抛物线的焦半径与焦点弦长及其应用
抛物线焦点弦的性质结论归纳与应用
抛物线焦点弦的性质结论归纳与应用抛物线焦点弦的性质结论归纳与应用如下:
首先,抛物线焦弦的性质决定了抛物线的几何特性。
抛物线的焦弦公式是y=4ax,这个式子定义了抛物线的性质,一般在其中,a是抛物线的两个焦点之间的距离,因此可以用这个性质来确定抛物线的几何特性。
其次,抛物线焦弦的性质也可以应用于统计学中。
在统计学中,抛物线焦弦是一种线性回归的拟合方法。
它能推断出两个变量之间的相关性,从而用于市场营销、供应链管理以及其他方面的数据预测和分析研究。
最后,抛物线焦弦的性质也可以用于科学研究中。
以抛物线焦弦为模型,可以表达出粒子动力学中问题的数学解。
例如在分子动力学中,用抛物线焦弦可以解释温度和粒子冲突频率之间的关系,从而为科学研究提供新的指导思想。
抛物线焦弦的性质使抛物线变得更加精妙。
它对于几何的解决、统计的分析以及科学研究的指导都具有重要的意义,为我们探究物理现象提供了新的可能性。
抛物线焦点弦的性质及应用
抛物线焦点弦的性质及应用抛物线是一种具有特殊性质的二次曲线,它的焦点弦性质是指过焦点parabola. 抛物线上任意一点的切线与从焦点引出的该点的法线的交点,这些交点都在焦点所在的直线上。
抛物线焦点弦的性质和应用如下:1. 焦点弦与顶点:抛物线的焦点弦通过抛物线的顶点,且与抛物线的对称轴垂直相交。
2. 焦点弦的长度:焦点弦的长度等于抛物线焦点到对称轴的距离的两倍。
3. 焦点弦的切线方程:焦点弦的切线方程可由抛物线的切线方程推导得到,即通过抛物线上一点(x1,y1)的切线方程为y = mx + (1 - m²) a/4,其中m为切线的斜率,a为焦点到对称轴的距离。
4. 焦点弦的法线方程:焦点弦的法线方程可由切线方程得到,即过抛物线上一点(x1,y1)的法线方程为y = -x/m + (x1/m + y1)。
5. 焦点弦的性质应用:抛物线焦点弦的性质在物理学、工程学和几何学等领域有广泛的应用。
在物理学中,抛物线焦点弦的性质可以用于描述光线的反射和聚焦。
例如,在反射望远镜中,抛物面用于反射并聚焦光线,使观察者能够看到远处的物体。
在工程学中,抛物线焦点弦的性质可以用于设计抛物面反射器、喇叭等产品。
抛物面反射器可以将声音或者电磁波线聚焦在焦点处,以达到提高功率传输效果的目的。
类似地,喇叭的设计也借鉴了抛物线焦点弦的性质,使声音能够更好地聚焦并扩散。
在几何学中,抛物线焦点弦的性质可以用于求解问题。
例如,已知抛物线上一点的坐标和抛物线焦点的坐标,可以通过焦点弦性质来求解该点在抛物线上的位置。
另外,抛物线焦点弦的性质还可以进一步推广到三维空间中的抛物面。
三维空间中的抛物面也具有焦点弦的性质,可以用于描述反射、聚焦和求解问题等。
综上所述,抛物线焦点弦是抛物线特有的性质之一,它的性质和应用在物理学、工程学和几何学等领域有重要的应用。
深入理解和应用这些性质可以帮助我们更好地解决各种问题,并且进一步推广到更高维度的几何形状中。
(完整版)抛物线的性质归纳及证明
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p)图6与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 228p = ⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。
微重点 抛物线的二级结论的应用
微重点 抛物线的二级结论的应用抛物线是高中数学的重要内容之一,知识的综合性较强,因而解题时需要运用多种基础知识,采用多种数学手段,熟记各种定义、基本公式.法则固然很重要,但要做到迅速、准确地解题,还要掌握一些常用结论,特别是抛物线的焦点弦的一些二级结论,在考试中经常用到,正确灵活地运用这些结论,一些复杂的问题便能迎刃而解.考点一 抛物线的焦点弦核心提炼与抛物线的焦点弦有关的二级结论若倾斜角为α⎝⎛⎭⎫α≠π2的直线l 经过抛物线y 2=2px (p >0)的焦点,且与抛物线相交于A (x 1,y 1),B (x 2,y 2)(y 1>y 2)两点,则(1)焦半径|AF |=x 1+p 2=p1-cos α,|BF |=x 2+p 2=p1+cos α,(2)焦点弦长|AB |=x 1+x 2+p =2psin 2α,(3)S △OAB =p 22sin α(O 为坐标原点),(4)x 1x 2=p 24,y 1y 2=-p 2,(5)1|AF |+1|BF |=2p, (6)以AB 为直径的圆与准线相切,以F A 为直径的圆与y 轴相切.考向1 焦半径、弦长问题例1 (1)已知F 是抛物线C :y 2=4x 的焦点,过点F 作两条相互垂直的直线l 1,l 2,直线l 1与C 相交于A ,B 两点,直线l 2与C 相交于D ,E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10 答案 A解析 如图,设直线l 1的倾斜角为θ,θ∈⎝⎛⎭⎫0,π2,则直线l 2的倾斜角为π2+θ,由抛物线的焦点弦弦长公式知|AB |=2p sin 2θ=4sin 2θ, |DE |=2p sin 2⎝⎛⎭⎫π2+θ=4cos 2θ,∴|AB |+|DE |=4sin 2θ+4cos 2θ=4sin 2θcos 2θ=16sin 22θ≥16,当且仅当sin 2θ=1, 即θ=π4时取等号.∴|AB |+|DE |的最小值为16.(2)斜率为3的直线经过抛物线y 2=2px (p >0)的焦点F 与抛物线交于A ,B 两点,A 在第一象限且|AF |=4,则|AB |=________. 答案163解析 直线l 的倾斜角α=60°,由|AF |=p1-cos α=4,得p =4(1-cos α)=2, ∴|AB |=2p sin 2α=434=163. 考向2 面积问题例2 (2022·长沙模拟)已知抛物线C :y 2=16x ,倾斜角为π6的直线l 过焦点F 交抛物线于A ,B 两点,O 为坐标原点,则△ABO 的面积为________. 答案 64解析 方法一 (常规解法)依题意, 抛物线C :y 2=16x 的焦点为F (4,0),直线l 的方程为x =3y +4.由⎩⎨⎧x =3y +4,y 2=16x ,消去x , 得y 2-163y -64=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=163,y 1y 2=-64. S △OAB =12|y 1-y 2|·|OF |=2(y 1+y 2)2-4y 1y 2=2(163)2-4×(-64)=64. 方法二 (活用结论)依题意知, 抛物线y 2=16x ,p =8. 又l 的倾斜角α=π6.所以S △OAB =p 22sin α=822sinπ6=64.考向31|AF |+1|BF |=2p的应用 例3 (2022·“四省八校”联考)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,则2|AF |+|BF |最小值为( ) A .2 B .26+3 C .4 D .3+2 2答案 D解析 因为p =2, 所以1|AF |+1|BF |=2p =1,所以2|AF |+|BF |=(2|AF |+|BF |)·⎝⎛⎭⎫1|AF |+1|BF | =3+2|AF ||BF |+|BF ||AF |≥3+22|AF ||BF |·|BF ||AF |=3+22, 当且仅当|BF |=2|AF |时,等号成立, 因此,2|AF |+|BF |的最小值为3+2 2.考向4 利用平面几何知识例4 (2022·遂宁模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点F 的直线l 与抛物线交于P ,Q 两点,直线l 与抛物线的准线l 1交于点M ,若PM →=2FP →,则|FQ ||PQ |等于( )A.13B.34C.43 D .3 答案 B解析 如图,过点P 作准线的垂线交于点H ,由抛物线的定义有|PF |=|PH |=m (m >0),过点Q 作准线的垂线交于点E ,则|EQ |=|QF |, ∵PM →=2FP →, ∴|PM |=2m ,根据△PHM ∽△QEM , 可得|PH ||PM |=|QE ||QM |=12,∴2|EQ |=|QM |=|FQ |+3m . ∴|EQ |=3m ,即|FQ |=3m , ∴|FQ ||PQ |=3m 3m +m =34. 易错提醒 焦半径公式和焦点弦面积公式容易混淆,用时要注意使用的条件;数形结合求解时,焦点弦的倾斜角可以为锐角、直角或钝角,不能一律当成锐角而漏解.跟踪演练1 (1)已知A ,B 是过抛物线y 2=2px (p >0)焦点F 的直线与抛物线的交点,O 是坐标原点,且满足AB →=3FB →,S △OAB =23|AB |,则|AB |的值为( )A.92B.29 C .4 D .2 答案 A解析 如图,不妨令直线AB 的倾斜角为α,α∈⎝⎛⎭⎫0,π2,∵AB →=3FB →∴F 为AB 的三等分点, 令|BF |=t ,则|AF |=2t , 由1|BF |+1|AF |=2p, 得1t +12t =2p ⇒t =34p , ∴|AB |=3t =94p ,又|AB |=2psin 2α, ∴2p sin 2α=94p ⇒sin α=223, 又S △AOB =23|AB |, ∴p 22sin α=23|AB |, 即p 2423=23·94p ⇒p =2, ∴|AB |=92.(2)(多选)已知抛物线C :x 2=4y ,焦点为F ,过点F 的直线与抛物线交于A ,B 两点,该抛物线的准线与y 轴交于点M ,过点A ,B 作准线的垂线,垂足分别为H ,G ,如图所示,则下列说法正确的是( )A .线段AB 长度的最小值为2B .以AB 为直径的圆与直线y =-1相切C .∠HFG =90°D .∠AMO =∠BMO答案 BCD解析 如图,取AB 的中点为C ,作CD ⊥GH ,垂足为D ,当线段AB 为通径时长度最小,为2p =4,故A 不正确; ∵直线y =-1为准线, ∴|CD |=12(|AH |+|BG |)=12|AB |,故以AB 为直径的圆与准线y =-1相切, 故B 正确;又|BF |=|BG |,∴∠BFG =∠BGF , 又BG ∥FM , ∴∠BGF =∠MFG , ∴∠BFG =∠MFG , 同理可得∠AFH =∠MFH ,又∠BFG +∠MFG +∠MFH +∠AFH =180°, ∴FG ⊥FH .即∠HFG =90°,故C 正确; 设A (x 1,y 1),B (x 2,y 2),∴直线AB :y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2-4kx -4=0, ∴x 1x 2=-4,x 1+x 2=4k , k AM +k BM =y 1+1x 1+y 2+1x 2=kx 1+2x 1+kx 2+2x 2=2k +2(x 1+x 2)x 1x 2=2k +2·4k-4=0,∴∠AMO =∠BMO ,故D 正确.考点二 定点问题核心提炼抛物线方程为y 2=2px (p >0),过(2p ,0)的直线与之交于A ,B 两点,则OA ⊥OB ,反之,也成立.例5 如图,已知直线与抛物线x 2=2py 交于A ,B 两点,且OA ⊥OB ,OD ⊥AB 交AB 于点D ,点D 的坐标为(2,4),则p 的值为( )A .2B .4 C.32 D.52答案 D解析 如图,令AB 与y 轴交于点C ,∵OA ⊥OB ,∴AB 过定点C (0,2p ), 又D (2,4),∴CD →=(2,4-2p ),OD →=(2,4), ∵OD ⊥AB , ∴CD →·OD →=0, 即4+4(4-2p )=0, 解得p =52.易错提醒 要注意抛物线的焦点位置,焦点不同,定点是不同的;在解答题中用该结论时需证明该结论.跟踪演练2 已知抛物线y 2=4x ,A ,B 为抛物线上不同两点,若OA ⊥OB ,则△AOB 的面积的最小值为________. 答案 16解析 如图,∵OA ⊥OB ,∴直线AB 过定点(2p ,0), 即点C 坐标为(4,0),设直线AB :x =ty +4,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =ty +4,y 2=4x ⇒y 2-4ty -16=0,Δ=16t 2+64>0,y 1+y 2=4t ,y 1y 2=-16, ∴S △AOB =12|OC ||y 1-y 2|=2|y 1-y 2|=216t 2+64,∴当t =0时,S min =16.专题强化练1.(2022·菏泽模拟)设坐标原点为O ,抛物线y 2=4x 与过焦点的直线交于A ,B 两点,则OA →·OB →等于( )A.34 B .-34 C .3 D .-3 答案 D解析 方法一 抛物线y 2=4x 的焦点为F (1,0), 设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ty +1,y 2=4x ,得y 2-4ty -4=0, Δ=16t 2+16>0恒成立,则⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-4, 所以OA →·OB →=x 1x 2+y 1y 2=y 214·y 224+y 1y 2=1616+(-4)=-3. 方法二 因为AB 过抛物线的焦点, 设A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24=1,y 1y 2=-p 2=-4,所以OA →·OB →=x 1x 2+y 1y 2=-3.2.