精选-中考数学真题分类汇编第三期专题3整式与因式分解试题含解析
专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结
知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2.整式的加减的实质:合并同类项。
3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4.乘法公式:①平方差公式:()()22b a b a b a -=-+。
②完全平方公式:()2222b ab a b a +±=±。
5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。
专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
全国中考数学真题分类汇编 3 整式与因式分解-人教版初中九年级全册数学试题
整式与因式分解考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m aa a nm nm+=•),(都是正整数)(n m a a mn nm =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m aa a nm nm都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
中考数学模拟试卷精选汇编:整式与因式分解附答案
整式与因式分解一.选择题1. (2015·湖南永州·三模)下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(-ab )2=a 2b 2D .a 6÷a 3=a 2答案: C 解析:A .a 3+a 3=2a 3,故选项错误;B .2(a +1)=2a +2≠2a +1,故选项错误;C .(-ab )2=a 2b 2,故选项正确;D .a 6÷a 3=a 3≠a 2,故选项错误.故选:C .2.(2015·江苏江阴长泾片·期中)分解因式269ab ab a −+的最终结果是 ( )A .a(b -3)B .a(b 2-6b+9)C .a(b -3)2D .(ab -3)2 答案:C3.(2015·江苏江阴青阳片·期中)下列等式正确的是( ▲ )A .(-a 2)3=-a 5B .a 8÷a 2=a 4C .a 3+a 3=2a 3D .(ab )4=a 4b 答案:C4.(2015·江苏江阴夏港中学·期中)下列计算正确的是( ) A .x +x =x 2 B .x·x =2x C .(x 2)3=x 5 D .x 3÷x =x 2答案:D5.(2015·江苏江阴要塞片·一模)下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x −=⋅−−C .23x x x +=D .222=x y x y ++() 答案:B6.(2015·江苏江阴要塞片·一模)分解因式29a a −的结果是( ▲ )A .a (a − 9)B .(a − 3)(a +3)C .(a − 3a )(a +3a )D .2)3(−a 答案:A7. (2015·北京市朝阳区·一模)下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7答案:C8. (2015·安徽省蚌埠市经济开发·二摸)计算 (m 3)2÷m 3的结果等于【 】 A .2m B .3m C .4m D .6m 答案:B9. (2015·安徽省蚌埠市经济开发·二摸)下列整式中能直接运用完全平方公式分解因式的为【 】A .21x −B .221x x ++C .232x x ++D .22x y +10. (2015·安庆·一摸)下面是某次数学测验同学们的计算摘录,其中正确的是( ) A.2a +3b =5ab B.(-2a 2)3=-6a 6 C.a 3·a 2=a 6 D.-a 5÷(-a )=a 4 答案: D ;11. (2015·合肥市蜀山区调研试卷)下列计算中,正确的是: A.224235a a a += B.222()a b a b −=− C.336()a a =D.23(2)a −=68a −答案:D12.(2015·福建漳州·一模)下列运算正确的是A.623a a a =•B.()532a a = C.39= D.5252=+答案:C13.(2015·福建漳州·二模)若3−=b a ,则a b −的值是A .3−B .3C .0D .6 答案:B14.(2015·广东广州·一模)下列计算正确的是( )A .3x +3y =6xyB .a 2·a 3=a 6C .b 6÷b 3=b 2D .(m 2)3=m 6 答案:D15.(2015·广东广州·一模)已知a +b =4,a -b =3,则a 2-b 2=( )A .4B .3C .12D .1答案:C16.(2015·广东广州·一模)按如图M1-3所示的程序计算,若开始输入n 的值为1,则最后输出的结果是( )A .3B .15C .42D .63答案:C17.(2015·广东高要市·一模)下列运算正确的是( ▲ )A .3232+=+ B .32)(a =5a C . 2)3(=3D .33=−a a答案:C18.(2015•山东滕州东沙河中学•二模)下列计算正确的是A .6428)2(a a = B .43a a a =+ C .a a a =÷2 D .222)(b a b a −=−19.(2015•山东滕州东沙河中学•二模)下列命题是真命题的是A .-32πx 2y 3z 的系数为-32 B .若分式方程12−x a=3的解为正数,则a 的取值范围是a >-23C .两组对角分别相等的四边形是平行四边形D .同位角相等答案:C20.(2015•山东滕州羊庄中学•4月模拟)下列运算正确的是 A .(3xy 2)2=6xy 4B .2x -2=241xC .(-x )7÷(-x )2=-x 5D .(6xy 2)2÷3xy =2y答案:C ;21.(2015•山东滕州张汪中学•质量检测二)下列运算正确的是( )A .a 2•a 3=a 6B .(﹣a )4=a 4C .a 2+a 3=a 5D .(a 2)3=a 5答案:B ;22.(2015•山东潍坊•第二学期期中)下列各式计算正确的是( )A .3x -2x=1B .a 2+a 2=a 4C .a 5÷a 5=aD . a 3•a 2=a 5 答案:D ;23.(2015•山东潍坊广文中学、文华国际学校•一模)下列运算正确的是 ( ) A .3a 2-a 2=3 B .(a 2)3=a 5 C .a 3·a 6=a 9 D .(2a 2)2=4a 2答案:C ;24.(2015·邗江区·初三适应性训练)下列运算中,结果正确的是( ▲ )A .844a a a =+B .523a a a =⋅C .xy y x 532=+D .6326)2(a a −=− 答案:B25.(2015·网上阅卷适应性测试)下列运算正确的是( ▲ )A .532a a a =⋅B .22()ab ab = C .329()a a =D .632a a a ÷=答案:A26.(2015·江西省·中等学校招生考试数学模拟)下列运算正确的是( ) A .222()a b a b −=− B .2(1)(1)1a a a −+−−=− C .21()12−−= D .2224(2)4ab a b −−=答案:选B .27.(2015·山东省枣庄市齐村中学二模) 下列运算正确的是( ) A .a 2+a 3=a 5B .(-2a 2) 3=-6a 6C .(2a +1)(2a -1)=2a 2-1D .(2a 3-a 2)÷a 2=2a -1答案:D28.(2015·辽宁东港市黑沟学校一模) 下列运算正确的是( ) A . a 3•a 2=a 6B . 2a (3a ﹣1)=6a 3﹣1C .(3a 2)2=6a 4D .2a +3a =5a答案:D29. ( 2015·呼和浩特市初三年级质量普查调研)下列运算正确的是( )A.22122a a −= B.936()a a a −÷= 5a = D.2111()(21)424a a a a −+÷−=−答案:.D30.(2015·山东省济南市商河县一模)下列各式计算正确的是 A .53232a a a =+ B .532)(a a =C .326a a a =÷D .43a a a =⋅答案:B31.(2015·山东省东营区实验学校一模) 下列计算正确的是( )A .a ·a =a 2B .(-a )3=a 3C .(a 2)3=a 5D .a 0=1答案:A32.(2015.河北博野中考模拟).分解因式:2a 2-8b 2 =______________________.答案:2(a +2b ) (a -2b );33.(2015·广东中山·4月调研)计算23(2)a 的结果是( )A .2a 5B .6a 6C .8a 6D .8a 5 答案:C34.(2015·山东枣庄·二模)已知x y −=7,xy =2,则22x y +的值为( )A .53B .45C .47D .51答案:A35.(2015·山东枣庄·二模)如图,某同学在沙滩上用石子摆小房子,观察图形的变化规律,写出第⑨个小房子用的石子总数为( )① ② ③ ④A .155B .147C .145D .146答案:C36.(2015•山东东营•一模)下列计算正确的是( )A .a ·a =a 2B .(-a )3=a 3C .(a 2)3=a 5D .a 0=1 答案:A37.(2015•山东济南•模拟)计算23)(a 的结果是( )38.(2015•山东济南•网评培训)下列计算正确的是A .325a a a +=B .32a a a −=C .326a a a ⋅=D .32a a a ÷= 答案:D39.(2015•山东济南•一模)下列计算正确的是( )A. 633a a a ÷=B. 238()a a = C. 222()a b a b −=− D. 224a a a += 答案:A40.(2015•山东济南•一模)把代数式ax 2﹣4ax +4a 分解因式,下列结果中正确的是( ) A . a (x ﹣2)2 B . a (x +2)2 C . a (x ﹣4)2 D . a (x +2)(x ﹣2)答案:A41.(2015•山东青岛•一模)下列四个式子中,字母a 的取值可以是一切实数的是 A .1aB .a 0C .a 2D . a答案:C42.(2015·江苏无锡北塘区·一模)下列计算正确的是( ▲ )A .(2a 2)3=8a 5B .(3)2=9C .32-2=3D .-a 8÷a 4=-a 4 答案: D43.(2015·江苏南菁中学·期中)下列计算正确的是----------------( ▲ )A.222)2(a a =− B.632a a a ÷= C.a a 22)1(2−=−− D.22a a a ⋅=答案: C44.(2015·江苏南京溧水区·一模)计算231⎪⎭⎫⎝⎛−•a a 的结果是( ▲ )A .aB .5aC .6aD .4a答案: A45.(2015·江苏无锡崇安区·一模)下列四个多项式,能因式分解的是…………………………………………………( ▲ )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +9 答案: D46.(2015·江苏扬州宝应县·一模)下列计算中,正确的是 A.257x y xy += B.22(3)9x x −=− C.22)(xy xy = D.632)(x x = 答案: D47.(2015·无锡市南长区·一模)下列计算正确的是 ( ) A .2a -a =1 B .a 2+a 2=2a 4 C .a 2· a 3=a 5 D .(a -b )2=a 2-b 2答案:C48.(2015·无锡市宜兴市洑东中学·一模)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x = D 、422x x x =+ 答案:C49.