塔吊(悬臂吊)混凝土基础抗倾翻稳定性计算
塔吊稳定性验算
塔吊稳定性验算塔吊稳定性验算可分为有荷载时和无荷载时两种状态。
(一)、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;G──起重机自重力(包括配重,压重),G=670.00(kN);c──起重机重心至旋转中心的距离,c=0.80(m);h0──起重机重心至支承平面距离, h0=6.00(m);b──起重机旋转中心至倾覆边缘的距离,b=2.50(m);Q──最大工作荷载,Q=60.00(kN);g──重力加速度(m/s2),取9.81;v──起升速度,v=1.00(m/s);t──制动时间,t=20(s);a──起重机旋转中心至悬挂物重心的水平距离,a=15.00(m);W1──作用在起重机上的风力,W1=5.00(kN);W2──作用在荷载上的风力,W2=1.00(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m);h──吊杆端部至支承平面的垂直距离,h=41.25(m);n──起重机的旋转速度,n=0.6(r/min);H──吊杆端部到重物最低位置时的重心距离,H=40.00(m);α──起重机的倾斜角(轨道或道路的坡度),α=2.00(度)。
经过计算得到K1=2.679由于K1>=1.15,所以当塔吊有荷载时,稳定安全系数满足要求!(二)、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15;G1──后倾覆点前面塔吊各部分的重力,G1=200.00(kN);c1──G1至旋转中心的距离,c1=3.00(m);b──起重机旋转中心至倾覆边缘的距离,b=2.00(m);h1──G1至支承平面的距离,h1=6.00(m);G2──使起重机倾覆部分的重力,G2=100.00(kN);c2──G2至旋转中心的距离,c2=6.00(m);h2──G2至支承平面的距离,h2=60.00(m);W3──作用有起重机上的风力,W3=5.00(kN);P3──W3至倾覆点的距离,P3=10.00(m);α──起重机的倾斜角(轨道或道路的坡度),α=2.00(度)。
固定式塔式起重机抗倾翻稳定性和基础设计计算
摘
要: 验算 固定式塔 式起 重机抗 倾翻稳定性应对塔机 的基本 稳定性 、 动态稳 定性 、 向后倾 翻稳定 性、 安装 稳定性 等工作状 态
和暴风侵袭 非工作 状态进行计算. 依 据塔机 抗倾翻稳定性条件设 计混凝土基 础 , 浇 筑混凝土 基础 时应严 格按 制造单位 提供 的基 础 图施工. 用该 文的计算方法设计 的塔机基 础能满足 固定式塔式起 重机 的抗倾 翻稳定性要 求. 通 过验算 固定式塔 式起重机 不 同工 况
检 测有 风动 载工 作 状况 塔 机 向前倾 翻 的稳 定 性 , 按 最不 利 的组 合 , 风载 荷作 为前倾 翻 因素 , 风 由平 衡臂 向前 吹 向起 重臂 .
暴风 侵袭 时 , 固定式 塔机起 重 臂会 随风转 动 , 这种
1 )自重力矩. 计算同式( 1 ) .
2 )动态起 重力 矩. 应 取 动态 工况 下 的最 大起 重力
最大幅度处 , 塔机静态超载 2 5 %.
M起 = ( 1 . 2 5 Q H+G 车 +G 钩) ( R H—b / 2 ). ( 2 )
通信作者 : 刘松朝 ( 1 9 6 8 一) , 男, 湖南涟源人 , 工程师 , 研究方 向 塔式起 重机. E— m a i l : l i u — s o n g — c h a o @1 6 3 . c o i n
土基 础 的重量.
对于塔身中心线向后倾 , 此时的后倾力矩为 搴 , 能有
2 )静态超 载 时 的起 重力 矩. 在最 大起 重 量对 应 的
利于防止塔机向前倾. 自重力矩是塔机相对 于前倾翻
线向后 的保持力矩( 如图 1 ) .
