2016-2017年江苏省无锡市江阴市青阳片九年级上学期期中数学试卷及参考答案
【初三数学】江阴市九年级数学上期中考试测试题(解析版)
新九年级(上)期中考试数学试题(含答案)一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣26.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=75007.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l508.下列说法正确的是()A.平分弦的直径垂直于弦B.圆是轴对称图形,任何一条直径都是圆的对称轴C.相等的弧所对弦相等D.长度相等弧是等弧9.如图,AB是⊙O的直径,AB=4,E是上一点,将沿BC翻折后E点的对称点F 落在OA中点处,则BC的长为()A.B.2C.D.10.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A.2B.﹣2或﹣4C.﹣2D.﹣4二、填空题(共6小题,每小题3分,共18分11.如果x=2是方程x2﹣c=0的一个根,那么c的值是.12.与点P(3,4)关于原点对称的点的坐标为.13.如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为.14.汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽午刹车后到停下来需要秒.15.二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为.16.如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣4=0.(用配方法解答)18.(8分)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.19.(8分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.20.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.21.(8分)如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.22.(10分)名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.23.(10分)(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为.(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.24.(12分)如图1,抛物线y=ax2﹣2x﹣3与x轴交于点A、B(3,0),交y轴于点C(1)求a的值.(2)过点B的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为.(3)如图2,已知F(0,﹣7),过点F的直线m:y=kx﹣7与抛物线y=x2﹣2x﹣3交于M、N两点,当S=4时,求k的值.△CMN2018-2019学年湖北省武汉市东湖高新区九年级(上)期中数学试卷参考答案与试题解析一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【分析】根据题目中的式子,将括号去掉化为一元二次方程的一般形式,从而可以解答本题.【解答】解:∵x(x+5)=0∴x2+5x=0,∴方程x(x+5)=0化成一般形式后,它的常数项是0,故选:C.【点评】本题考查一元二次方程的一般形式,形式ax2+bx+c=0(a≠0)这种形式的方程叫一元二次方程的一般形式.2.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)【分析】根据题目中抛物线的顶点式,可以直接写出它的对称轴和顶点坐标,本题得以解决.【解答】解:∵抛物线y=﹣5(x+2)2﹣6,∴该抛物线的对称轴是直线x=﹣2,顶点坐标为(﹣2,﹣6),故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形【分析】根据中心对称图形的概念结合圆、平行四边形、正三角形、正方形的特点求解.【解答】解:A、圆是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项错误;C、正三角形不是中心对称图形,故本选项正确;D、正方形是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.【解答】解:∵a=1,b=﹣4,c=9,∴△=(﹣4)2﹣4×1×9=32﹣36=﹣4<0,则方程x2﹣4x+9=0无实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=﹣x2先向上平移2个单位得到抛物线的解析式为:y=﹣x2+2,再向左平移3个单位得到解析式:y=﹣(x+3)2+2;故选:A.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律,解决本题的关键是熟记“左加右减,上加下减”.6.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=7500【分析】设年平均增长率为x,根据青山村种的水稻2016年及2018年平均每公项的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:设年平均增长率为x,根据题意得:7500(1+x)2=8500.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l50【分析】如图作圆周角∠ADB,根据圆周角定理求出∠D的度数,再根据圆内接四边形性质求出∠C即可.【解答】解:如图做圆周角∠ADB,使D在优弧上,∵∠AOB=96°,∴∠D=∠AOB=48°,∵A、D、B、C四点共圆,∴∠ACB+∠D=180°,∴∠ACB=132°,故选:C.【点评】本题考查了圆周角定理和圆内接四边形性质的应用,正确作辅助线是解此题的关键.8.下列说法正确的是()A.平分弦的直径垂直于弦B.圆是轴对称图形,任何一条直径都是圆的对称轴C.相等的弧所对弦相等D.长度相等弧是等弧【分析】根据垂径定理,等弧的定义,圆的性质一一判断即可;【解答】解:A、错误.需要添加此弦非直径的条件;B、错误.应该是圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴;C、正确.D、错误.长度相等弧是不一定是等弧,等弧的长度相等;故选:C.【点评】本题考查垂径定理,等弧的定义,圆的有关性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,AB是⊙O的直径,AB=4,E是上一点,将沿BC翻折后E点的对称点F 落在OA中点处,则BC的长为()A.B.2C.D.【分析】连接OC.由△AFC∽△ACO,推出AC2=AF•OA,可得AC=,再利用勾股定理求出BC即可解决问题;【解答】解:连接OC.由翻折不变性可知:EC=CF,∠CBE=∠CBA,∴=,∴AC=CE=CF,∴∠A=∠AFC,∵OA=OC=2,∴∠A=∠ACO,∴∠AFC=∠ACO,∵∠A=∠A,∴△AFC∽△ACO,∴AC2=AF•OA,∵AF=OF=1,∴AC2=2,∵AC>0,∴AC=,∵AB是直径,∴∠ACB=90°,∴BC===,故选:D.【点评】本题考查翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.10.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A.2B.﹣2或﹣4C.﹣2D.﹣4【分析】根据题意和函数图象,利用二次函数的性质和等腰三角形的性质,可以求得b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx+1,∴x=0时,y=1,∴点C的坐标为(0,1),∴OC=1,∵△OBC为等腰直角三角形,∴OC=OB,∴OB=1,∴抛物线y=ax2+bx+1与x轴的一个交点为(1,0),∴a+b+1=0,得a=﹣1﹣b,设抛物线y=ax2+bx+1与x轴的另一个交点A为(x1,0),∴x1×1=,∵△ABD为等腰直角三角形,∴点D的纵坐标的绝对值是AB的一半,∴,∴﹣,解得,b=﹣2或b=﹣4,当b=﹣2时,a=﹣1﹣(﹣2)=1,此时y=x2﹣2x+1=(x﹣1)2,与x轴只有一个交点,故不符合题意,当b=﹣4时,a=﹣1﹣(﹣4)=3,此时y=3x2﹣4x+1,与x轴两个交点,符合题意,故选:D.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题(共6小题,每小题3分,共18分11.如果x=2是方程x2﹣c=0的一个根,那么c的值是4.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,知x=2是方程的根,代入方程即可求解.【解答】解:∵x=2是方程的根,由一元二次方程的根的定义代入可得,4﹣c=0,∴c=4.故答案为:4.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.12.与点P(3,4)关于原点对称的点的坐标为(﹣3,﹣4).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:点P(3,4)关于中心对称的点的坐标为(﹣3,﹣4).【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.13.如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为m≠1.【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:(m﹣1)x2+2x﹣3=0是一元二次方程,得m≠1,故答案为:m≠1.【点评】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.14.汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽午刹车后到停下来需要秒.【分析】根据二次函数的解析式可得出汽车刹车时的初速度以及刹车时的加速度,由“刹车时间=初速度÷刹车加速度”求出刹车后汽车行驶的时间.【解答】解:∵汽车刹车后行驶的距离s关于行驶的时间t的函数解析式是s=15t﹣6t2,∴刹车前的初速度为15m/s,刹车的加速度为﹣12m/s2,∴汽车刹车后行驶的时间为:15÷12=s,故答案为:.【点评】本题考查了二次函数的应用,根据二次函数关系式找出刹车的初速度以及加速度后计算出刹车时间是解题的关键.15.二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为4或﹣2.【分析】根据二次函数图象的开口方向知道,当x=0或x=4时,函数值的最小值是4,结合函数图象得到当x≤0或x≥4时,符合题意.【解答】解:∵二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,=4.∴当x=0或x=4时,y最小值=4.如图,当x≤0或x≥4时,y最小值∵2﹣a≤x≤4﹣a,∴a=4或a=﹣2.故答案是:4或﹣2.【点评】考查了二次函数的最值,解题时,采用了“数形结合”的数学思想,使问题变得直观化.16.如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为2.【分析】如图,在DO上取一点H,使得DH=CD.设AH交BC于点K.只要证明△ACH ≌△BCD(SAS),推出∠CAH=∠CBD,AH=BD,由∠AKC=∠BKH,推出∠KHB=∠ACB=60°,求出AH即可解决问题;【解答】解:如图,在DO上取一点H,使得DH=CD.设AH交BC于点K.∵BA=BC,∠ABC=60°,∴△ABC是等边三角形,∵DC=DH,∠CDH=60°,∴△CDH是等边三角形,∴CA=CB,CH=CD,∠ACB=∠HCD=60°,∴∠ACH=∠BCD,∴△ACH≌△BCD(SAS),∴∠CAH=∠CBD,AH=BD,∵∠AKC=∠BKH,∴∠KHB=∠ACB=60°,在Rt△AOH中,∵OA=3,∴AH==2,∴BD=AH=2.故答案为2.【点评】本题考查坐标与图形变化﹣旋转,等边三角形的性质和判定,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣4=0.(用配方法解答)【分析】移项后两边配上一次项系数一半的平方后求解可得.【解答】解:∵x2﹣4x=4,∴x2﹣4x+4=4+4,即(x﹣2)2=8,∴x﹣2=±2,则x=2±2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.【分析】根据角的和差得到∠AOC=∠BOD,根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS).【点评】本题考查了全等三角形的判定,熟练全等三角形的判定定理是解题的关键.19.(8分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.【分析】设所围矩形ABCD的长AB为x米,则宽AD为(20﹣x)米,根据矩形面积的计算方法列出方程求解.【解答】解:设矩形与墙平行的一边长为xm,则另一边长为(20﹣x)m.根据题意,得(20﹣x)x=50,解方程,得x=10.当x=10时,(20﹣x)=5.答:矩形的长为10m,宽为5m.【点评】此题不仅是一道实际问题,考查了一元二次方程的应用,解答此题要注意以下问题:(1)矩形的一边为墙,且墙的长度不超过45米;(2)根据矩形的面积公式列一元二次方程并根据根的判别式来判断是否两边长相等.20.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【分析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.(8分)如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.【分析】(1)根据垂径定理可得,可得∠AOC=∠AOB,根据圆周角定理可得∠AOB=2∠ADC;(2)由题意可证AB=BE=5,根据勾股定理可求AH=3,即可求EH的长,根据勾股定理可得AE的长.【解答】证明:(1)如图,连接OC,∵OA⊥BC,∴,∴∠AOC=∠AOB,∵∠AOC=2∠ADC,∴∠AOB=2∠ADC(2)∵DC=DE∴∠DCE=∠DEC∵∠DCE=∠DAB,∠DEC=∠AEB,∴∠AEB=∠DAB,∴AB=BE=5∵AH2+BH2=AB2,OH2+BH2=OB2,∴AB2﹣AH2=BH2=OB2﹣(AO﹣AH)2,∴25﹣AH2=﹣(﹣AH)2,∴AH=3,∴BH=4,∴EH=BE﹣BH=1,∴AE==【点评】本题考查圆的有关知识、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.22.(10分)名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.【分析】(1)利用待定系数法求解可得依次函数解析式;(2)根据“总利润=每斤的利润×周销售量”可得函数解析式,再利用二次函数的性质结合x的取值范围可得答案;【解答】解:(1)设y与x之间的函数关系式为y=kx+b,根据题意,得:,解得:,则y=﹣x+800;(2)w=(x﹣400)(﹣x+500)=﹣x2+1200x﹣320000,令w=30000得:30000=﹣x2+1200x﹣320000,解得:x=500或x=700,∵a=﹣1<0,∴500≤x≤700时w不小于30000,∵x﹣400≤400×40%,∴x≤560,∴500≤x≤560.【点评】本题主要考查一次函数的应用及一元二次方程的应用的知识,解题的关键是掌握待定系数法求函数解析式、理解题意找到相等关系并列出函数解析式.23.(10分)(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为2.(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.【分析】(1)由旋转的性质可得:AB=AC,∠BAC=60°,即可证△ABC为等边三角形;(2)过点E作EG⊥直线a,延长GE交直线c于点H,可得GH=7,AD=2,由旋转的性质可得AD=AE=2,∠DAE=60°,可求GE=1,EH=6,由锐角三角函数可求CE=4,根据勾股定理可求等边△ABC的边AC的长;(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,根据特殊三角函数值可求AH =4,通过证明△OBC≌△HCA,可求AH=OC=4,CE=1,根据勾股定理可求△ABC 的边AC的长.【解答】解:(1)∵将△AEC绕点A顺时针旋转60°得到△ADB,∴AB=AC,∠BAC=60°,∴△ABC为等边三角形.(2)过点E作EG⊥直线a,延长GE交直线c于点H,∵a∥b∥c,∴EH⊥直线c,∵直线a、c之间的距离为7,∴GH=7∵将△AEC绕点A顺时针旋转60°得到△ADB,∴AD=AE,∠ADB=∠AEC=90°,∠DAE=60°,∵直线a、b之间的距离为2,∴AD=2=AE,∵∠GAE=∠GAD﹣∠DAE=90°﹣60°=30°,∴GE=AE=1,∠AEG=60°,∴EH=7﹣1=6,∵∠CEH=180°﹣∠AEC﹣∠AEG,∴∠CEH=30°,∴cos∠CEH=∴CE=4在Rt△ACE中,AC===2,故答案为:2(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,∵AE⊥OP,∠AHO=60°∴sin∠AHO=∴AH=4∵△ABC是等边三角形,∴AB=AC=BC,∠ACB=60°=∠POQ,∵∠POQ+∠OBC+∠OCB=180°,∠ACB+∠OCB+∠ACH=180°,∴∠ACH=∠OBC,且BC=AC,∠O=∠AHC=60°,∴△OBC≌△HCA(AAS)∴AH=OC=4,∴CE=OE﹣OC=5﹣4=1,在Rt△ACE中,AC===,∴△ABC的边长为.【点评】本题是几何变换综合题,考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,本题的关键是添加恰当的辅助线构造全等三角形.24.(12分)如图1,抛物线y=ax2﹣2x﹣3与x轴交于点A、B(3,0),交y轴于点C(1)求a的值.(2)过点B的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为x=3或y=4x﹣12.(3)如图2,已知F(0,﹣7),过点F的直线m:y=kx﹣7与抛物线y=x2﹣2x﹣3交于M、N两点,当S△CMN=4时,求k的值.【分析】(1)把(3,0)代入y=ax2﹣2x﹣3,即可求解;(2)当直线与y轴平行时,直线l的解析式为:x=﹣3;当直线与y轴不平行时,设:直线1的解析式为:y=kx+b,由△=0即可求解;(3)联立得:x2﹣(2+k)x+4=0,由S△CMN =|S△CFN﹣S△CFM|=×CF×|x M﹣x N|=4,即可求解.【解答】解:(1)把(3,0)代入y=ax2﹣2x﹣3,得:0=9a﹣6﹣3,∴a=1;(2)当直线与y轴平行时,直线l的解析式为:x=﹣3当直线与y轴不平行时,设:直线1的解析式为:y=kx+b,将点B坐标代入上式,解得:b=﹣3k则直线的表达式为:y=kx﹣3k…①,抛物线的表达式为:y=x2﹣2x﹣3…②,联立①②并整理得:x2﹣(k+2)x+(3k﹣3)=0,△=b2﹣4ac=(k+2)2﹣4(3k﹣3)=0,解得:k =4,故:直线的表达式为:x =3或y =4x ﹣12;(3)联立得:x 2﹣(2+k )x +4=0,x M +x N =k +2,x M •x N =4,∵S △CMN =|S △CFN ﹣S △CFM |=×CF ×|x M ﹣x N |=4,∴×4×=4,即:(k +2)2=20,解得:k =﹣2±2. 【点评】本题考查的是二次函数综合应用,涉及到一次函数、根的判别式、三角新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x 的一元二次方程是( )A .(x +1)2=2(x +1)B .C .ax 2+bx +c =0D .x 2+2x =x 2﹣12.若关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实根,则m 的取值范围是( )A .m <3B .m ≤3C .m <3且m ≠2D .m ≤3且m ≠23.