(2015·无锡市宜兴市洑东中学·一模)下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x −=⋅−−C .23x x x +=D .222=x y x y ++() 答案:B50.(2015·无锡市宜兴市洑东中学·一模)分解因式29a a −的结果是( ▲ )A .a (a − 9)B .(a − 3)(a +3)C .(a − 3a )(a +3a )D .2)3(−a 答案:A51.(2015·锡山区·期中)下列运算正确的是(▲) A .632x x x =+ B .()623x x = C .xy y x 532=+ D .236x x x =÷答案:B 二.填空题1. (2015·湖南岳阳·调研)分解因式:24xy x −= ; 答案:(2)(2)x y y +−2. (2015·江苏常州·一模)分解因式:=+−22344xy y x x ▲ . 答案:2)2(y x x −3. (2015·吉林长春·二模)答案:8a 3b 64.(2015·湖南永州·三模)因式分解:x 3-x = .答案:x (x +1)(x -1)5.(2015·江苏江阴·3月月考)分解因式x 3-9x = . 答案:x (x +3)( x -3)6.(2015·江苏江阴青阳片·期中)因式分解:12−a = ▲ . 答案:(a +1)(a -1)7.(2015·江苏江阴夏港中学·期中)因式分解:82−x = . 答案:()()2222−+x x8. (2015·北京市朝阳区·一模)分解因式:2236+3m mn n −= . 答案:2)(3n m −9. (2015·安庆·一摸)因式分解:-2x 3+8x = 答案:-2x (x +2)(x -2);10.(2015·福建漳州·一模)分解因式: 2244y xy x +−= .答案:2(2)x y −11.(2015·广东广州·一模)把多项式3m 2-6mn +3n 2分解因式的结果是________. 答案:3(m -n)212.(2015·广东潮州·期中) 化简代数式2(1)2x x +−所得的结果是 . 答案:21x +13.(2015·广东潮州·期中)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需 根火柴棒,……,则第n 个图形需 根火柴棒。
整式及因式分解(优选真题80题)-三年(2021-2023)中考数学真题分项汇编(解析版)
专题02整式及因式分解(优选真题80题)一、单选题1(2023·湖南·统考中考真题)计算:3a2=()A.5aB.3a2C.6a2D.9a2【答案】D【分析】根据积的乘方法则计算即可.【详解】解:3a2=9a2.故选:D【点睛】此题考查了积的乘方,积的乘方等于各因数乘方的积,熟练掌握积的乘方法则是解题的关键.2(2023·四川广安·统考中考真题)下列运算中,正确的是()A.a2+a4=a6B.3a3⋅4a2=12a6C.2a+b3=-8a3b62=4a2+b2 D.-2ab2【答案】D【分析】根据合并同类项、同底数幂的乘法、完全平方公式、积的乘方与幂的乘方法则逐项判断即可得.【详解】解:A、a2与a4不是同类项,不可合并,则此项错误,不符合题意;B、3a3⋅4a2=12a5,则此项错误,不符合题意;C、2a+b2=4a2+4ab+b2,则此项错误,不符合题意;D、-2ab23=-8a3b6,则此项正确,符合题意;故选:D.【点睛】本题考查了合并同类项、同底数幂的乘法、完全平方公式、积的乘方与幂的乘方,熟练掌握各运算法则是解题关键.3(2023·湖南怀化·统考中考真题)下列计算正确的是()A.a2⋅a3=a5B.a6÷a2=a3C.ab32=a2b9 D.5a-2a=3【答案】A【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A.a2⋅a3=a5,故选项正确,符合题意;B.a6÷a2=a4,故选项错误,不符合题意;C.ab32=a2b6,故选项错误,不符合题意;D.5a-2a=3a,故选项错误,不符合题意.故选:A.【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.4(2023·山东滨州·统考中考真题)下列计算,结果正确的是()A.a2⋅a3=a5B.a23=a5 C.(ab)3=ab3 D.a2÷a3=a 【答案】A【分析】根据同底数幂的乘法可判断A,根据幂的乘方可判断B,根据积的乘方可判断C,根据整数指数幂的运算可判断D,从而可得答案.【详解】解:a2⋅a3=a5,运算正确,故A符合题意;a23=a6,原运算错误,故B不符合题意;(ab )3=a 3b 3,原运算错误,故C 不符合题意;a 2÷a 3=1a,原运算错误,故D 不符合题意;故选A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键.5(2023·山东临沂·统考中考真题)下列运算正确的是()A.3a -2a =1B.(a -b )2=a 2-b 2C.a 5 2=a 7D.3a 3⋅2a 2=6a 5.【答案】D【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、3a -2a =a ,故选项错误,不符合题意;B 、(a -b )2=a 2-2ab +b 2,故选项错误,不符合题意;C 、a 5 2=a 10,故选项错误,不符合题意;D 、3a 3⋅2a 2=6a 5,故选项正确,符合题意;故选D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.6(2023·山东枣庄·统考中考真题)下列运算结果正确的是()A.x 4+x 4=2x 8B.-2x 2 3=-6x 6C.x 6÷x 3=x 3D.x 2⋅x 3=x 6【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、x 4+x 4=2x 4,选项计算错误,不符合题意;B 、-2x 2 3=-8x 6,选项计算错误,不符合题意;C 、x 6÷x 3=x 3,选项计算正确,符合题意;D 、x 2⋅x 3=x 5,选项计算错误,不符合题意;故选C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.7(2023·四川内江·统考中考真题)对于正数x ,规定f (x )=2x x +1,例如:f (2)=2×22+1=43,f 12=2×1212+1=23,f (3)=2×33+1=32,f 13 =2×1313+1=12,计算:f 1101 +f 1100 +f 199 +⋯+f 13 +f 12+f (1)+f (2)+f (3)+⋯+f (99)+f (100)+f (101)=()A.199B.200C.201D.202【答案】C【分析】通过计算f (1)=1,f (2)+f 12=2,f (3)+f 13 =2,⋯可以推出f 1101 +f 1100 +f 199 +⋯+f 13+f 12+f (1)+f (2)+f (3)+⋯+f (99)+f (100)+f (101)结果.【详解】解:∵f (1)=21+1=1,f (2)=41+2=43,f 12 =2×121+12=23,f (2)+f 12 =2,f (3)=2×31+3=32,f 13 =2×131+13=12,f (3)+f 13=2,⋯f (100)=2×1001+100=200101,f 1100 =2×11001+1100=2101,f (100)+f 1100 =2,f 1101 +f 1100 +f 199 +⋯+f 13 +f 12 +f (1)+f (2)+f (3)+⋯+f (99)+f (100)+f (101)=2×100+1=201故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.8(2022·西藏·统考中考真题)按一定规律排列的一组数据:12,-35,12,-717,926,-1137,⋯.则按此规律排列的第10个数是()A.-19101B.21101C.-1982D.2182【答案】A【分析】把第3个数转化为:510,不难看出分子是从1开始的奇数,分母是n 2+1,且奇数项是正,偶数项是负,据此即可求解.【详解】原数据可转化为:12,-35,510,-717,926,-1137,⋅⋅⋅,∴12=-1 1+1×2×1-112+1,-35=-1 2+1×2×2-122+1,510=-1 3+1×2×3-132+1,...∴第n 个数为:-1 n +1×2n -1n 2+1,∴第10个数为:-1 10+1×2×10-1102+1=-19101.故选:A .【点睛】本题主要考查数字的变化规律,解答的关键是由所给的数总结出存在的规律.9(2022·江苏南通·统考中考真题)已知实数m ,n 满足m 2+n 2=2+mn ,则(2m -3n )2+(m +2n )(m -2n )的最大值为()A.24 B.443C.163D.-4【答案】B【分析】先将所求式子化简为10-7mn ,然后根据m +n 2=m 2+n 2+2mn ≥0及m 2+n 2=2+mn 求出mn ≥-23,进而可得答案.【详解】解:(2m -3n )2+(m +2n )(m -2n )=4m 2-12mn +9n 2+m 2-4n 2=5m2-12mn+5n2=52+mn-12mn=10-7mn;∵m+n2=m2+n2+2mn≥0,m2+n2=2+mn,∴2+mn+2mn≥0,∴3mn≥-2,∴mn≥-23,∴10-7mn≤443,∴(2m-3n)2+(m+2n)(m-2n)的最大值为443,故选:B.【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn的取值范围是解题的关键.10(2022·湖南益阳·统考中考真题)下列各式中,运算结果等于a2的是()A.a3-aB.a+aC.a•aD.a6÷a3【答案】C【分析】根据同底数幂的运算及整式的加减运算进行计算判断即可.【详解】A、∵a3-a不是同类项,不能进行合并运算,∴选项A不符合题意;B、∵a+a=2a,∴选项B不符合题意;C、∵a•a=a2,∴选项C符合题意;D、∵a6÷a3=a3,∴选项D不符合题意.故选:C.【点睛】本题考查了同底数幂的运算及整式的加减运算,熟记同底数幂的运算的运算法则及整式的加减运算法则是解题的关键.11(2023·四川·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给出了(a+b)n展开式的系数规律.1 (a+b)0=11 1 (a+b)1=a+b1 2 1 (a+b)2=a2+2ab+b21 3 3 1 (a+b)3=a3+3a2b+3ab2+b3当代数式x4-12x3+54x2-108x+81的值为1时,则x的值为()A.2B.-4C.2或4D.2或-4【答案】C【分析】由规律可得:a+b4=1,再解方程即 4=a4+4a3b+6a2b2+4ab3+b4,令a=x,b=-3,可得x-3可.【详解】解:由规律可得:a+b4=a4+4a3b+6a2b2+4ab3+b4,令a=x,b=-3,∴x-34=x4-12x3+54x2-108x+81,∵x4-12x3+54x2-108x+81=1,∴x-34=1,∴x =4或x =2,故选:C .【点睛】本题考查的是从题干信息中总结规律,一元二次方程的解法,灵活的应用规律解题是关键.12(2022·黑龙江牡丹江·统考中考真题)观察下列数据:12,-25,310,-417,526,⋯,则第12个数是()A.12143B.-12143C.12145D.-12145【答案】D【分析】仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.【详解】解:12,-25,310,-417,526,⋯,根据规律可得第n 个数是(-1)n +1n n 2+1,∴第12个数是-12145,故选:D .