如图,过抛物线y 2=8x 的焦点F 的直线l 与抛物线交于A ,B 两点,与抛物线准线交于C 点,若B 是AC 的中点,则|AB |等于( )A .8B .9C .10D .12答案 B解析 如图所示,令|BF |=t , 则|BB ′|=t , 又B 为AC 的中点, ∴|AA ′|=|AF |=2t , ∴|BC |=|AB | =|AF |+|BF |=3t , 又△CBB ′∽△CFE , ∴|BC ||CF |=|BB ′||FE |, 即3t 3t +t =t p⇒t =34p ,∴|AB |=3t =94p =9.3.倾斜角为π4的直线l 交抛物线C :y 2=2px (p >0)于A ,B 两点,且OA ⊥OB ,S △AOB =85,则抛物线C 的方程为( ) A .y 2=2xB .y 2=4xC .y 2=42xD .y 2=8x答案 B解析 ∵OA ⊥OB , ∴直线过定点(2p ,0) 设直线l 的方程为x =y +2p , 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =y +2p ,y 2=2px ,得y 2-2py -4p 2=0,Δ=4p 2-4×(-4p 2)=20p 2>0, ∴y 1+y 2=2p ,y 1y 2=-4p 2, S △AOB =12·2p ·|y 1-y 2|=p (y 1+y 2)2-4y 1y 2=p ·4p 2+16p 2=25p 2=85, ∴p =2,∴抛物线C 的方程为y 2=4x .4.直线l 过抛物线y 2=6x 的焦点F ,交抛物线于A ,B 两点,且|AF |=3|BF |,过A ,B 分别作抛物线C 的准线的垂线,垂足分别为A ′,B ′,则四边形ABB ′A ′的面积为( ) A .4 3 B .8 3 C .16 3 D .32 3 答案 C解析 不妨令直线l 的倾斜角为θ,则|AF |=p 1-cos θ=31-cos θ,|BF |=p 1+cos θ=31+cos θ,又|AF |=3|BF |, ∴31-cos θ=3·31+cos θ,解得cos θ=12,又θ∈[0,π),∴θ=π3,∴|AF |=31-cos θ=6,|BF |=31+cos θ=2, ∴|AA ′|=6,|BB ′|=2,∴|A ′B ′|=|AB |sin θ=8×32=43, ∴S 四边形ABB ′A ′=12×(2+6)×43=16 3. 5.(多选)(2022·聊城模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,过F 的直线l 交抛物线C 于A ,B 两点,则( )A .C 的准线方程为x =-2B .若|AF |=4,则|OA |=21C .若|AF |·|BF |=4p 2,则l 的斜率为±33D .过点A 作准线的垂线,垂足为H ,若x 轴平分∠HFB ,则|AF |=4答案 BCD解析 因为抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,所以p =2,所以抛物线方程为y 2=4x ,则焦点F (1,0),准线为x =-1,故A 错误;若|AF |=4,则x A =3,所以y 2A =4x A=12, 所以|OA |=x 2A +y 2A =21,故B 正确;设直线AB 的倾斜角为α,α∈(0,π),|AF ||BF |=p 1-cos α·p 1+cos α=p 2sin 2α=4p 2, ∴sin 2α=14, ∴sin α=12, ∴α=30°或150°,∴tan α=±33,故C 正确; 对于D ,若x 轴平分∠HFB ,则∠OFH =∠OFB ,又AH ∥x 轴,所以∠AHF =∠OFH =∠OFB =∠AFH ,所以HF =AF =AH ,所以x A +x H 2=x F ,即x A =3, 所以|AF |=x A +1=4,故D 正确.6.(多选)(2022·武汉模拟)斜率为k 的直线l 经过抛物线C :y 2=2px (p >0)的焦点F ,且与抛物线C 相交于A ,B 两点,点A 在x 轴上方,点M (-1,-1)是抛物线C 的准线与以AB 为直径的圆的公共点,则下列结论正确的是( )A .p =2B .k =-2C .MF ⊥ABD.|F A ||FB |=25 答案 ABC解析 由题意知,抛物线C 的准线为x =-1,即p 2=1,解得p =2, 故选项A 正确;∵p =2,所以抛物线C 的方程为y 2=4x ,其焦点为F (1,0),∵以AB 为直径的圆与准线相切,∴点M (-1,-1)为切点,∴圆心的纵坐标为-1,即AB 中点的纵坐标为-1,设AB :x =ty +1,联立⎩⎪⎨⎪⎧x =ty +1,y 2=4x , 得y 2-4ty -4=0,Δ=16t 2+16>0,∴y 1+y 2=4t =-2,∴t =-12,即k =-2,故选项B 正确; ∵k =-2,k MF =-1-0-1-1=12,k MF·k =-1, ∴MF ⊥AB ,故选项C 正确;过A 作AA 1⊥x 轴,过B 作BB 1⊥x 轴,抛物线的准线交x 轴于点C ,设∠BFB 1=θ,∴|BF |=p 1-cos θ, |AF |=p 1+cos θ, 又p =2,k =-2,则cos θ=55, ∴|F A ||FB |=5-55+5=(5-5)225-5=30-10520=3-52, 故选项D 错误.7.已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于M ,N 两点,且|MF |=2|NF |,则直线l 的斜率为______.答案 ±2 2解析 由抛物线的焦点弦的性质知1|MF |+1|NF |=2p=1, 又|MF |=2|NF |,解得|NF |=32,|MF |=3, ∴|MN |=92, 设直线l 的倾斜角为θ,∴k =tan θ,又|MN |=2p sin 2θ, ∴4sin 2θ=92, ∴sin 2θ=89,∴cos 2θ=19, ∴tan 2θ=8,∴tan θ=±22,故k =±2 2.8.(2022·攀枝花模拟)如图所示,已知抛物线C 1:y 2=2px 过点(2,4),圆C 2:x 2+y 2-4x +3=0.过圆心C 2的直线l 与抛物线C 1和圆C 2分别交于P ,Q ,M ,N ,则|PM |+4|QN |的最小值为________.答案 13解析 由题设知,16=2p ×2,则2p =8,故抛物线的标准方程为y 2=8x ,则焦点F (2,0), 由直线PQ 过抛物线的焦点,则1|PF |+1|QF |=2p =12, 圆C 2:(x -2)2+y 2=1的圆心为(2,0),半径为1, |PM |+4|QN |=|PF |-1+4(|QF |-1)=|PF |+4|QF |-5=2(|PF |+4|QF |)⎝⎛⎭⎫1|PF |+1|QF |-5=2×⎝⎛⎭⎫|PF ||QF |+4|QF ||PF |+5≥4|PF ||QF |·4|QF ||PF |+5=13, 当且仅当|PF |=2|QF |时,等号成立,故|PM |+4|QN |的最小值为13.。
抛物线焦点弦性质
抛物线焦点弦性质
抛物线焦点弦性质:焦点弦长就是两个焦半径长之和。
焦半径长可以用该点的横坐标来表示,与纵坐标无关。
由于焦点弦经过焦点,其方程式可以由其斜率唯一确定,很多问题可以转化为对其斜率范围或取值的讨论。
在抛物线y²=2px中,弦长公式为d=p+x1+x2。
若直线AB的倾斜角为α,则|AB|=2p/sin²α。
y²=2px或y²=-2px时,x1x2=p²/4,y1y2=-p²。
x²=2py或x²=-2py时,y1y2=p²/4,x1x2=-p²。
焦点弦是指椭圆、双曲线或者抛物线上经过一个焦点的弦,是指同一条圆锥曲线或同一个圆上两点连接而成的线段。
焦点弦是由两个在同一条直线上的焦半径构成的。
焦半径是由一个焦点引出的射线与椭圆或双曲线相交形成的。
而由于椭圆或双曲线上的点与焦点之间的距离(即焦半径长)可以用椭圆或双曲线离心率和该点到对应的准线之间的距离来表示。
抛物线的有关结论
圆锥曲线中抛物线的有关结论山东省德州市实验中学 肖成荣由于抛物线的离心率是常数,导致了许多自身具有的规律性,再加上抛物线的方程比较简单,所以灵活性就更加显现,了解了抛物线的规律性后在处理抛物线的相关问题时会起到事半功倍的效果。
下面就抛物线的结论作以归整,供参考! 一、焦点)0,2(pF 处的结论 1、焦半径长:),(11y x A ,)0,2(p F ,2||1p x AF +=;2、焦点弦长:),(11y x A 、),(22y x B 在抛物线上,且AB 过焦点F ,则p x x AB ++=21||,或θ2sin 2||pAB =(θ为直线l 与抛物线对称轴的夹角);3、过焦点的直线与抛物线相交于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为M 、N ,MN 的中点为G 。
(1)两相切:①以焦半径AF 为直径的圆与y 轴相切;②以焦点弦AB 为直径的圆与抛物线的准线相切.(2)三直角:①∠AGB ②090=∠MFN ③GF (3)六定值:),(11y x A 、),(22y x B 的乘积是定值:21x x =243p OB OA -=⋅;②n BF m AF ==,mn GF =||.③22sin AOBp S θ∆= 二、点)0,(p D 处的结论例:抛物线px y 22=上的点到)0,(a A 的最近距离是多少?结论:)0,(p D 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点,)0,(a A 在)0,(p D 左边顶点到点)0,(a A 的距离最近,右边横坐标为p a -的那两个抛物线上的点到点)0,(a A 的距离最近. 三、点)0,2(p E 处的结论B A ,是抛物线)0(22>=p px y 上的两点,OB OA ⊥,),(11y x A ,),(22y x B ,则ⅰ.2214p x x =,2214p y y -=;ⅱ.直线AB 过定点)0,2(p ;ⅲ.求AB 中点的轨迹方程;ⅳ.过O 向AB 引垂线,求垂足T 的轨迹方程;ⅴ.求AOB ∆面积的最小值.结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ⇔直线AB 过点)0,2(p E .(2)2214p x x =,2214p y y -=.四、准线上的有关结论过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切线,其交点在抛物线的准线上,且两切线垂直。
抛物线的性质与定理应用
抛物线的性质与定理应用抛物线是数学中的一个重要概念,它具有许多独特的性质和定理。
作为一位初中数学特级教师,我将在本文中向大家介绍抛物线的性质与定理,并探讨它们在实际问题中的应用。
一、抛物线的基本性质抛物线是由一个定点(焦点)和一条定直线(准线)确定的曲线,具有以下基本性质:1. 对称性:抛物线关于准线对称,即准线是抛物线的对称轴。
这个性质使得我们在研究抛物线时可以利用对称性简化问题,节省计算时间。
2. 焦点与准线的关系:抛物线上的任意一点到焦点的距离等于该点到准线的距离。
这个性质被广泛应用于抛物线的测量和设计中,例如卫星天线的调整和太阳能聚光器的设计等。
3. 切线性质:抛物线上的切线与准线垂直。
这个性质使得我们可以通过求解切线斜率为零的方程来确定抛物线上的顶点,从而得到抛物线的标准方程。
二、抛物线的定理应用1. 焦半径定理:焦半径定理是抛物线的一个重要定理,它指出抛物线上任意一点到焦点的距离等于该点到准线的距离的两倍。
这个定理可以用来解决很多与焦点和准线有关的实际问题,例如抛物线反射器的设计和抛物面反射望远镜的原理等。
2. 焦点坐标定理:焦点坐标定理是抛物线的另一个重要定理,它指出抛物线的焦点坐标为(p,0),其中p是焦准距。
这个定理可以用来确定抛物线的焦点位置,从而进一步求解抛物线的标准方程。
3. 抛物线的最值问题:抛物线在一定范围内的最值问题是数学中常见的优化问题。
通过求解抛物线的最值,我们可以确定抛物线的最高点、最低点以及最值对应的自变量值。
这个问题在物理学、经济学和工程学等领域都有广泛的应用。
三、抛物线的实际应用举例1. 抛物线的轨迹问题:假设有一个人站在地面上,以一定的初速度和角度抛出一个物体。
我们可以利用抛物线的轨迹性质来计算物体的飞行距离、最大高度和落地点等。
这个问题在射击、投掷和运动等领域都有实际应用。
2. 抛物线的抛物面反射望远镜:抛物面反射望远镜是一种常见的望远镜设计,它利用抛物线的焦点和准线性质来聚集光线,从而实现远距离的观测。
抛物线的几个常见结论及其应用
抛物线的相关结论:当A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:1、直线AB过焦点时,x1x2 = p²/4 ,y1y2 = -p²;(当A,B在抛物线x²=2py 上时,则有x1x2 = -p²,y1y2 = p²/4 ,要在直线过焦点时才能成立)2、焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;3、(1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))4、若OA垂直OB则AB过定点M(2P,0);5、焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);6、弦长公式:AB=√(1+k2)*│x1-x2│;7、△=b2-4ac;△=b2-4ac>0有两个实数根;△=b2-4ac=0有两个一样的实数根;△=b2-4ac<0没实数根;8、由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;9、标准形式的抛物线在(x0,y0 )点的切线是:yy0=p(x+x0),(注:圆锥曲线切线方程中x²=x*x0 , y² =y*y0 , x=(x+x0)/2 ,y=(y+y0)/2 )扩展资料:切线方程:抛物线y2=2px上一点(x0,y0)处的切线方程为:。
抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)。
抛物线各类方程式的共同点:1、原点在抛物线上,离心率e均为1;2、对称轴为坐标轴;3、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4抛物线各类方程式的不同点:1、对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;2、开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
浅谈抛物线焦点弦的性质及应用
浅谈抛物线焦点弦的性质及应用
抛物线焦点弦,即抛物线两个焦点之间的弦,所连接的直线称为焦点弦,它是抛物线上任何弦的直径,通过这条弦分割出抛物线两部分,经常被用于指定抛物线的位置及大小。
抛物线焦点弦的性质是抛物线的相关性质。
这其中包括了抛物线两个焦点,以及在抛物线围绕焦点弦绕一圈的椭圆弦、圆心和斜率。
此外,它还具有一定的几何特性,例如抛物线的焦点弦是抛物线的轴线。
抛物线焦点弦有很多实际应用。
常见应用之一是物体运动的轨迹计算。
运动物体跟踪系统能够实时计算出物体抛物线轨迹,这种轨迹有许多参数需要调整,如焦点弦长度和弦上点的位置,以便计算出更为精确的轨迹。
另外,抛物线焦点弦还广泛应用在电子信号处理、物理和太空航行等领域。
抛物线焦点弦是一种很重要的几何性质,通过它的参数来指定抛物线的形态和位置,实际应用也很广泛。
因此,要想掌握抛物线焦点弦的性质,不仅要熟悉基本的几何计算,还要深入了解它在不同应用场景中的使用情况,这尤其重要。
高三数学二轮复习冲刺:抛物线的焦半径与焦点弦
抛物线的焦半径与焦点弦抛物线的焦点弦是抛物线中的高频考点,特别是对于考生而言,本节的结论既要注意把握推导过程,更应该注意对结论的熟悉程度,因为很多涉及到焦点弦的题目都会以选填的形式出现,如此,你便可以用相关结论快速做到,避免小题大做!一.重要结论抛物线的焦点弦具有丰富的性质,它是对抛物线定义的进一步考察,也是抛物线这节中最重要的考点之一,下面罗列出常见的抛物线焦点弦性质:假设抛物线方程为px y 22=.过抛物线焦点的直线l 与抛物线交于B A ,两点,其坐标分别为),(),,(2211y x B y x A .性质1.,2||p x AF A +=2||px BF B +=,p x x AB B A ++=||.证明:性质1的证明很简单,由抛物线的定义即可证得.如上图,过B A ,向准线引垂线,垂足分别为N M ,.由定义可知:||||||||BF BN AF AM ==,.代入坐标即可证得相关结论.性质2.抛物线px y 22=的焦点为F,),(),,(2211y x B y x A 是过F 的直线与抛物线的两个交点,求证:221221,4p y y p x x -==.证明:),2(),,2(222121y py B y p y A ,则AB 的方程为2(221211p y x y y p y y -+=-,整理可得:212112))((y px y y y y -=+-,即可得AB 的方程为:21212)(y y px y y y +=⋅+.最后,由于直线AB 过焦点,代入焦点坐标可得221p y y -=.再代入抛物线方程4221p x x =.一般地,如果直线l 恒过定点)0,(m M 与抛物线)0(22>=p px y 交于B A ,两点,那么pm y y m x x B A B A 2,2-==.于是,若AB OB OA ⇒⊥恒过定点)0,2(p .性质3.已知倾斜角为θ直线的l 经过抛物线px y 22=的焦点F ,且与抛物线交于B A ,两点,则(1)pFB F A P BF p AF 2||1||1cos 1||,cos 1||=++=-=,θθ.(2))11(2||sin 2sin 2||222k p AB p S p AB OAB+===∆,,θθ.证明:设准线l 交x 轴于点P ,过点A 作x AM ⊥轴于M ,作l AN ⊥于N ,由抛物线定义可知:AN AF =.其中p PF =,θcos ⋅=AF MF .所以θcos AF p FM PF AN +=+=,θcos AF p AF +=,故θcos 1-=pAF .同理θcos 1+=p BF ,所以θθ22sin 2cos 12pp BF AF AB =-=+=.性质4.抛物线的通径(1).通径长为p 2.(2).焦点弦中,通径最短.(3).通径越长,抛物线开口越大.由性质3易得,略.性质5.已知直线l 经过抛物线px y 22=的焦点F ,且与抛物线交于B A ,两点,若弦AB 中点的坐标为),(00y x ,则2(2||0p x AB +=.证明:设B A ,坐标为),(),,(2211y x y x ,由抛物线定义:p x x BF AF AB ++=+=21||||||,故)2(2||0p x AB +=.性质6.以焦点弦为直径的圆与准线相切.证明:设焦点弦的中点为),(:00y x M ,则M 到准线的距离为20px +,由性质5可证得.性质7.如图,过抛物线22(0)y px p =>的焦点F 的直线与抛物线相交于N M ,两点,自N M ,向准线l 作垂线,垂足分别为11,N M ,则(1)21FM FM ⊥;(2)记1111,,FNN N FM FMM ∆∆∆的面积分别为1S ,2S ,3S ,22134S S S =.注:此题为2009湖北卷文科试题,证明过程可参见该题解答.二.典例分析例1.(2017年全国1卷).已知F 为抛物线x y C 4:2=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则||||DE AB +的最小值为()A.16B.14C.12D.10解析:法1:设1122(,),(,)A x y B x y ,3344(,),(,)D x y E x y ,直线1l 方程为1(1)y k x =-取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=∴21122124k x x k --+=-212124k k +=同理直线2l 与抛物线的交点满足22342224k x x k ++=由抛物线定义可知1234||||2AB DE x x x x p+=++++22122222121224244448816k k k k k k ++=++=++≥+=当且仅当121k k =-=(或1-)时,取得等号.法2:设1l 的倾斜角为α,则直线2l 的倾斜角为π2α+,根据焦点弦长公式有:2244πsin sin 2AB DE αα+=+⎛⎫+ ⎪⎝⎭()22222224416sin cos sin cos αααα+=+≥=+.故选A.法4:设点()()1122,,,A x y B x y ,则()221212121224AB x x p x x y y =++=++=++()212121224y y y y ⎡⎤=+-+⎣⎦设直线1l 的方程为1x my =+()0m ≠联立直线1l 与抛物线2:4C y x =方程消去x 可得2440y my --=所以121244y y m y y +=⎧⎨=-⎩,所以()221212122444AB y y y y m ⎡⎤=+-+=+⎣⎦同理244DE m =+,所以2248416AB DE m m +=++≥(当且仅当1m =±时等号成立)法5:可设直线12111:,:b x ky l b kx y l +-=+=,由抛物线焦点弦的性质3可得:)1(4||),11(4||22k DE k AB +=+=,故16)1(411(4||||22≥+++=+k kDE AB ,当且仅当1±=k 时取到最小值,故选A.上述例2,在知晓背景的情况下解答是很容易的,这再次说明记住一些重要的二级结论可以优化运算,提升解题速度.下例中,我们将看到有关面积的定值问题,从而为前面的重要结论做一个补充.例2.(2022新高考2卷)已知O 为坐标原点,过抛物线)0(2:2>=p px y C 的焦点F 的直线与C 交于A ,B 两点,点A 在第一象限,点()0M p ,,若AF AM =,则直线AB的斜率为A.直线AB 的斜率为2B.OB OF =C.4AB OF>D.180<∠+∠OBM OAM 解析:选项A:设FM 中点为N ,则32,24A N ppx x p +===所以()2233220,42A A A y px p p p y ==⋅=>所以,A y p =故2342AB p k p p ==-选项B:112112342p AF BF p BF p p +=⇒+=+5623B B p p BF p x x ⇒==+⇒=所以2222.33Bp p y p =⋅=所以22222227.9394B B p p p p OB x y =+=+=≠选项C:32524.4312pAB p p p p OF =++=>=选项D:由选项A,B知3,,,43pA p p B⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭所以22233,0,4344p pOA OB p p p⎛⎫⎛⎫⋅=⋅=-=-<⎪ ⎪⎪ ⎪⎝⎭⎝⎭所以AOB∠为钝角;又22211,0,42331212p p pMA MB p p p p⎛⎫⎛⎫⋅=-⋅--=-=-<⎪ ⎪⎪ ⎪⎝⎭⎝⎭所以AMB∠为钝角;所以180OAM OBM∠+∠<︒.故选ACD.例3.抛物线24y x=的焦点为F,11(,)A x y,22(,)B x y 是抛物线上两动点,若123(2)2AB x x=++,则AFB∠的最大值为A.23πB.56πC.34πD.3π解析:)12122,2,()AF BF x x AB x x AB AF BF+=++++∴+.在AFB△中,由余弦定理得:()2222222222241331122AF BF ABcos AFBAF BFAF BF AF BF ABAF BFAB AB ABAF BF AF BF+-∠=⋅+-⋅-=⋅-=-=-⋅⋅,又213AF BF AB AF BF AB+∴⋅.所以221131,1223ABcos AFB AFBAB∠-=-∴∠⨯的最大值为23π.本题选择A选项.例4.(2022·广东·一模)已知抛物线2:4C y x=的焦点为F,抛物线C上存在n个点1P,2P,L,nP(2n≥且*Nn∈)满足1223112n n nPFP P FP P FP P FPnπ-∠=∠==∠=∠=,则下列结论中正确的是()A.2n=时,12112P F P F+=B.3n =时,123PF P F P F ++的最小值为9C.4n =时,13241114PF P F P F P F +=++D.4n =时,1234PF P F P F P F +++的最小值为8解析:当2n =时,1212PFP P FP π∠=∠=,此时不妨取12PP 过焦点垂直于x 轴,不妨取12(12),(12)P P -,,,则121111=+122P FP F +=,故A 错误;当3n =时,12233123PFP P FP P FP π∠=∠=∠=,此时不妨设123,,P P P 在抛物线上逆时针排列,设1,(0,)2PFx παα∠=∈,2222||,||241cos()1cos()33P F P F ππαα==-+-+,123222241cos 1cos()1cos()33PF P F P F ππααα++=++--+-+214(1cos )2211cos (cos 2ααα+=+-+,令113cos ,(,222t t α=+∈,则123242332t PF P F P F t t +++=+-,令242332()t t t f t +=+-,则232382627(1)()(32)(32)t t f t t t t t +--'=-=--,当112t <<时,()0f t '>,()f t 递增,当312t <<时,()0f t '<,()f t 递减,故min ()(1)9f t f ==,故当1t =,即1cos ,23παα==时,123PF P F P F ++取到最小值9,故B 正确;当4n =时,122313442PFP P FP P FP P FP π∠=∠=∠=∠=,此时不妨设1234,,,P P P P 在抛物线上逆时针排列,设1,(0,2PFx πθθ∠=∈,12342222||,||,||,||31cos 1cos()1cos()1cos()22PF P F P F P F ππθθπθθ====--+-+-+,即234222||,||,||1sin 1cos 1sin P F P F P F θθθ===++-,故1322241cos 1cos sin PF P F θθθ+=-++=,2422241sin 1sin cos P F P F θθθ+=+-+=,所以132242sin cos 144141PF P F P F P F θθ=++=++,故C 正确;由C 的分析可知:23422122244416sin cos sin cos sin 2PF P F P F P F θθθθθ++===++,当2sin 21θ=时,216sin 2θ取到最小值16,即1234PF P F P F P F +++最小值为16,故D 错误;故选:BC例5.