塔机稳定性计算
4.2.4.突然卸载稳定性
工作状态:考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷取1,起升载荷取-0.2,风载荷系数取1.0。(1)起升载荷计算:
F.r=(8000+246)×15500×10=1278130000 Kg.mm(2)偏心e计算:
风力
风压迎风面积
2
部件
总面积mm
2
充实率ω
挡风折减系数
风载荷N
到基础距离mm 23530
对基础底面力矩N.mm 32669052 1406904 33025746 2669776
系数N/m 1.6 1.6 1.2
250 250 250 250
mm
2
塔身下转台支撑
1476273 4110752 0.3591 0.47 13884 657743
M=(132137500×1.5+3125025×1.0-49770422×1.0)×10 =1453108030N.mm F h =0N
Fg+Fv=[(8000+246+279)+120824]×10=1293490N e=1123.4mm
4.2.2.动态稳定性
工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:
重心至回转中心距离
mm 2250 10500 20500 30500 40500 50500 57500 62500 67500 70740
力距Kg.mm 1080000 9082500 16154000 21746500 25758000 25856000 26737500 21060000 5871420
附:塔吊基础地基承载力及抗倾覆计算
附:塔吊基础地基承载力及抗倾覆计算。
1、基础外型:基础边长(b)为5000×5000,基础厚度h值1350mm 。
2、荷载:a:砼体积及自重F G(KN)。
F G=1.2×γ×v=1.2×25×(5×5×1.35)=1012.5KNb:F v作用于基础顶面的竖向力设计值F v(KN)。
按TC5013说明书:F v=1.2×113.2=135.8t=1358KNc:F h作用于基础顶面的水平力设计值F h(KN),根据TC5013说明书:P2=7.74t,F h=1.2×P2=9.3t=93KNd:M作用于基础顶面的力矩设计值(KN·m)根据TC5013说明书:M1=216.5t·m,所以设计值M=1.2×216.5=259.8t·m=2598KN·m3、基础地基承载力验算:整体式基础承受基础底面压力应符合:P≤fP——基础底面处的平均压力设计值f——基础承载力设计值,由于塔吊基础底位于-7.8m处,根据工程地质勘察报告f=150kpaP=(F v+F G)/A=(1012.5+1358)/(5×5)=94.82 KN/m2=94.82 kpa ∴P<f,满足要求。
4、抗倾覆验算基础底面积:《塔式起重机使用手册》第285页抗倾覆安全系数≥1.4最不利条件为:F h同M力矩方向一致,O为支点(见下图)。
ΣM稳=(F v+F G)·b/2=2370.5×2.5=5926KN·mΣM倾= M+F h·h= 2598+93×1.35=2724KN·mK= ΣM稳/ ΣM倾=5926/2724=2.18>1.4∴抗倾覆验算满足要求。
塔吊稳定性验算
塔吊稳定性验算塔吊稳定性验算可分为有荷载时和无荷载时两种状态。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15; G──起重机自重力(包括配重,压重),G=400.00(kN);c──起重机重心至旋转中心的距离,c=1.50(m);h0──起重机重心至支承平面距离, h0=5.00(m);b──起重机旋转中心至倾覆边缘的距离,b=2。
50(m);Q──最大工作荷载,Q=100。
00(kN);g──重力加速度(m/s2),取9。
81;v──起升速度,v=0.50(m/s);t──制动时间,t=20。
00(s);a──起重机旋转中心至悬挂物重心的水平距离,a=15。
00(m);W1──作用在起重机上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8。
00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2。
50(m);h──吊杆端部至支承平面的垂直距离,h=30。
00(m);n──起重机的旋转速度,n=1。
0(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.0(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.0(度).经过计算得到K1 = 1.154由于K1〉=1。
15,所以当塔吊有荷载时,稳定安全系数满足要求!二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=320。
00(kN);c1──G1至旋转中心的距离,c1=0。
50(m);b──起重机旋转中心至倾覆边缘的距离,b=0.80(m);h1──G1至支承平面的距离,h1=6。
稳定性计算