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.13(2022·广东广州·统考中考真题)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒⋯⋯若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为()A.252B.253C.336D.337【答案】B【分析】根据图形的变化及数值的变化找出变化规律,即可得出结论.【详解】解:设第n 个图形需要an (n 为正整数)根小木棒,观察发现规律:第一个图形需要小木棒:6=6×1+0,第二个图形需要小木棒:14=6×2+2;第三个图形需要小木棒:22=6×3+4,⋯,∴第n 个图形需要小木棒:6n +2(n -1)=8n -2.∴8n -2=2022,得:n =253,故选:B .【点睛】本题考查了规律型中图形的变化类,解决该题型题目时,根据给定图形中的数据找出变化规律是关键.14(2022·内蒙古赤峰·统考中考真题)已知x +2 x -2 -2x =1,则2x 2-4x +3的值为()A.13B.8C.-3D.5【答案】A【分析】先化简已知的式子,再整体代入求值即可.【详解】∵x +2 x -2 -2x =1∴2x2-4x+3=2(x2-2x)+3=13故选:A.【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.15(2022·湖北鄂州·统考中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,⋯⋯,请你推算22022的个位数字是()A.8B.6C.4D.2【答案】C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,⋯,∴尾数每4个一循环,∵2022÷4=505⋯⋯2,∴22022的个位数字应该是:4.故选:C.【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.16(2022·广西玉林·统考中考真题)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4B.23C.2D.0【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.【详解】解:∵2022÷3=674,2022÷1=2022,∴674÷6=112⋅⋅⋅⋅⋅2,2022÷6=337,∴经过2022秒后,红跳棋落在点A处,黑跳棋落在点E处,连接AE,过点F作FG⊥AE于点G,如图所示:在正六边形ABCDEF中,AF=EF=2,∠AFE=120°,AE,∠FAE=∠FEA=30°,∴AG=12AF=1,∴FG=12∴AG=AF2-FG2=3,∴AE=23,故选B.【点睛】本题主要考查图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质,熟练掌握图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质是解题的关键.17(2022·湖北武汉·统考中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方--九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x+y=3z-24=12故选:D.【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.18(2022·新疆·统考中考真题)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104【答案】B【分析】观察数字的变化,第n行有n个偶数,求出第n行第一个数,故可求解.【详解】观察数字的变化可知:第n行有n个偶数,因为第1行的第1个数是:2=1×0+2;第2行的第1个数是:4=2×1+2;第3行的第1个数是:8=3×2+2;⋯所以第n行的第1个数是:n(n-1)+2,所以第10行第1个数是:10×9+2=92,所以第10行第5个数是:92+2×4=100.故选:B.【点睛】本题考查了数字的规律探究,推导出一般性规律是解题的关键.19(2022·四川南充·中考真题)已知a>b>0,且a2+b2=3ab,则1a+1b2÷1a2-1b2的值是()A.5B.-5C.55D.-55【答案】B【分析】先将分式进件化简为a+bb-a,然后利用完全平方公式得出a-b=ab,a+b=5ab,代入计算即可得出结果.【详解】解:1a +1b2÷1a 2-1b 2=a +b ab 2÷b 2-a 2a 2b 2=(a +b )2a 2b 2×a 2b 2(b +a )(b -a )=a +b b -a,∵a 2+b 2=3ab ,∴a 2-2ab +b 2=ab ,∴(a -b )2=ab ,∵a >b >0,∴a -b =ab ,∵a 2+b 2=3ab ,∴a 2+2ab +b 2=5ab ,∴(a +b )2=5ab ,∵a >b >0,∴a +b =5ab ,∴原式=5ab-ab=-5,故选:B .【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键.20(2022·重庆·统考中考真题)对多项式x -y -z -m -n 任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x -y )-(z -m -n )=x -y -z +m +n ,x -y -(z -m )-n =x -y -z +m -n ,⋯,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给x -y 添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵x -y -z -m -n =x -y -z -m -n ∴①说法正确∵x -y -z -m -n -x +y +z +m +n =0又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x -(y -z )-m -n =x -y +z -m -n ;第3种:x -(y -z )-(m -n )=x -y +z -m +n ;第4种:x -(y -z -m )-n =x -y +z +m -n ;第5种:x-(y-z-m-n)=x-y+z+m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.21(2022·内蒙古·中考真题)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,⋯根据其中的规律可得70+71+⋯+72022的结果的个位数字是()A.0B.1C.7D.8【答案】C【分析】观察等式,发现尾数分别为:1,7,9,3,1,7,9,3⋯每4个数一组进行循环,所以2023÷4=505⋯3,进而可得70+71+⋯+72022的结果的个位数字.【详解】解:观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,⋯,发现尾数分别为:1,7,9,3,1,7,⋯,所以和的个位数字依次以1,8,7,0循环出现,(2022+1)÷4=505⋯⋯3,每4个数一组进行循环,所以2023÷4=505⋯⋯3,而1+7+9+3=20,505×20+1+7+9=10117,所以70+71+⋯+72022的结果的个位数字是7.故选:C.【点睛】本题考查了尾数特征、有理数的乘方,解题的关键是根据题意寻找规律.22(2021·江苏镇江·统考中考真题)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B3【答案】B【分析】把A1,A2,B1,B3的式子表示出来,再结合值等于789,可求相应的n的值,即可判断.【详解】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故选:B.【点睛】本题主要考查规律型:数字变化类,解答的关键是理解清楚题意,得出相应的式子.23(2023·四川·统考中考真题)下列说法正确的是()A.多边形的外角和为360°B.6a2b-2ab2=2ab(3a-2b)C.525000=5.25×103D.可能性很小的事情是不可能发生的【答案】A【分析】根据多边形的外角和,因式分解,科学记数法,事件可能性的大小,进行判断即可.【详解】解:A中多边形的外角和为360°,正确,故符合要求;B中6a2b-2ab2=2ab(3a-b)≠2ab(3a-2b),错误,故不符合要求;C中525000=5.25×105≠5.25×103,错误,故不符合要求;D中可能性很小的事情是可能发生的,错误,故不符合要求;故选:A.【点睛】本题考查了多边形的外角和,因式分解,科学记数法,事件可能性的大小.解题的关键在于对知识的熟练掌握与灵活运用.24(2022·湖北荆门·统考中考真题)对于任意实数a,b,a3+b3=(a+b)(a2-ab+b2)恒成立,则下列关系式正确的是()A.a3-b3=(a-b)(a2+ab+b2)B.a3-b3=(a+b)(a2+ab+b2)C.a3-b3=(a-b)(a2-ab+b2)D.a3-b3=(a+b)(a2+ab-b2)【答案】A【分析】根据立方差公式即可求解.【详解】解:∵a3+b3=(a+b)(a2-ab+b2)恒成立,将上式中的b用-b替换,整理得:∴a3-b3=(a-b)(a2+ab+b2),故选:A.【点睛】本题考查了运用公式法分解因式,熟练掌握立方差公式是解题的关键.25(2022·山东济宁·统考中考真题)下面各式从左到右的变形,属于因式分解的是()A.x2-x-1=x(x-1)-1B.x2-1=(x-1)2C.x2-x-6=(x-3)(x+2)D.x(x-1)=x2-x【答案】C【分析】根据因式分解的定义对选项逐一分析即可.【详解】把一个多项式化成几个整式积的形式,这种变形叫做因式分解.A、右边不是整式积的形式,故不是因式分解,不符合题意;B、形式上符合因式分解,但等号左右不是恒等变形,等号不成立,不符合题意;C、符合因式分解的形式,符合题意;D、从左到右是整式的乘法,从右到左是因式分解,不符合题意;故选C.【点睛】本题考查因式分解,解决本题的关键是充分理解并应用因式分解的定义.26(2022·青海·统考中考真题)下列运算正确的是()A.3x2+4x3=7x5B.x+y2=x2+y2C.2+3x2-3x=9x2-4 D.2xy+4xy2=2xy1+2y【答案】D【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A.选项,3x2与4x3不是同类项,不能合并,故该选项计算错误,不符合题意;B.选项,原式=x+y2=x2+2xy+y2,故该选项计算错误,不符合题意;C.选项,原式=4-9x2,故该选项计算错误,不符合题意;D.选项,原式=2xy1+2y,故该选项计算正确,符合题意;故选:D.【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.27(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了4+5=9根木棍,第②个图案用了4+5×2=14根木棍,第③个图案用了4+5×3=19根木棍,第④个图案用了4+5×4=24根木棍,⋯⋯,第⑧个图案用的木棍根数是4+5×8=44根,故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.28(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,⋯,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.