(2018年全国2卷)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解析:(1)设直线l 的方程为)0)(1(>-=k x k y ,且B A ,坐标为),(),,(2211y x y x ,联立方程可得:()214y k x y x⎧=-⎨=⎩得()2222240k x k x k -++=.216160k ∆=+=,故212224k x x k ++=.所以()()21224411k AB AF BF x x k +=+=+++=.由题设知22448k k+=,解得:解得:1=k ,故l 的方程为1-=x y .(2)由(1)可得AB 中点坐标为)2,3(,所以AB 的垂直平分线方程为5+-=x y ,设所求圆的圆心坐标为),(00y x ,则()()002200051116.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩,因此所求圆的方程为()()223216x y -+-=或()()22116144x y -++=.注:此题以焦点弦性质6为背景展开.例6.已知抛物线C :()220,4y px p p =>≠,过点(2,0)A 且斜率为k 的直线与抛物线C 相交于P ,Q 两点.(1)设点B 在x 轴上,分别记直线PB ,QB 的斜率为12,k k .若120k k +=,求点B 的坐标;(2)过抛物线C 的焦点F 作直线PQ 的平行线与抛物线C 相交于M ,N 两点,求||||||MN AP AQ ⋅的值.解析:由题意,直线PQ 的方程为(2)y k x =-,其中0k ≠.设221212(,0),,,,22y y B m P y Q y p p ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立2(2)2y k x y px =-⎧⎨=⎩,消去x 得2240p y y p k --=.21212242160,,4p pp y y y y p k k∴∆=+>+==-.120k k += ,12221222y y y y m m pp∴+=--,即()()12121202y y y y m y y p +-+=.4202p p m p k⎛⎫-∴-⋅= ⎪⎝⎭,即2(2)0pm k +⋅=.0p > ,2m ∴=-,∴点B 的坐标为(2,0)-.(2)由题意,直线MN 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,其中tanθk =,θ为倾斜角,则sin θ=,2122224114sin 1y y p AP AQ p k k k θ-⎛⎫∴⋅===+⋅ ⎪⎝⎭+设322344,,,22y y M y N y p p ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.联立222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去x 得2220p y y p k --=.222343424240,,p p p y y y y p k k∴∆=+>+==-.342112MN y p k ⎛⎫∴=-=+⋅ ⎪⎝⎭22112||11||||214p MN k AP AQ p k ⎛⎫+⋅ ⎪⎝⎭∴=⋅⎛⎫+⋅ ⎪⎝⎭.例7.已知抛物线2:(0)E y ax a =>的焦点为,F A 为E 上一点,||AF 的最小值为1.(1)求抛物线E 的标准方程;()过焦点F 作互相垂直的两条直线121,,l l l 与抛物线E 相交于,P Q 两点,2l 与抛物线E 相交于,M N 两点.若,C D 分别是线段,PQ MN 的中点,求22||||FC FD +的最小值.解析:(1)抛物线E 的标准方程为24x y =.(2)由(1)得,点()0,1F ,显然直线1l ,2l 的斜率都存在且不为0,设直线1l 斜率为k ,则2l 的斜率为1k -,直线1l 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩消去y 并整理得2440x kx --=,216160k ∆=+>,设()11,P x y ,()22,Q x y ,则124x x k +=,所以线段PQ 中点()22,21C k k +,()2424k F k C =+,同理242114FD k k ⎛⎫=+ ⎪⎝⎭,所以242242114FC k F k k D k ⎛⎫=+++ ⎝+⎪⎭,令2212t k k =+≥=,当且仅当221k k =,即21k =时等号成立.所以24412t k k=++,且[)2,t ∈+∞,所以()()222221424249162t t t t t FC FD ⎛⎫=+-=+-=+-≥ ⎪⎝+⎭,当且仅当2t =时取等号,所以22FC FD +的最小值为16.例8.已知抛物线C :()220x py p =>,F 为抛物线C 的焦点,()0,1M x 是抛物线C 上点,且2MF =;(1)求抛物线C 的方程;(2)过平面上一动点(),2P m m -作抛物线C 的两条切线PA ,PB (其中A ,B 为切点),求11AF BF+的最大值.解析:(1)抛物线2C 的方程为24x y =;(2)抛物线2C 的方程为24x y =,即2'xy =,设()11,A x y ,()22,B x y ,(),2P m m -则切线PA ,PB 的斜率分别为12x,22x .所以切线PA :,)(2111x x x y y -=-∴211122x x y x y =-+,又2114x y = ,11220y x x y ∴-+=,同理可得切线PB 的方程为22220y x x y -+=,因为切线PA ,PB 均过点(),2P m m -,所以112240y mx m -+-=,222240y mx m -+-=,所以直线AB 的方程为2240y mx m -+-=.联立方程222404y mx m x y -+-=⎧⎨=⎩,消去x 整理得()()2222420y m m y m --++-=,∴()()()222222442480m m m m m m ∆=-+--=-+≥,∴m R ∈.∴21224y y m m +=-+,()2122y y m =-由抛物线定义可知11AF y =+,21BF y =+,所以11AF BF AF BF AF BF++=∵()()()121212111AF BF y y y y y y =++=+++2269m m =-+,∴2223+112612+2692269m AF BF m m AF BF AF BF m m m m +-+==+-+-+,令32m t R+=∈∴原式21111454522221221222t t t t t=+=+-++-≤。
抛物线性质归纳、证明和应用
抛物线性质归纳、证明和应用抛物线是平面内到定点的距离等于到定直线(定点在定直线外)的距离的点的轨迹,它是椭圆过渡到双曲线的瞬间曲线,它只有一支(双曲线有两支),只有一条对称轴,没有渐近线和对称中心,属于无心曲线.抛物线的焦半径、焦点弦性质丰富多彩,此外还有定点、定值、定弦、最值等问题也值得探讨,抛物线的许多性质也是历年高考的重点和热点,这里就它的一些性质加以归纳,说明和证明,及其在历年高考和模拟考试出现的典例. 一、焦半径、焦点弦性质如图,AB 是过抛物线 y 2=2px (p >0)焦点F 的弦,AD 、BC 是准线的垂线,垂足分别为D 、C ,M 是CD 的中点,N 是AB 的中点.设点A (x 1,y 1)、点B (x 2,y 2),直线AB 交y 轴于点K (0,y 3),则: ⑴ ① y 1y 2=-p 2;② x 1x 2=p 24;③ 1y 1+1y 2=1y 3;④ | AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角);⑤ S △OAB =p22sin θ,S 梯形ABCD =2p2sin 3θ..⑵ 1| AF |+1| BF |=2p ; ⑶ ∠AMB =∠DFC =Rt ∠;⑷ AM 、BM 是抛物线的切线;⑸ AM 、BM 分别是∠DAB 和∠CBA 的平分线; ⑹ AM 、DF 、y 轴三线共点,BM 、CF 、y 轴三线共点; ⑺ A 、O 、C 三点共线,B 、O 、D 三点共线; ⑻ 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n;⑼ 以AF 为直径的圆与y 轴相切,以BF 为直径的圆与y 轴相切; 以AB 为直径的圆与准线相切.⑽ MN 交抛物线于点Q ,则,Q 是MN 的中点.★⑴ ① y 1y 2=-p 2;② x 1x 2=p 24;③ 1y 1+1y 2=1y 3④ | AB |=x 1+x 2+p =2p sin 2θ (θ为AB 的倾斜角);⑤S △OAB =p 22sin θ,S 梯形ABCD =2p2sin 3θ.【证明】设过焦点F (p 2,0)的AB 的直线方程为x =my +p2,代入抛物线方程y 2=2px 得y 2-2pmy -p 2=0,因此 ① y 1y 2=-p 2,y 1+y 2=2pm . 另由⑶得在Rt △CFD 中,FR ⊥CD , 有| RF |2=| DR |·| RC |,而| DR |=| y 1 |,| RC |=| y 2 |,| RF |=p ,且y 1 y 2<0∴y 1y 2=-p 2.② 又点A 、B 在抛物线上,有x 1=y 212p ,x 2=y 222p,因此x 1x 2=y 212p ·y 222p =(y 1y 2)24p 2=p 24.③ 1y 1+1y 2=y 1+y 2y 1y 2=2pm -p 2=-2m p, 在直线AB 方程x =my +p 2中令x =0,得y 3=-p 2m ,代入上式得1y 1+1y 2=1y 3④【证法一】根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p又| AB |=(x 2-x 1)2+(y 2-y 1)2=1+m 2| y 2-y 1 |=1+m 2(y 1+y 2)2-4y 1y 2 =1+m24m 2p 2+4p 2=2p (1+m 2)当m ≠0时,m =1k =1tan θ=cos θsin θ,有1+m 2=1+cos 2θsin 2θ=1sin 2θ(k 为直线AB 的斜率)当m =0时,θ=90︒,1+m 2=1也满足1+m 2=1sin 2θ∴| AB |=2p (1+m 2)=2psin 2θ. 【证法二】如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ,∴| AF |=| RF |1-cos θ=p 1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.【证法三】极坐标法,设抛物线的极坐标方程为ρ=p1-cos θ,则| AF |=ρ1=p 1-cos θ ,| BF |=ρ2=p 1-cos(π+θ )=p1+cos θ.∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.⑤S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1 |+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p4(y 1+y 2)2-4y 1y 2=p44m 2p 2+4p 2=p 221+m 2=p 22sin θ .又∵| CD |=| AB |sin θ=2p sin θ ,| AD |+| BC |=| AB |=2psin 2θ.∴S 梯形ABCD =12(| AD |+| BC |)·| CD |=12×2p sin θ×2p sin 2θ=p2sin 3θ.【例1】(2001年新课程高考文)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →= ··························· ( )A. 34B. -34C. 3D. -3【解】设A (x 1,y 1),B (x 2,y 2),则OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-34,故选B.【例2】(2009年福建理)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45︒的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p = .【解】由性质⑴得| AB |=2p sin 2θ=2psin 245︒=8,∴p =8×122=4. ★⑵1| AF |+1| BF |=2p【证法一】由⑴x 1x 2=p 24,且| AF |=x 1+p 2,| BF |=x 2+p2.∴1| AF |+1| BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p (x 1+p 2)·(x 2+p 2)=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24=x 1+x 2+p p 24+p 2(x 1+x 2)+p 24 =x 1+x 2+p p 2(x 1+x 2+p ) =2p 【证法二】由| AF |=ρ1=p 1-cos θ ,| BF |=ρ2=p 1-cos(π+θ )=p1+cos θ .