方程x (x ﹣1)=x 的根是( )A .x =2B .x =﹣2C .x 1=﹣2,x 2=0D .x 1=2,x 2=04.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D .5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+16.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A .B .C .D .11.不论x 为何值,函数y =ax 2+bx +c (a ≠0)的值恒大于0的条件是( )A .a >0,△>0B .a >0,△<0C .a <0,△<0D .a <0,△>012.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1035B .x (x ﹣1)=1035×2C .x (x ﹣1)=1035D .2x (x +1)=1035二.填空题(每小题3分,总分18分)13.若关于x 的一元二次方程x 2﹣3x +m =0有实数根,则m 的取值范围是 .14.方程x 2﹣3x +1=0的解是 .15.如图所示,在同一坐标系中,作出①y =3x 2②y =x 2③y =x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .16.抛物线y =﹣x 2+15有最 点,其坐标是 .17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 .18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参考答案一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 【分析】由于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,∴m﹣2≠0,并且△=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3且m≠2.故选:D.【点评】本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=0【分析】先将原方程整理为一般形式,然后利用因式分解法解方程.解:由原方程,得x 2﹣2x =0,∴x (x ﹣2)=0,∴x ﹣2=0或x =0,解得,x 1=2,x 2=0;故选:D .【点评】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D . 【分析】根据因式分解法解方程对A 进行判断;根据方程解的定义对B 进行判断;根据直接开平方法对C 、D 进行判断.解:A 、x +1=0或x ﹣2=0,则x 1=﹣1,x 2=2,所以A 选项错误;B 、x =1或x =﹣2不满足(x ﹣1)(x +2)=1,所以B 选项错误;C 、x +2=±1,则x 1=﹣1,x 2=﹣3,所以C 选项错误;D 、x +=±,则x 1=1,x 2=﹣2,所以D 选项正确.故选:D .【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程,5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+1【分析】变化规律:左加右减,上加下减.解:按照“左加右减,上加下减”的规律,y =3x 2的图象向左平移2个单位,再向上平移1个单位得到y =3(x +2)2+1.故选D .【点评】考查了抛物线的平移以及抛物线解析式的性质.6.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)【分析】先把二次函数化为顶点式的形式,再得出其顶点坐标即可.解:∵原函数解析式可化为:y =﹣(x +2)2+7,∴函数图象的顶点坐标是(﹣2,7).故选:D .【点评】本题考查的是二次函数的性质,根据题意把二次函数的解析式化为顶点式的形式是解答此题的关键.7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标. 解:因为y =(x +2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选:B .【点评】考查顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .要掌握顶点式的性质.8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =1【分析】二次函数的一般形式中的顶点式是:y =a (x ﹣h )2+k (a ≠0,且a ,h ,k 是常数),它的对称轴是x =h ,顶点坐标是(h ,k ).解:y =(x ﹣1)2+2的对称轴是直线x =1.故选:B .【点评】本题主要考查二次函数顶点式中对称轴的求法.9.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .【分析】可以直接利用两根之和得到所求的代数式的值.解:如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2=2.。
2016-2017学年最新苏教版九年级数学上册期中测试卷及答案
7.在长方形 ABCD 中 AB=16,如图所示裁出一扇形 ABE,将扇形围成一个圆锥(AB 和 AE 重合),则此圆锥的底面半径为( ▲ ). A.4 B.16 C.4 D.8
8.如图,将斜边长为 4 的直角三角板放在直角坐标系 xOy 中,两条直角边分别与坐标轴重合,P 为斜边 的中点.现将此三角板绕点 O 顺时针பைடு நூலகம்转 120° 后点 P 的对应点的坐标是( ▲ ). A. ( ,1) B. (1,﹣ ) C. (2 ,﹣2) D. (2,﹣2 )
\
三、解答题(本大题共 10 小题,共 96 分.请在答题卡指定区域 内作答,解答时应写出文字说明、证明 ....... 过程或演算步骤) 19.(本小题满分 10 分) (1)解方程:x2+10x=3 (2) 解方程: 6+3x=x(x+2) 20.(本小题满分 8 分) 关于 x 的一元二次方程 x2﹣x﹣(m +1)=0 有两个不相等的实数根. (1)求 m 的取值范围; (2)若 m 为符合条件的最小整数,求此方程的根. 21. (本小题满分 8 分) 电动自行车已成为市民日常出行的首选工具。据某市品牌电动自行车经销商 1 至 3 月份统计,该品牌电动自行车 1 月份销售 150 辆,3 月销售 216 辆。 (1)求该品牌电动车销售量的月平均增长率; (2)若该品牌电动自行车的进价为 2300 元,售价 2800 元,则 y A 该经销商 1 月至 3 月共盈利多少元? 4 22.(本小题满分 8 分) 画图:在平面直角坐标系中, ΔO A B 的位置如图所示,且点 A(-3,4) ,B(0,3) . (1)画出 ΔOAB 绕点 O 顺时针旋转 90° 后 得到的 ΔOAB ; (2)写出点 A ,B 的对应点 A , B 的坐标; (3)求点 A 在旋转过程中所走过的路径长.
无锡市江阴中学2017届九年级上期中数学试卷含答案解析
2016-2017学年江苏省无锡市江阴中学九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5D.(a﹣b)2=a2﹣b23.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.24.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×1035.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或136.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm28.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果=,那么=()A.B.C.D.9.如图,已知⊙O的半径OD与弦AB互相垂直,垂足为点C,若AB=16cm,CD=6cm,则⊙O的半径为()A. cm B.10cm C.8cm D. cm10.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论①∠AED=∠ADC;② =;③AC•BE=12;④3BF=4AC,其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.因式分解:a2﹣3a= .12.函数y=中,自变量x的取值范围是.13.x|m|+4x+3m+1=0是关于x的一元二次方程,则m= .14.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2= .15.如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC= .16.如图,在⊙O中,AB为⊙O的弦,点C为圆上异于A、B的一点,∠OAB=25°,则∠ACB= .17.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为%.18.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE= .三、解答题(本大题共10小题,共84分)19.计算:(1)(﹣2)2﹣+(﹣3)0(2)4(x2+2)﹣4(x+1)(x﹣1)20.解方程:(1)x2+2x=0(2)x2﹣4x+3=0.21.已知关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,求此时方程的根.22.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=1,BE=2,求AC的长.23.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.24.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=4cm,CD=6cm,求⊙O的半径.25.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:每箱售价x(元)68 67 66 65 (40)每天销量y(箱)40 45 50 55 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.26.如图,△ABC中,∠ACB=90°,BC=6,AB=10.点Q与点B在AC的同侧,且AQ⊥AC.(1)如图1,点Q不与点A重合,连结CQ交AB于点P.设AQ=x,AP=y,求y关于x的函数解析式,并写出自变量x的取值范围;(2)是否存在点Q,使△PAQ与△ABC相似,若存在,求AQ的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AQ,垂足为D.将以点Q为圆心,QD为半径的圆记为⊙Q.若点C到⊙Q上点的距离的最小值为8,求⊙Q的半径.27.如果一个三角形的三边a,b,c能满足a2+b2=nc2(n为正整数),那么这个三角形叫做“n阶三角形”.如三边分别为1、2、的三角形满足12+22=1×()2,所以它是1阶三角形,但同时也满足()2+22=9×12,所以它也是9阶三角形.显然,等边三角形是2阶三角形,但2阶三角形不一定是等边三角形.(1)在我们熟知的三角形中,何种三角形一定是3阶三角形?(2)若三边分别是a,b,c(a<b<c)的直角三角形是一个2阶三角形,求a:b:c.(3)如图1,直角△ABC是2阶三角形,AC<BC<AB,三条中线BD、AE、CF所构成的三角形是何种三角形?四位同学作了猜想:A同学:是2阶三角形但不是直角三角形;B同学:是直角三角形但不是2阶三角形;C同学:既是2阶三角形又是直角三角形;D同学:既不是2阶三角形也不是直角三角形.请你判断哪位同学猜想正确,并证明你的判断.(4)如图2,矩形OACB中,O为坐标原点,A在y轴上,B在x轴上,C点坐标是(2,1),反比例函数y=(k>0)的图象与直线AC、直线BC交于点E、D,若△ODE是5阶三角形,直接写出所有可能的k的值.28.已知:如图1,菱形ABCD的边长为6,∠DAB=60°,点E是AB的中点,连接AC、EC.点Q从点A出发,沿折线A﹣D﹣C运动,同时点P从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边△PQF,△PQF与△AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.(1)当等边△PQF的边PQ恰好经过点D时,求运动时间t的值;当等边△PQF的边QF 恰好经过点E时,求运动时间t的值;(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q到达C点时,将等边△PQF绕点P旋转α°(0<α<360),直线PF分别与直线AC、直线CD交于点M、N.是否存在这样的α,使△CMN为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.2016-2017学年江苏省无锡市江阴中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5D.(a﹣b)2=a2﹣b2【考点】完全平方公式;合并同类项;同底数幂的乘法.【分析】根据合并同类项,积的乘方,完全平方公式,即可解答.【解答】解:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选:C.【点评】本题考查了合并同类项,积的乘方,完全平方公式,解决本题的关键是熟记完全平分公式.3.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.2【考点】一元二次方程的解;一元二次方程的定义.【专题】方程思想.【分析】把方程的解代入方程,可以求出字母系数a的值.【解答】解:∵x=2是方程的解,∴4﹣2﹣2a=0∴a=1.故本题选C.【点评】本题考查的是一元二次方程的解,把方程的解代入方程可以求出字母系数的值.4.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:161000=1.61×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或13【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得,x=2或4,则第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,所以三角形的周长为3+4+6=13,故选:C.【点评】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.7.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.8.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果=,那么=()A.B.C.D.【考点】相似三角形的判定与性质.【专题】常规题型.【分析】证明△ABD∽△ACB,利用相似的性质求解即可.【解答】解:∵点D是△ABC的边AC的上一点,且∠ABD=∠C,且∠BAD=∠CAB,∴△ABD∽△ACB,如果=∴==∵=,∴AD=x,CD=3x,∴AB2=AC•AD,∴AB=2x∴=故:选A【点评】本题考查了相似三角形的判定与性质,解题的关键是证明△ABD∽△ACB,由=设AD=x,CD=3x,根据相似的性质求解.9.如图,已知⊙O的半径OD与弦AB互相垂直,垂足为点C,若AB=16cm,CD=6cm,则⊙O的半径为()A. cm B.10cm C.8cm D. cm【考点】垂径定理;勾股定理.【专题】计算题.【分析】连结OA,如图,设⊙O的半径为r,根据垂径定理得到AC=BC=AB=8,再在Rt△OAC中利用勾股定理得到(r﹣6)2+82=r2,然后解方程求出r即可.【解答】解:连结OA,如图,设⊙O的半径为r,∵OD⊥AB,∴AC=BC=AB=8,在Rt△OAC中,∵OA=r,OC=OD﹣CD=r﹣6,AC=8,∴(r﹣6)2+82=r2,解得r=,即⊙O的半径为cm.故选A.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.10.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论①∠AED=∠ADC;② =;③AC•BE=12;④3BF=4AC,其中结论正确的个数有()A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质.【专题】综合题;压轴题.【分析】①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∠EAD=∠DAC;②易证△ADE∽△ACD,得DE:DA=DC:AC=3:AC,AC不一定等于4.③当FC⊥AB时成立;④连接DM,可证DM∥BF∥AC,得FM:MC=BD:DC=4:3;易证△FMB∽△CMA,得比例线段求解.【解答】解:①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∵∠EAD=∠DAC,∴∠AED=∠ADC.故本选项正确;②∵AD平分∠BAC,∴==,∴设AB=4x,则AC=3x,在直角△ABC中,AC2+BC2=AB2,则(3x)2+49=(4x)2,解得:x=,∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,得DE:DA=DC:AC=3:,故不正确;③由①知∠AED=∠ADC,∴∠BED=∠BDA,又∵∠DBE=∠ABD,∴△BED∽△BDA,∴DE:DA=BE:BD,由②知DE:DA=DC:AC,∴BE:BD=DC:AC,∴AC•BE=BD•DC=12.故本选项正确;④连接DM,在Rt△ADE中,MD为斜边AE的中线,则DM=MA.∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,由DM∥BF得FM:MC=BD:DC=4:3;由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,∴3BF=4AC.故本选项正确.综上所述,①③④正确,共有3个.故选C.【点评】此题重点考查相似三角形的判定和性质,综合性强,有一定难度.二、填空题(本大题共8小题,每小题2分,共16分)11.因式分解:a2﹣3a= a(a﹣3).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).【点评】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.12.函数y=中,自变量x的取值范围是x≠2 .【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.13.(m+2)x|m|+4x+3m+1=0是关于x的一元二次方程,则m= 2 .【考点】一元二次方程的定义.【分析】根据一元二次方程的定义得出m+2≠0,|m|=2,求出即可.【解答】解:∵(m+2)x|m|+4x+3m+1=0是关于x的一元二次方程,∴m+2≠0,|m|=2,解得:m=2,故答案为:2.【点评】本题考查了一元二次方程的定义的应用,能理解一元二次方程的定义是解此题的关键.14.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2= 3 .【考点】根与系数的关系.【专题】方程思想.【分析】一元二次方程x2﹣3x﹣2=0的两个实数根分别为x1和x2,根据根与系数的关系即可得出答案.【解答】解:∵一元二次方程x 2﹣3x ﹣2=0的两个实数根分别为x 1和x 2,根据韦达定理,∴x 1+x 2=3,故答案为:3.【点评】本题考查了根与系数的关系,难度不大,关键掌握x 1,x 2是方程x 2+px+q=0的两根时,x 1+x 2=﹣p ,x 1x 2=q .15.如图,在△ABC 中,DE ∥BC ,AD=1,AB=3,DE=2,则BC= 6 .【考点】相似三角形的判定与性质.【分析】根据DE ∥BC ,可判断△ADE ∽△ABC ,利用对应边成比例的知识可求出BC .【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴=,即=解得:BC=6.故答案为:6.【点评】本题考查了相似三角形的判定与性质,解答本题的关键是掌握:相似三角形的对应边成比例.16.如图,在⊙O 中,AB 为⊙O 的弦,点C 为圆上异于A 、B 的一点,∠OAB=25°,则∠ACB= 65° .