【详解】解:因为第①个图案中有2个圆圈,2=3×1-1;第②个图案中有5个圆圈,5=3×2-1;第③个图案中有8个圆圈,8=3×3-1;第④个图案中有11个圆圈,11=3×4-1;⋯,所以第⑦个图案中圆圈的个数为3×7-1=20;故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为3n-1是解题的关键.29(2021·内蒙古·统考中考真题)若x=2+1,则代数式x2-2x+2的值为()A.7B.4C.3D.3-22【答案】C【分析】先将代数式x2-2x+2变形为(x-1)2+1,再代入即可求解.【详解】解:x2-2x+2=(x-1)2+1=(2+1-1)2+1=3.故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x的值直接代入计算.30(2021·湖北随州·统考中考真题)根据图中数字的规律,若第n个图中的q=143,则p的值为()A.100B.121C.144D.169【答案】B【分析】分别分析n的规律、p的规律、q的规律,再找n、p、q之间的联系即可.【详解】解:根据图中数据可知:n=1,2,3,4,⋯⋯p=12,22,32,42,⋯⋯q=22-1,32-1,42-1,52-1,⋯⋯则p=n2,q=(n+1)2-1,∵第n个图中的q=143,∴q=(n+1)2-1=143,解得:n=11或n=-13(不符合题意,舍去)∴p=n2=121,故选:B.【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.二、填空题31(2023·湖南永州·统考中考真题)2a2与4ab的公因式为.【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得2a2与4ab的公因式为2a,故答案为:2a.【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.32(2023·甘肃武威·统考中考真题)因式分解:ax2-2ax+a=.【答案】a x-12【分析】先提取公因式,再利用平方差公式分解因式即可.【详解】解:ax2-2ax+a=a x2-2x+1=a x-12,故答案为:a x-12【点睛】本题考查的是综合提公因式与公式法分解因式,掌握因式分解的方法与步骤是解本题的关键.33(2023·浙江台州·统考中考真题)因式分解:x2-3x=.【答案】x x-3【分析】根据因式分解中提公因式方法即可求出答案.【详解】解:x2-3x=x x-3故答案为:x x-3.【点睛】本题考查了因式分解,解题的关键在于熟练掌握提公因式法.34(2023·上海·统考中考真题)分解因式:n2-9=.【答案】n-3n+3【分析】利用平方差公式进行因式分解即可.【详解】解:n2-9=n-3,n+3故答案为:n-3.n+3【点睛】本题考查因式分解,熟练掌握平方差公式是解题的关键.35(2023·浙江嘉兴·统考中考真题)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:.【答案】x2-1(答案不唯一)【分析】根据平方差公式或完全平方公式等知识解答即可.【详解】解:∵x 2-1=x +1 x -1 ,因式分解后有一个因式为(x +1),∴这个多项式可以是x 2-1(答案不唯一);故答案为:x 2-1(答案不唯一).【点睛】本题考查了多项式的因式分解,熟练掌握分解因式的方法是解此题的关键.36(2022·湖北恩施·统考中考真题)因式分解:a 3-6a 2+9a =.【答案】a a -3 2【分析】先提公因式,然后再根据完全平方公式进行因式分解即可.【详解】解:原式=a a 2-6a +9 =a a -3 2;故答案为a a -3 2.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.37(2023·四川广安·统考中考真题)定义一种新运算:对于两个非零实数a 、b ,a ※b =xa +y b.若2※-2 =1,则-3 ※3的值是.【答案】-23【分析】先根据2※-2 =1可得一个关于x ,y 的等式,再根据新运算的定义代入计算即可得.【详解】解:∵2※-2 =1,∴x2+y -2=1,即x -y =2,∴-3 ※3=x -3+y 3=-x -y 3=-23,故答案为:-23.【点睛】本题考查了新定义下的实数运算、代数式求值,理解新运算的定义是解题关键.38(2023·四川内江·统考中考真题)已知a 、b 是方程x 2+3x -4=0的两根,则a 2+4a +b -3=.【答案】-2【分析】利用一元二次方程的解的定义和根与系数的关系,可得a +b =-3,a 2+3a -4=0,从而得到a 2+3a =4,然后代入,即可求解.【详解】解:∵a ,b 是方程x 2+3x -4=0的两根,∴a +b =-3,a 2+3a -4=0,∴a 2+3a =4,∴a 2+4a +b -3=a 2+3a +a +b -3=4+-3 -3=-2.故答案为:-2.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.39(2023·四川内江·统考中考真题)若a 、b 互为相反数,c 为8的立方根,则2a +2b -c =.【答案】-2【分析】利用相反数,立方根的性质求出a +b 及c 的值,代入原式计算即可得到结果.【详解】解:根据题意得:a +b =0,c =2,∴2a +2b -c =0-2=-2,故答案为:-2【点睛】此题考查了代数式求值,相反数、立方根的性质,熟练掌握运算法则是解本题的关键.40(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、⋯⋯、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷⋯⋯)等,甲烷的化学式为CH 4,乙烷的化学式为C 2H 6,丙烷的化学式为C 3H 8⋯⋯,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】C 12H 26【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为CH 4,乙烷的化学式为C 2H 6,丙烷的化学式为C 3H 8⋯⋯,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为C 12H 26,故答案为:C 12H 26.【点睛】本题考查了规律题,找到规律是解题的关键.41(2023·浙江·统考中考真题)如图,分别以a ,b ,m ,n 为边长作正方形,已知m >n 且满足am -bn =2,an +bm =4.(1)若a =3,b =4,则图1阴影部分的面积是;(2)若图1阴影部分的面积为3,图2四边形ABCD 的面积为5,则图2阴影部分的面积是.【答案】 2553【分析】(1)根据正方形的面积公式进行计算即可求解;(2)根据题意,解方程组得出m =2a +4b3n =4a -2b 3 ,根据题意得出m +n =10,进而得出a =910-3020b =310+33020,根据图2阴影部分的面积为mn ,代入进行计算即可求解.【详解】解:(1)a =3,b =4,图1阴影部分的面积是a 2+b 2=32+42=25,故答案为:25.(2)∵图1阴影部分的面积为3,图2四边形ABCD 的面积为5,∴a 2+b 2=3,12m +n m +n =5,即m +n 2=10∴m +n =10(负值舍去)∵am -bn =2,an +bm =4.解得:m =2a +4ba 2+b2n =4a -2b a 2+b2∵a 2+b 2=3①∴m =2a +4b 3n =4a -2b 3,∴m +n =6a +2b 3=2a +23b ,∴2a +23b =10②联立①②解得:a =30+91020b =310-33020 (b 为负数舍去)或a =910-3020b =310+33020∴2a +4b =30+3102,4a -2b =-30+3102图2阴影部分的面积是122m ×2n =mnmn =2a +4b 4a -2b9=30+3102×-30+31029=53故答案为:53.【点睛】本题考查了整式的乘方与图形的面积,正方形的性质,勾股定理,二元一次方程组,解一元二次方程,正确的计算是解题的关键.42(2023·山东临沂·统考中考真题)观察下列式子1×3+1=22;2×4+1=32;3×5+1=42;⋯⋯按照上述规律,=n 2.【答案】n -1 n +1 +1【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵1×3+1=22;2×4+1=32;3×5+1=42;⋯⋯∴n n +2 +1=n +1 2,∴n -1 n +1 +1=n 2.故答案为:n -1 n +1 +1【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.43(2023·山东枣庄·统考中考真题)若x=3是关x的方程ax2-bx=6的解,则2023-6a+2b的值为.【答案】2019【分析】将x=3代入方程,得到3a-b=2,利用整体思想代入求值即可.【详解】解:∵x=3是关x的方程ax2-bx=6的解,∴a⋅32-3b=6,即:3a-b=2,∴2023-6a+2b=2023-23a-b=2023-2×2=2023-4=2019;故答案为:2019.【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.44(2023·湖南岳阳·统考中考真题)观察下列式子:12-1=1×0;22-2=2×1;32-3=3×2;42-4=4×3;52-5=5×4;⋯依此规律,则第n(n为正整数)个等式是.【答案】n2-n=n n-1【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵12-1=1×0;22-2=2×1;32-3=3×2;42-4=4×3;52-5=5×4;⋯∴第n(n为正整数)个等式是n2-n=n n-1,故答案为:n2-n=n n-1.【点睛】本题考查了数字类规律,找到规律是解题的关键.45(2023·天津·统考中考真题)计算7+6的结果为.7-6【答案】1【分析】根据平方差公式,二次根式的性质及运算法则处理.【详解】解:7+6=(7)2-(6)2=7-6=17-6故答案为:1【点睛】本题考查平方差公式、二次根式性质及运算,熟练掌握平方差公式是解题的关键.46(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m -n>1,则称这个正整数为“智慧优数”.例如,16=52-32,16就是一个智慧优数,可以利用m2-n2=(m +n)(m-n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当m=3,n=1,则第1个一个智慧优数为32-12=8当m=4,n=2,则第2个智慧优数为42-22=14当m=4,n=1,则第3个智慧优数为42-12=15,当m=5,n=3,则第5个智慧优数为52-32=16当m=5,n=2,则第6个智慧优数为52-22=21当m =5,n =1,则第7个智慧优数为52-32=24⋯⋯m =6时有4个智慧优数,同理m =7时有5个,m =8时有6个,1+2+3+4+5+6=21第22个智慧优数,当m =9时,n =7,第22个智慧优数为92-72=81-49=32,第23个智慧优数为m =9,n =6时,92-62=81-36=45,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.47(2023·四川凉山·统考中考真题)已知x 2-2x -1=0,则3x 3-10x 2+5x +2027的值等于.【答案】2023【分析】把x 2-2x -1=0化为:x 2=2x +1代入降次,再把x 2-2x =1代入求值即可.