∴1| AF |+1| BF |=1ρ1+1ρ2=1-cos θp +1+cos θp =2p【例3】(2000全国)过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则1p +1q等于 ·················· ( )A. 2aB. 12aC.4aD. 4a【解】由y =ax 2得x 2=1a y ,(抛物线焦点到准线的距离为12a ),由此得1p +1q =4a ,故选C.★⑶ ∠AMB =∠DFC =Rt ∠,先证明:∠AMB =Rt ∠ 【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p2=y 1-y 22·y 212p+p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p24-(y 1-y 2)24=p24+p 2(y212p +y222p )+p 24-y 21+y 22-2y 1y 24图3=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90︒,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4 ∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠.接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =p y 1,k CF =-y 2+p 2+p 2=-y 2p =py 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒【例4】(2009年湖北文)如图7,过抛物线y 2=2px (P >0)的焦点F 的直线与抛物线相交于M 、N 两点,自M 、N 向准线l 作垂线,垂足分别为M 1、N 1,求证:FM 1⊥FN 1图6★⑷ AM 、BM 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y212p)与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0, 故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x =(2px )'x, 得2y ·y 'x=2p ,y 'x =p y,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =p y 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线. 【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线. ★⑸ AM 、BM 分别是∠DAB 和∠CBA 的平分线 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA .【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p+p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p2=py 1.图9图8∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .★⑹ AM 、DF 、y 轴三线共点,BM 、CF 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点, 同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形. ★⑺ A 、O 、C 三点共线,B 、O 、D 三点共线【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2=-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2py 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.图11图10【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=11| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p2·y 1-x 1 y 2=-p2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p=0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:【例5】(2001A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴. 证明直线AC 经过原点O . 【证法一】因为抛物线y 2=2px (p >0)的焦点为F (-p2,0),所以经过点F 的直线AB 的方程可设为x =my +p2;代入抛物线方程得y 2-2pmy -p 2=0设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根, ∴y 1y 2=-p 2因为BC ∥x 轴,且点C 在准线x =-p 2上,故C (-p2,y 2),∴直线CO 的斜率为 k OC =y 2 -p 2=2p y 1=y 1x 1=k OA .∴直线AC 经过原点O .【证法二】如图13,过A 作AD ⊥l ,D 为垂足,则:AD ∥EF ∥BC图12连结AC 与EF 相交于点N , 则| EN | | AD | =| CN | | AC | =| BF | | AB | ,| NF | | BC | =| AF || AB |由抛物线的定义可知:| AF |=| AD |,| BF |=| BC | ∴| EN |=| AD |·| BF | | AB | =| AF |·| BC || AB |=| NF |.即N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O .★⑻ 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n; 【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD 于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 . 【答案】60︒或120︒.★⑼ 以AF 为直径的圆与y 轴相切,以BF 为直径的圆与y 轴相切;以AB 为直径的圆与准线相切. 【说明】如图15,设E 是AF 的中点,则E 的坐标为( p2+x 12,y 12),则点E 到y 轴的距离为d = p2+x 12=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. ★⑽ MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' (-p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 22 8p = ⎝ ⎛⎭⎪⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.二、定点、定值、定直线问题(共9个结论)★⑴平行于抛物线对称轴的光线,被抛物面反射后会聚焦于抛物线的焦点,如图17. 【证明】如图17,设抛物线方程为y 2=2px (p >0),直线AB ∥x 轴,点A 的坐标为(x 0,y 0),则过A 点的切线方程为y 0y =p (x +x 0),直线l 的斜率为k 0=p y 0,设直线AB 到l 的角为α,则tan α=py 0,设直线AF 的斜率为k 1,则k 1=y 0x 0-p 2=2py 0y 20-p 2,设直线l 到AF 的角为β,则tan β=k 1-k 01+k 0k 1=2py 0y 20-p 2-p y 0 1+p y 0·2py 0y 20-p2=p (y 20+p 2)y 0(y 20+p 2)=p y 0. ∴tan α=tan β,又α、β∈[0,π),则α=β,也就是说平行于抛物线对称轴的光线,被抛物面反射后会聚焦于抛物线的焦点. 【例7】(2004年福建省质检)如图18,从点M (x 0,2)发出的光线沿平行于抛物线y 2=4x 的轴的方向射向抛物线的点P ,反射后经焦点F 又射向直线l :x -2y -7=0上的点N ,再反射后又设回点M ,则x 0= .【解】PM ∥x 轴,点P 在抛物线上,得P 的坐标为(1,2),经过F (1,0)点后反射在Q 点,则Q 的坐标为(1,-2),经Q 反射后点N 的坐标为(3,-2),设M 关于l 对称的点为M ',依题意,Q 、N 、M '共线.故可设M '(x 1,-2),由此得 ⎩⎨⎧2+2x 0-x 1·12=-1x 0+x 12―2·2-22―7=0 ,解得x 0=6.【另解】若设Q 关于直线l 的对称点为Q ',设Q ' (a ,b ),由于Q 、Q '关于直线l 对称,由此得⎩⎨⎧b +2a -1·12=-1a +12―2·b -22―7=0,解得⎩⎨⎧a =95b =-185则Q '的坐标为(95,-185), 又M 、N 、Q '三点共线,k MN =k NQ ',即-185+195-3=2+2x 0-3,∴x 0=6.★⑵若C (x 0,y 0)是抛物线y 2=2px (p >0)上的任一点,过C 引两条互相垂直的直线交抛物线于A 、B ,则直线AB 过定点(2p +x 0,-y 0).【证明】设A (s 22p ,s )、B (t 22p,t )(s ,t ,y 0互不相等)那么,由AC ⊥BC 得k AC ·k BC =y 0-s x 0-s 22p ·y 0-tx 0-t 22p=y 0-s y 202p -s 22p ·y 0-t y 202p -t 22p=4p2(y 0+s )(y 0+t )=-1∴4p 2=-(y 0+s )(y 0+t )∴st =-4p 2-(s +t )y 0-y 20 ···· ①又直线AB 的方程为y -s t -s =x -s 22p t 22p -s 22p,整理得,y =2px +sts +t② 把①代入②得 y =2px -4p 2-(s +t )y 0-y 20s +t =2px -4p 2-2px 0s +t -y 0=2ps +t (x -2p -x 0)-y 0令x -2p -x 0=0,即x =2p +x 0,得y =-y 0. 故直线AB 过定点(2p +x 0,-y 0).特别地,当C 是抛物线的顶点时,定点P 的坐标为(2p ,0).【拓展】C (x 0,y 0)是抛物线y 2=2px (p >0)上的一定点,直线AB 与抛物线相交于A 、B 两点(都异于C ),若直线CA 、CB 的斜率k CA 、k CB 的乘积为定值m ,那么,直线AB 过定点(x 0-2pm,-y 0).【例8】(2000京皖春季高考)如图20,设点A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线. 【解法一】点A ,B 在抛物线y 2=4px 上,设A (y 2A 4p ,y A ),B (y 2B4p ,y B ),OA 、OB 的斜率分别为k OA 、k OB .∴k OA =y A y 2A 4p =4p y A ,k OA =4p y B ,k AB =y B -y A y 2B 4p -y 2A4p=4py A +y B . 由OA ⊥OB ,得k OA ·k OB =16p2y A y B=-1 ·········· ①∴直线AB 方程为,y -y A =4p y A +y B (x -y 2A 4p ),即(y A +yB )(y -y A )=4p (x -y 2A 4p) ··· ②由OM ⊥AB ,得直线OM 方程y = y A +y B4p ·········· ③设点M (x ,y ),则x ,y 满足②、③两式,将②式两边同时乘以-x4p,并利用③式图20整理得,x4p y A 2+yy A -(x 2+y 2)=0 ··············· ④由③、④两式得-x4p +y B y A -(x 2+y 2)=0,由①式知,y A y B =-16p 2,所以x 2+y 2-4px =0. 因为A 、B 是原点以外的两点,所以x ≠0.所以点M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.【解法二】由性质(2)易知AB 经过定点P (4p ,0),由于OM ⊥AB ,那么,M 的轨迹以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.其轨迹方程为x 2+y 2-4px =0(x ≠0).★⑶抛物线y 2=2px (p >0)的弦AB 的中点D 恰好在定直线l :x =m (m >0)上,则线段AB 的垂直平分线过定点M (m +p ,0).