稳定性计算本计算主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工计算手册》(江正荣编著)等编制。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;G──塔吊自重力(包括配重,压重),G=550.00(kN);c──塔吊重心至旋转中心的距离,c=1.50(m);h o──塔吊重心至支承平面距离, h o=60.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m);Q──最大工作荷载,Q=56.00(kN);g──重力加速度(m/s2),取9.81;v──起升速度,v=0.65(m/s);t──制动时间,t=20.00(s);a──塔吊旋转中心至悬挂物重心的水平距离,a=30.00(m);W1──作用在塔吊上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=40.50(m);P2──自W2作用线至倾覆点的垂直距离,P2=3.00(m);h──吊杆端部至支承平面的垂直距离,h=118.90m(m);n──塔吊的旋转速度,n=0.65(r/min);H──吊杆端部到重物最低位置时的重心距离,H=83.00(m);α──塔吊的倾斜角(轨道或道路的坡度),α=0.00(度)。
经过计算得到K1=1.256;由于K1≥1.15,所以当塔吊有荷载时,稳定安全系数满足要求!二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=400.00(kN);c1──G1至旋转中心的距离,c1=3.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m);h1──G1至支承平面的距离,h1=60.00(m);G2──使塔吊倾覆部分的重力,G2=80.00(kN);c2──G2至旋转中心的距离,c2=3.50(m);h2──G2至支承平面的距离,h2=83.00(m);W3──作用有塔吊上的风力,W3=5.00(kN);P3──W3至倾覆点的距离,P3=40.50(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。
塔吊计算方案
一、基础设计及验算(一)基础设计-本塔吊为天然基础,尺寸为b×b×h=5×5×1.5m, 基础持;力层为粉质土或砂质粘土层。
(二)基础验算1.混凝土基础的抗倾翻稳定计算的验算公式e= M+F h*h≤b F v+F g 32.地面压应力的验算公式P B=2(F v+F g)≤【P b】3bL式中e…偏心距,即地面反力的合力至基础中心的距离mM…作用在基础上的弯矩,N.m;Fv…作用在基础上垂直载荷,N;Fg…混凝土基础的重力,N;PB…设计压应力,N;【P b】…地面许用压应力,由实地勘探和基础外处理情况确定,一般取【P b】=1.8×105Pa~3×105Pa现取【P b】=1.8×105Pa3.根基塔吊资料已知弯矩M=1942KN.m,水平载荷Fh=97KN,塔吊重量Fv=597KN,天然地基础尺寸为b*b*h=5*5*1.5m,混凝土基础的重力Fg=5*5*1.5*23=862.5KN,地面容许应力【Pb】=1.8*105Pa,塔吊脚座离基础中心为a=1234.5mm。
1)验算偏心距e及地面压应力为PB即e= M+F h*=1942*103+97*103*1.51.4m≤b=1.7m F v+F g597*103+862.5*103 3P B= 2(Fv+Fg)=2*(597+862.5)* 103=1.77×105Pa≤【P b】3bL 3*5*(5/2-1.4)经以上验算e和PB,此基础截面设计满足此种规格塔吊的抗倾翻稳定性要求;也满足天然地基承载力特征值要求。
4、确定基础配筋M =(b/2-a)*1* PB*(b/2-a)/2=(5/2-1.2345)*1.77*103*(5/2-1.2345)/2=1.42×103N.m所以As=M/0.9Fyh0=(1.42×103)/【0.9*(1.5-0.05*310)】=351mm25、承载力验算:厂家要求地基承载力Pa=b×b×Pa=5×5×1.8×103=4.5×106Pa>4×106Pa。
5#楼塔吊抗倾覆性能计算
每台数量 1 1 1 1 1 1 1 1 1 1 1 1
单重(Kg) 4036 900 720 720 400 600 275 260 50 400 3640 13000
4036 ×10
G1=
= 40.36KN
1000
Qmax= 3000×10 = 30KN 1000
G2= 400×10 = 4KN 1000
对照规范 JGJ/T187-2009《塔式起重机混凝土基础工程技术规程》,进行塔吊抗倾覆性能计算 如下:
1、 塔吊参数 No. 1
内含
2 3 4
名称 臂架总长(55m)
臂架 No.1 臂架 No.2 臂架 No.3 臂架 No.4 臂架 No.5 臂架 No.6 臂架 No.7
臂端节 小车
平衡臂 平衡重
塔式起重机抗倾覆计算及基础设计资料
塔式起重机抗倾覆计算及基础设计塔式起重机抗倾覆计算及基础设计一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求选用基础设计图,基础尺寸采用5.5m×5.5m×1.2m,基础砼标号为C35(7天和28天期龄各一组),要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr钢,承重板高出基础砼面5~8㎜左右,要有排水设施。
二、塔式起重机抗倾覆计算①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣制应密实,塔式起重机采用预埋螺栓固定式。
②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:37.50m,塔身宽度B:1.7m,自重FK:453kN,基础承台厚度h:1.2m,最大起重荷载Q:60kN,基础承台宽度b:5.50m,混凝土强度等级:C35。
③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。