【详解】解:由x 2-2x -1=0得:x 2=2x +1,x 2-2x =1,3x 3-10x 2+5x +2027=3x 2x +1 -10x 2+5x +2027=6x 2+3x -10x 2+5x +2027=-4x 2+8x +2027=-4x 2-2x +2027=-4×1+2027=2023,故答案为:2023.【点睛】本题考查的是代数式的求值,找到整体进行降次是解题的关键.48(2023·四川成都·统考中考真题)若3ab -3b 2-2=0,则代数式1-2ab -b 2a 2÷a -ba 2b,的值为.【答案】23【分析】根据分式的化简法则,将代数式化简可得ab -b 2,再将3ab -3b 2-2=0变形,即可得到答案.【详解】解:1-2ab -b 2a 2÷a -b a 2b,=a 2-2ab +b 2a 2×a 2b a -b ,=a -b 2a 2×a 2b a -b ,=ab -b 2,∵3ab -3b 2-2=0,∴3ab -3b 2=2,∴ab -b 2=23,故原式的值为23,故答案为:23.【点睛】本题考查了分式的化简法则,整式的整体代入,熟练对代数式进行化简是解题的关键.49(2023·重庆·统考中考真题)对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7-1=6,3-1=2,∴7311是“天真数”;四位数8421,∵8-1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P M=3a+b+c+d,Q M=a-5,若P MQ M能被10整除,则满足条件的M的最大值为.【答案】62009313【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到c+d=a+b-8,进而P M Q M =4a+b-8a-5,若M最大,只需千位数字a取最大,即a=9,再根据P MQ M能被10整除求得b=3,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,a-d=6,b-c=2,6≤a≤9,2≤b≤9,则c+d=a+b-8,∴P M=3a+b+c+d=4a+b-8,∴P MQ M=4a+b-8a-5,若M最大,只需千位数字a取最大,即a=9,∴P MQ M=49+b-89-5=7+b,∵P MQ M能被10整除,∴b=3,∴满足条件的M的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.50(2020·贵州黔南·中考真题)若a m-2b n+7与-3a4b4是同类项,则m-n=.【答案】9【分析】根据同类项的概念即相同字母的指数相同,既而求出m、n,再求出m-n的值即可.【详解】解∶已知a m-2b n+7与-3a4b4是同类项,所以,m-2=4,n+7=4,则m=6,n=-3,则m-n=9故答案为∶9【点睛】此题考查的知识点是同类项,关键是根据同类项的概念求解.51(2022·山东济南·统考中考真题)利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD是矩形ABCD的对角线,将△BCD分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a=4,b=2,则矩形ABCD的面积是.。
全国各地2019年中考数学真题分类解析汇编 03整式与因式分解
整式与因式分解一、选择题1. ( 2018•安徽省,第2题4分)x2•x3=()A. x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. ( 2018•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A. a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. ( 2018•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. ( 2018•福建泉州,第2题3分)下列运算正确的是()5. ( 2018•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()6. ( 2018•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. ( 2018•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. ( 2018•珠海,第3题3分)下列计算中,正确的是()9. (2018四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2018•新疆,第3题5分)下列各式计算正确的是()11.(2019年云南省,第2题3分)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2018•温州,第5题4分)计算:m6•m3的结果()13.(2018•舟山,第6题3分)下列运算正确的是()14.(2018•毕节地区,第3题3分)下列运算正确的是()+=15.(2018•毕节地区,第4题3分)下列因式分解正确的是()A. 2x2﹣2=2(x+1)(x﹣1)B. x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D. x2﹣x+2=x(x﹣1)+216.(2018•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),,17.(2018•武汉,第5题3分)下列代数运算正确的是()18.(2018•襄阳,第2题3分)下列计算正确的是()19.(2018•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.,,)),))2=7+420.(2018•邵阳,第2题3分)下列计算正确的是()21.(2018•邵阳,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()22.(2018•四川自贡,第2题4分)(x4)2等于()y= y(x+1)(x﹣1).( )A.24×5B.77×113C.24×74×114D.26×76×116分析:直接将原式提取因式进而得出A的因子.解:∵A=25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.故选:C.点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键.25.(2018·台湾,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x 2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式.解:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5). 故选D .点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.26.(2018·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可.解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.(2018·云南昆明,第4题3分)下列运算正确的是( )A. 532)(a a =B. 222)(b a b a -=-C. 3553=-D. 3273-=-28.(2018•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x分析:原式利用单项式乘以多项式法则计算即可得到结果.解:原式=6x 3+2x ,故选C]点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.29.(2018·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是【 】A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+-【答案】C .【解析】30. (2018•湘潭,第2题,3分)下列计算正确的是( ) =232. (2019年江苏南京,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. (2018•泰州,第2题,3分)下列运算正确的是()35.(2018•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.36.(2018•滨州,第2题3分)一个代数式的值不能等于零,那么它是()37.(2018•济宁,第2题3分)化简﹣5ab+4ab的结果是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. ( 2018•广东,第11题4分)计算2x3÷x= 2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. ( 2018•珠海,第7题4分)填空:x2﹣4x+3=(x﹣ 2 )2﹣1.3. ( 2018•广西贺州,第13题3分)分解因式:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. ( 2018•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()5.( 2018•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()6.(2019年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2018•温州,第11题5分)分解因式:a2+3a= .8.(2019年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2= .分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2018•武汉,第12题3分)分解因式:a3﹣a= a(a+1)(a﹣1).10.(2018•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是 n(m﹣1)2.11.(2018•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .12.(2018•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2018•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 ab (用a、b的代数式表示).()()(2)解不等式:5(x﹣2)﹣2(x+1)>3.15. (2018•湘潭,第10题,3分)分解因式:ax﹣a= a(x﹣1).a= 3 .= 2m.9= (x﹣3)(4x+3).9= (x﹣3)(4x+3).20.(2018•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y(3x﹣y)2.的算式 a•a..a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.+1三.解答题1. ( 2018•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. ( 2018•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.a=原式=2×(3.(2018•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20180;(2)化简:(a+1)2+2(1﹣a)﹣10+9+1=24.(2018•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)+4﹣4×=25. (2018·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-. 【答案】7. 【解析】。