【证明】如图22,设A (x 1,y 1),B (x 2,y 2),D (m ,y 0),那么⎩⎪⎨⎪⎧y 21=2px 1…………①y 22=2px 2…………② ①-②得y 21-y 22=2p (x 1-x 2) ∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=2p y 1+y 2=py 0∴直线DM 的斜率k DM =-1k AB=-y 0p∴DM 的直线方程为y -y 0=-y 0p(x -m ) 令y =0,得x =m +p∴直线AB 的垂直平分线恒过定点(m +p ,0).【例9】(2008湖南理科高考)若A 、B 是抛物线y 2=4x 上的不同两点,弦AB (不平行于y 轴)的垂直平分线与x 轴相交于点P ,则称弦AB 是点P 的一条“相关弦”.已知当x >2时,点P (x ,0)存在无穷多条“相关弦”.给定x 0>2.⑴证明:点P (x 0,0)的所有“相关弦”的中点的横坐标相同;⑵(略) 【说明】应用性质⑶,由已知得p =2,由定点P (x 0,0)得m +p =x 0,故m =x 0-2 ∴“相关弦”的中点的横坐标为x 0-2.图21图22★⑷设直线l 与抛物线y 2=2px (p >0)相交于点A (x 1,y 1)、B (x 2,y 2),那么①若直线l 过抛物线对称轴的定点M (a ,0),则y 1y 2=-2ap ,x 1x 2=a 2;反之 ②若y 1y 2=k (定值),则直线l 恒过定点N (-k2p ,0).③若直线l 与y 轴相交于点(0,y 3),则1y 1+1y 2=1y 3.【证明】①设过点M (a ,0)的直线方程为x =my +a ,代入抛物线方程y 2=2px 得y 2-2pmy -2pa =0,因此y 1y 2=-2ap ,x 1x 2=y 212p ·y 222p =(y 1y 2)24p 2=4a 2p 24p2=a 2.②设直线l 方程为x =my +b ,代入抛物线方程y 2=2px 得 y 2-2pmy -2pb =0,即方程的根y 1、y 2是P 、Q 两点的纵坐标 ∴y 1y 2=-2pb ,又y 1y 2=k .∴-2pb =k ,即b =-k 2p ,则直线l 方程为x =my -k2p令y =0,得x =-k 2p ,则直线l 恒过定点N (-k2p,0).③由l 的方程x =my +a 中,令x =0得y 3=-am,y 1+y 2=2pm ∴1y 1+1y 2=y 1+y 2y 1y 2=2pm -2ap =-m a =1y 3.【例10】(北京2005年春季高考理科)如图24,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别为a 和b (a >0,b ≠0),且交抛物线y 2=2px(p >0)于M (x 1,y 1)、N (x 2,y 2)两点. ⑴写出直线l 的截距式方程; ⑵证明:1y 1+1y 2=1b.⑴【解】直线l 的截距式方程为x a +yb=1.⑵由上面性质⑶证明可得1y 1+1y 2=1b.图23★⑸过抛物线y 2=2px (p >0)的焦点F 作直线l 与抛物线交于A 、B 两点,且与准线交于点M ,设MA →=λAF →,MB →=μBF →,则λ+μ=0.【证法一】设过点F (p 2,0)的直线方程为x =my +p2,代入抛物线方程y 2=2px 得y 2-2pmy -p 2=0,因此y 1y 2=-p 2,y 1+y 2=2pm 令x =-p 2,得y M =-pm由MA →=λAF →得(x 1+p 2,y 1+p m )=λ (p 2-x 1,-y 1)∴y 1+pm =-λ y 1,λ=1+p my 1,同理,μ=1+p my 2∴λ+μ=2+p my 1+p my 2=2+p (y 1+y 2)my 1 y 2=2+p ·2pmm ·(-p 2)=2-2=0. 【证法二】由已知MA →=λAF →,MB →=μBF →,得λ·μ<0.则|MA →| |MB →| =-λ|AF →| μ|BF →| ········· ①过点A ,B 分别作准线l 的垂线,垂足分别为A 1,B 1, 则有:|MA →| |MB →| =|AA 1→| |BB 1→| =|AF →||BF →| ···· ②由①②得-λ|AF →|μ|BF →| =|AF →||BF →|,即λ+μ=0.【例11】(2007年福建理科高考)如图27,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP →·QF →=FP →·FQ →. ⑴求动点P 的轨迹C 的方程;⑵过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点M ,已知 MA →=λ1AF →,MB →=λ2BF →,求λ1+λ2的值; 【略解】⑴动点P 的轨迹C 的方程为:y 2=4x ;⑵λ1+λ2=0.A图27★⑹定长为l 的弦AB 的两个端点在抛物线y 2=2px 上,M 是AB 的中点,M 到y 轴的距离为d ,那么,M的轨迹方程为:4(y 2+p 2)(2px -y 2)=p 2l 2,且①当0<l <2p 时,d 的最小值为l 28p,此时,AB ∥y 轴;②当l ≥2p 时,d 的最小值为l -p2,此时,弦AB 过焦点F .【解】设A (x 1,y 1),B (x 2,y 2),弦AB 的中点M 的坐标为(x 0,y 0),AB 的直线方程为x =my +b ,代入抛物线方程y 2=2px得y 2-2pmy -2pb =0. ∴y 1+y 2=2pm ,y 1y 2=-2pb . 又AB 的中点为M (x 0,y 0),且点M 在直线AB 上,∴y 0=y 1+y 22=pm ,x 0=my 0+b ,m =y 0p ,b =x 0-my 0=x 0-y 20p.∴| AB |2=l 2=(x 1-x 2)2+(y 1-y 2)2=(my 1+b -my 2-b )2+(y 1-y 2)2=(1+m 2)(y 1-y 2)2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=(1+y 20p 2)[4y 20+8pb ]=(1+y 20p 2)[4y 20+8p (x 0-y 20p)]整理得,4(y 20+p 2)(2px 0-y 20)=p 2l 2. 故中点M 的轨迹方程为:4(y 2+p 2)(2px -y 2)=p 2l 2.由上可知d =x =pl 28(y 2+p 2)+y 22p ,令t =y 2+p 2≥p 2,即y 2=t -p 2,则d =x =pl 28t +t -p 22p =pl 28t +t 2p -p 2(t ≥p 2).令pl 28t =t 2p ,得t =pl 2.①当0<l <2p 时,p 2>pl2,d 在t ∈[ p 2,+∞)上是增函数,∴当t =p 2,即y =0时,d min =pl 28p 2+p 22p -p 2=l 28p,此时,m =0,即AB ∥y 轴.②当l ≥2p 时,p 2≤pl2,∴d =pl 28t +t 2p -p 2≥2p tt pl 282⨯-p 2=l -p 2.当且仅当pl 28t =t 2p ,即t =pl 2≥p 2时取等号,故d 的最小值为l -p2.②【证法二】当l ≥2p 时,过A 、B 、M 作准线x =-p2的垂线,垂足为A '、B '、M ',则| MM ' |=d +p 2=12(| AA ' |+| BB ' |)=12(| AF |+| BF |)≥12| AB|=12l . 上式当且仅当| AF |+| BF |=| AB |,即弦AB 过抛物线的焦点M 时取等号,则d 的最小值为12l -p 2=l -p2.图29图28【说明】经过焦点F 的最短弦是通经2p ,因此当弦AB 的长l <2p 时,不能用证法二证明d 的最小值为l 28p.【例12】长度为a 的线段AB 的两个端点在抛物线x 2=2py (a ≥2p >0)上运动,以AB 的中点C 为圆心作圆与抛物线的准线相切,求圆C 的最小半径.【解】依题意,问题转化为定长的弦的两个端点在抛物线上,弦的中点C 到y 轴的距离的最值问题,由上面的性质可知当弦AB 经过焦点F 时,点C 到准线的距离为最小值. 如图30.∴圆C 的最小半径为r =a2.★⑺过抛物线y 2=2px (p >0)的对称轴上的定点M (m ,0)(m >0),作直线AB 与抛物线相交于A ,B两点.点N 是定直线l :x =-m 上的任一点,则直线AN ,MN ,BN 的斜率成等差数列. 【证明】设A (x 1,y 1),B (x 2,y 2),N (-m ,n ), 由性质⑶有y 1y 2=-2pm ,则直线AN 、BN 的斜率为k AN =y 1-n x 1+m ,k BN =y 2-nx 2+m∴k AN +k BN =y 1-n y 212p +m +y 2-ny 222p+m=2p (y 1-n )y 21+2pm +2p (y 2-n )y 22+2pm =2p (y 1-n )y 21-y 1y 2+2p (y 1-n )y 22-y 1y 2=2p [y 2(y 1-n )-y 1(y 2-n )]y 1y 2(y 1-y 2)=2pn (y 1-y 2)y 1y 2(y 1-y 2)=2pn y 1y 2=2pn -2pm =-n m又∵直线MN 的斜率为k MN =n -0-m -m =-n2m. ∴k AN +k BN =2k MN∴直线AN ,MN ,BN 的斜率成等差数列.★⑻抛物线的一组平行弦的中点共线,且所在直线平行于对称轴或与对称轴重合.【证明】设斜率为k (k 为常数)的一组平行线与抛物线y 2=2px (p >0)交于点A i 、B i (i =1,2,…),弦A i B i 的中点为M i ,(即M 1,M 2,…,M n ),且A i B i 的直线方程为y =kx +b i (b i 为直线A i B i 在y 轴上的截距),A i (x 1,y 1),B i (x 2,y 2),M i (x i ,y i ).联立方程组⎩⎨⎧y 2=2pxy =kx +b i,消去x 得k2p y 2-y +b i =0(-∴y 1+y 2=2pk,又M i 是A i B i 的中点∴y i =y 1+y 22=p k ,则M 1,M 2,…,M n 在平行于x 轴的直线y =pk上. 当直线A i B i 与x 轴垂直(即直线A i B i 的斜率不存在时),易知M 1,M 2,…,M n 在x 轴上. 【例13】(2009年陕西卷理20文21)已知抛物线C :y =2x 2,直线y =kx +2交C 于A ,B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N . ⑴证明:抛物线C 在点N 处的切线与AB 平行; 【证明】如图34,设A (x 1,2x 21),B (x 1,2x 22),把y =kx +2代入y =2x 2得2x 2-kx -2=0, 由韦达定理得x 1+x 2=k2,x 1x 2=-1,∴x N =x M =x 1+x 22=k4,即N 点的坐标为(k 4,k 28) 设抛物线在点N 处的切线l 的方程为y -k 28=m (x -k4),将y =2x 2代入上式得2x 2-mx +mk 4-k 28=0,∵直线l 与抛物线C 相切, ∴∆=m 2-8(mk 4-k 28)=0,解得m =k ,即l ∥AB .【说明】其实,也就是与AB 平行的弦,它们的中点在过AB 中点且与对称轴(x 轴)平行的直线上,它与C 的交点N ,此时的切点就是这些弦的缩点,故过N 点的抛物线C 的切线与AB 平行. ★⑼过定点P (x 0,y 0)作任一直线l 与抛物线y 2=2px (p >0)相交于A 、B 两点,过A 、B 两点作抛物线的切线l 1、l 2,设l 1,l 2相交于点Q ,则点Q 在定直线px -y 0y +px 0=0上. 【证明】设A (x 1,y 1)、B (x 2,y 2),因为过点P 与x 轴平行的直线与抛物线只有一个交点,所以直线AB 与x 轴不平行,故可设AB 的方程为x -x 0=m (y -y 0).联立方程组⎩⎨⎧y 2=2px x -x 0=m (y -y 0),消去x 得12py 2-my +my 0-x 0=0 ∴y 1y 2=2p (my 0-x 0)又过A 、B 两点的抛物线的切线方程为y 1y =p (x +x 1)和y 2y =p (x +x 2),联立方程组⎩⎨⎧y 1y =p (x +x 1)y 2y =p (x +x 2)解得图34x Q =x 1y 2-x 2y 1y 1-y 2=- y 212p ·y 2-y 222p ·y 1 y 1-y 2=y 1y 22p =my 0-x 0 ······ ①y Q =p ·x 1-x 2y 1-y 2=pm ···················· ②由②得m =y Qp 代入①得x Q =y Q py 0-x 0,∴点Q 在直线px -y 0y +px 0=0上.【例14】(2007年重庆文科高考题)如图36,对每个正整数 n ,A n (x n ,y n )是抛物线x 2=4y 上的点,过焦点F 的直线FA n 交抛物线于另一点B n (s n ,t n ). ⑴试证:x n s n =-4(n ≥1);⑵取x n =2n,并记C n 为抛物线上分别以A n 与B n 为切点的两条切线的交点.试证:| FC 1 |+| FC 2 |+…+| FC n |=2n -2-n +1+1.【说明】本题第⑴小题就是抛物线的焦点弦的性质y 1y 2=-p 2.