塔式起重机受力分析图如下:根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:MK=1654kn·m, FK = 530KN,FvK=74.9KN,砼基础重量GK= 835KN④、塔式起重机抗倾覆稳定性验算:为防止塔机倾覆需满足下列条件:式中e----- 偏心距,即地基反力的合力至基础中心的距离;MK------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值;FvK------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载;FK-------塔机作用于基础顶面的竖向荷载标准值;h ---------基础的高度(h=1.2m);GK----------基础自重;b---------矩形基础底面的短边长度。
(b=5.5m)将上述塔式起重机各项数值MK 、FvK、FK、h、GK、b代入式①得:e =1.28< b/3=1.83m偏心距满足要求,抗倾覆满足要求。
塔吊稳定性计算
塔吊稳定性验算塔吊稳定性验算可分为有荷载时和无荷载时两种状态。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图::稳定安全系数可按下式验算塔吊有荷载时,式中 K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;;),G=400.00(kN)──起重机自重力 G(包括配重,压重; c──起重机重心至旋转中心的距离,c=1.50(m); h0──起重机重心至支承平面距离, h0=5.00(m);,b=2.50(m) b──起重机旋转中心至倾覆边缘的距离; Q──最大工作荷载,Q=100.00(kN)2;9.81(m/s g──重力加速度),取; v──起升速度,v=0.50(m/s); t──制动时间,t=20.00(s);──起重机旋转中心至悬挂物重心的水平距离 a,a=15.00(m)专业文档供参考,如有帮助请下载。
.W1──作用在起重机上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m);h──吊杆端部至支承平面的垂直距离,h=30.00(m);n──起重机的旋转速度,n=1.0(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.0(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.0(度)。
经过计算得到 K = 1.1541由于K>=1.15,所以当塔吊有荷载时,稳定安全系数满足要求!1二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图::稳定安全系数可按下式验算塔吊无荷载时,式中 K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=320.00(kN);c1──G1至旋转中心的距离,c1=0.50(m);b──起重机旋转中心至倾覆边缘的距离,b=0.80(m);h1──G1至支承平面的距离,h1=6.00(m);专业文档供参考,如有帮助请下载。
5抗倾翻稳定性计算
5 整体稳定性5.1 验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。
表5.1 固定基础塔式起重机验算工况5.2 整体稳定性校核e=M—作用于基础上的弯矩。
h—基础深度。
b—基础宽度。
Fv—作用于基础上的垂直载荷。
Fh—作用于基础上的水平载荷。
Fg—混凝土基础的重力,T⨯=ρ.⨯⨯bhbFg603=作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下。
5.2.1基本稳定性工作状态,无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5。
Fh=0NM+Fh ×h=62026542.33mm⋅Ne=70.3mm5.2.2 动态稳定性工作状态,有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0。
Fh=0NM+Fh ×h=101030892mm⋅Ne=114.52mm5.2.3 暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。
M+Fh ×h=180657158mm⋅Ne=206.3mm5.2.4 突然卸载稳定性工作状态,考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷取1,起升载荷取-0.2,风载荷系数取1.0。
M+Fh ·h =-173008611.2mm⋅Ne=-197.6mm5.2.5 安装拆卸稳定性安装拆卸作状态,载荷放大系数:自重载荷取1,风载荷系数取1.0。
M+Fh ×h=54729184mm⋅Ne=87.7mm经计算地面反力至基础中心的距离小于b/3,故整机抗倾翻稳定性满足要求。
5.2.6 地面压应力验算][3)(2b g V b p bl F F p ≤+=Pb —地面计算压应力。
塔机稳定性计算
4.抗倾翻稳定性4.1验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。
列表4-1如下:表4-1固定基础塔式起重机验算工况4.2抗倾翻稳定性校核图4.1 抗倾翻稳定性计算简图由于固定基础式的倾覆边沿不明确,GB/T13752-92提出,固定式砼基塔机整机抗倾翻稳定性验算公式:3bF F h F M e g v h ≤+⋅+=式中:e —偏心距。