【考点】圆周角定理.【分析】根据等腰三角形的性质和三角形内角和定理求出∠AOB 的度数,根据圆周角定理计算即可.【解答】解:∵OA=OB ,∠OAB=25°,∴∠AOB=180°﹣25°﹣25°=130°,∴∠ACB=∠AOB=65°,故答案为:65°.【点评】本题考查的是圆周角定理和三角形内角和定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.17.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 10 %.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是1000(1+x ),五月份的产量是1000(1+x )2,据此列方程解答即可.【解答】解:设四、五月份的月平均增长率为x ,根据题意得,1000(1+x )2=1210,解得x 1=0.1,x 2=﹣2.1(负值舍去),所以该厂四、五月份的月平均增长率为10%.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a ×(1±x ),再经过第二次调整就是a ×(1±x )(1±x )=a (1±x )2.增长用“+”,下降用“﹣”.18.如图,Rt △ABC 中,∠BAC=90°,将△ABC 绕点C 逆时针旋转,旋转后的图形是△A′B′C,点A 的对应点A′落在中线AD 上,且点A′是△ABC 的重心,A′B′与BC 相交于点E ,那么BE :CE= 4:3 .【考点】旋转的性质;三角形的重心.【专题】计算题;平移、旋转与对称.【分析】先证明DA′=CB′,由DA′∥CB′,得==即可解决问题.【解答】证明:∵∠BAC=90°,A′是△ABC 重心,∴BD=DC=AD,DA′=AA′=AD=BC,∵△A′CB′S是由△ABC旋转得到,∴CA′=CA,BC=CB′,∠ACB=∠A′CB′=∠DAC,∠CA′B′=90°,∴∠CAA′=∠CA′A=∠DAC,∠DA′B′+′CA′A=90°,∠B′+∠A′CB′=90°,∴∠DA′B′=∠B′∴DA′∥CB′,∴==,设DE=k,则EC=6k,BE=DC=7k,BE=8k,∴BE:CE=8k:6k=4:3.故答案为4:3.【点评】本题考查三角形重心、旋转平行线分线段成比例定理等知识,解题的关键是发现DA′=CB′,记住三角形的重心把中线分成1:2两部分,属于中考常考题型.三、解答题(本大题共10小题,共84分)19.计算:(1)(﹣2)2﹣+(﹣3)0(2)4(x2+2)﹣4(x+1)(x﹣1)【考点】平方差公式;零指数幂.【专题】计算题;整式.【分析】(1)原式利用乘方的意义,算术平方根定义,以及零指数幂法则计算即可得到结果;(2)原式利用平方差公式计算,去括号合并即可得到结果.【解答】解:(1)原式=4﹣4+1=1;(2)原式=4x2+8﹣4x2+4=12.【点评】此题考查了平方差公式,以及实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)x2+2x=0(2)x2﹣4x+3=0.【考点】解一元二次方程-因式分解法.【分析】(1)利用因式分解法把方程化为x=0或x+2=0,然后解两个一次方程即可;(2)利用十字相乘法把要求的式子进行因式分解,得到两个一元一次方程,然后求解即可.【解答】解:(1)x 2+2x=0,x (x+2)=0,x 1=0,x 2=﹣2;(2)x 2﹣4x+3=0,(x ﹣3)(x ﹣1)=0,x 1=3,x 2=1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.21.已知关于x 的一元二次方程x 2+3x+1﹣m=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数,求此时方程的根.【考点】根的判别式.【分析】(1)由方程有两个不等实数根可得b 2﹣4ac >0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)根据m 为负整数以及(1)的结论可得出m 的值,将其代入原方程,利用分解因式法解方程即可得出结论.【解答】解:(1)∵关于x 的一元二次方程x 2+3x+1﹣m=0有两个不相等的实数根,∴△=b 2﹣4ac=32﹣4(1﹣m )>0,即5+4m >0,解得:m >﹣.∴m 的取值范围为m >﹣.(2)∵m 为负整数,且m >﹣,∴m=﹣1.将m=﹣1代入原方程得:x 2+3x+2=(x+10)(x+2)=0,解得:x 1=﹣1,x 2=﹣2.故当m=﹣1时,此方程的根为x 1=﹣1和x 2=﹣2.【点评】本题考查了根的判别式、解一元一次不等式以及用因式分解法解方程,解题的关键:(1)由根的情况得出关于m 的一元一次不等式;(2)确定m 的值.本题属于基础题,难度不大,解决该题型题目时,由方程根的个数结合根的判别式得出不等式(或不等式组)是关键.22.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=1,BE=2,求AC的长.【考点】圆周角定理;等腰三角形的性质.【分析】(1)根据等腰三角形的三线合一即可证明.(2)由△BED∽△BAC,得,列出方程即可解决问题.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE.(2)连结DE,如图,∵BE=CE=2,∴BC=4,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴,即,∴BA=8,∴AC=BA=8.【点评】本题考查圆周角定理、等腰三角形的性质.相似三角形的判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.23.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.【考点】菱形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.【解答】解:(1)∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形.【点评】此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.24.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【考点】切线的判定;圆周角定理.【分析】(1)连接OA,因为点A在⊙O上,所以只要证明OA⊥AE即可;由同圆的半径相等得:OA=OD,则∠ODA=∠OAD,根据角平分线可知:∠OAD=∠EDA,所以EC∥OA,由此得OA⊥AE,则AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F,证明四边形AOFE是矩形,得OF=AE=4cm,由垂径定理得:DF=3,根据勾股定理求半径OD的长.【解答】(1)证明:连结OA,∵OA=OD,∴∠ODA=∠OAD,∵DA平分∠BDE,∴∠ODA=∠EDA,∴∠OAD=∠EDA,∴EC∥OA,∵AE⊥CD,∴OA⊥AE,∵点A在⊙O上,∴AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F,∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形,∴OF=AE=4cm,又∵OF⊥CD,∴DF=CD=3cm,在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.【点评】本题考查了切线的判定和性质,在判定一条直线为圆的切线时,分两种情况判定:①当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径即可,②当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,此题属于第二种情况:连接OA,是半径,证明垂直即可.25.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:每箱售价x(元)68 67 66 65 (40)每天销量y(箱)40 45 50 55 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.【考点】一元二次方程的应用;一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案; (2)直接根据题意表示每箱的利润进而得出总利润等式求出答案; (3)根据题意分别表示出降价前后的利润进而得出等式求出答案. 【解答】解:(1)设y 与x 之间的函数关系是:y=kx+b ,根据题意可得:,解得:,故y 与x 之间的函数关系是:y=﹣5x+380;(2)由题意可得:(x ﹣40)(﹣5x+380)=1600, 解得:x 1=56,x 2=60,顾客要得到实惠,售价低,所以x=60舍去,所以x=56, 答:要使顾客获得实惠,每箱售价是56元;(3)在(2)的条件下,x=56时,y=100,由题意得到方程:1600×16=[56×(1﹣m%)﹣40×(1﹣10%)]×100×(1+2m%)×15+7120,解得:m 1=20,m 2=﹣(舍去),答:m 的值为20.【点评】此题主要考查了一次函数的应用以及一元二次方程的应用,根据已知7月份各量之间的变化得出等量关系进而求出是解题关键.26.如图,△ABC 中,∠ACB=90°,BC=6,AB=10.点Q 与点B 在AC 的同侧,且AQ ⊥AC .(1)如图1,点Q 不与点A 重合,连结CQ 交AB 于点P .设AQ=x ,AP=y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;(2)是否存在点Q ,使△PAQ 与△ABC 相似,若存在,求AQ 的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AQ,垂足为D.将以点Q为圆心,QD为半径的圆记为⊙Q.若点C到⊙Q上点的距离的最小值为8,求⊙Q的半径.【考点】圆的综合题.【分析】(1)先由平行线分线段成比例得出,代值即可得出结论;(2)先判断出要使△PAQ与△ABC相似,只有∠QPA=90°,进而由相似得出比例式即可得出结论;(3)分点C在⊙O内部和外部两种情况,用勾股定理建立方程求解即可.【解答】解:(1)∵AQ⊥AC,∠ACB=90°,∴AQ∥BC,∴,∵BC=6,AC=8,∴AB=10,∵AQ=x,AP=y,∴,∴;(2)∵∠ACB=90°,而∠PAQ与∠PQA都是锐角,∴要使△PAQ与△ABC相似,只有∠QPA=90°,即CQ⊥AB,此时△ABC∽△QAC,则,∴AQ=.故存在点Q,使△ABC∽△QAP,此时AQ=;(3)∵点C必在⊙Q外部,∴此时点C到⊙Q上点的距离的最小值为CQ﹣DQ.设AQ=x.①当点Q在线段AD上时,QD=6﹣x,QC=6﹣x+8=14﹣x,∴x2+82=(14﹣x)2,解得:x=,即⊙Q的半径为.②当点Q在线段AD延长线上时,QD=x﹣6,QC=x﹣6+8=x+2,∴x2+82=(x+2)2,解得:x=15,即⊙Q的半径为9.∴⊙Q的半径为9或.【点评】此题是圆的综合题,主要考查了圆的性质,相似三角形的判定和性质,极值问题,勾股定理,解本题的关键是判断出CQ⊥AB,分点C在圆内和圆外两种情况.27.如果一个三角形的三边a,b,c能满足a2+b2=nc2(n为正整数),那么这个三角形叫做“n阶三角形”.如三边分别为1、2、的三角形满足12+22=1×()2,所以它是1阶三角形,但同时也满足()2+22=9×12,所以它也是9阶三角形.显然,等边三角形是2阶三角形,但2阶三角形不一定是等边三角形.(1)在我们熟知的三角形中,何种三角形一定是3阶三角形?(2)若三边分别是a,b,c(a<b<c)的直角三角形是一个2阶三角形,求a:b:c.(3)如图1,直角△ABC是2阶三角形,AC<BC<AB,三条中线BD、AE、CF所构成的三角形是何种三角形?四位同学作了猜想:A同学:是2阶三角形但不是直角三角形;B同学:是直角三角形但不是2阶三角形;C同学:既是2阶三角形又是直角三角形;D同学:既不是2阶三角形也不是直角三角形.请你判断哪位同学猜想正确,并证明你的判断.(4)如图2,矩形OACB中,O为坐标原点,A在y轴上,B在x轴上,C点坐标是(2,1),反比例函数y=(k>0)的图象与直线AC、直线BC交于点E、D,若△ODE是5阶三角形,直接写出所有可能的k的值.【考点】反比例函数综合题.【分析】(1)等腰直角三角形为3阶三角形,根据题中的新定义验证即可;(2)根据题中的新定义列出关系式,再利用勾股定理列出关系式,即可确定出a,b,c的比值;(3)C 同学猜想正确,由直角△ABC 是2阶三角形,根据(2)中的结论得出AC ,BC ,AB 之比,设出三边,表示出AE ,BD ,CF ,利用题中的新定义判断即可;(4)根据图形设出E 与D 坐标,利用勾股定理表示出OE 2,OD 2以及ED 2,由△ODE 是5阶三角形,分类讨论列出关于k 的方程,求出方程的解即可得到k 的值 【解答】解:(1)等腰直角三角形一定是3阶三角形, 理由为:设等腰直角三角形两直角边为a ,a ,根据勾股定理得:斜边为a ,则有a 2+(a )2=3a 2,即等腰直角三角形一定是3阶三角形;(2)∵△ABC 为一个2阶直角三角形, ∴c 2=a 2+b 2,且c 2+a 2=2b 2, 两式联立得:2a 2+b 2=2b 2,整理得:b=a ,c=a ,则a :b :c=1::;(3)C 同学猜想正确,证明如下:如图,∵△ABC 为2阶直角三角形,∴AC :BC :AB=1::,设BC=2,AC=2,AB=2,∵AE ,BD ,CF 是Rt △ABC 的三条中线, ∴AE 2=6,BD 2=9,CF 2=3, ∴BD 2+CF 2=2AE 2,AE 2+CF 2=BD 2,∴BD ,AE ,CF 所构成的三角形既是直角三角形,又是2阶三角形;(4)根据题意设E (k ,1),D (2,),则AE=k ,EC=2﹣k ,BD=,CD=1﹣,OA=1,OB=2,根据勾股定理得:OE 2=1+k 2,OD 2=4+,ED 2=(2﹣k )2+(1﹣)2,由△ODE 是5阶三角形,分三种情况考虑:当OE2+OD2=5ED2时,即1+k2+4+=5[(2﹣k)2+(1﹣)2],整理得:k2﹣5k+4=0,即(k﹣1)(k﹣4)=0,解得:k=1或k=4;当OE2+ED2=5OD2时,(2﹣k)2+(1﹣)2+1+k2=5(4+),整理得:k2﹣5k﹣14=0,即(k﹣7)(k+2)=0,解得:k=7或k=﹣2(舍去);当OD2+ED2=5OE2时,4++(2﹣k)2+(1﹣)2=5(1+k2),整理得:7k2+10k﹣8=0,即(7k﹣4)(k+2)=0,解得:k=或k=﹣2(舍去),综上,满足题意k的值为1,4,7,.【点评】此题考查了反比例函数综合题,涉及的知识有:坐标与图形性质,勾股定理,弄清题中的新定义是解本题的关键.28.已知:如图1,菱形ABCD的边长为6,∠DAB=60°,点E是AB的中点,连接AC、EC.点Q从点A出发,沿折线A﹣D﹣C运动,同时点P从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边△PQF,△PQF与△AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.(1)当等边△PQF的边PQ恰好经过点D时,求运动时间t的值;当等边△PQF的边QF 恰好经过点E时,求运动时间t的值;(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q到达C点时,将等边△PQF绕点P旋转α°(0<α<360),直线PF分别与直线AC、直线CD交于点M、N.是否存在这样的α,使△CMN为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)根据题意求出运动的距离,再除以速度即可求出时间;。
2017届九年级上期中考试数学试题含答案
2016-2017学年第一学期期中试卷初三数学(时间:120分钟满分:130分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 81的平方根是()A .9B .C .D .2.下列一元二次方程中,两实数根的积为4的是()A .2x 2-5x +4=0B .3x 2-5x +4=0C .x 2+2x +4=0D .x 2-5x +4=0 3.若关于x 的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不.经过() A .第一象限 B.第二象限 C.第三象限 D.第四象限4:则该日这6个时刻的PM2.5的众数和中位数分别是()A. 0.032, 0.0295B. 0.026,0.0295C. 0.026, 0.032D. 0.032, 0.0275.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是() A . S 1> S 2 B .S 1 = S 2 C .S 1<S 2 D .S 1、S 2的大小关系不确定6.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)7.据调查,2011年11月无锡市的房价均价为7530元/m 2,2013年同期将达到8120元/m 2,假设这两年无锡市房价的平均增长率为x ,根据题意,所列方程为()A .27530(1%)8120x -=B .27530(1%)8120x +=C.27530(1)8120x -=D .27530(1)8120x +=8.如图,四边形ABCD 中,AD ∥BC ,∠D=90°,以AB 为直径的⊙O 与CD 相切于E ,与BC 相交于F ,若AB=8,AD=2,则图中两阴影部分面积之和为( ) A . B .3C .D .9.如图,直线343+=x y 与x 轴、y 轴分别交于A 、B 两点,已知点C (0,-1)、D (0,k ),且0< k < 3,以点D 为圆心、DC 为半径作⊙D ,当⊙D 与直线AB 相切时,k 的值为( ) A .95 B .32 C .97 D .98 10.如图,在平面直角坐标系xOy 中,点(1,0)A ,(2,0)B ,正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是().第5题图第6题图 第8题图A.C或E B.B或D C.A或E D.B或F二、填空题(本大题共8小题,每小题2分,共16分.)11.写出一个以2与-3为根的一元二次方程________________________.12. 若方程()22570m x x++-=是关于x的一元二次方程,则m的取值范围是.13.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.14.将一个底面半径为5cm,母线长为12cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为.16. 如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.17.已知正方形ABCD边长是2,点P从点D出发沿DB向点B运动,至点B停止运动,连结AP,过点B作BH⊥AP于点H,在点P运动过程中,点H所走过的路径长是.18.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=1x(x>0)的图象上运动,那么点B在函数(填函数解析式并写出自变量取值范围)的图象上运动.三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.(本题8分,每小题4分) 计算或化简:(1)()023200921)1(---+-(2)22121x xxx x x--⎛⎫÷-⎪+⎝⎭20.(本题8分,每小题4分)解方程:(1) 5x(x-3)=2(3-x).(2)0242=-+xx;21.(本题6分)在正方形方格纸中,我们把顶点都在“格点”上的三角第9题图第15题图第16题图第17题图第18题图形称为“格点三角形”,如图,△ABC 是一个格点三角形.(1)请你在所给的方格纸中,以O 为位似中心,将△ABC 放大为原来的2倍,得到一个△A 1B 1C 1. (2)若每一个方格的面积为1, 则△A 1B 1C 1的面积为_____.22.(本题7分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分) (1)两个班的平均得分分别是多少?(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.23.