专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)
专题3因式分解(共41题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.2.(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 3.(2021·贵州铜仁市·中考真题)下列等式正确的是( )A .3tan452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+- 【答案】D【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.【详解】 A. 3tan45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意 C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意 故选D .【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.4.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题5.(2021·四川成都市·中考真题)因式分解:24x -=__________.【答案】(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-6.(2021·云南中考真题)分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.7.(2021·山东临沂市·中考真题)分解因式:2a 3﹣8a=________.【答案】2a (a+2)(a ﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.8.(2021·广西柳州市·中考真题)因式分21x -= .【答案】(1)(1)x x +-.【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.9.(2021·浙江宁波市·中考真题)分解因式:23x x -=_____________.【答案】x(x -3)【详解】直接提公因式x 即可,即原式=x (x -3).10.(2021·江苏宿迁市·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).11.(2021·浙江丽水市·中考真题)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____.【答案】(a +1)2【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.13.(2021·吉林长春市·中考真题)分解因式:22a a +=_____.【答案】22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】 22(2)a a a a +=+.【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.14.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.15.(2021·江苏苏州市·中考真题)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.(2021·浙江台州市·中考真题)因式分解:xy -y 2=_____.【答案】y (x -y )【分析】根据提取公因式法,即可分解因式.【详解】解:原式= y (x -y ),故答案是:y (x -y ).【点睛】本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.17.(2021·江西中考真题)因式分解:224x y -=______.【答案】(2)(2)x y x y +-【分析】直接利用平方差公式分解即可.【详解】解:224(2)(2)x y x y x y -=+-.故答案为:(2)(2)x y x y +-.【点睛】本题考查了分解因式-公式法,熟练掌握平方差公式的结构特征是解题的关键.18.(2021·甘肃武威市·中考真题)因式分解:242m m -=___________.【答案】()22m m -【分析】先确定242m m -的公因式为2m ,再利用提公因式分解因式即可得到答案.【详解】解:()24222.m m m m -=- 故答案为:()22m m -【点睛】本题考查的是提公因式分解因式,掌握公因式的确定是解题的关键.19.(2021·湖北黄石市·中考真题)分解因式:322a a a -+=______.【答案】()21a a -.【分析】观察所给多项式有公因式a ,先提出公因式,剩余的三项可利用完全平方公式继续分解.【详解】解:原式()221a a a =-+, ()21a a =-,故答案为:()21a a -.【点睛】本题考查了用提公因式法和公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,有公因式要先提公因式,再考虑运用公式法分解,注意一定要分解到无法分解为止.20.(2021·四川泸州市·)分解因式:244m -=___________.【答案】()()411m m +-.【分析】先提取公因式4,再利用平方差公式分解即可.【详解】解:()()()224441411m m m m -=-=+-. 故答案为:()()411m m +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2021·四川乐山市·中考真题)因式分解:249a -=________.【答案】(23)(23)a a -+【分析】此多项式可直接采用平方差公式进行分解.【详解】解:22249(2)3a a -=-=(23)(23)a a -+.故答案为:(23)(23)a a -+.【点睛】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.(2021·江苏无锡市·中考真题)分解因式:328x x -=_________.【答案】2x (x +2)(x -2)【分析】先提取公因式2x ,再利用平方差公式分解即可得.【详解】解:原式=2x (x 2-4)=2x (x +2)(x -2);故答案为:2x (x +2)(x -2).【点睛】本题主要考查了因式分解,解题的关键是掌握提公因式法和平方差公式.23.(2021·广西来宾市·中考真题)分解因式:224a b -=______.【答案】()()22a b a b +-【分析】利用平方差公式进行因式分解即可.【详解】解:224a b -=()222a b -=()()22a b a b +-.故答案为()()22a b a b +-.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.24.(2021·浙江绍兴市·中考真题)分解因式:221x x ++= ___________ .【答案】2(1)x +【分析】根据完全平方公式因式分解即可.【详解】解:221x x ++=2(1)x +故答案为:2(1)x +.【点睛】此题考查的是因式分解,掌握利用完全平方公式因式分解是解决此题的关键. 25.(2021·湖北恩施土家族苗族自治州·中考真题)分解因式:2a ax -=__________.【答案】()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.26.(2021·山东菏泽市·中考真题)因式分解:322a a a -+-=______.【答案】2(1)a a --【分析】先提取公因式,后采用公式法分解即可【详解】∴322a a a -+-=-a 22)1(a a -+=2(1)a a --故答案为: 2(1)a a --.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键. 27.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∴2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键. 28.(2021·湖南长沙市·中考真题)分解因式:22021x x -=______.【答案】(2021)x x -【分析】利用提公因式法进行因式分解即可得. 【详解】解:22021(2021)x x x x -=-, 故答案为:(2021)x x -. 【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键. 29.(2021·湖南株洲市·中考真题)因式分解:264x xy -=__________. 【答案】()232x x y - 【分析】直接提出公因式2x 即可完成因式分解. 【详解】解:()264232x xy x x y -=-;故答案为:()232x x y -. 【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是找到它们的公因式,提出公因式后再检查分解是否彻底即可,本题为基础题,考查了学生对基础知识的掌握与运用. 30.(2021·陕西中考真题)分解因式:3269x x x ++=______. 【答案】()23x x + 【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案. 【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +. 【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.31.(2021·湖南岳阳市·中考真题)因式分解:221x x ++=______. 【答案】()21x +. 【详解】解:()22211x x x ++=+.故答案为:()21x +. 【点睛】此题考查了运用公式法因式分解,熟练掌握完全平方公式是解答此题的关键. 32.(2021·湖南邵阳市·中考真题)因式分解:23xy x -=______. 【答案】()()x y x y x -+ 【分析】提公因式与平方差公式相结合解题. 【详解】解:2322()()()xy x x y x x y x y x -=-=-+, 故答案为:()()x y x y x -+. 【点睛】本题考查因式分解,涉及提公因式与平方差公式,是重要考点,难度较易,掌握相关是解题关键. 33.(2021·四川眉山市·中考真题)分解因式:3x y xy -=______. 【答案】()()11xy x x +- 【分析】先利用提公因式法提出公因式xy ,再利用平方差公式法进行变形即可. 【详解】解:()()()32111x y xy xy x xy x x -=-=+-;故答案为:()()11xy x x +-. 【点睛】本题考查了提公因式法和公式法(平方差公式)进行的因式分解的知识,解决本题的关键是牢记因式分解的特点和基本步骤,分解的结果是几个整式的积的形式,结果应分解到不能再分解为止,即分解要彻底,本题易错点是很多学生提公因式后以为分解就结束了,因此要对结果进行检查. 34.(2021·湖南衡阳市·中考真题)因式分解:239a ab -=__________. 