M —作用于基础上的弯矩。
h —基础深度。
b —基础宽度。
Fv —作用于基础上的垂直载荷。
Fh —作用于基础上的水平载荷。
Fg —混凝土基础的重力。
作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下: 4.2.1.基本稳定性工作状态:无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5, (1) 自重载荷计算名称 质量(Kg) 重心至回转中心距离mm 力距Kg.mm 起重臂第一节 480 2250 1080000 起重臂第二节 865 10500 9082500 起重臂第三节 788 20500 16154000 起重臂第四节 713 30500 21746500 起重臂第五节 636 40500 25758000 起重臂第六节 512 50500 25856000 起重臂第七节 465 57500 26737500 起重臂第八节 330 62500 20625000 起重臂第九节 312 67500 21060000 起重臂第十节83707405871420起重臂其他176 35630 4532000变幅机构220 7860 1729200平衡臂1856 -7523 13963533起升机构1600 -8280 -1324800平衡重14700 -16270 -189879000司机室244 1310 319640电气系统150 -3810 -571500平衡臂拉杆541 -6142 -3322822回转塔身880 0 0上转台1230 0 0回转机构500 0 0回转支承420 0 0下转台1351 0 0套架3667 0 0 引进平台255 2190 493407 液压顶升机构230 -1700 -391000 塔身15750 0斜撑1720 0底架3150基础70000 0合计120824 -49770422表4-2 基本稳定性自重载荷(2)离心力计算:F=mw2=m(0.7×2×3.14/60)2=(8000+246+279)*0.0055*15500/10000=72.675 离心力矩Fr=72.675×(42000+1000)=3125025N.mm(3)起升载荷力矩计算:F.r=(8000+246+279)×15500= 132137500 N.mm(4)偏心e计算:M=(132137500×1.5+3125025×1.0-49770422×1.0)×10=1453108030N.mmF h=0NFg+Fv=[(8000+246+279)+120824]×10=1293490Ne=1123.4mm4.2.2.动态稳定性工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:部件风力系数风压N/m2迎风面积mm2总面积mm2充实率ω挡风折减系数风载荷N到基础距离mm对基础底面力矩N.mm塔身 1.6 250 1476273 4110752 0.3591 0.47 13884 23530 32669052 下转台 1.6 250 657743 1027196 0.6403 0.15 302.56 46500 1406904 支撑 1.2 250 2349500 2349500 1.0 704.85 46855 33025746 回转塔身 1.3 250 1222557 3007303 0.4065 0.39 552.37 48333 2669776司机室 1.2 250 2992000 2992000 897.60 43450 3900072起重臂 1.3 250 181526 806482 0.2251 0.66 6885.9 50050 887737 平衡臂 1.6 250 163720 375760 0.4357 0.34 100.20 49500 495000 平衡重 1.2 250 3604400 3604400 1.0 1081.3 49500 5352534 三机构 1.2 250 828000 828000 1.0 248.4 49500 1229580 电气 1.2 250 720000 720000 1.0 216 49500 1069200 载荷1800 48333 8699940 合计63472266 表4-3 动态稳定性风载荷(2)偏心e计算:M=(132137500×1.3+3125025×1.0-49770422×1.0)×10+ 63472266×1.0×10=1886056190N.mmFg+Fv=[(8000+246+279)+120824]×10=1293490Ne = 1458mm4.2.3.暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。
塔式起重机抗倾覆计算及基础设计
塔式起重机抗倾覆计算及基础设计一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求选用基础设计图,基础尺寸采用XX,基础砼标号为C35( 7天和28天期龄各一组),要有砼检测报告,基础表面砼平整度要求w 1/1000,塔式起重机预埋螺栓材料选用40Cr钢,承重板高出基础砼面5~8伽左右,要有排水设施。
二、塔式起重机抗倾覆计算①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于C35,砼的捣制应密实,塔式起重机采用预埋螺栓固定式。