第⑵小题两条切线的交点C n 就是上面抛物线的性质,即点C n 必在直线y =-1上.【例15】(2008年山东理科高考)如图,设抛物线方程为x 2=2py(p >0),M 为 直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .⑴求证:A ,M ,B 三点的横坐标成等差数列;⑵⑶略.【证明】由题意设A (x 1,x 212p ),B (x 2,x 222p ),x 1<x 2,M (x 0,-2p )由x 2=2py 得y =x 22p ,y =x p所以,k MA =x 1p ,k MB =x 2p,因此直线MA 的方程为y +2p =x 1p (x -x 0),直线MB 的方程为y +2p =x 2p(x -x 0),所以,x 212p +2p =x 1p (x 1-x 0)…………①,x 222p +2p =x 2p(x 2-x 0)…………②, ①-②得,(x 1+x 2)(x 1-x 2)2p =(x 1+x 2)(x 1-x 2)p -x 0(x 1-x 2)p∴x 1+x 22=x 1+x 2-x 0,即2x 0=x 1+x 2所以A ,M ,B 三点的横坐标成等差数列.图37★⑽过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线交于A 、B 两点,线段AB 的垂直平分线交x 轴于点M ,则| AB || FM |=2.【证明】设过焦点F (p 2,0)的直线AB 的方程为x =my +p2(m ≠0),且A (x 1,y 1)、B (x 2,y 2), 把x =my +p2代入y 2=2px ,得y 2=2pmy +p 2, 即y 2-2pmy -p 2=0∴y 1+y 2=2pm ,y 1·y 2=-p 2∴x 1+x 2=m (y 1+y 2)+p =2pm 2+p , ∴AB 的中点N 的坐标为(pm 2+p2,pm )AB 的垂直平分线方程为y -pm =-m (x -pm 2-p2)令y =0,得M 的横坐标为x =pm 2+3p 2∴| FM |=| x M -p2 |=pm 2+p =p (m 2+1),又| AB |=x 1+x 2+p =2p (m 2+1).∴| AB || FM |=2p (m 2+1)p (m 2+1)=2 【证法二】设A (x 1,y 1)、B (x 2,y 2),过A 、B 分别作准线的垂线,垂足分别为C 、D ,则C (-p2,y 1)、D (-p 2,y 2),则CD 的中点E 的坐标为(-p 2,y 1+y 22),由证法一知y 1+y 2=2pm ,∴E (-p2,pm ),所以k EF =pm-p 2-p2=-m 又k AB =1m ,所以k AB ·k EF =(-m )·1m=-1∴EF ⊥AB ,又MN ⊥AB ,所以EF ∥MN又EN ∥x 轴,所以四边形EFMN 为平行四边形 ∴| FM |=| EN |=12(| AC |+| B D |)=12| AB |所以| AB || FM |=2★⑾P 是过抛物线y 2=2px (p >0)上的一定点,过P 作与x 轴平行的直线m ,过OP 的直线为n ,直线l ⊥x 轴,l 与m 、n 分别相交于A 、B 两点,则AB 的中点M 在点P 处的切线. 【证明】设P (t 22p,t ),则m 的方程为y =t ,直线n (即OP )的方程为y =2ptx ,设直线l 的方程为x =s (s ≠t 22p),那么A 的坐标为(s ,t ),B 的坐标为(s ,2pst),AB 的中点M 的坐标为(t ,t +2pst2),即(t ,2ps +t22t)又过点P (t 22p ,t )的抛物线的切线方程为yt =p (x +t 22p )∴y =p t (x +t 22p)当x =x M =s 时,y =p t (s +t 22p )=ps t +t 2=2ps +t 22t=y M可见点M 在点P 处的切线n 上.★⑿点P (a ,0)(a ≠0)是抛物线y 2=2px (p >0)的对称轴上的一点,过P 的直线l 与抛物线相交于两点A 、B ,A 关于x 轴的对称的点为A ',又点Q (-a ,0),那么A '、B 、Q 三点共线. 【证明】设直线l 的方程为x =my +a ,A (x 1,y 1),B (x 2,y 2)则A '(x 1,-y 1),联立方程组⎩⎨⎧y 2=2pxx =my +a,消去x 得 y 22p-my -a =0,那么y 1 y 2=-2pa , 又QA '→=(x 1+a ,-y 1),QB '→=(x 2+a ,y 2), ∵(x 1+a )y 2+(x 2+a )y 1=(y 212p +a )y 2+(y 222p+a )y 1=y 21y 22p +y 22y 12p +a (y 1+y 2)=y 1y 2(y 1+y 2)2p +a (y 1+y 2)=(y 1+y 2)(y 1y 22p +a )=(y 1+y 2)(-2pa 2p+a )=0 ∴QA '→∥QB '→ ∴Q 、A '、B 三点共线.【例16】给出一个抛物线,根据其性质,用尺规作图求出该抛物线的对称轴、顶点和焦点.2图a 图b【作法】1.任意作两条平行弦A1B1和A2B2;2.分别取A1B1和A2B2的中点M、N,过M、N作直线m;3.作直线CD⊥m,交抛物线于C、D;4.取CD的中点E;5.过E作直线l∥m,交抛物线于点O.则直线l为抛物线的对称轴,O为抛物线的顶点,如图a.6.过顶点O作两条互相垂直的弦OP、OQ;7.设PQ与对称轴l相交于点G;8.取OG的靠近O的四等分点F.则F为抛物线的焦点.【说明】1.根据性质⑻,平行弦的中点共线,且与对称轴平行;2.垂直于对称轴的弦CD的中点在对称轴上,故l为抛物线的对称轴;3.根据性质⑵得PQ过顶点(2p,0),故F为抛物线的焦点.。
抛物线焦点弦长公式二级结论
抛物线焦点弦长公式二级结论
抛物线焦点弦长公式是:<a>AB=2*a*sqrt{c^2-(b^2)/4a^2}</a>
一、抛物线焦点弦长定义
1、抛物线焦点弦(AB)是抛物线的一部分,它由焦点之间的两个点构成,它们分别为上抛物线上的焦点F1和下抛物线上的焦点F2;
2、抛物线焦点弦的长度表示两个焦点连线的长度,即两点F1,F2之间的直线距离;
二、抛物线焦点弦长公式
抛物线焦点弦长公式是:AB=2*a*sqrt{c^2-(b^2)/4a^2},其中a为抛物线顶点到水平轴的距离,b为抛物线顶点到垂线的距离,c为抛物线焦点到垂线的距离。
三、抛物线焦点弦长使用
1、由抛物线焦点弦长公式可知,我们可以利用这个公式求出若干特定抛物线的焦点弦的长度;
2、抛物线焦点弦的长度也可用于解决日常生活中的物理问题,比如可以确定抛物线上任意两点之间的距离等;
四、抛物线焦点弦长结论
抛物线焦点弦长公式可以使用来求解抛物线的焦点弦的长度,而且该长度也可以用于解决实际中的一些物理问题。
抛物线性质——焦半径,焦点弦长
抛物线性质——焦半径,焦点弦长嘉兴市秀水高级中学------王海涛教学要点:1 利用椭圆标准方程和定义解决问题。
2 焦半径定义及应用3抛物线焦点弦的性质及焦点弦长的求法。
教育目标:1.熟练掌握利用抛物线的标准方程和定义来解决问题。
2.掌握抛物线焦半径焦点弦的性质及焦点弦长的求法。
教学重点:1.抛物线的定义应用2.抛物线的焦半径,焦点弦长求法。
3.抛物线的综合应用。
教学难点:知识点的灵活应用。
教学手段:讲练结合教学工具:直尺教学过程:提问:1.抛物线平面内与一个定点F和一条定直线l的距离相等的点的轨迹。
2 .抛物线标准方程的四种形式及焦点,准线方程开口向右y2=2px(p>0) F(p/2,0) L:x=-p/2开口向左y2=-2px(p>0) F(-p/2,0) L:x=p/2开口向上x2=2py(p>0) F(0,-P/2) L:y=-p/2开口向下x2=--2py(p>0) F(0,p/2) L:y=p/2例1:已知点M与点F(4,0)的距离比它到直线L:x+5=0的距离小1,求点M的轨迹方程。
分析:1) 按照前面求曲线轨迹的基本步骤.。
2)利用转化思想。
解:如图,设M(x,y),由已知条件可知点M与点F的距离等于它到直线x+4=0的距离。
由抛物线定义点M的轨迹是以F(4,0)为焦点的抛物线:∵p|2=4 ∴p=8∴小结例2: 在抛物线y 2=2x 上,求一点P ,使P 到焦点F 与到点A (3,2)的距离之和最小。
分析:由抛物线定义解:|PF|=|PQ||PF|+|PA|=|PQ|+|PA|显然当P 、Q 、A 三点共线时,|PQ|+|PA|∵ A (3,2)设P (x,2)∴∴当X=2即P (2,2)时,例3: 斜率为1的直线经过抛物线y 2=4x 的焦点与抛物线交于A 、B 两点,求线段AB 的长。
分析:直线与曲线的弦长求法解:F (1,0)X=1AB : y=x-1则 y=x-1y 2=4x 即整理:x 2-6x+1=0 令 A(x 1, y 1) B(x 2,y 2) ∴x 1+x 2=6 x 1.x 2=1∴|AB|=√1+k 2|x 1-x 2|=/(x 1-x 2)2-4x 1x 2=8方法二:|AF|=|AA 1|=1+X 1 |BF|=|BB 1|=X 2+1∴ |AB|=|AF|+|BF|=X 1+X2=8小结:任意直线与曲线段截弦长公式:|AB|=/1+k 2|x 1-x 2|=/(x 1+x 2)2-4x 1x 2|AB|=/1+1/k 2|y 1-y 2|=/(y 1-y 2)2-4y 1y 2只设点而不求点的解题思想:当P 过焦点,|AB|=X 1+X 2+P 推广、开口向左,向下,向上例 4:求证:以抛物线y 2=2PX (P>0)过焦点的弦为直径的圆,必与此抛物线的准线l :x=-P/2相切分析:直线与圆相切的条件。
抛物线焦点弦性质很全
五、 CFD 900
CFO FCA AFC DFO FDB BFD CFO DFO AFC BFD 即有CFD AFC BFD
CFD 900
六、抛物线的焦点三角形的面积公式
S AOB
p2
2sin
S AOB
SAOF
SBOF
1 2
OF
y1
1 OF 2
y2
1 2 OF y1 y2
kMA kMB
2 py1 y12 p2
2 py2 y22 p2
kMA kMB
2 py1 y12 y1 y2
2 py2 y22 y1 y2
0
kMA kMB
MA, MB的倾斜角互补,即 AMF BMF
设:x my p ,代入y2 2 px可得
F
2
y1 y2 2 pm, y1 y2 p2
y1 y2 y1 y2 2 4 y1 y2 2 p m2 1
又k AB
tan
1 m
, 则m
1
tan
y1 y2 2 p
1
tan 2
1
2p
sin
SAOB
1 2
OF
y1 y2
1 p 2p
(1)若焦点在 x轴上,则 x1x2
p2 4
, y1 y2
p2
(2)若焦点在 y轴上,则 y1 y2
p2 4
, x1x2
p2
四、以抛物线的焦点弦为直径的圆与准线
证明:
MM1
1 2 ( AA1
BB1 )
1 ( AF BF ) 2
1 AB 2
即有:AM1B 900
引申:以焦半径为直径的圆与y轴相切(学生完成)
2 2 sin
有关抛物线焦半径与焦点弦公式的推导及其应用
则f ′()t =-8()4t 2-12t +1()4t 2-12,当t ∈()-12,3-222时,f ′()t <0,函数单调递减;当t ∈()3-222,12时,f ′()t >0,函数单调递增,所以f ()t min =f()3-222=6+42.虽然无法直接运用简单基本函数的性质解答二元函数最值问题,但是我们可以通过换元、构造新函数模型的方式,将问题转化为单变量函数最值问题,再利用简单基本函数的性质、导数的性质解题.解法2.设t =y x ∈()-12,12,则3x 2-2xy x 24-y 2=12-8⋅yx 1-4()y x2=84t 2-1t -32,可将y x 看作双曲线x 24-y 2=1上的点()x,y 与原点()0,0连线的斜率.当直线y -1=k ()x -32与曲线相切时,斜率k 有最大值,此时k =12-82,所以3x 2-2xy 的最小值为812-82=6+42.通过换元将已知关系式变形,并把已知关系式看作双曲线,将y x 看作双曲线x24-y 2=1上的点()x ,y 与原点()0,0连线的斜率,通过讨论直线与曲线的位置关系,确定直线斜率k 的最值,从而求得问题的答案.总之,解答二元函数最值问题,需根据不等式的结构特征构造不等关系,将问题进行合理的转化,才能顺利求得最值.从上述分析可以看出,从不同的角度思考问题,可以得到不同的解法,但无论采用何种方法,都需灵活利用转化思想、方程思想、数形结合思想来辅助解题.(作者单位:江苏省蒋垛中学)解题宝典若过抛物线焦点的直线与抛物线交于两点,则以这两个点为端点的线段称为抛物线的焦点弦,如图1中的线段AB .以抛物线上的一点及抛物线的焦点为端点的线段称为抛物线的焦半径,如图1中的线段AF 、BF .求焦点弦长和焦半径问题在抛物线试题中比较常见.本文主要谈一谈有关抛物线焦半径与焦点弦公式的推导及其应用.一、抛物线的焦半径公式如图1,已知直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A ,B 两点,且点A (x 1,y 1)在x 轴的上方,点B (x 2,y 2)在x 轴的下方,直线AB 的倾斜角为α,则||AF =x 1+p 2=p 1-cos α,||BF =x 2+p 2=p1+cos α.证明:作抛物线的准线l :x =-p2,交x 轴于点P ,过点A 作l 的垂线,垂足为N .由于点A 是抛物线上的点,则||AF =||AN .