【答案】()33a a b - 【分析】利用提取公因式法因式分解即可 【详解】解:()23933a ab a a b -=-故答案为: ()33a a b - 【点睛】本题考查提取公因式法因式分解,熟练掌握因式分解的方法是关键 35.(2021·北京中考真题)分解因式:2255x y -=______________. 【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解. 【详解】解:()()()22225555x y x y x y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 36.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m -=2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 37.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b .【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b故答案为:(a b b .【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键.三、解答题38.(2021·黑龙江大庆市·中考真题)先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.39.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos4512π-⎛⎫-+-+︒- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)2=++⨯-411=++6=+(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.40.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∴2x y -=,∴1121y x x y xy xy---===,∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.41.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .【答案】(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616. 【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .【详解】 解:(1)168不是“合和数”,621是“合和数”. 1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=, 621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-.∴()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-. ∴()()21054()2105P M m m G M k Q M n n ++====--(k 是整数).39m ≤≤,8514m ∴≤+≤,k 是整数,58m ∴+=或512m +=,∴当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.∴当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616. 【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。
2020年中考数学真题分类汇编第三期专题3整式与因式分解试题含解析
整式与因式分解一.选择题1. (2018·广西贺州·3分)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4C.(a3)2=a6D.a8÷a2=a4【解答】解:A.a2•a2=a4,错误;B.a2+a2=2a2,错误;C.(a3)2=a6,正确;D.a8÷a2=a6,错误;故选:C.2. (2018·广西贺州·3分)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)【解答】解:A.x2+6xy+9y2=(x+3y)2,正确;B.2x2﹣4xy+9y2=无法分解因式,故此选项错误;C.2x2﹣8y2=2(x+2y)(x﹣2y),故此选项错误;D.x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项错误;故选:A.3. (2018·广西梧州·3分)下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.()﹣1=﹣D.(x2)3=x5【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断即可.【解答】解:A.a+2a=3a,正确;B.x4•x3=x7,错误;C.,错误;D.(x2)3=x6,错误;故选:A.【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是根据法则计算.4. (2018·湖北荆州·3分)下列代数式中,整式为()A.x+1 B. C.D.【解答】解:A.x+1是整式,故此选项正确;B.,是分式,故此选项错误;C.是二次根式,故此选项错误;D.,是分式,故此选项错误;故选:A.5. (2018·湖北荆州·3分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6C.a10÷a5=a2 D.(a2)3=a6【解答】解:A.3a2﹣4a2=﹣a2,错误;B.a2•a3=a5,错误;C.a10÷a5=a5,错误;D.(a2)3=a6,正确;故选:D.6. (2018·湖北十堰·3分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2 D.6y2÷2y=3y【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x+3y,故A错误;(B)原式=﹣8x6,故B错误;(C)原式=﹣3y3,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.(2018·四川省攀枝花·3分)下列运算结果是a5的是()A.a10÷a2B.(a2)3C.(﹣a)5D.a3•a2解:A.a10÷a2=a8,错误;B.(a2)3=a6,错误;C.(﹣a)5=﹣a5,错误;D.a3•a2=a5,正确;故选D.8.(2018·云南省曲靖·4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣【解答】解:A.原式=a3,不符合题意;B.原式=a4,不符合题意;C.原式=﹣a2b,符合题意;D.原式=﹣,不符合题意,故选:C.9.(2018·云南省·4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.10.(2018·辽宁省沈阳市)(2.00分)下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A.(m2)3=m6,正确;B.a10÷a9=a,正确;C.x3•x5=x8,正确;D.a4+a3=a4+a3,错误;故选:D.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.11.(2018·辽宁省盘锦市)下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【解答】解:A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.12.(2018·辽宁省葫芦岛市) 下列运算正确的是()A.﹣2x2+3x2=5x2B.x2•x3=x5C.2(x2)3=8x6D.(x+1)2=x2+1【解答】解:A.﹣2x2+3x2=x2,错误;B.x2•x3=x5,正确;C.2(x2)3=2x6,错误;D.(x+1)2=x2+2x+1,错误;故选B.13.(2018·辽宁省抚顺市)(3.00分)下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9 C.(xy2)3=x3y6D.x10÷x5=x2【分析】根据同底数幂的乘除法,完全平方公式,以及合并同类项的•法则解答即可.【解答】解:A.原式不能合并,错误;B.(x+3)2=x2+6x+9,错误;C.(xy2)3=x3y6,正确;D.x10÷x5=x5,错误;故选:C.【点评】此题考查了同底数幂的乘除法,完全平方公式,以及合并同类项,熟练掌握公式及运算法则是解本题的关键.14. (2018•乐山•3分)已知实数A.b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a ﹣b=±1.故选C.15. (2018•广安•3分)下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a3【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.【解答】解:A.(b2)3=b6,故此选项错误;B.x3÷x3=1,故此选项错误;C.5y3•3y2=15y5,正确;D.a+a2,无法计算,故此选项错误.故选:C.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.16. (2018•陕西•3分)下列计算正确的是A. a2·a2=2a4B. (-a2)3=-a6C. 3a2-6a2=3a2D. (a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.17. (2018·湖北咸宁·3分)下列计算正确的是()A. a3•a3=2a3B. a2+a2=a4C. a6÷a2=a3D. (﹣2a2)3=﹣8a6【答案】D【解析】【分析】根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方的运算法则逐一计算可得.【详解】A.a3•a3=a6,故A选项错误;B.a2+a2=2a2,故B选项错误;C.a6÷a2=a4,故C选项错误;D.(﹣2a2)3=﹣8a6,故D选项正确,故选D.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.18.(2018·江苏常州·2分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.19.(2018·辽宁大连·3分)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6解:(x3)2=x6.故选D.二.填空题1. (2018·湖北荆州·3分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.2.(2018·四川省攀枝花·4分)分解因式:x3y﹣2x2y+xy= .解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2.3.(2018·云南省·3分)分解因式:x2﹣4= (x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.4.(2018·辽宁省沈阳市)(3.00分)因式分解:3x3﹣12x= 3x(x+2)(x﹣2).【分析】首先提公因式3x,然后利用平方差公式即可分解.