②、参数信息:塔吊型号:QTZ5510塔吊起升高度H:,塔身宽度B:,自重F K:453kN,基础承台厚度h:,最大起重荷载Q 60kN,基础承台宽度b:,混凝土强度等级:C35③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。
塔式起重机受力分析图如下:根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K=1654knm,F K = 530KNF V K =,砼基础重量G= 835KN④、塔式起重机抗倾覆稳定性验算:为防止塔机倾覆需满足下列条件:式中e----- 偏心距,即地基反力的合力至基础中心的距离;M K- -- 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值;F VK-——相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载;F K------- 塔机作用于基础顶面的竖向荷载标准值;h ----- 基础的高度(h=);G- ---- 基础自重;b ----- 矩形基础底面的短边长度。
(b=将上述塔式起重机各项数值M、F V K、F K、h、G、b代入式①得:e = v b/3=偏心距满足要求,抗倾覆满足要求。
三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa取塔式起重机基础底土层的承载力标准值为372Kpa根据《TCT561塔式起重机使用说明书》,采用塔式起重机基础:长X宽X高=5500X 5500X 1200的形式,塔吊采用预埋螺栓固定式,塔式起重机对地面压应力为170Kpa v 372Kpa满足要求,直接按说明的大样图施工,不再做另外特殊设计。
塔式起重机抗倾覆计算及基础设计
塔式起重机抗倾覆计算及基础设计一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求选用基础设计图,基础尺寸采用5.5m×5.5m×1.2m,基础砼标号为C35(7天和28天期龄各一组),要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr钢,承重板高出基础砼面5~8㎜左右,要有排水设施。
二、塔式起重机抗倾覆计算①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣制应密实,塔式起重机采用预埋螺栓固定式。
②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:37.50m,塔身宽度B:1.7m,自重F K:453kN,基础承台厚度h:1.2m,最大起重荷载Q:60kN,基础承台宽度b:5.50m,混凝土强度等级:C35。
③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。
塔式起重机受力分析图如下:根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m,F K = 530KN,Fv K =74.9KN,砼基础重量G K= 835KN④、塔式起重机抗倾覆稳定性验算:为防止塔机倾覆需满足下列条件:式中e----- 偏心距,即地基反力的合力至基础中心的距离;M K------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值;Fv K------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载;F K-------塔机作用于基础顶面的竖向荷载标准值;h ---------基础的高度(h=1.2m);G K----------基础自重;b---------矩形基础底面的短边长度。
(b=5.5m)将上述塔式起重机各项数值M K、Fv K、F K、h、G K、b代入式①得:e =1.28<b/3=1.83m偏心距满足要求,抗倾覆满足要求。
塔式起重机非对称式混凝土固定基础稳定性的计算方法
考虑弯矩平衡∑M o ,如图1,以基础短边为旋转点O ,分别有塔机自重G 、基础自重G 0和水平力f 绕旋转边O 产生的弯矩,及地面支撑力 产生的弯矩。
摩擦力N 通过旋转支点O ,产生的弯矩恒为0,不计。
对矩形基础,以上各项产生的弯矩为:其中,b 为基础短边长度,h 为基础厚度,k 为塔机中心距短边距离,M (f )为支撑力,f 对旋转边O 的弯矩。
塔式起重机非对称式混凝土固定基础稳定性的计算方法The Calculation Method for the Stability of Unsymmetrical Concrete FixedFoundation of Tower Crane汤小伟 颜毓 蒋锦炜(上海庞源机械租赁有限公司,上海 201708)摘要:针对某些非对称式的塔机特殊基础形式,难以适用现有规范标准提供的基础稳定性计算方法。
本文通过对塔机基础稳定的临界条件分析,建立力学模型,为该种特殊塔机基础提供了一种可操作的理论计算方法,并提供了相关算例以供参考。
关键词:塔式起重机;混凝土基础;偏心受力中图分类号:TU61 文献标识码:A1 引 言塔式起重机混凝土基础是最常见的基础形式,通常条件下,考虑到实际施工便利,混凝土基础一般设计制作成长宽相同的方形,塔式起重机布置于基础中心,此时塔机基础受力在长宽方向均相同。
但某些工况下,例如在桥梁施工中,塔式起重机基础一般与桥梁桥墩基础相连,此种情况下,塔机基础就不再是对称的方形基础,而是长条形,出现单向或双向不对称基础,甚至是异形基础。
对这种非常规基础,规范提供的基础抗倾翻计算方式就不再适用。
针对这种特殊情况,需要引入另一种计算方法。