(本题7分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点, AD 交BC 于E 点,2AE =,4ED =. (1)求证:△ABE ∽△ADB ; (2)求BE 长;24.(本题8分)如图,△ABC 中,AB=AC ,F 为BC 的中点,D 为CA 延长线上一点,∠DFE=∠B .(1)求证:△CDF ∽△BFE ;(2)若EF ∥CD ,求证:2CF 2=AC•CD .25.(本题8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2? (2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?26.(本题10分)如图,已知AB 为⊙O 的直径,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是⊙O 上一点,连接AF 交CE 于H ,连接AC 、CF 、BD 、OD .(1)求证:△ACH ∽△AFC ;(2)猜想:AH•AF 与AE•AB 的数量关系,并说明你的猜想; (3)当AE=______AB 时,S △AEC :S △BOD =1:4.27.(本题10分)如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐第24题图第26题图第25题图第23题图标为(-2,-2),半径为2.函数y =-x +2图象与x 轴交于点A ,与y 轴交于点B ,点P 为线段AB 上一动点(包括端点).(1)连接CO ,求证:CO ⊥AB ;(2)当直线PO 与⊙C 相切时,求∠POA 的度数; (3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的 函数关系,并写出t 的取值范围;(4)请在(3)的条件下,直接..写出点M 运动路径的长度.28.(本题12分)如图,在平面直角坐标系中,等腰直角△ABC 的直角顶点C 为(﹣4,0),腰长为2,将三角形绕着顶点C 旋转.(点A 在x 轴的上方)分别过点A 、点B 向x 轴作垂线,垂足分别为O 1,O 2.(1)如图①和图②证明在点B 不在坐标轴上的情况下,△ACO 1与△BCO 2全等吗?选择其中一幅图说明你的理由;(2)如图③所示,点B 运动到x 轴上时,点O 1与C 重合,以C 为圆心CA 为半径作圆,得到如图所示的⊙C ,在⊙C 上有一个动点P (点P 不在x 轴上),过点P 作⊙C 的切线与y 轴的交点为点Q ,直线BP 交y 轴于点M .①如图,当点Q 在y 轴的正半轴时,写出线段PQ 与线段QM 之间的数量关系,并说明理由;②随着点P 的运动(点P 在坐标轴上除外)①中的两条线段之间的关系变吗?若变说明理由,若不变,则它们有最小值吗?最小值为多少?第28题图第27题图初三数学期中试卷参考答案2016.11(时间:120分钟满分:130分)一、选择题(每题3分,共30分)BDBAA CDACD二、填空题(每空2分,共16分)11.答案不唯一;12.m-2___;13.2__;14.___150゜;15.__25゜;16.__50_;17._π__;18.___(x>0).三、解答题19.(1)(2)20.(1)x1=3,x2=-0.4(2)x1=-2+,x2=2-21.(1)图略(2)___16________.22.解:(1)一班的平均得分:(95+85+90)÷3=90,二班的平均得分:(90+95+85)÷3=90,(2)一班的加权平均成绩:85×25%+90×35%+95×40%=90.75,二班的加权平均成绩:95×25%+85×35%+90×40%=89.5,所以一班的卫生成绩高.23.(1)略(2)BE=424.(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∵∠B=∠C,∠DEG=∠B,∴∠FDC=∠C=∠B,∴△CDF∽△BCA,∴,∵BC=2CF,DF=CF,∴,∴2CF2=AC•CD.25.(本题8分).(1)解:(1)设该项绿化工程原计划每天完成x米2,根据题意﹣=4解得:x=2000经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合题意,舍去). 答:人行道的宽为2米. 26.(1)∵直径AB ⊥CD ,∴∴∠F=∠ACH ,又∠CAH=∠FAC,∴△ACH ∽△AFC (2)AH ·AF=AE ·AB ,连接FB ,∵AB 是直径,∴∠AFB=∠AEH=90°,又∠EAH=∠FAB , ∴Rt △AEH ∽Rt △AFB ,∴AH ·AF=AE ·AB ;(3)27.解:(1)延长CO 交AB 于D ,过点C 作CG⊥x轴于点G .∵易得A(2,0),B(0,2),∴AO =BO =2.又∵∠AOB =90°, ∴∠DAO =45°.∵C(-2,-2),∴∠COG =45°,∠AOD =45°,∴∠ODA =90°. ∴OD ⊥AB ,即CO ⊥AB .(2)当直线PO 与⊙C 相切时,设切点为K ,连接CK ,则CK ⊥OK .由点C 的坐标为(-2,-2),易得CO =∴∠POD =30°,又∠AOD =45°, ∴∠POA=75°,同理可求得∠POA 的另一个值为15°. (3)∵M 为EF 的中点,∴CM ⊥EF ,又∵∠COM =∠POD ,CO ⊥AB ,∴△COM ∽△POD ,所以CO MOPO DO =,即MO ·PO =CO ·DO .∵PO =t ,MO =s ,CO = DO st =4.但PO 过圆心C 时,MO =CO =PO =DO即MO ·PO =4,也满足st =4.∴s =4t t(4)28.解:(1)△ACO1与△BCO2全等如图①,∵∠ACB=90°,∴∠ACO1+∠BCO2=90°,∵AO1⊥OC,BO2⊥OC,∴∠AO1C=∠BO2C=90°,∴∠BCO2+∠CBO2=90°,∴∠ACO1=∠CBO2,在△ACO1和△CBO2中,,∴△ACO1≌△CBO2,如图2,同①的方法可证;(2)①∵PQ是⊙C的切线,∴∠QPC=90°,∴∠QPM+∠CPB=90°,∵CP=CB,∴∠CPB=∠CBP,∴∠QPM+∠CBP=90°,∵∠CBP=∠OBM,∴∠QPM+∠OBM=90°,∵∠OBM+∠OMB=90°,∴∠QPM=∠OMB,∴QP=QM,②不变,理由:同(1)连接CQ,在Rt△CPQ中,PQ2=CQ2﹣CP2,∵CP是⊙C的半径,∴CP为定值是2,∴CQ最小时,PQ最小,∵点Q在y轴上,点C在x轴,∴点Q在点O处时,CQ最小,最小值为CO=4,=2,∴PQ最小=第28题图。
苏科版2016-2017学年九年级上学期期中质量检测数学试题及答案
苏科版2016-2017学年九年级上学期期中质量检测数学试题时间:120分钟; 满分:130分; 2016.11.4一、选择题 (每小题3分,共30 分)1. 一元二次方程2240x x -+=的根的情况是( ) A.有一个实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根2. 已知函数:①y=3x ﹣1;②y=3x 2﹣1;③y=﹣20x 2;④y=x 2﹣6x+5,其中是二次函数的有( ) A .1个 B .2个 C .3个 D .4个3. 一元二次方程x 2﹣8x ﹣1=0配方后可变形为( )A .(x+4)2=17B .(x+4)2=15C .(x ﹣4)2=17D .(x ﹣4)2=154. 已知一元二次方程28150x x -+=的两个分别是Rt △ABC 的两边长,则第3 条边长( ) A.3 B.4或5 C.3或5 D.4或345. 若函数y=22(1)22m m x x ---+是关于x 的二次函数,且抛物线的开口向上,则m 的值为( )A .﹣2;B .1;C .2;D .﹣16.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x 倍,两年后产品y 与x 的函数关系是( )A .y=20(1﹣x )2B .y=20+2xC .y=20(1+x )2D .y=20+20x 2+20x7.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2016的值为( ) A .2014;B .2015;C .2016;D .20178. 如图所示,在平面直角坐标系中,二次函数y=ax 2+bx+c 的图象顶点为A (﹣2,﹣2),且过点B (0,2),则y 与x 的函数关系式为( )A .y=x 2+2B .y=(x ﹣2)2+2C .y=(x ﹣2)2﹣2D .y=(x+2)2﹣2(第8题)(第9题)(第10题)9. 二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值 ;B .对称轴是直线x=C .当x <,y 随x 的增大而减小;D .当﹣1<x <2时,y >010. 二次函数y=ax 2+bx 的图象如图所示,那么一次函数y=ax+b 的图象大致是( )A .B .C .D .二.填空题(每小题3 分,共24分)11.方程x ²= 2x 的解为____________.12. 若关于x 的方程x ² 5x k =0的一个根是0,则另一个根是____________.13. 已知关于x 的一元二次方程k x ² 4x+1=0有两个实数根,则 k 的取值范围是_____. 14. 已知一元二次方程x 2﹣5x ﹣1=0的两根为x 1,x 2,则x 1+x 2= .15. 某药品原价每盒25元,经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是 .16. 抛物线y=2x 2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是__________. 17. 如图是一座抛物线形拱桥,当水面的宽为12m 时,拱顶离水面4m ,当水面下降2m 时,水面的宽为__________m .(第17题)18. 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价__________元.三、解答题(本大题共10 小题,共76 分)19. (本题满分8 分)解方程:(1) x ² 2x 1= 0(用配方法) (2) x (2x 6)=x 320.(本题满分6 分)已知抛物线的解析式为y=x 2﹣2x ﹣3.(1)将其化为y=a (x ﹣h )2+k 的形式,并直接写出抛物线的顶点坐标; (2)求出抛物线与x 轴交点坐标.21.(本题满分6分)阅读下列例题: 解方程x 2﹣|x|﹣2=0解:(1)当x ≥0时,原方程化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1(舍去). 当x <0时,原方程化为x 2+x ﹣2=0,解得x 1=1(舍去),x 2=﹣2. ∴x 1=2,x 2=﹣2是原方程的根.请参照例题解方程:x2﹣|x﹣1|﹣1=0.22.(本题满分6 分)在等腰△ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程2x +(b + 2)x + 6-b=0有两个相等的实数根,求△ABC 的周长.23. (本题满分8 分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?24. (本题满分8 分)如图,将一块长60m,宽30m 的长方形荒地进行改造,要在其四周留一条宽度相等的人行道路,中间部分建成一块面积为1000m2 的长方形绿地,求人行道路的宽度.(第24题)25. (本题满分8 分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260 元时,月销售量为45 吨,每售出1 吨这种水泥共需支付厂家费用和其他费用共100 元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10 元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240 元时,此时的月销售量是____________吨.(2)该经销店计划月利润为9000 元而且尽可能地扩大销售量,则售价应定为每吨多少元?26. (本题满分8分)已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k27. (本题满分8分)如图,在一次高尔夫球比赛中,小明从山坡下O点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度10m时,球移动的水平距离为8m.已知山坡OA与水平方向OC的夹角为30°,OC=12m.(1)求点A的坐标;(2)求球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点.28.(满10分)如图1在平面直角坐标系中.等腰Rt△OAB的斜边OA在x轴上.P为线段OB上﹣动点(不与O,B重合).过P点向x轴作垂线.垂足为C.以PC为边在PC的右侧作正方形PCDM.OP=t、OA=3.设过O,M两点的抛物线为y=ax2+bx.其顶点N(m,n)(1)写出t的取值范围,写出M的坐标:(,);(2)用含a,t的代数式表示b;(3)当抛物线开向下,且点M恰好运动到AB边上时(如图2)①求t的值;②若N在△OAB的内部及边上,试求a及m的取值范围.参考答案DCCDA CDDDC11.0,2;12.5;13.1,04k k ≤≠且;14.5;15.20%;16.2243y x x =---;17.18.5。
江苏省江阴初级中学2016届九年级上期中考试数学试题
江阴初级中学2015-2016学年第一学期期中考试初三数学试卷(满分130分,考试时间120分钟)一.选择题:(本大题共有10小题,每小题3分,共30分)1.关于x 的方程ax 2-3x +1=0是一元二次方程,则 ( ) A .a >0 B .a ≥0 C .a ≠0 D .a =12.在Rt △ABC 中,∠C =90°,AC =12,BC =5,则sinA 的值为 ( ) A .125 B . 135 C . 512 D . 5133.已知一元二次方程的两根分别是3和-5,则这个一元二次方程是 ( ) A .x 2-2x+15=0 B .x 2+2x -15=0 C .x 2-x -6=0 D .x 2-2x -15=04. 如图,已知DE ∥BC ,32==BD AD ,,则△ADE 和△ABC 的面积比是( ) A. 2∶3 B. 2∶5 C. 4∶9 D. 4∶255. 己知方程x 2-7x +12=0的两根恰好是一个直角三角形的两条直角边的长,则这个直角三角形的斜边上的高为 ( ) A .12 B .6 C .5 D .1256. 如图,在⊙O 中,弦AB ∥CD ,若∠ABC=40°,则∠BOD= ( ) A .20° B .40° C .50° D .80°7.如图,△ABC 的高CD 和高BE 相交于O ,则与△DOB 相似的三角形个数是 ( ) A .2个 B .3个 C .4个 D .5个8.如图,在△ABC 中,AB =6,AC =8,BC =10,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆与BC 的位置关系是 ( ) A .相切 B .相交 C .相离 D .无法确定9. 如图,在正方形ABCD 中,E 是AD 的中点,F 是AB 边上一点,B F =3AF ,则下列四个结论:①△AE F ∽△DCE ;②CE 平分∠DCF ;③点B 、C 、E 、F 四个点在同一个圆上;④直线EF 是△DCE 的外接圆的切线;其中,正确的个数是 ( ) A. 1个 B. 2个 C. 3个 D. 4个10.如图,菱形纸片ABCD 中,∠A =600,将纸片折叠,点A 、D 分别落在A ’、D ’处,且A ’D ’经过B ,EF 为折痕,当D ’F ⊥CD 时,CF FD 的值为 ( )A .312- B .36C . 2316-D .318+二.填空题:(本大题共8小题,每小题2分,共16分)11.如图,在△ABC 中,点D 在AB 上,请再添加一个适当的条件,使△ADC ∽△ACB ,那么要添加的条件是 .12.若圆锥的底面半径为2,母线长为3,则圆锥的全面积等于 .13.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 .14.在△ABC 中,∠A 、∠B 为锐角,且0)cos 21(1tan 2=-+-B A ,则∠C = °.15.如图,在平行四边形ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE =4:3,且BF =2,则DF = . 16.当宽为2cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的刻度读数如图所示(单位:cm ),那么该圆的半径为 cm .17.如图,⊙O 与正方形ABCD 的两边AB 、AD 相切,且DE 与⊙O 相切于E 点.若正方形ABCD 的周长为28,且DE =4,则sin ∠ODE =___ .第4题 A BC D E D C B A O 第6题第8题 第7题 F E D C B A 第9题18.直线y =-34x +3与x 轴、y 轴分别交于A 、B 两点,已知点C(0,-1)、D(0,k),以点D 为圆心、DC为半径作⊙D ,当⊙D 与直线AB 相切时,k 的值为 .三.解答题:(本大题共10小题,共84分). 19.(本题满分16分)(1)计算: 21()4sin 60tan 452--- (2)化简 (x +1)2-(x +2)(x -2).(3)解方程:x 2+4x -2=0;(4)解不等式组:231,12(1).2x x x x -+⎧⎪⎨->+⎪⎩≥20.(6分)如图,每个小方格都是边长为1个单位的小正方形,A 、B 、C三点都是格点(每个小方格的顶点叫格点),其中A (1,8),B (3,8),C (4,7). (1)若D (2,3),请在网格图中画一个格点△DEF ,使△DEF ∽△ABC ,且相似比为2∶1; (2)求∠D 的正弦值;(3)若△ABC 外接圆的圆心为P ,则点P 的坐标为 .21.(6分)(1)如图,△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规,按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) ①作∠BAC 的平分线,交BC 于点O ; ②以O 为圆心,OC 为半径作圆. (2)在你所作的图中,①AB 与⊙O 的位置关系是______;(直接写出答案) ②若AC =6,BC =8,求⊙O 的半径.B AC 第10题 第11题第15题 第16题 O y xA BC D22.(6分)已知关于x 的方程x 2-(k +1)x +14k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根x 1 ,x 2恰好是一个矩形两邻边的长,且矩形的对角线长为5,求k.23.(6分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1)求证:△ADF ∽△DEC (2)若AB =4,AD =33,AE =3,求AF 的长.24.(6分)如图,以△ABC 的边AB 为直径的⊙O 与边BC 交于点D ,过点D 作DE ⊥AC ,垂足为E ,延长AB 、ED 交于点F ,AD 平分∠BAC .(1)求证:EF 是⊙O 的切线;(2)若CE =1, sinF =35,求⊙O 的半径.25.(8分)小明锻炼健身,从A 地匀速步行到B 地用时25分钟.若返回时,发现走一小路可使A 、B 两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.C DAB EF(1)求返回时A 、B 两地间的路程;(2)若小明从A 地步行到B 地后,以跑步形式继续前进到C 地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从B 地到C 地锻炼多少分钟?26.(10分)如图,已知线段AB 长为6,点A 在x 轴负半轴,B 在y 轴正半轴,绕A 点顺时针旋转60°,B 点恰好落在x 轴上D 点处,点C 在第一象限内且四边形ABCD 是平行四边形.(1)求点C 、点D 的坐标 (2)若半径为1的⊙P 从点A 出发,沿A —B —D —C 以每秒4个单位长的速度匀速移动,同时⊙P 的半径以每秒0.4个单位长的速度增加,运动到点C 时运动停止,当运动时间为t 秒时,①t 为何值时,⊙P 与y 轴相切?②在运动过程中,是否存在一个时刻,⊙P 与四边形ABCD 四边都相切,若存在,说出理由;若不存在,问题中⊙P 的半径以每秒0.4个单位长速度增加改为多少时就存在。
江阴市XX中学2016-2017年九年级上期中数学试卷含答案解析
的度数为( )
A.70°
B.35°
C.20°
D.40°
7.在同一坐标系中,一次函数 y=Ⅰ mx+n2 与二次函数 y=x2+m 的图象可能是( )
A.
