批判性思维;
4.引导学生运用数据分析方法对社会现象进行合理判断,培养数据素养和科学态度;
5.培养学生掌握频数分布表、箱线图等数据分析工具,何在课堂上更好地关注到每个学生的学习情况。因为在教学过程中,我发现有些学生可能因为害羞或者不自信而不愿意提问,这就需要我主动去发现问题,及时给予他们帮助。或许可以尝试在课后设立一个“疑问箱”,让学生们可以匿名提出自己的疑问,我会定期解答。
-标准差:强调标准差是方差的平方根,用于度量数据离散程度。
(3)频数分布表与箱线图的应用;
-频数分布表:掌握如何制作频数分布表,理解其反映数据分布的作用;
-箱线图:理解箱线图表示数据分布、异常值等信息的意义。
2.教学难点
(1)数据的集中趋势在实际问题中的应用;
-难点解释:学生在应用平均数、中位数、众数解决实际问题时,可能难以确定使用哪个指标更能反映问题的本质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《数据的分析》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要了解一组数据集中趋势和离散程度的情况?”比如,我们想知道班级同学的身高分布情况。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数据分析的奥秘。
1.教学重点
(1)数据的集中趋势:平均数、中位数、众数的概念及其计算方法;
-平均数:强调平均数受极端值影响较大,要理解其敏感性的特点;
-中位数:理解中位数作为数据中间位置的表示,不受极端值影响;
-众数:掌握众数在数据集中出现次数最多的特点。

八年级下册第二十章数据的分析20.1数据的集中趋势

八年级下册第二十章数据的分析20.1数据的集中趋势

人数(人)
2
8
6
4
则这次比赛的平均成绩约为_8_1__分.
-25-
用样本平均数估计总体平均数
同步考点手册 P35
2.从鱼塘捕获同时放养的草鱼 240 条,从中任选 8 条,称得每条鱼的质
量分别为 1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计
这 240 条鱼的总质量大约为( B )
(2)如果规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5 +平均每场失误×(-1.5),且综合得分越高表现越好,那么请你利用这种评 价方法,来比较该运动员在分别与“甲”和“乙”的各四场比赛中,对阵 哪一个队表现更好?
解:2+2+4 2+5=141,2+44+2=2,10+10+4 14+10=11,17+154+12+7 =541,该运动员在对阵“甲队”的四场比赛中的综合得分 P1=25.25+ 11×1.5+141×(-1.5)=37.625;该运动员在对阵“乙队”的四场比赛中的综 合得分 P2=23.25+541×1.5+2×(-1.5)=39.375;∵P1<P2,∴该运动员在 对阵“乙队”的比赛中表现更好.
14.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试
中包括形体和口才,笔试中包括专业水平和创造能力考察,他们的成绩(百
分制)如下表:
候选人
面试 形体 口才
笔试 专业水平 创新能力

86 90
96
92

92 88
95
93
-17-
(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创
a+b+c A. 3
B.m+3n+r
ma+nb+rc

人教版八年级下册数学知识点归纳:第二十章数据的分析

人教版八年级下册数学知识点归纳:第二十章数据的分析

人教版八年级下册数学知识点归纳
第二十章数据的分析
数据的代表:平均数、众数、中位数、极差、方差
1.解统计学的几个基本概念
总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

2.平均数:当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。

3.众数与中位数:平均数、众数、中位数都是用来描述数据集中趋势的量。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。

中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。

4.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。

5.方差与标准差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是
s2=[(x1-)2+(x2-)2+…+(x n-)2];
方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十章数据的分析(20.1)单元测试
班级姓名成绩
一、请你选一选,把选出的唯一正确答案填在题中括号内。