通常针对塔机混凝土基础的计算分析,均以地基压力为分析对象,以塔机混凝土基础对地面的最小压力P min 为0作为临界条件。
本文采用以混凝土基础自身为对象,对其进行受力分析。
并假设地基为刚体,则塔机倾翻时,必然以基础边缘为旋转轴倾翻,而临界条件则是,塔机基础与地面完全脱离。
塔机十字形基础力学分析及抗倾翻稳定性计算
塔机十字形基础力学分析及抗倾翻稳定性计算设计?制造塔执守彩基鼬力学分析及抗倾翻稳定性计算何学功冯功斌孙刚内窖摘要:针对塔式起重机实际工况,通过对十字形基础的力学分析,得出其抗倾翻稳定性的计算公式.关量词:塔式起重机基础抗倾翻稳定性十字形混凝土基础是塔式起重机常采用的基础形式之一,特别在中,小型塔机中应用更为广泛.在GB/T13752-92《塔式起重机设计规范》,GB135—90《高耸结构设计规范》等有关文献中,对该型式基础的计算均未作明确规定.本文拟通过对十字形基础力学状态的分析,得出塔机十字形基础抗倾翻稳定性的计算公式,供参考.1一般规定(1)在讨论中,假定地基是均匀而具有弹性的土壤,基础是刚性的,基础型式及外载荷如图1所示.为讨论方便,基础作用于基土的载荷组合为弯矩和包括基础重力在内的垂直力c(1ift时的水平力忽略不计).即:Ml=M+Vhhc=V o+MlG×e式中:——上部垂直载荷,N;——基础自重,N;F^——上部水平载荷,N;圈1IL———上部弯矩,Nm;e——偏心距113.(2)由塔机实际工况可知,弯矩矢量方向是绕回转中心旋转的,因而在讨论中应考虑其方向处于基础正方向(图6所示)和对角方向(图1所示)两种工况.(3)由上述两规范分析可知,塔机抗倾翻稳定性应满足以下两方面原则条件:a.在规定的工况下,基础底面允许部分脱开基土的面积不得大于底面全面积的一半;b.基础对地基的最大压应力不得大于地面许用压应力[],一般取:[]=2×105—3×lPa.2.ilf1处于对角方向(1)基础开始脱离地基时偏心距e的临界值.图2所示截面几何特性:面积:A=2ab一0抗弯模量:=由=导一面M1=o,M=&得:e:篆锅q工Iq!—=[=[士]二]二]=口:圈2设计?制造令a=詈,卢=詈,并分别定义为基础底面宽度系数和偏心系数(下同).代人上式得:卢:(1)62P一(一口),tlp~i卢≤时,基础的承力面积为基础的全面积.此时:孟(+),令=kG,为压应力系数(下同),则:=+__(2)(2)基础承力面积为全面积的一半时的偏心距e值(口值).如图3所示,由静力关系和几何关系得:IG:Jd,【M=j=由≥枷一式中,,Sr分别为图示阴影面积(承力面积) 对Y轴的惯性矩和静矩.,y=,曲:孚得…由a=詈,fl=詈,得:卢=等(3)当6≥L≥时值).G=~fl』xdt"+)…【,=』G(e+)则{得』=岛一()llgS—n,n=+^(一)=丁OL2+号(6一n)(2L一6)令y=,y为承力宽度系数(下同).得:器搴㈩一(4)当≥L≥b时,最大压应力g值(如图5所示,同(3)条讨论,则譬+(2L一6s,(3)s竽+(2L-b+a最大压应力q值(得如图4所示,由静力关系和几何关系得31271一(一2)12口y+(一口)(+口一),/4y+(1一口)一47(1一口)(5)t羲枫攮撇fl}裹1设计?制造O晒O.1O015O.加O.25O30O.35040k77777^77p时.川-o'一2.+l+O.09097491.0O.辨l61.0620.10O9l871121O93641.1270.哪!.13209769ll38O.99851.145O.1l0.86卯l_l辨088391.加l09D44l_强O螂l勰094931.2050.9725l_2|O0.99571.217 0.12O.81.701.狮0.8351l284O黜 1.瑚O.87831.2760.90201273O9264l_2730.95071.2760.97471.2∞O.130硼 1.3840.硼.770.81101.3670831.3s70.851.349O.88241.343O90751.3410.932513430.140.73501.490075141.4780.77∞1.462079251.446081621.431O.84111420O86661.41208l1.4O90.15O.珊1.602O.7l国l娜O7350l_5640.7557l542O.7785l52lO.蚴1.仰O.啦1.489O 螂1.480O.160.彻 1.719O.6盯1169907a371673O.删I.6440.7446161607681l5920.7927l_57l0.818015570.17064951840O.66151.8l7O.66l7850.09431.75lO.7l451.717O.7371686O7∞l6590.78491.639O.180.渊l965O1.蝴O.65301.902O.66鲫l8O.6g791.8篮0.70861.7840.73101.752O.75461.725O.19O.61112.09lO.铡206lO.∞2.0.64741.O.l931O68381聊0.70471.螂O.珊1815O.加059鹋 2.219O.雠2l870.61512143O.62842.00.644O2.042O.66l71992O醴l21.947O.砌1909O.2l058252O58992.3I40.Y)972.2061182212O606o2155O.能12.101O65982051067糖2.008O.翌O.57092.4790.57752442O船 2.∞10.597l2.333O.60舛2273062562.0000.882.I62O.656l2114O.056072.6100.56662570057442517O.58鹪2.463O.59332.397O6D492338061842.281O.63372.229O.24055l7274lO.2.7∞O.56342645O57002嚣8O57772.5280.5B712.468059842408061182.353O.250.54372,872054822.