B.
C.
D.
8.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示对称轴为 x=Ⅰ 1 则下列式子正确的个 数是(1)abc>0(2)2a+b=0(3)4a+2b+c<0(4)b2Ⅰ 4ac<0 ()
()
A.k>Ⅰ 1
B.k≥Ⅰ 1
C.k≠0
D.k<1 且 k≠0
3.初三(1)班 12 名同学练习定点投篮,每人各投 10 次,进球数统计如下:
进球数(个)
1
2
3
4
5
7
人数(人)
1
1
4
2
3
1
这 12 名同学进球数的众数是( )
A.3.75
B.3
C.3.5
D.7
4.已知圆锥的底面半径为 4cm,母线长为 6cm,则它的侧面展开图的面积等于( )
×2
10.如图,⊙P 在第一象限,半径为 3.动点 A 沿着ቤተ መጻሕፍቲ ባይዱP 运动一周,在点 A 运动的同时,
作点 A 关于原点 O 的对称点 B,再以 AB 为边作等边三角形△ABC,点 C 在第二象限,点
C 随点 A 运动所形成的图形的面积为( )
A.24 cm2
B.48 cm2
C.24π cm2
D.12π cm2
5.有下列四个命题:
①直径是弦;
②经过三个点一定可以作圆;
③三角形的外心到三角形各边的距离相等;
2016-2017年度苏科版第一学期九年级数学期中试卷含答案
2016-2017学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)温馨提示:请把答案全部填涂在答题纸上,否则不给分.一、选择题(本题共8题,每题3分,共24分. 在每题给出的四个选项中,有且只有一项 是正确的,请将正确选项前的字母填写在答题卡上) 1. 一元二次方程x 2-9=0的根为A . x = 3B . x =-3C . x 1= 3,x 2 =-3D . x = 9 2. 如图,点A 、B 、C 是⊙O 上的三点,若∠BOC =80º,则∠A 的度数是 A .40º B .60º C .80º D .100º 3.用配方法解方程x 2-4x -1=0时,配方后得到的方程为A .(x +2)2= 3 B .( x +2)2 = 5 C .(x -2)2 = 3 D .( x -2)2 = 54.下列关于x 的一元二次方程有实数根的是A .x 2 + 1= 0B .x 2 + x + 1= 0C .x 2 - x + 1= 0D .x 2 -x -1= 05.在下列命题中,正确的是A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 6.对于二次函数 y =-(x +1)2-3 ,下列结论正确的是A .函数图像的顶点坐标是(-1,-3)B .当 x >-1时,y 随x 的增大而增大C .当x =-1时,y 有最小值为-3D .图像的对称轴是直线x = 17.如图,圆弧形桥拱的跨度AB = 16 m ,拱高CD = 4 m ,则圆弧形桥拱所在圆的半径为 A .6 m B .8 m C .10 m D .12 mB OCA( 第2题 )yx-3O-1( 第7题 ) ( 第8题 )ABDC8.如图是二次函数y = ax 2 + bx + c 图像的一部分,其对称轴为直线x =-1,且过点(-3,0),下列说法:① abc < 0;② 2a -b = 0;③ 4a + 2b + c < 0;④若(-5,y 1) ,(2.5,y 2)是抛物线上两点,则y 1 > y 2,其中说法正确的是 ( )A .①②③B .②③C .①②④D .①②③④ 二、填空题(每小题3分,共30分) 9. 方程x 2 = x 的解是_______________.10.已知扇形的圆心角为120º,半径为6 cm ,则该扇形的弧长为_______ cm (结果保留π). 11.一元二次方程2x 2 + 4x -1= 0的两根为x 1、x 2,则x 1 + x 2的值是_________. 12.圆锥的底面半径为3 cm ,母线长为5 cm ,则这个圆锥的侧面积是_________cm 2. 13. 抛物线y = x 2沿x 轴向右平移1个单位长度,则平移后抛物线对应的表达式是________. 14.一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x ,根据题意,可列方程是:_________________.15.若关于x 的一元二次方程x 2+2x +m = 0有两个相等的实数根,则m =______.16.如图,P A 、PB 是⊙O 的两条切线,A ,B 是切点,若∠APB = 60°,PO = 2,则PB =_________. 17.如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD =90°,则图中阴影部分的面积为_____.18. 已知二次函数y = ax 2+ bx + c 中,函数y 与自变量x 的部分对应值如下表:x … -2 -1 0 1 2 … y…1771-11…则当y < 7时,x 的取值范围是______________.( 第16题 ) ( 第17题 )C DB AO三、解答题(共66分)19. 解方程 (每题5分,共10分)(1) x 2 + 4x -2 = 0; (2) (x -1)(x +2) = 2(x +2)20. (6分)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,CD =16,AB =20,求BE 的长.21. (8分) 如图,已知二次函数y = ax 2 + bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).(1) 求二次函数的表达式; (2) 画出二次函数的图像.EDO C( 第20题 )xyACB O( 第21题 )22. (8分) 如图,学校准备修建一个面积为48 m 2的矩形花园.它的一边靠墙,其余三边利用长20 m的围栏.已知墙长9 m ,问围成矩形的长和宽各是多少?23. (10分) 如图,在Rt △ABC 中,∠C = 90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D . (1) 判断直线BC 与⊙O 的位置关系,并说明理由; (2) 若AC = 3,∠B = 30°.① 求⊙O 的半径;② 设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积 ( 结果保留根号和π ) .( 第22题)( 第23题 )EOA24. (12分) 某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图像如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2) 为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x =5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?y(元/千度)千度)( 第24题)25. (12分) 在平面直角坐标系中,抛物线y =-x 2-2x + 3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1) 请直接写出点A ,C ,D 的坐标;(2) 如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3) 如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形? 若存在,求出点P 的坐标,若不存在,请说明理由.2016-2017学年度第一学期期中检测九年级数学试题参考答案及评分标准一、选择题(每题3分,共24分)( 图1 ) ( 图2 )( 第25题 )y x DCA OB yxDCA O B二、选择题 (每题3分,共30分)9. x 1=0,x 2=1; 10.4π; 11.-2; 12.15π; 13.y = (x -1)2; 14. 60 (1-x )2 = 48.6; 15. 1 ; 16.3; 17.41π ; 18. -1< x < 3. 三、解答题 (共66分) 19.解法一:(1)x 2+4x +4-4-2=··································································································································· 1分 (x +2)2=6··································································································································· 2分 x +2=6± ··································································································································· 3分 x 1=-26-,x 2=-26+··································································································································· 5分 解法二:a=1,b =4,c=-2··································································································································· 1分 △=42-4·1·(-2) = 24··································································································································· 2分 x=2244±- ··································································································································· 3分 x 1=62--,x 2 =62+- ··································································································································· 5分 (2)解:(x-1)(x +2)-2(x +2)=··································································································································· 1分 (x +2)(x-3)=··································································································································· 2分 x +2=,x-3=··································································································································· 3分 x 1=-2,x 2=3··································································································································· 5分20.解:连接OC ,∵AB是⊙O的直径,CD ⊥AB ,∴CE =21CD = 8··································································································································· 2分 ∵AB=20,∴OB=OC =10···································································································································∵∠OEC =90°,∴22810-=OE = 6··································································································································· 5分 又∵BE =OB-OE,∴BE =10-6=4··································································································································· 6分21. 解:(1)∵二次函数y =ax 2+ bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).∴⎪⎩⎪⎨⎧-=++-==+-212c b a c c b a ··································································································································· 3分解得⎪⎩⎪⎨⎧-=-==121c b a ··································································································································· 4分 ∴二次函数的表达式为y=x 2-2x-1··································································································································· 5分(2) 图像如图:··································································································································CyxAOB22. 解:设宽为x m,则长为(20-2x) m. ···································································································································1分由题意,得x·(20﹣2x) = 48, ···································································································································3分解得x1 = 4,x2 = 6. ···································································································································5分当x= 4时,20-2×4 = 12>9 (舍去), ···································································································································6分当x=6时,20-2×6= 8. ···································································································································7分答:围成矩形的长为8 m、宽为 6 m. ···································································································································8分23. 解:(1) 连结OD,∵OA=OD,∴∠OAD =∠ODA. ···································································································································1分∵∠BAC的角平分线AD交BC边于D,∴∠CAD =∠OAD. ···································································································································2分∴∠CAD =∠ODA ,∴OD ∥AC ,··································································································································· 3分∴∠ODB =∠C =90°,即OD ⊥BC .··································································································································· 4分又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切.··································································································································· 5分(2) ① 设OA = OD = r ,在Rt △BDO 中,∠B = 30°,∴OB = 2r .··································································································································· 6分在Rt △ACB 中,∠B =30°,∴AB = 2AC = 6.··································································································································· 7分∴3r = 6,解得r =2.··································································································································· 8分② 在Rt △ACB 中,∠B =30°,∴∠BOD = 60°.∴ππ322360602=⋅⋅︒=︒ODES 扇形. ··································································································································· 9分∴所求图形面积为π3232-=-∆ODE BOD S S 扇形.··································································································································· 10分。
2016-2017学年江苏省无锡市江阴市青阳片九年级(上)段考数学试卷(10月份)