而点A ,N 的横坐标分别是x 1,-p 2,所以||AN =x 1-()-p 2=x 1+p2,故||AF =x 1+p 2,同理可证||BF =x 2+p2.再证||AF =p 1-cos α,||BF =p1+cos α.过点A 作AM ⊥x 轴于M,则四边形AMPN 是矩形,可知||AF =||AN =||PF +||FM ,因为点F ()p2,0,所以||PF =p .在ΔAFM 中,||FM =||AF cos α,所以||AF =p +||AF cos α,得||AF =p1-cos α.同理可得||BF =p1+cos α.当直线AB 的倾斜角为钝(直)角时,上述结论也成立.在运用抛物线的焦半径公式解题时需注意:(1)焦点弦的端点A 、B 分别在x 轴的上方和下方,且焦半径的端点在x 轴上方和下方时所用的公式不一样;(2)当不知道直线AB 的倾斜角时,通常用点A 、B 的横坐标及p 来表示抛物线的焦半径;(3)当已知直线的倾斜角时,可通过倾斜角α和p 来求出抛物线的焦半径.例1.若点F 是抛物线y 2=4x 的焦点,直线l 过点F ,交抛物线于A ,B 两点,且 AF =3FB ,则直线l 的倾斜角图143解题宝典为____.解:作出如图2所示的图形,由 AF =3FB 知||AF =3||FB ,由抛物线的方程知p =2,设直线l 的倾斜角为α,则||AF =21-cos α,||BF =21+cos α,可得21-cos α=3×21+cos α,解得cos α=12,因为α∈(0,π),所以α=π3,即直线l 的倾斜角为π3.由于直线l 过抛物线的焦点,所以要求直线l 的倾斜角,可直接利用抛物线的焦半径公式||AF =p1-cos α、||BF =p1+cos α,建立关于α的关系式,即可解题.二、抛物线的焦点弦公式已知直线l 过抛物线y 2=2px (p >0)的焦点,且和抛物线交于两点A (x 1,y 1),B (x 2,y 2),直线AB 的倾斜角为α,则弦AB 的长||AB =x 1+x 2+p =2psin 2α.证明:先证||AB =x 1+x 2+p .因为点A ,B 是抛物线上的点,所以根据抛物线的定义,可得||AF =x 1+p2,||BF =x 2+p2,所以||AB =||AF +||BF =x 1+x 2+p .再证||AB =2psin 2α.由于||AF =p 1-cos α,||BF =p1+cos α,所以||AB =||AF +||BF =p 1-cos α+p1+cos α=p (1+cos α)+p (1-cos α)(1-cos α)(1+cos α)=2psin 2α.综上所述,焦点弦AB 的长为||AB =x 1+x 2+p =2psin 2α.当不确定焦点弦所在直线的倾斜角时,通常可使用公式||AB =x 1+x 2+p 来求焦点弦长;若已知焦点弦所在直线的倾斜角,就要用公式||AB =2psin 2α来表示焦点弦长.例2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,设O 为坐标原点,则S ΔOAB =_____.解:由抛物线C 的方程知2p =3,而焦点弦所在直线的倾斜角α=30°,则||AB =3sin 230°=12,可知原点到直线AB 的距离d =||OF ⋅sin30°=34×12=38,故ΔOAB 的面积为S ΔOAB =12×12×38=94.由于已知过F 的直线的倾斜角,所以可直接根据抛物线的焦点弦公式||AB =2psin 2α来求抛物线的焦点弦长||AB .再根据三角形的面积公式进行求解即可.值得注意的是,抛物线的开口方向不同,参数p 的值和符号不同,所对应的抛物线的焦半径公式和焦点弦公式也会有所不同.上述两个公式都是针对开口向右的抛物线,即抛物线的方程为y 2=2px (p >0)而言的.开口向其他方向的抛物线的焦点弦、焦半径公式如下表所示.同学们在运用抛物线的焦半径公式和焦点弦公式时,要关注抛物线的开口方向和参数p 的值,再选用与之相应的公式进行求解.(作者单位:陕西省神木市职业技术教育中心)标准方程图形焦半径公式焦点弦公式y 2=2px (p >0)||AF =x 1+p 2=p1-cos α,||BF =x 2+p 2=p1+cos α.||AB =x 1+x 2+p y 2=2px (p <0)||AF =p 2-x 1=p 1+cos α,||BF =p 2-x 2=p 1-cos α.||AB =p -()x 1+x 2x 2=2yp (p >0)||AF =y 1+p 2=p 1-sin α,||BF =y 2+p 2=p 1+sin α.||AB =y 1+y 2+p x 2=2yp (p <0)||AF =p 2-y 1=p1+sin α,||BF =p 2-y 2=p 1-sin α.||AB =p -()y 1+y 2图244。
抛物线过焦点的弦长公式及其应用
抛物线过焦点的弦长公式及其应用抛物线可以由以下方程表示:y = ax^2 + bx + c,其中a是抛物线的曲率,b是x的线性项,c是常数项。
焦点可以通过计算公式 x = -b/(2a) 得到。
当抛物线过其焦点时,我们可以通过焦点的纵坐标f来表示抛物线。
弦是抛物线上两个点之间的线段,过焦点的弦称为焦弦。
如果我们找到抛物线上两个点,使它们的y坐标等于f,则这两个点就是焦弦的端点。
假设焦弦的两个端点分别是(x1,f)和(x2,f)。
首先,我们需要找到抛物线方程的两个根,即两个与x轴交点。
根可以通过解以下方程得到:ax^2 + bx + c = 0。
通过因式分解或使用求根公式,我们可以找到方程的解。
假设根为x1和x2然后,我们可以计算焦弦的长度。
对于线段(y1, y2),其长度可以使用勾股定理表示为:L = sqrt((x2 - x1)^2 + (y2 - y1)^2)。
由于焦弦是过焦点且与x轴平行的线,因此y1 = y2 = f。
因此,焦弦的长度可以进一步简化为:L = sqrt((x2 - x1)^2 + (f - f)^2) = sqrt((x2 - x1)^2) = ,x2 - x1即焦弦的长度等于焦点纵坐标两边的x值之差,也就是焦点横坐标两边的距离。
通过抛物线方程求解根以及计算焦弦的长度,我们可以进一步应用这个公式。
首先,焦弦的长度可以用于计算抛物线的宽度。
抛物线的宽度定义为通过焦点且垂直于焦弦的线段的长度。
由于焦弦与x轴平行,垂直于焦弦的线段可以通过计算焦点的纵坐标和横坐标之差得到。
因此,抛物线的宽度等于2f。
其次,焦弦的长度可以用于计算抛物线的面积。
抛物线的面积可以通过计算焦弦的长度和抛物线的高度得到。
抛物线的高度可以通过计算焦点的纵坐标f和焦点到抛物线的最低点的距离得到。
由于抛物线是对称的,最低点就是焦点,因此高度等于f。
因此,抛物线的面积等于焦弦的长度乘以抛物线的高度,即2f^2此外,焦弦的长度还可以用于计算抛物线上其他点的坐标。
抛物线焦半径公式的三角形式及应用
抛物线焦半径公式的三角形式及应用1、抛物线焦半径公式在平面几何中,抛物线是一种常见的曲线形状,它由一个焦点和一条直线(称为准线)确定。
抛物线的焦半径公式是描述抛物线上任意一点到焦点的距离与该点到准线的垂直距离的关系式。
通常情况下,抛物线焦半径公式以直角坐标系表示为:\[ y^2 = 2px \]其中,\( p \) 是焦半径,\( p > 0 \)。
在这个公式中,焦半径\( p \) 这个参数是刻画抛物线形状的一项重要参数。
2、抛物线焦半径公式的三角形式将抛物线焦半径公式转化为三角形式,可以帮助我们更好地理解和应用这个公式。
通过利用几何关系和三角函数,我们可以将抛物线焦半径公式写成如下形式:\[ x = \frac{p}{2} (\sec \theta - \cos \theta) \]\[ y = p \tan \theta \]在这个三角形式中,\( \theta \) 是与\( x \) 轴的夹角。
这种三角形式的表示方法,使得我们可以通过一些基本的三角函数知识来研究抛物线的性质,从而更好地理解抛物线的形状和特点。
3、抛物线焦半径的应用抛物线焦半径公式的三角形式不仅能帮助我们理解抛物线的形状,还能应用到实际问题中。
当我们需要计算抛物线上某一点到焦点的距离时,可以利用抛物线焦半径的三角形式来快速求解。
抛物线在物理学、工程学和数学建模中都有着广泛的应用。
通过对抛物线焦半径公式的三角形式的深入理解和运用,我们可以更好地处理相关问题,提高分析和解决问题的效率。
4、总结和回顾通过本文的讨论,我们对抛物线焦半径公式的三角形式及应用有了全面的了解。
我们从抛物线的基本定义和特点出发,转化为三角形式,再到实际应用,系统地展现了抛物线焦半径公式在几何学和实际问题中的重要性和价值。
个人观点和理解对我来说,抛物线焦半径公式的三角形式及应用,是几何学中一个非常有趣和重要的话题。
通过深入研究和探讨,我对抛物线的性质和应用有了更深刻的认识。
抛物线焦点弦长公式的证明与应用
抛物线焦点弦长公式的证明与应用假设我们有一个以焦点F为顶点的抛物线,并且抛物线上的一点为P。
我们可以将点P的横坐标设为x,纵坐标设为y。
由于抛物线的对称性,我们知道焦点F的横坐标为a,纵坐标为b。
首先,我们需要知道抛物线的定义。
根据定义,抛物线是一条曲线,使得从焦点到曲线上任意一点的距离与该点到直线准线的距离相等。
现在,我们可以使用距离公式来得到抛物线焦点弦长公式。
根据距离公式:距离公式1:PF=√((x-a)²+(y-b)²)(1)根据焦准关系,我们可以得到焦点到点P的距离:距离公式2:PF=√((x-a)²+y²)(2)将公式1和公式2相等,我们可以得到:√((x-a)²+y²)=√((x-a)²+(y-b)²)(3)将上述方程两边平方,我们得到:(x-a)²+y²=(x-a)²+(y-b)²(4)我们可以将方程4进行整理,得到:y²=(y-b)²(5)展开方程5,我们得到:y² = y² - 2by + b² (6)同时,我们可以将方程6进行整理,得到:2by = b² (7)化简方程7,我们得到:y=b/2(8)因此,我们可以得出结论,在抛物线上,从焦点到抛物线上其中一点的线段的长度为焦点到准线的距离的二倍。
现在,我们将探讨一些抛物线焦点弦长公式的应用。
1.焦点弦长和顶点连线的关系根据抛物线焦点弦长公式,从顶点到焦点的弦长等于焦点到准线的距离的二倍。
这个性质使我们能够通过其中一抛物线焦点弦长的已知量,推导出顶点与焦点之间的距离。
2.确定抛物线焦点抛物线焦点弦长公式允许我们通过已知线段的长度和线段的一个端点,确定焦点和抛物线的形状。
例如,我们可能已知抛物线上其中一点到焦点的距离为d,以及该点横坐标的值。
通过使用抛物线焦点弦长公式,我们可以联立方程并求解焦点的坐标。
抛物线焦半径公式的三角形式及应用
抛物线焦半径公式的三角形式及应用设抛物线的顶点为坐标原点O,焦点为F(x1, y1),过F的直线方程为y = mx + c,焦点到抛物线上任意一点P(x, y)的线段与该点的切线方程为y = nx + k,其中m、n分别为两个斜率,c、k分别为两个截距。
根据焦点到直线的距离等于焦点到点P的距离,可以得到焦半径公式如下:√((x-x1)²+(y-y1)²)=,(n-m)x+(k-c),/√(n²+1)将直线方程y = mx + c代入,得到:√((x-x1)²+(y-y1)²)=,(n-m)x+(k-c),/√(n²+1)即√(1+m²)x²-2x(x1+m(y-y1))+(x1²+(y-y1)²)=n²x²+(n²+1)(k-c)²通过对等号两边展开平方,并整理得到焦半径公式的三角形式:(x1²+(y-y1)²-(n²+1)(k-c)²)/((1+m²)-n²)=x(x-x1)²/((1+m²)-n²)这个公式可以用于求抛物线上任意一点与焦点的距离,以及点到线的距离。
1.几何学中,可以利用焦半径公式计算抛物线上的点到焦点的距离。
这在解决一些求角度、长度等几何问题中非常有用。
2.物理学中,焦半径公式可以用于分析抛物线轨迹的反射、折射等问题。
例如,当抛物线上的点物体受到反射、折射等作用时,可以利用焦半径公式计算相应的角度、距离等,从而研究其光学、声学等性质。
3.工程学中,焦半径公式可以应用于光学系统设计、天线设计等领域。
例如,反射望远镜的设计中,可以利用焦半径公式计算焦点位置,从而确定焦点到探测器的距离,进而进行光学系统的优化设计。
4.生物学中,焦半径公式可以用于研究生物体表面的形态、结构等问题。
高中数学-抛物线焦半径公式及应用
高中数学-抛物线焦半径公式及应用
概述
抛物线是高中数学中的一个重要概念,它在物理学、工程学和
自然科学中应用广泛。
本文将介绍抛物线焦半径公式及其应用。
焦点和焦半径
抛物线是一个特殊的几何曲线,由平面上到一个定点(焦点)
和定直线(准线)的距离相等的所有点组成。
焦半径是从焦点到抛
物线上任意点的距离。
抛物线焦半径公式
抛物线的方程一般形式是y=ax^2+bx+c,其中a、b、c是常数。
根据焦半径定义,我们可以得到焦半径公式:
r = |2a| / (4a^2 + 1)
其中,r表示焦半径,a表示抛物线的系数。
应用示例
1. 镜面反射
抛物面镜是一种应用抛物线形状的透镜。
当光线从无穷远处射到抛物面镜的表面上时,会聚到焦点上。
抛物线焦半径公式可以帮助我们计算光线在抛物面镜上的反射和折射。
2. 轨迹预测
在物理学中,抛物线常用于描述物体在受重力和空气阻力作用下的运动轨迹。
通过抛物线焦半径公式,我们可以计算出物体在不同速度和角度下的最大射程和最大高度。
总结
抛物线焦半径公式是高中数学中重要的工具之一,它可以应用于物理学、工程学等领域。
通过理解公式的含义和应用示例,我们可以更好地理解抛物线的性质和特点。
参考文献:
以上为800字的文档内容。