(每题4分,共40分)
1. 数据5、3、2、1、4的平均数是()
A. 2
B. 5
C. 4
D. 3
2. 某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:
90、96、91、96、95、94,这组数据的中位数是()
A. 95
B. 94
C. 94.5
D. 96
3. 某校四个科技兴趣小组在“科技活动周”上交的作品数分别如下:10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是()
A. 8
B. 9
C. 10
D. 12
4. 某车间对生产的零件进行抽样调查,在10天中,该车间生产的零件次品数如下(单位:个):0、3、0、1、2、1、4、2、1、3,在这10天中,该车间生产的零件次品数的()
A. 中位数是2
B. 平均数是1
C. 众数是1
D. 以上均不正确
5. 从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5、1.6、1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这240条鱼的总质量大约为()
A. 300千克
B. 360千克
C. 36千克
D. 30千克
6. 一组数据由5个整数组成,已知中位数是4,唯一众数是5,则这组数据最大和的可能是()
A. 19
B. 20
C. 22
D. 23
7.(2005·黄冈市)某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使该超市销售皮鞋收入最大,该超市应多购()的皮鞋(4分)
A .160元
B .140元
C .120元
D .100
8. A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( )
A. D 、E 的成绩比其他三人好
B. D 、E 两人的平均成绩是83环
C. 最高分得主不是A 、B 、C
D. D 、E 中至少有1人的成绩不少于83环.
9. 某班一次语文测验的成绩如下:得100分的7人,90分的14,80分的17人,70分的8人,60分的2人,50分2人,这里80分是( )
A. 平均数
B. 是众数不是中位数
C. 是众数也是中位数
D. 是中位数不是众数
10. 由小到大排列一组数据a 1、a 2、a 3、a 4、a 5,其中每个数据都小于0零,则对于样本a 1、a 2、-a 3、-a 4、-a 5、0的中位数可表示为( )
A. 232a a -
B. 252a a -
C. 205a -
D. 2
03a - 二、请把正确答案填在题中横线上(每题4分)
11. 一段山路长5千米,小明上山用了1.5小时,下山用了1小时,则小明上山、下山的平均速度为_______千米/小时.
12. 某班学生在希望工程献爱心的捐献活动中,将省下的零用钱为贫困山区失学儿童捐款,有15位同学捐了20元,20位同学捐了10元,3位同学捐了8元,10位同学间了5元捐了,2位同学捐了3元,则该班学生共捐款_______元,平均捐款_______元,其中众数是_______元.
13. 若1、2、3、a 的平均数是3,又4、5、a 、b 的平均数是5,则样本a+b=_______,
0、1、2、3、4、a、b的平均数是_______.
14. 有7个数由小到大依次排列,其平均速度是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是___ ____.
15. 已知某次测验的最高分、最低分、平均分、中位数,同学甲要知道自己的成绩,属于班级中较高的一半还是较低的一半,应利用上述数据中的_________.
三、训练平台:请写出详细步骤。

16.(10分)体育课,在引体向上项目考核中,某校初三年级100名男生考核成绩如下表所示:
成绩(单位:次) 10 9 8 7 6 5 4 3
人数 30 19 15 14 11 4 4 3 (1)分别求这些男生考核成绩的众数、中位数与平均数.
(2)规定成绩在8次(含8次)为优秀,求这些男生考核成绩的优秀率.
17. (10分)随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:
温度(℃) 10 14 18 22 26 30 32
天数 3 5 5 7 6 2 2 请根据上述数据回答下列问题:
(1)估计该城市年平均气温大约是多少?
(2)写出该数据的中位数、众数;
(3)计算该城市一年中约有几天的日平均气温为26℃?
(4)若日平均气温在17℃~23℃为市民“满意温度”,则这组数据中达到市民“满意温度”的有几天?
18.(10分)下图是某班学生某次英语考
试成绩分析图,其中纵轴表示学生数,横轴表
示分数,观察图形填空或回答下列问题
(1)全班共有人_______;
(2)如果80分以下的成绩算优良,那么
该班学生此次英语考试成绩的优良
率为_______
(3)请估算该班此次考试的平均成绩.
19.(10分)某果农种了44棵苹果树,现进入第三年收获期,收获时,他先随
意采摘了5棵苹果树,称得每棵树上的苹果重量如下(单位:千克):36,34,35,
38,39.
(1)根据样本平均数估计今年苹果总产量;
(2)根据市场上苹果的销售价为5元/千克,则今年该果农的收入大约为多少元?
(3)已知该果农第一年卖苹果的收入为6 600元,请你根据以上估算,求出第三
年收入的年增长率.。

相关文档
最新文档