2016-2017学年江苏省无锡市江阴市青阳片九年级(上)段考数学试卷(10月份)一、选择题(本大题共10题,每小题3分,共计30分.)1.(3分)方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0 D.x=02.(3分)方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.(3分)在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值是()A.B.C.D.4.(3分)已知线段m、n、p、q的长度满足等式mn=pq,则下列比例式中,错误的是()A.=B.=C.=D.=5.(3分)已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC•BA C.AC2=AB•BC D.AC=2BC6.(3分)用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍7.(3分)如图,在△ABC中,DE∥BC,=,则=()A.B.C.D.8.(3分)如图,△ABC中,D、E分别在AB、AC上,单独添加下列条件可使△ADE∽△ACB,其中错误的是()A.∠1=∠C B.∠2=∠B C.=D.=9.(3分)某商品原价为100元,连续两次涨价后售价为120元,设两次平均增长率为x,满足的方程是()A.120(1+x)2=100 B.100(1+x)2=120 C.100(1+2x)2=120 D.100(1+x2)2=12010.(3分)已知:如图,在直角△ABC中,∠ACB=90°,∠CAB=30°,P为形内一点,∠BPC=120°,若BP=3,则△PAB的面积为()A.9 B.4 C.3 D.二、填空题(本大题共有8小题,每题2分,共16分)11.(2分)当m=时,关于x的方程(m+2)x m+3+6x﹣9=0是一元二次方程.12.(2分)已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为.13.(2分)在Rt△ABC中,∠C=90°,AC=3BC,则tanA=.14.(2分)若线段x是9和16的比例中项,则线段x的值为.15.(2分)一棵高3米的小树影长为4米,同时临近它的一座楼房的影长是24米,那么这座楼房高米.16.(2分)美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高157cm,下半身长为94cm,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为cm.(精确到1cm)17.(2分)如图,正方形OABC和正方形DEFG是位似图形,点B坐标为(﹣1,1),点F坐标为(4,2),且位似中心在这两个图形的同侧,则位似中心的坐标为.18.(2分)如图,四边形ABCD和AEFG均为正方形,则DG:CF:BE=.三、解答题(本大题共10小题,计84分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.(8分)解方程:(1)x2﹣6x+8=0;(2)x2﹣4x﹣3=0.20.(8分)(1)已知=,求的值.(2)已知==,求的值.21.(8分)关于x的一元二次方程2x2﹣4x+(2m﹣1)=0有实数根,(1)求m的取值范围;(2)若方程有一个根为x=1,求m的值和另一根.22.(8分)如图,已知△ABC中,AB=AC=5,BC=6.(1)求△ABC的面积;(2)求tanB的值.23.(8分)已知,如图,直角△ABC中,∠C=90°(1)在△ABC内画正方形DEFG,使得点D在AB上,E在BC上,F、G在AC上(不写画法,保留画图痕迹);(2)若BC=4,AC=6,求出(1)中所画的正方形的边长.24.(6分)某商场从厂家以每件21元的价格购进一批商品,若每件的售价为a 元,则可卖出(350﹣10a)件,商场计划要赚450元,则每件商品的售价为多少元?25.(8分)已知,如图,△ABC为等边三角形,∠DAE=120°,且∠DAE的两边交直线BC于D、E两点,(1)求证:BC2=BD•CE;(2)若DB=1,CE=4,求BC的值.26.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.27.(12分)如图,Rt△ABC中,∠ACB=90°,CA=3cm,CB=4cm,设点P、Q为AB、CB上动点,它们分别从A、C同时出发向B点匀速移动,移动速度都为1cm/秒,移动时间为t秒(0≤t≤4),在整个移动过程中,(1)当∠CPQ=90°时,求t的值.(2)当t为多少时,△CPQ是等腰三角形.28.(10分)△ABC中,AB=6,AC=4,BC=5.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB'与MC'重合,折痕为MN,求AN的长.2016-2017学年江苏省无锡市江阴市青阳片九年级(上)段考数学试卷(10月份)参考答案与试题解析一、选择题(本大题共10题,每小题3分,共计30分.)1.(3分)(2010•西藏)方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0 D.x=0【解答】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4.故选:C.2.(3分)(2014•太原三模)方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【解答】解:∵a=1,b=﹣4,c=4,∴△=b2﹣4ac=(﹣4)2﹣4×1×4=0,∴方程有两个相等的实数根.故选B.3.(3分)(2006•大连)在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值是()A.B.C.D.【解答】解:由勾股定理知,AB==5.∴sinA==.故选B.4.(3分)(2016秋•江阴市月考)已知线段m、n、p、q的长度满足等式mn=pq,则下列比例式中,错误的是()A.=B.=C.=D.=【解答】解:A、两边同时乘以最简公分母pn得mn=pq,与原式相等,正确;B、两边同时乘以最简公分母mq得mn=pq,与原式相等,正确;C、两边同时乘以最简公分母mq得mn=pq,与原式相等,正确;D、两边同时乘以最简公分母np得mq=pn,与原式不相等,错误;故选D5.(3分)(2016秋•江阴市月考)已知如图,点C是线段AB的黄金分割点(AC >BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC•BA C.AC2=AB•BC D.AC=2BC【解答】解:∵点C是线段AB的黄金分割点(AC>BC),∴=,∴AC2=AB•BC;故选C.6.(3分)(2016•奉贤区一模)用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍【解答】解:∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍,则A错误,符合题意.故选:A.7.(3分)(2015秋•包河区期中)如图,在△ABC中,DE∥BC,=,则=()A.B.C.D.【解答】解:∵DE∥BC,∴AD:AB=DE:BC,∵AD:BD=1:2,∴AD:AB=1:3,∴DE:BC=1:3.故选A8.(3分)(2016秋•江阴市月考)如图,△ABC中,D、E分别在AB、AC上,单独添加下列条件可使△ADE∽△ACB,其中错误的是()A.∠1=∠C B.∠2=∠B C.=D.=【解答】解:∵△ADE∽△ACB,∴∠1=∠C,∠2=∠B,=,故A、B、C正确,D错误.故选D.9.(3分)(2016秋•江阴市月考)某商品原价为100元,连续两次涨价后售价为120元,设两次平均增长率为x,满足的方程是()A.120(1+x)2=100 B.100(1+x)2=120 C.100(1+2x)2=120 D.100(1+x2)2=120【解答】解:依题意得两次涨价后售价为100(1+x%)2,∴方程为:100(1+x)2=120.故选B.10.(3分)(2016秋•江阴市月考)已知:如图,在直角△ABC中,∠ACB=90°,∠CAB=30°,P为形内一点,∠BPC=120°,若BP=3,则△PAB的面积为()A.9 B.4 C.3 D.【解答】解:如图,作△BPC的外接圆⊙O,交AC的延长线于D,连接BD、PD.∵∠ACB=90°,∴∠BCD=90°,∴BD是⊙O的直径.∵四边形BDCP是圆内接四边形,∴∠BDA=180°﹣∠BPC=60°,∴∠ABD=180°﹣∠BAC﹣∠BDA=180°﹣30°﹣60°=90°,则AB是⊙O的切线.设∠ABP=∠BDP=α.在直角△ABD中,AB=BD•tan∠BDA=BD,在直角△BPD中,BP=BD•sin∠BDP=BDsinα=3,则△PAB的面积是:AB•BPsin∠ABP=×BD×3sinα=×3=.故选:D.二、填空题(本大题共有8小题,每题2分,共16分)11.(2分)(2016秋•江阴市月考)当m=﹣1时,关于x的方程(m+2)x m+3+6x ﹣9=0是一元二次方程.【解答】解:∵关于x的方程(m+2)x m+3+6x﹣9=0是一元二次方程,∴m+3=2且m+2≠0.解得m=﹣1.故答案是:﹣1.12.(2分)(2015•北塘区二模)已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为4.【解答】解:设方程另一根为t,根据题意得2+t=6,解得t=4.故答案为4.13.(2分)(2016秋•江阴市月考)在Rt△ABC中,∠C=90°,AC=3BC,则tanA=.【解答】解:∵在Rt△ABC中,∠C=90°,AC=BC,∴tanA==,故答案为:.14.(2分)(2016秋•江阴市月考)若线段x是9和16的比例中项,则线段x 的值为12.【解答】解:∵线段x是9和16的比例中项,∴x2=9×16,解得x=12.故答案为:12.15.(2分)(2015秋•海门市校级期中)一棵高3米的小树影长为4米,同时临近它的一座楼房的影长是24米,那么这座楼房高18米.【解答】解:∵在同一时刻物高与影长成正比例∴3:4=楼房的高度:24∴楼房的高度为18米;故答案为:18.16.(2分)(2016秋•江阴市月考)美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高157cm,下半身长为94cm,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为8cm.(精确到1cm)【解答】解:设她应穿xcm高度的高跟鞋,由题意得:=0.618解得:x≈8(cm)答案:817.(2分)(2016秋•江阴市月考)如图,正方形OABC和正方形DEFG是位似图形,点B坐标为(﹣1,1),点F坐标为(4,2),且位似中心在这两个图形的同侧,则位似中心的坐标为(﹣4,0).【解答】解:作直线BG交x轴于点M,∵点B坐标为(﹣1,1),点F坐标为(4,2),∴AB=1,GD=2,AD=1+2=3,∵正方形OABC和正方形DEFG是位似图形,∴AB∥GD,∴,∴,∴MA=3,∴OM=MA+OA=4,∴M(﹣4,0),故答案为:(﹣4,0).18.(2分)(2016秋•江阴市月考)如图,四边形ABCD和AEFG均为正方形,则DG:CF:BE=1::1.【解答】解:连结EG交AB于O,如图,∵四边形AEFG为正方形,∴GE⊥AF,AG=AE,OA=OE=OF,∵四边形ABCD为正方形,∴AB=AD=BC,∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,在△ADG和△ABE中,∴△ADG≌△ABE,∴DG=BE,设OA=OF=OE=x,AB=BC=a,则BF=a﹣2x,在Rt△BEO中,BE2=OE2+BO2=x2+(a﹣x)2=2x2﹣2ax+a2,在Rt△BCF中,CF2=BC2+BF2=a2+(a﹣2x)2=4x2﹣2ax+2a2,∴CF2=2BE2,∴CF=BE,∴DG:CF:BE=1::1.故答案为1::1.三、解答题(本大题共10小题,计84分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.(8分)(2016秋•江阴市月考)解方程:(1)x2﹣6x+8=0;(2)x2﹣4x﹣3=0.【解答】解:(1)(x﹣2)(x﹣4)=0,则x﹣2=0,x﹣4=0,解得:x1=2,x2=4;(2)x2﹣4x﹣3=0,∵a=1,b=﹣4,c=﹣3,∴△=b2﹣4ac=16+12=28,∴x===2,则x1=2+,x2=2﹣.20.(8分)(2016秋•江阴市月考)(1)已知=,求的值.(2)已知==,求的值.【解答】解:(1)∵=,∴b=a,则==﹣;(2)设===a,则x=2a,y=3a,z=4a,==.21.(8分)(2016秋•江阴市月考)关于x的一元二次方程2x2﹣4x+(2m﹣1)=0有实数根,(1)求m的取值范围;(2)若方程有一个根为x=1,求m的值和另一根.【解答】解:(1)∵关于x的一元二次方程2x2﹣4x+(2m﹣1)=0有实数根,∴△=b2﹣4ac=42﹣4(2m﹣1)•2≥0,解之得m≤.(2)∵x=1是这个方程的一个根,∴2﹣4+2m﹣1=0,∴m=,∴方程为:x2﹣2x+1=0.整理得:(x﹣1)2=0,∴方程的根为1.答:m的值为,方程的另一根为1.22.(8分)(2016秋•江阴市月考)如图,已知△ABC中,AB=AC=5,BC=6.(1)求△ABC的面积;(2)求tanB的值.【解答】解:(1)作AD⊥BC于点D,∵在△ABC中,AB=AC=5,BC=6,∴BD=3,∴AD=4,==12;∴S△ABC(2)∵在Rt△ABD中,AD=4,BD=3,∴tanB=.23.(8分)(2016秋•江阴市月考)已知,如图,直角△ABC中,∠C=90°(1)在△ABC内画正方形DEFG,使得点D在AB上,E在BC上,F、G在AC上(不写画法,保留画图痕迹);(2)若BC=4,AC=6,求出(1)中所画的正方形的边长.【解答】解:(1)如图,过点C作∠C的平分线CD,作DE⊥BC于E,DF⊥AC 于F.四边形DECF即为所求.(2)设正方形边长为x,∵DE∥AC,∴△BDE∽△BAC,∴=,即=,∴x=2.4∴正方形的边长为2.4.24.(6分)(2016秋•江阴市月考)某商场从厂家以每件21元的价格购进一批商品,若每件的售价为a元,则可卖出(350﹣10a)件,商场计划要赚450元,则每件商品的售价为多少元?【解答】解:依题意有(a﹣21)(350﹣10a)=450,a2﹣56a+780=0,a1=26,a2=30.答:每件商品的售价为26元或30元.25.(8分)(2016秋•江阴市月考)已知,如图,△ABC为等边三角形,∠DAE=120°,且∠DAE的两边交直线BC于D、E两点,(1)求证:BC2=BD•CE;(2)若DB=1,CE=4,求BC的值.【解答】(1)证明:∵∠D+∠DAB=60°,∠DAB+∠EAC=60°∴∠D=∠EAC.又∵∠ABD=∠EAC=120°,∴△ABD∽△EAC,∴=,∴BC2=BD•CE.(2)解:∵DB=1,CE=4,由(1)知,BC2=BD•CE,∴BC=2.26.(8分)(2012•富顺县校级模拟)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.【解答】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得,AB=6.4m.27.(12分)(2016秋•江阴市月考)如图,Rt△ABC中,∠ACB=90°,CA=3cm,CB=4cm,设点P、Q为AB、CB上动点,它们分别从A、C同时出发向B点匀速移动,移动速度都为1cm/秒,移动时间为t秒(0≤t≤4),在整个移动过程中,(1)当∠CPQ=90°时,求t的值.(2)当t为多少时,△CPQ是等腰三角形.【解答】解:(1)过P作MP⊥AC与M,作PN⊥CB于N,如图,AP=CQ=t,∵∠ACB=90°,CA=3cm,CB=4cm,∴AB=5cm,PM∥BC,∴△APM∽△ACB,∴MP:BC=AM:AC=AP:AB,∴MP=t,AM=t,∴CM=3﹣t,在Rt△PCM中,PC2=PM2+MC2=(t)2+(3﹣t)2=t2﹣t+9,又∵CN=PM=t,∵∠CPQ=90°,∴Rt△CPN∽Rt△CQP,∴CP:CQ=CN:CP,即CP2=CN•CQ,∴t2﹣t+9=(t)•t,整理得:t2﹣18t+45=0,∴t1=3(t2=15舍去),∴当∠CPQ=90°时,t的值为3;(2)①CP=CQ时,t2﹣t+9=t2,t=2.5;②CP=PQ时,CN=CQ,t=t,t=0(舍);③CQ=PQ时,t2=(3﹣t)2+(t﹣t)2,t1=2﹣3,t2=2+3(舍).综上:t=2.5或t=2﹣3时,△CPQ是等腰三角形.28.(10分)(2016秋•江阴市月考)△ABC中,AB=6,AC=4,BC=5.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB'与MC'重合,折痕为MN,求AN的长.【解答】解:(1)∵AD是∠BAC的平分线,DE∥AB,∴∠EAD=∠BAD=∠EDA,∴ED=EA,即△ADE是等腰三角形,设CE=x,则AE=4﹣x=DE,∵DE∥AB,∴=,即=,解得,CE=1.6,∵DE∥AB,∴==;(2))由折叠得,∠B=∠B′,∠C=∠MC′A=∠B′C′N,AC=AC′=4,∴△ABC∽△NB′C′,∴==,设NC′=2a,则BN=B′N=3a,∵BC=AB﹣AC′=6﹣4=2,∴NC′+BN=2,即2a+3a=2,解得a=0.4,∴NC′=2a=4.8,∴AN=NC′+N′A=4.8.。
2016-2017学年苏科版初三数学上册期中测试卷及答案
2016-2017学年第一学期初三数学期中考试试卷一、选择题:(本题共10小题,每小题3分,共30分) 1.已知2a b =,那么a bb+的值是…………………………………………………………………………( ) A .3; B .4; C .5; D .6;2.如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是……………………( ) A .4:9 ;B .2:3; C .16:81; D .9:4;3.如图,D 为△ABC 边BC 上一点,要使△ABD ∽△CBA ,应该具备下列条件中的……………………( ) A .AC AB CD CD =;B .AB BC CD AD =;C .AB BD CB AB =;D .AC CBCD AC=; 4. 二次函数2(1)2y x =--图象的对称轴是……………………………………………………………( ) A .直线1x =- B .直线1x = C .直线2x =- D .直线2x =5.如图,四边形ABCD 是平行四边形,E 是BC 的延长线上一点,AE 与CD 相交于F ,与△CEF 相似的三角形有………………………………………………………………………………………………………( )个. A .1 B .2 C .3 D .46. 可以把抛物线2y x =平移后得到()223y x =+-,则下列平移过程正确的是……………………( )A .向左移2个单位,下移3个单位; B. 向右移2个单位,上移3个单位; C .向右移2个单位,下移3个单位; D .向左移2个单位,上移3个单位;7.如图,线段CD 两个端点的坐标分别为C (3,3),D (4,1),以原点O 为位似中心,在第一象限内将线段CD 放大为原来的2倍后得到线段AB ,则端点B 的坐标为………………………………………………( ) A .(6,6) B .(6,8) C .(8,6) D .(8,2)8. 二次函数2y ax bx c =++的图象如图,则一次函数y ax b =+的图象不经过……………………( ) A .第一象限; B .第二象限 ; C .第三象限; D .第四象限;9. (2016•兰州)点1P (-1,1y ),2P (3,2y ),3P (5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是………………………………………………………………………………( ) A .321y y y >>;B .312y y y >=;C .123y y y >>;D .123y y y =>;10.(2016•黔南州)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重第3题图 第7题图第5题图第8题图第10题图第12题图 第14题图叠面积为y ,则y 关于x 的函数图象是……………………………………………………………………( )二、填空题:(本题共8小题,每小题3分,共24分)11.已知线段AB=1,C 是线段AB 的黄金分割点,且AC <CB ,则AC 的长度为 . 12.(2015•漳州)如图,AD ∥BE ∥CF ,直线1l ,2l 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23AB BC =,DE=6,则EF= . 13. 已知两相似三角形对应高的比为3:10,且这两个三角形的周长差为56cm ,则较小的三角形的周长为 .14. 用配方法将21213y x x =-+写成()2y a x h k =-+的形式,结果为 . 15. 如图是二次函数21y ax bx c =++和一次函数2y kx b =+的图象,当12y y ≥时,x 的取值范围是 .16. (2016•随州)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若:1:25DOE COA S S = ,则BDE S 与CDE S 的比是 .17. (2015•泰州)如图,△ABC 中,D 为BC 上一点,∠BAD=∠C ,AB=6,BD=4,则CD 的长为 . 18. (2016•通辽)如图是二次函数2y ax bx c =++图象的一部分,图象过点A (-3,0),对称轴为直线1x =-,给出以下结论:①abc <0 ;②240b ac ->③4b+c <0 ;④若B 15,2y ⎛⎫- ⎪⎝⎭、C 21,2y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y >;⑤当-3≤x ≤1时,y ≥0;其中正确的结论是(填写代表正确结论的序号) .三、解答题:(本题共10大题,共76分) 19.(本题满分6分)已知线段a 、b 、c 满足a :b :c=3:2:6,且a+2b+c=26. (1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值. 20.(本题满分6分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D . (1)证明:△ACD ∽△CBD ;(2)已知AD=2,BD=4,求CD 的长.A. B. C. D. 第16题图第17题图 第18题图21. (本题满分6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点). (1)将△ABC 向上平移3个单位得到111A B C ,请画出111A B C ; (2)请画一个格点222A B C ,使222ABC ∽△ABC ,且相似比不为1.22. (本题满分8分)如图,已知二次函数2y ax bx c =++的图象过A (2,0),B (0,-1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.23. (本题满分6分)如图,一位同学想利用树影测量树AB 的高,他在某一时刻测得直立于地面上的一根长为1m 的竹竿影长为0.9m ,但他马上测量树AB 的影长时,因树AB 靠近一幢建筑物,有一部分影子落在建筑物的墙上,他先测得落在建筑物墙上的影高CD 为1.2m ,又测得落在地面上的影长为2.7m ,求树AB 的高.24. (本题满分7分) 如图,抛物线22y x x c =-++与x 轴交于A ,B 两点,它的对称轴与x 轴交于点N ,过顶点M 作ME ⊥y 轴于点E ,连结BE 交MN 于点F ,已知点A 的坐标为(-1,0). (1)求该抛物线的解析式及顶点M 的坐标.(2)求△EMF 与△BNF 的面积之比.25. (本题满分9分)(2015•宁波)已知抛物线()()2y x m x m =---,其中m 是常数. (1)求证:不论m 为何值,该抛物线与x 轴一定有两个公共点; (2)若该抛物线的对称轴为直线52x =. ①求该抛物线的函数解析式;②把该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与x 轴只有一个公共点.26.(本题满分9分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的1y 与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?少?27 (本题满分9分)(2016•梅州)如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,∠BAC=60°,动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 的速度向点B 匀速运动,设运动时间为t 秒(0≤t ≤5),连接MN . (1)若BM=BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值;(3)当t 为何值时,四边形ACNM 的面积最小?并求出最小值.28. (本题满分10分)(2016•衡阳)如图,抛物线2y ax bx c =++经过△ABC 的三个顶点,与y 轴相交于90,4⎛⎫⎪⎝⎭,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.参考答案一、选择题:1.A ;2.B ;3.C ;4.B ;5.B ;6.A ;7.D ;8.D ;9.D ;10.B ; 二、填空题:11.12.9;13.24;14. ()21323y x =--;15. 1x ≥或2x ≤-;16.1:4;17.5;18.②③⑤; 三、解答题:19.(1)6a =,4b =,12c =;(2)x = 20.(1)略;(2)21.略;22.(1)211122y x x =--;(2)D (-1,0);(3)14x -<<;23.4.2; 24.(1)223y x x =-++;(1)1:4;25.(1)10∆=>;(2)256y x x =-+;(3)14;26.(1)解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)这个一次函数的表达式为;0.260y x =-+(0≤x ≤90); (3)设2y 与x 之间的函数关系式为22y k x b =+, 这个一次函数的表达式为20.6120y x =-+(0≤x ≤130), 设产量为xkg 时,获得的利润为W 元,当0≤x ≤90时,W=x[(-0.6x+120)-(-0.2x+60)]= ()20.4752250x --+, ∴当x=75时,W 的值最大,最大值为2250;当90≤x ≤130时,W=x[(-0.6x+120)-42]= ()20.6652535x --+,由-0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,W ≤2160, ∴当x=90时,W=-0.6(90-65)2+2535=2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250.27. 解:(1)∵在Rt △ABC 中,∠ACB=90°,AC=5,∠BAC=60°, ∴∠B=30°,∴AB=2AC=10,BC =.由题意知:BM=2t ,CN ,∴BN =,∵BM=BN ,∴2t =,解得:15t =.(2)当52t =或t =157时,△MBN 与△ABC 相似. (3)过M 作MD ⊥BC 于点D ,则MD ∥AC ,当52时,y 的值最小.此时,y 最小=28.(1)21944y x =-+;(2)(2)F (1,1);(3)当△DMN 是等腰三角形时,t 的值为12,31.。
江阴市青阳片2016届九年级上期中考试数学试题及答案
数根.”请根据你对这句话的理解,解决下面问题:若 m、n(m<n)是关于 x 的方程 1﹣(x﹣a)(x﹣b)=0 的
得的弦 AB 的长为 2 5 ,则 a 的值是 ▲ .