渤O.55272.779O.557o2724O56252.6670姗2,6060.57892.545O59∞2.4860.笳O.53653.O啤0.54OO2.9054222.9170.54442.80.54772.8l,055282.75405,992.92O.5693263lO27O.舢 3.137O.53193.1000.5318306lO弱 2.3017O5∽2.967{0.536329100541328O.54872.787O.2805241327lO.铆 3.24lO.52l63.2100.51983.173051913l29O.5∞3.077O.52蛇3018O52862蛳0.290.51843405051563386O5l153.365O.5沂83.3370.50533.300O洲3254O.,03.1辨0.,O893137(5)计算系数,y与a,口的关系表.参照GR1135-90第6.2.3条关于圆(环)形基础承受偏心载荷时的计算方法,由公式(2),(4),(5)可得十字形基础计算系数表(处于对角方向,a≤0.4),见表1.3Ml处于基础正方向(1)基础开始脱离地基时偏心距e的临界值.毫筑规镰撇(1)圈6图6所示截面几何特性面积:A=2ab一.抗弯模量:==垣j由一M1=o,M1=&设计?制造得…鲁同2(1)讨论口=即当卢≤积为基础全面积,!±些二13(1+a)(2一.)时,基础承力面此时=三(+号),令=,则:=+㈤(2)基础承力面积为全面积的一半时的偏心距e值(口值).同2(2)条讨论:e:妾,G=r..3+3一d'打——广,(b2_a2)+.由a=,卢=詈,q=kG;得:l+a2--a3...4讨论结果分析及抗倾翻稳定性计算(1)偏心距e允许值[口].根据"基础承力面积不低于基础总面积一半"的原则,偏心距e的允许值应取为_!If.矢量方向处于对角方向和正方向两种工况的较小值.由上述讨论中(3),(7)式可以看出:当acO.612时,其30允许值应按肼处于正方向来计算,即按(7)式计算,卢=≤[卢]=il+丽a2-a3,(式中各项参数同前述)(2)对基土最大压应力(值).基础对地面最大压应力应取为J=l,1矢量方向处于对角方向和正方向两种工况中的较大者.由上述讨论,并以上述方法对_!If.处于正方向时,各种情况下最大压应力理论推导计算(从略),分析可以得出:当a≤0.33,卢≤[卢]=时,应按_!If.处于对角方向来计算;在0.33<Gt≤O.4, 且≤[卢]条件下,若按_!If1处于对角方向计算,其计算值仅仅在接近[卢】时的较小区域内,略小于按_!If.处于正方向的计算值,其误差不大于4%.为计算方便在.≤O.4时,基础对地面的最大压应力均按_!If.处于对角方向计算.即:Pe=≤[],其中系数由表1查取,其他各项参数同GB/T13752—92.(3)举例计算.某塔机在GB/T13752-92规定的某工况下,=508.6kNm,+=442.6kN,=12.8kN,采用十字形混凝土基础,d=1m,b=5.657m,h:0.8m,[]=2.5xlosPa,验算其抗倾翻稳定性.解:口詈0?1768:-0.2072一b(+)一=1+tr2-tr3=o..'<[卢]...符合要求.由a=0.1768,口=O.2072,查表1得:k;2.204.=壶:1.72×lOs(Pa)<[]=2.5×lOsPa.?.符合要求.何学功,冯功斌,山东省建筑科学研究院,2~0031济南市无影山路凹号孙刚,收稿日期编辑0D_.帅6孔庆璐管理办公室。
塔吊基础承载力及稳定性计算书
塔吊基础承载力及稳定性计算书一、工程概况嘉兴市清华长三角研究院创业大厦工地拟采用QTZ63型塔吊。
工地南侧塔吊高度为120M,北侧塔吊高度为40M。
根据使用说明书中提供的数据:QTZ63型塔吊最大起重矩为630KNM,塔机自重38T。
当采用5×5M×1.350M基础时,基础顶面所受弯矩M=1252.4KNM,基础所受垂直荷载N1=473KN,基础砼重N2=800KN,受力情况见图(A)、(B)根据对基础地耐力要求,若采用浅基大板基础(即5×5M×1.350M砼基础),地耐力应不低于140KPa,而本工程塔基所处土层③层提供的地耐力为70KPa,不满足,因此考虑采用桩基础。
为此需对桩基支承的大板基础进行桩基强度验算及抗倾覆稳定性计算。
计算依据:《建筑桩基技术规范》(JGJ94-94国标)《建筑地基基础设计规范》(DB33/1001-2003省标)二、塔吊基础设计参数:塔吊基础剖面见图(C)塔吊桩基础采用直径600㎜的钻孔灌注桩的有效长度为16.55M,桩穿越如下土层(按J7钻孔):③a(厚1.18M)、③(厚6.80)、③b(厚4.50)和⑤2-1(厚4.7M)。
钻孔桩配筋:主筋Ф14Ф16,箍筋Ф10@300,采用C30砼。
根据地质报告(浙江省工程勘察院《浙江清华长三角研究院院区北区创业大厦岩土工程勘察报告》),桩基所穿越土层的力学参数,如下表:1、桩的抗压承载力计算:极限承载力Ra按下式计算Ra=U∑ψsiaqsiaLi+Aqpa=0.6×3.14(1×12×1.18+1×7×6.80+1×14×4.50+1×27×4.07)+3.14×0. 32×2000=442.08+565.2=1007.28KN2、桩的抗拔极限承载力计算Rl:Rl=U∑ψsiaqsiaLiλi=0.6×3.14×0.7(1×12×1.18+1×7×6.80+1×14×4.50+1×27×4.07)=309.46KN三、塔吊基础受力:按塔吊工作的最不利的情况确定单桩受力。