18. 如图,平面直角坐标系中,分别以点 A(﹣2,3),B(3,4)为圆心,以 1、2 为半径作⊙A、⊙B,M、N
分别是⊙A、⊙B 上的动点,P 为 x 轴上的动点,则 PM+PN 的最小值等于 ▲ .
电量的调查结果:
居民(户) 1 3 2 4
月用电量(度/ 40 50 55 60
户)
2015—2016 学年第一学期初三数学期中考试试卷
本试卷分试题和答题卷卡两部分,所有答案一律写在答题卷上.考试时间为 120 分钟,试卷
满分 130 分.
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题所给出的四个选项中,只有一
(3) (x 2)(x 3) 12 (4)2x2﹣2 2 x﹣5=0(公式法);
Байду номын сангаас
20.(本题满分 8 分)
如图,在△ABC 中,已知∠BAC=45°,AD⊥BC 于 D,BD=2,DC=3,求 AD 的长。
两根,且 a<b,则 a、b、m、n 的大小关系是( ▲ )
A. m<a<b<n B. a<m<n<b C. a<m<b<n D. m<a<n<b
项是正确的. 请把答案直接填写在答题卷相应位置上.)
1. 5 的相反数是 ( ▲ )
2016-2017学年度苏科版九年级上册期中考试数学试卷含答案
2016-2017学年度第一学期初三年级期中考试数 学 试 卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算正确的是(▲) A .632x x x =+B .()623x x= C .xy y x 532=+ D .236x x x =÷2x 的取值范围是(▲)A .13x ≥B .13x >C . 13x >- D .13x ≥-3.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是(▲)A.1k >-B.1k <且0k ≠C. 1k ≥-且0k ≠D. 1k >-且0k ≠ 4.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A 、C ,则劣弧 ⌒AC的长度为(▲) A .35πB .45πC .34πD .23π5.如图,MN 是圆柱底面的直径,MP 是圆柱的高,在圆柱的侧面上,过点M ,P 有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿MP 剪开,所得的侧面展开图可以是(▲)A B C D6.有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是 (▲)A.如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B.如果6是方程M 的一个根,那么 是方程N 的一个根;C.如果方程M 和方程N 有一个相同的根,那么这个根必是 ;D.如果方程M 有两根符号相异,那么方程N 的两根符号也相异; 二、填空题(本大题共8小题,每小题2分,共16分) 7.分解因式:2a 2﹣2= ▲ .(第7题)E(第4题)1-=x 618.近似数8.6×105精确到 ▲ 位. 9.正十边形的每个内角为 ▲ 度. 10.若反比例函数xm y 1-=的图象位于第二、四象限内,则m 的取值范围是 ▲ 11.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 ▲ .12.如图,AB 为⊙O 的弦,△ABC 的两边BC 、AC 分别交⊙O 于D 、E 两点,其中∠B =60°,∠EDC =70°,则∠C = ▲ 度.(12题图) (14题图)13.若关于x 的一元二次方程x 2+bx+c=0的两个实数根分别为x 1=﹣1,x 2=2,则b+c 的值 是 ▲ .14.如图,直线y =x -2与x 轴、y 轴分别交于M 、N 两点,现有半径为1的动圆圆心位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN 有公共点产生,当第一次出现公共点到最后一次出现公共点,这样一次过程中该动圆一共移 动 ▲ 秒.三、解答题(本大题共10小题,共84分.) 15.解方程:(本题满分16分).(1)x 2﹣2x =0; (2)x (x+4)=﹣3(4+x )(3)2x 2-3x+1=0 (4)()()22142x x +=-16.(本题满分6分). 先化简,再求值:a a a a 291312+-÷--,其中a 是方程02142=-+x x 的根.17.(本题满分6分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29-27分;C:26-24分;D:23-18分;E:17-0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年5000名九年级学生中,体育成绩为优秀的学生人数有多少人?18.(本题满分6分).如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140º,求∠AFE的度数.19.(本题满分6分).如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.20.(本题满分6分)已知:如图,点E 是正方形ABCD 中AD 边上的一动点,连结BE ,作∠BEG =∠BEA 交CD 于G ,再以B 为圆心作AC ︵,连结BG .(1)求证:EG 与AC ︵相切 (2)求∠EBG 的度数;GD21.(本题满分6分)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.(1)作出△ABC 关于点O 的中心对称图形△A ′B ′C ′; (2)△A ′B ′C ′绕点B ′顺时针旋转90°,画出旋转后得到的△A ″B ′C ″,并求边A ′B ′在旋转过程中扫过的图形面积.22.(6分)如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m 2,那么通道的宽应设计成多少m ?23.(6分)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.24.(本题满分6分).已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.25.(8分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x千克.(1)大号苹果的单价为▲元/千克;小号苹果的单价为▲ 元/千克;(用含x的代数式表示)(2)若水果超市售完购进的1000千克苹果,请解决以下问题:①若所获利润为3385元,求x的值.②当x为何值时,所获利润最大?2016-2017学年度第一学期初三年级期中考试数 学 答 案一、选择题:本大题共6小题,每小题3分,共18分.1.B 2. A 3. D 4. B 5.D 6 .C二、填空题:本大题共8小题,每小题2分,共16分.7.2(a +1)(a -1) 8.万 9.144 10.m <1 11.10% 12.50 13. -3 14. 三、解答题:本大题共10小题,共86分.15.(本题满分16分)(1)0,2(2) -4,-3 (3)1,21(4) 1,5 16.(本题满分6分)化简得:a 2+4a-3,代入得18.17.(本题满分6分)(1)B 组的人数是:200-70-40-30-10=50(人), 补图如下:(4分)(2)根据题意得:200405070++×5000=4000(人),答:体育成绩为优秀的学生人数有4000人. (6分)2218.(本题满分6分)(1)证明:∵正方形ABCD 中,E 为对角线AC 上一点,∴BC =DC ,∠BCE =∠DCE =45º又∵CE =CE ∴△BCE ≌△DCE (SAS )(2)解:由全等可知,∠BEC =∠DEC =12∠DEB =12×140º=70º在△BCE 中,∠CBE =180º―70º―45º=65º ∴在正方形ABCD 中,AD ∥BC ,有∠AFE =∠CBE =65º19.(本题满分6分)解:(1)∵反比例函数y =(k 为常数,且k ≠0)经过点A (1,3), ∴3=,解得:k =3,∴反比例函数解析式为y =; (2)设B (a ,0),则BO =a ,∵△AOB 的面积为6,∴•a •3=6,解得:a =4,∴B (4,0), 设直线AB 的解析式为y =kx +b ,∵经过A (1,3)B (4,0), ∴,解得,∴直线AB 的解析式为y =﹣x +4.20.(1)证明:过点B 作BF ⊥EG ,垂足为F ,∴∠BFE =90°∵四边形ABCD 是正方形 ∴∠A =90°,∴∠BFE =∠A , (1分) ∵∠BEG =∠BEA ,BE =BE ,∴△ABE ≌△FBE , (2分) ∴BF =BA , (3分)∵BA 为弧AC 的半径, ∴B F 为弧AC 的半径,∴EG 与弧AC 相切; (4分) (2)解:由(1)可得△ABE ≌△FBE ,∴∠1=∠ABE =21∠ABF , (5分) ∵四边形ABCD 是正方形, ∴∠C =∠ABC =90°, ∴CD 是⊙O 切线,由(1)可得EG 与弧AC 相切, ∴GF =GC , ∵BF ⊥EG ,BC ⊥CD ,∴∠2=∠CBG =21∠FBC , (7分)∴∠EBG=∠1+∠2=21(∠ABF +∠FBC )= 21∠ABC =45° (8分) 21.(本题满分6分)S=45π.22.(本题满分6分)设道路的宽为xm ,可列方程(30-2x )(20-x )=6×78 解得:x=33(舍去)或x=223.(本题满分6分)815 24.(1)证明:k≠0,△=(4k+1)2﹣4k (3k+3)=(2k ﹣1)2,∵k 是整数,∴k≠,2k ﹣1≠0,∴△=(2k ﹣1)2>0,∴方程有两个不相等的实数根; (2)解:y 是k 的函数. 解方程得,x==,∴x=3或x=1+,∵k 是整数,∴≤1,∴1+≤2<3. 又∵x 1<x 2,∴x 1=1+,x 2=3, ∴y=3﹣(1+)=2﹣.25.(本题满分8分)解:(1)16-0.03x ;10+0.02x ;(2)①由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x化简,整理得032300202=--x x解得:190=x 或170-=x②设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x=﹣0.05x 2+x +5000当x =10时,所获最大利润为5005元. 26.(本题满分8分)(2)。
江苏省无锡市江阴市九年级(上)期中数学试卷
B. 11.7 米
C. 102 米
8. 如图,△ABC 内接于⊙O,∠OBC=40°,则∠A 的度数为(
A. 80∘
B. 100∘
C. 110∘
D. 130∘
D. (52+1.7)米
)
9. 国家统计局 2017 年年底发布数据,我国国内生产总值从 2012 年的 54 万亿元增长 到 2017 年的 80 万亿元,且每年的经济增量基本持平,多项经济指标好于预期,设
7.【答案】B
【解析】
解:延长 BD 交 EF 于 H,如图, ∵BD∥AF,EF⊥AF, ∴BH⊥EF, 易得四边形 ABHF 为矩形, ∴AF=BH=10,HF=AB=1.7, ∵△BCD 为等腰直角三角形, ∴∠CBD=45°, ∴△BHE 为等腰直角三角形, ∴EH=BH=10, ∴EF=EH+HF=10+1.7=11.7. 答:旗杆 EF 的高度为 11.7m. 故选:B. 延长 BD 交 EF 于 H,如图,利用四边形 ABHF 为矩形得到 AF=BH=10, HF=AB=1.7,再利用△BCD为等腰直角三角形,可判断△BHE 为等腰直角三 角 形,所以 EH=BH=10, 然后计算 EH+HF ✃可. 本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相 似三角形对应边的比相等的性质求物体的高度.也考查了等腰直角三角形的 性质.
1 若半径为 1 的⊙O 经过点 A、B、D,且∠A=60°,求此时菱形的边长; 2若点 P 为 AB 上一点,把菱形 ABCD 沿过点 P 的直线 a 折叠,使点 D 落在 BC边 上,利用无刻度的直尺和圆规作出直线 a.(保留作图痕迹,不必说明作法 和理 由)
27. 如图,在平面直角坐标系 xOy 中,点 A、B 的坐标 分别为(16,8)、(0,8),线段CD在 x轴上,CD=6, 点 C 从原点出发沿 x 轴正方向以每秒 2 个单位长度 向右平移,点 D 随着点 C 同时同速同方向运动,过 点 D 作 x 轴的垂线交线段 AB 于点 E,交 OA 于点 G ,连接 CE 交 OA 于点 F.设运动时间为 t,当 E 点 到达 A 点时,停止所有运动. 1 求线段 CE 的长; 2 记△CDE 与△ABO 公共部分的面积为 S,求 S 关于 t 的函数关系式; 3 连接 DF.当 t 取何值时,以 C、F、D 为顶点的三角形为等腰三角形?
江苏省江阴试题青阳二中九年级数学上学期期中考试题
AEFC BD(第8题) ODCBA江苏省江阴试题青阳二中九年级数学上学期期中考试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卷上相应的选项标号涂黑.............) 1.估计11的值 ( ▲ )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 2.下面计算正确的是( ▲ )A .3333+=B .2733+=C .235⋅=D .2(2)2-=3. 下列几个常见统计量中能够反映一组数据波动范围的是( ▲ )A. 平均数B. 中位数C. 极差D. 众数4.若2x =是关于x 的一元二次方程280x mx -+=的一个根,则m 的值是( ▲ ) A. 6 B. 5 C. 2 D. 6-5.关于x 的方程2210x kx k ++-=的根的情况描述正确的是 ( ▲ ) A .k 为任何实数,方程都没有实数根;B .k 为任何实数,方程都有两个不相等的实数根;C .k 为任何实数,方程都有两个相等的实数根;D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种。
6. 如图,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形的个数共有( ▲ ) A .12个 B .9个 C .7个D .5个(第7题)7.矩形ABCD 中,对角线AC 、BD 相交于点0,若∠AOB=600,AB=5,则AD 的长是( ▲ ) A. 53525 D. 108.如图,在Rt ABC △中,90ACB ∠=°,30A ∠=°,2BC =.将ABC △绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ▲ )A .302,B .602,C .360, D .603,9. 已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -、(5,0)B 、(2,2)C 、(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( ▲ )A. 27-B. 29-C. 47-D. 23-10.下列说法中:①一个角的两边分别垂直于另一个角的两边,则这两个角相等; ②数据5,2,7,1,2,4的中位数是3,众数是2; ③等腰梯形既是中心对称图形,又是轴对称图形;④Rt △ABC 中,∠C =90°,两直角边a ,b 分别是方程x 2-7x +7=0的两个根,则AB 边上的中线长为1235。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省无锡市江阴市青阳片九年级(上)期中数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.(3分)计算的值为()A.±4 B.±2 C.4 D.22.(3分)下列各组数中,成比例的是()A.﹣7,﹣5,14,5 B.﹣6,﹣8,3,4 C.3,5,9,12 D.2,3,6,123.(3分)下列说法正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.不同的圆中不可能有相等的弦D.直径是弦且同一个圆中最长的弦4.(3分)下列四个三角形中,与图中的三角形相似的是()A. B. C. D.5.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12 B.14 C.12或14 D.以上都不对6.(3分)家用电冰箱在使用过程中能有效地散热是节电的有效途径之一.将一台家用电冰箱置于厨房的墙角,如图是它的俯视图,∠DAO=22°,冰箱的后背AD=110cm,AD平行于前沿BC,且与BC的距离为60cm,则从墙角O到前沿BC 的距离约为(精确到1cm)()A.97cm B.98cm C.99cm D.100cm7.(3分)顺次连接三角形三边的中点,所得的三角形与原三角形对应高的比是()A.1:4 B.1:3 C.1:D.1:28.(3分)如图,直线l与⊙O相交于A、B两点,且与半径OC垂直,垂足为H,已知AB=16cm,sin∠OBH=,则⊙O的半径为()A.6cm B.10cm C.12cm D.cm9.(3分)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm 得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A.4:3 B.3:2 C.14:9 D.17:910.(3分)直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC 与直线l2交于点D,则线段BD的长度为()A.B.C.D.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.(2分)已知3x=5y,则=.12.(2分)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为m.13.(2分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为厘米.14.(2分)如图,若△ADE∽△ACB,AB=4,BC=3,AE=2,则DE=.15.(2分)如图,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于.16.(2分)如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是.17.(2分)如图,数轴上半径为1的⊙O从原点O开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P以每秒2个单位的速度向左运动,经过秒后,点P在⊙O上.18.(2分)一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长m的范围是.三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)﹣+cos45°(2)sin30°﹣(﹣)0+2tan45°.20.(8分)解方程与不等式(1)2(x﹣3)﹣2≤0;(2)x2﹣2x=2x+1.21.(6分)如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.22.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(画出图形)(3)△A2B2C2的面积是平方单位.23.(8分)服装城某柜台销售一批名牌羽绒衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,柜台决定采取降价措施.经调查发现,如果每件羽绒衫每降价1元,柜台平均每天可多售出2件.若柜台平均每天盈利1200元,每件羽绒衫应降价多少元?24.(6分)如图,已知cos∠ABM=,AB=20,C是射线BM上一点.(1)求点A到BM的距离;(2)在下列条件中,可以唯一确定BC长的是(填写所有符合条件的序号),①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.25.(8分)在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是△ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(20﹣20)cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2014秒,交点又在什么位置?请说明理由.26.(10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)问师生何时回到学校?(2)如果运送工具的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求13时至14时之间返回学校,往返平均速度分别为每小时8km、6km.试通过计算说明植树点选在距离学校多远较为合适.27.(10分)已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图.(1)若BD是AC的中线,求的值;(2)若BD是∠ABC的角平分线,求的值;(3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究的值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由.28.(12分)如图1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D是BC 上一定点.动点P从C出发,以2cm/s的速度沿C→A→B方向运动,动点Q从D 出发,以1cm/s的速度沿D→B方向运动.点P出发5s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当0≤t≤5时△BPQ的面积S (cm2)与点P的运动时间t(s)的函数图象.(1)CD=,a=;(2)当点P在边AB上时,为何值时,使得△BPQ与△ABC为相似?(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时t的值.2016-2017学年江苏省无锡市江阴市青阳片九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内)1.(3分)计算的值为()A.±4 B.±2 C.4 D.2【解答】解:=4.故选:C.2.(3分)下列各组数中,成比例的是()A.﹣7,﹣5,14,5 B.﹣6,﹣8,3,4 C.3,5,9,12 D.2,3,6,12【解答】解:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.故选:B.3.(3分)下列说法正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.不同的圆中不可能有相等的弦D.直径是弦且同一个圆中最长的弦【解答】解:A、等弧指的是在同圆或等圆中,能够互相重合的弧,而不是长度相等,就一定能够重合,故错误;B、不在同圆或等圆中,故错误;C、等弦即只要长度相等即可,故错误;D、正确.故选:D.4.(3分)下列四个三角形中,与图中的三角形相似的是()A. B. C. D.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.5.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12 B.14 C.12或14 D.以上都不对【解答】解:解方程x2﹣12x+35=0,得x1=5,x2=7,即第三边的边长为5或7.∵三角形两边的长是3和4,∴1<第三边的边长<7,∴第三边的边长为5,∴这个三角形的周长是3+4+5=12.故选:A.6.(3分)家用电冰箱在使用过程中能有效地散热是节电的有效途径之一.将一台家用电冰箱置于厨房的墙角,如图是它的俯视图,∠DAO=22°,冰箱的后背AD=110cm,AD平行于前沿BC,且与BC的距离为60cm,则从墙角O到前沿BC 的距离约为(精确到1cm)()A.97cm B.98cm C.99cm D.100cm【解答】解:如图所示,作OF⊥BC,交AD于E,∵OA=AD•cos∠DAO=110•cos22°≈102,∴OE=OA•sin∠OAE=102•sin22°≈38,∴OF=OE+EF=98,∴OF约为98cm.故选:B.7.(3分)顺次连接三角形三边的中点,所得的三角形与原三角形对应高的比是()A.1:4 B.1:3 C.1:D.1:2【解答】解:因为顺次连接三角形三边的中点,所得的三角形与原三角形相似,且:相似三角形对应高的比等于相似比.又因为:顺次连接三角形三边的中点,所得的三角形的三边的长等于原三角形对应边的一半,所以:顺次连接三角形三边的中点,所得的三角形与原三角形对应高的比是1:2故选:D.8.(3分)如图,直线l与⊙O相交于A、B两点,且与半径OC垂直,垂足为H,已知AB=16cm,sin∠OBH=,则⊙O的半径为()A.6cm B.10cm C.12cm D.cm【解答】解:∵OC⊥AB,AB=16cm,∴BH=AB=8cm,∵sin∠OBH=,∴设OH=3x,则OB=5x,在Rt△OBH中,∵OH2+BH2=OB2,即(3x)2+82=(5x)2,解得x=2cm,∴OB=5x=10cm.故选:B.9.(3分)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm 得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A.4:3 B.3:2 C.14:9 D.17:9【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:=.故选:C.10.(3分)直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC 与直线l2交于点D,则线段BD的长度为()A.B.C.D.【解答】解:分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC===5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴=,=,解得CD=,在Rt△BCD中,∵CD=,BC=5,∴BD===.故选:A.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在题中的横线上)11.(2分)已知3x=5y,则=.【解答】解:∵3x=5y,∴=,故答案为:.12.(2分)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为4m.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.13.(2分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为10厘米.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16设OF=x,则ON=OF,∴OM=MN﹣ON=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.14.(2分)如图,若△ADE∽△ACB,AB=4,BC=3,AE=2,则DE=.【解答】解:∵△ADE∽△ACB,∴=,即=,解得,DE=,故答案为:.15.(2分)如图,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于1:3.【解答】解:∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放∴∠D=30°,∠A=45°,AB∥CD∴∠A=∠OCD,∠D=∠OBA∴△AOB∽△COD设BC=a∴CD=a∴S △AOB :S △COD =1:3故答案为1:316.(2分)如图,在平面直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA=,AB=1,则点A 1的坐标是 (,) .【解答】解:由OA=,AB=1可得tan ∠AOB=,那么∠AOB=30°,所以∠A 1OB=∠AOB=30°,OA 1=OA=, 则∠A 1OC=30°,作A 1D ⊥y 轴于点D ,利用三角函数可得A 1D=,DO=1.5,故A 1的坐标为:(,).17.(2分)如图,数轴上半径为1的⊙O 从原点O 开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P 以每秒2个单位的速度向左运动,经过 2或 秒后,点P 在⊙O 上.【解答】解:设x 秒后点P 在圆O 上,∵原点O 开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P 以每秒2个单位的速度向左运动,∴当第一次点P 在圆上时,(2+1)x=7﹣1=6解得:x=2;当第二次点P在圆上时,(2+1)x=7+1=8解得:x=答案为:2或;18.(2分)一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长m的范围是介于和之间的任意两个实数.【解答】解:EF∥BC时,EF为最短面径,此时,,即,解得EF=,等边三角形的高AD是最长的面径,AD=×2=,所以,它的面径长可以是介于和之间的任意两个实数.故答案为:介于和之间的任意两个实数三、解答题(本大题共10小题,共84分,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)﹣+cos45°(2)sin30°﹣(﹣)0+2tan45°.【解答】解:(1)原式=﹣3+=﹣3;(2)原式=﹣1+2×1=.20.(8分)解方程与不等式(1)2(x﹣3)﹣2≤0;(2)x2﹣2x=2x+1.【解答】解:(1)2(x﹣3)﹣2≤0,2x﹣6﹣2≤0,2x≤8,x≤4;(2)x2﹣2x=2x+1,x2﹣4x+22=1+22,(x﹣2)2=5,x﹣2=±,x=2±.21.(6分)如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.【解答】解:(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB=,AD=1,∴AB==3,∴BD==2,∴BC=BD+DC=2+1;(2)∵AE是BC边上的中线,∴CE=BC=+,∴DE=CE﹣CD=﹣,∴tan∠DAE==﹣.22.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(画出图形)(3)△A2B2C2的面积是10平方单位.【解答】解:(1)在直角坐标系中,图形沿平行于y轴的方向平移,图形上对应点的横坐标不变,纵坐标减去平移的单位长度∴点C1的坐标为(2,﹣2)故答案为:(2,﹣2)(2)所求图形如下图所示:即:△A2B2C2为所求作的图形.点C2的坐标为:(1,0)故答案为:(1,0)(3)S△A 2B2C2的面积=S﹣S﹣S△B2NC2=(2+4)×6﹣×2×4﹣×2×4=18﹣4﹣4=10(平方单位)故答案为:10平方单位23.(8分)服装城某柜台销售一批名牌羽绒衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,柜台决定采取降价措施.经调查发现,如果每件羽绒衫每降价1元,柜台平均每天可多售出2件.若柜台平均每天盈利1200元,每件羽绒衫应降价多少元?【解答】解:设每件羽绒衫应降价x元.根据题意,得(40﹣x)(20+2x)=1200整理,得x2﹣30x+200=0解得x1=10,x2=20.∵扩大销售量,减少库存,∴x1=10应略去,∴x=20,答:每件羽绒衫应降价20元.24.(6分)如图,已知cos∠ABM=,AB=20,C是射线BM上一点.(1)求点A到BM的距离;(2)在下列条件中,可以唯一确定BC长的是②③(填写所有符合条件的序号),①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.【解答】解:(1)过A作AH⊥BC于H,∵cos∠ABM==,∴BH=×20=16,∴AH==12,即点A到BM的距离为12;(2)当AC=13时,以A为圆心,13为半径作圆与BM有两个交点,所以此时C 点有两个;当tan∠ACB=,在Rt△ACH中,tan∠ACH==,则CH=5,所以BC=BH+CH=16+5=21;当△ABC的面积为126时,则•12•BC=216,所以BC=36.故答案为②③.25.(8分)在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是△ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(20﹣20)cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2014秒,交点又在什么位置?请说明理由.【解答】解:(1)如图1,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2tcm.在Rt△ABD中,AD=AB=t,BD=AB=t.在Rt△AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD﹣MD.即t﹣t=20﹣20.解得t=20.∴AB=2×20=40cm.答:AB的长为40cm.(2)如图2,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN===.∴光线AP旋转6秒,与BC的交点N距点B cm处.如图3,设光线AP旋转2014秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2014=125×16+14,即AP旋转2014秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=,∵AB=AC,∠BAC=120°,∴BC=2ABcos30°=2×40×=40,∴BQ=BC﹣CQ=40﹣=,∴光线AP旋转2014秒后,与BC的交点Q在距点B cm处.26.(10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)问师生何时回到学校?(2)如果运送工具的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求13时至14时之间返回学校,往返平均速度分别为每小时8km、6km.试通过计算说明植树点选在距离学校多远较为合适.【解答】解:(1)如图,设直线AB的解析式为s=kt+b,把A(12,8),B(13,3)分别代入得,解得,∴直线AB的解析式为s=﹣5t+68,令s=0,则﹣5t+68=0,解得t=13.6,∴C点坐标为(13.6,0),∴师生13.6时回到学校;(2)∵三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,∴连接点(8.5,0)和(9.5,8)所得得线段为该三轮车离校路程s与时间t之间的图象,三轮车追上师生时离学校的路程为4km;(3)师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求13时至14时之间返回学校,则师生骑自行车往返所用的时间在3小时至4小时之间,设植树点在距离学校xkm,∴3≤+≤4,解得≤x≤,∴植树点选在距离学校在km至km之间较为合适.27.(10分)已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图.(1)若BD是AC的中线,求的值;(2)若BD是∠ABC的角平分线,求的值;(3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究的值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由.【解答】解:设CD=AD=a,则AB=AC=2a.(1)在Rt△ABD中,由勾股定理得:BD=a,∵∠A=∠E=90°,∠ADB=∠EDC,∴△BAD∽△CED,∴=,∴=,解得:CE=,∴==;(2)过点D作DF⊥BC于F,∵BD是∠ABC的平分线,∴AD=DF,∵在Rt△ABC中,cos∠ABC==,在Rt△CDF中,sin∠DCF==,即=,∴=,即=,∴CD=2(2﹣)a,∴AD=AC﹣CD=2a﹣2(2﹣)a=2(﹣1)a,∴BD2=AD2+AB2=8(2﹣)a2,∵Rt△ABD∽Rt△CED,∴CE==a2.∴===2.(3)当D在A点时,=1,当D越来越接近C时,越来越接近无穷大,∴的取值范围是≥1.设AB=AC=1,CD=x,AD=1﹣x,在Rt△ABD中,BD2=12+(1﹣x)2,又∵Rt△ABD∽Rt△ECD,∴=,即=,解得:CE=,若,则有3x2﹣10x+6=0,∵0<x≤1,∴解得∴,表明随着点D从A向C移动时,BD逐渐增大,而CE逐渐减小,的值则随着D从A向C移动而逐渐增大,∴探究的值能小于,此时AD=.28.(12分)如图1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D是BC 上一定点.动点P从C出发,以2cm/s的速度沿C→A→B方向运动,动点Q从D 出发,以1cm/s的速度沿D→B方向运动.点P出发5s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当0≤t≤5时△BPQ的面积S (cm2)与点P的运动时间t(s)的函数图象.(1)CD=2,a=;(2)当点P在边AB上时,为何值时,使得△BPQ与△ABC为相似?(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时t的值.【解答】解:(1)当点P运动到点A时,△BPQ的面积为18,∴•6•BD=18,解得BD=6,∴CD=BC﹣BD=2,当t=5s时,AP=2×5﹣6=4,点Q在D点,点P在AB上如图①,作PH⊥BC于H,在Rt△ABC中,AC=6,BC=8,∴AB==10,∵PH∥AC,∴△BPH∽△BAC,∴=,即=,解得PH=,=×6×=,∴S△PBQ即a=;故答案为:2,;(2)点P在边AB上,当3<t≤5,点Q在D点,BP=16﹣2t,若PD⊥BC,△BPQ∽△BAC,∴=,即=,解得t=;当5<t≤8,DQ=t﹣5,则BQ=8﹣2﹣(t﹣5)=11﹣t,BP=16﹣2t,当∠PQB=90°时,△BPQ∽△BAC,如图②,∵△BPQ∽△BAC,∴=,即=,解得t=3,不合题意舍去;当∠BPQ=90°时,△BPQ∽△BAC,如图③,∵△BPQ∽△BCA,∴=,即=,解得t=6,综上所述,当t为或6时,△BPQ与△ABC为相似;(3)PB=16﹣2t,BQ=11﹣t,当BP=BQ,则16﹣2t=11﹣t,解得t=5;当PB=PQ,作PM⊥BC于M,如图④,则BM=BQ=(11﹣t),∵PM∥AC,∴△BPM∽△BAC,∴=,即=,解得t=,综上所述,当△BPQ是以BP为腰的等腰三角形时t的值为5或.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。