【解答】解:3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案是:3x(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.5.(2018·辽宁省盘锦市)因式分解:x3﹣x= x(x+1)(x﹣1).【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).6.(2018·辽宁省葫芦岛市) 分解因式:2a3﹣8a= 2a(a+2)(a﹣2).【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2).故答案为:2a(a+2)(a﹣2).7.(2018·辽宁省抚顺市)(3.00分)分解因式:xy2﹣4x= x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8. (2018·湖北咸宁·3分)因式分解:ab2﹣a=_____.【答案】a(b+1)(b﹣1)【解析】分析:首先提取公因式,再用公式法分解因式即可.详解:原式故答案为:点睛:考查因式分解,本题是提取公因式法和公式法相结合.注意分解一定要彻底. 9.(2018·江苏常州·2分)分解因式:3x2﹣6x+3= 3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3=3(x2﹣2x+1)=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(2018·辽宁大连·3分)因式分解:x2﹣x= .解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).11.(2018·江苏镇江·2分)计算:(a2)3= a6.【解答】解:(a2)3=a6.故答案为:a6.12.(2018·江苏镇江·2分)分解因式:x2﹣1= (x+1)(x﹣1).【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).13.(2018·吉林长春·3分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.三.解答题1(2018·重庆市B卷)21.(10.00分)计算:(1)(x+2y)2﹣(x+y)(x﹣y);【分析】(1)原式利用完全平方公式,平方差公式化简,去括号合并即可得到结果;【解答】解:(1)原式=x2+4xy+4y2﹣x2+y2=4xy+5y2;2. (2018•乐山•10分)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.3.(2018·江苏镇江·4分)(2)化简:(a+1)2﹣a(a+1)﹣1.【解答】解:(2)原式=a2+2a+1﹣a2﹣a﹣1=a.4. (2018·湖北咸宁·8分)(2)化简:(a+3)(a﹣2)﹣a(a﹣1).【答案】(2)2a﹣6.【解析】(2)按顺序先利用多项式乘多项式、单项式乘多项式的法则进行展开,然后再合并同类项即可得.【详解】(2)(a+3)(a﹣2)﹣a(a﹣1)=a2﹣2a+3a﹣6﹣a2+a=2a﹣6.【点睛】本题考查了整式的混合运算,熟练掌握各运算的运算顺序以及运算法则是解题的关键.。
专题03 整式与因式分解-备战2022年中考数学题源解密(解析版)
专题03 整式与因式分解考向1 整式的相关概念【母题来源】(2021·浙江温州)【母题题文】某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元【分析】应缴水费=17立方米的水费+(20﹣17)立方米的水费。
【解答】解:根据题意知:17a+(20﹣17)(a+1.2)=(20a+3.6)(元)。
故选:D.【试题分析】此题考察了根据语境列代数式的方法,分段计算是这题的易错点;【命题意图】此类题的出现,一是为了让考生熟悉代数式的概念并加以应用到实际问题中,二是为了考察实际问题中学生对分段计算的理解能力;目的是让考生学以致用,把数学和生活联系起来;【命题方向】有关整式或者代数式的概念部分的考察,在浙江中考中占的分值一直很小,或者很多城市的中考中基本不考,考到的时候难点也不在对应概念上,而是在与之结合的其他代数考点上,所以,掌握好基本概念,这类题完全就不需要担心了;【得分要点】整式的概念及注意事项:名称识别次数系数与项整式单项式①数与字母或字母与字母相乘组成的代数式;②单独的一个数或一个字母所有字母的指数的和系数:单项式中的数字因数多项式几个单项式的和次数最高项的次数项:多项式中的每个单项式☆:由定义可知,单项式中只含有乘法运算;分数是一个完整的数,不拆开来算;单独的一个数或字母也叫单项式;单独的字母的系数为1,次数也是1;☆:由定义可知,多项式中可以含有乘法——加法——减法运算;多项式有统一的次数,但是没有统一的系数,多项式中的每一项有自己的系数;考向2 整式的运算【母题来源】(2021·浙江杭州)【母题题文】计算:2a+3a=.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变求解.【解答】解:2a+3a=5a,故答案为5a.【母题来源】(2021·浙江丽水)【母题题文】计算(﹣a)2•a4的结果是()A.a6B.﹣a6C.a8D.﹣a8【分析】先化简为同底数幂的乘法,然后根据同底数幂的乘法法则计算即可.【解答】解:原式=a2•a4=a6,故选:A.【母题来源】(2021·浙江宁波)【母题题文】计算a3•(﹣a)的结果是()A.a2B.﹣a2C.a4D.﹣a4【分析】先化为同底数幂的乘法,然后根据同底数幂的乘法法则计算.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【母题来源】(2021·浙江衢州)【母题题文】下列计算正确的是()A.(x2)3=x5B.x2+x2=x4C.x2•x3=x5D.x6÷x3=x2【分析】A:根据幂的乘方法则进行计算即可得出答案;B:根据合并同类项法则进行计算即可得出答案;C:根据同底数幂的乘法法则进行计算即可得出答案;D:根据同底数幂的除法法则进行计算即可得出答案.【解答】解:A:因为(x2)3=x6,所以A选项错误;B:因为x2+x2=2x2,所以B选项错误;C:因为x2•x3=x2+3=x5,所以C选项正确;D:因为x6÷x3=x6﹣3=x3,所以D选项错误.故选:C.【母题来源】(2021·浙江台州)【母题题文】下列运算中,正确的是()A.a2+a=a3B.(﹣ab)2=﹣ab2C.a5÷a2=a3D.a5・a2=a10【分析】根据整式的加减运算法则以及乘法运算法则即可求出答案.【解答】解:A、a2与a不是同类项,不能合并,故A不符合题意,B、原式=a2b2,故B不符合题意.C、原式=a3,故C符合题意.D、原式=a7,故D不符合题意.故选:C.【母题来源】(2021·浙江温州)【母题题文】化简:(a﹣5)2+a(2a+8).【分析】结合完全平方公式,运用整式的运算法则可以得到结果.【解答】解:原式=a2﹣10a+25+a2+4a=2a2﹣6a+25.【母题来源】(2021·浙江宁波)【母题题文】计算:(1+a)(1﹣a)+(a+3)2.【分析】直接利用乘法公式化简,再合并同类项得出答案;【解答】解:原式=1﹣a2+a2+6a+9=6a+10;【母题来源】(2021·浙江金华)【母题题文】已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.【分析】根据完全平方公式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(3x﹣1)2+(1+3x)(1﹣3x)=9x2﹣6x+1+1﹣9x2=﹣6x+2,当x =时,原式=﹣6×+2=﹣1+2=1.【母题来源】(2021·浙江湖州)【母题题文】计算:x(x+2)+(1+x)(1﹣x).【分析】根据单项式乘多项式和平方差公式化简即可.【解答】解:原式=x2+2x+1﹣x2=2x+1.【试题分析】这些题主要考了整式运算中的合并同类项、整式的加减、同底数幂的乘法以及利用乘法公式进行化简计算;【命题意图】整式的运算为初中数学后续的解方程的学生奠定了基础,重要性不言而喻。
2019年全国各地中考数学试题分类汇编(第三期) 专题3 整式与因式分解(含解析)
整式与因式分解一.选择题1.(2019•湖北省鄂州市•3分)下列运算正确的是()A.a3•a2 =a6B.a7÷a3 =a4C.(﹣3a)2 =﹣6a2D.(a﹣1)2=a2 ﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a5,不符合题意;B、原式=a4,符合题意;C、原式=9a2,不符合题意;D、原式=a2﹣2a+1,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.(2019•湖北省荆门市•3分)下列运算不正确的是()A.xy+x﹣y﹣1=(x﹣1)(y+1)B.x2+y2+z2+xy+yz+zx=(x+y+z)2C.(x+y)(x2﹣xy+y2)=x3+y3D.(x﹣y)3=x3﹣3x2y+3xy2﹣y3【分析】根据分组分解法因式分解、多项式乘多项式的法则进行计算,判断即可.【解答】解:xy+x﹣y﹣1=x(y+1)﹣(y+1)=(x﹣1)(y+1),A正确,不符合题意;x2+y2+z2+xy+yz+zx=[(x+y)2+(x+z)2+(y+z)2],B错误,符合题意;(x+y)(x2﹣xy+y2)=x3+y3,C正确,不符合题意;(x﹣y)3=x3﹣3x2y+3xy2﹣y3,D正确,不符合题意;故选:B.【点评】本题考查的是因式分解、多项式乘多项式,掌握它们的一般步骤、运算法则是解题的关键.3.(2019•湖北省随州市•3分)下列运算正确的是()A. B.C. D.【答案】D【解析】解:A.4m-m=3m,故此选项错误;B.(a2)3 =a6,故此选项错误;C.(x+y)2=x2+2xy+y2,故此选项错误;D.-(t-1)=1-t,正确.故选:D.直接利用合并同类项法则以及幂的乘方运算法则、完全平方公式分别化简得出答案.此题主要考查了合并同类项以及幂的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.4.(2019•四川省达州市•3分)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、a8÷a4=a4,故此选项正确;C、(﹣2ab)2=4a2b2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.5.(2019•四川省凉山州•4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.6. (2019•广西北部湾•3分)下列运算正确的是()A.(ab3) 2= a2b6B.2a +3b=5ab C.5a2﹣3a2=2 D.(a+1)2= a2+1【答案】A【解析】解:2a+3b不能合并同类项,B错误;5a2-3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7 (2019·广西贺州·3分)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)2【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;【解答】解:4a2﹣1=(2a+1)(2a﹣1),故选:B.【点评】本题考查了分解因式,熟练运用平方差公式是解题的关键8. (2019·贵州安顺·3分)下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.a6÷a2=a3D.(a+b)2=a2+b2【解答】解:A.(a2b)3=a6b3,故选项A不合题意;B.(3a2)3=27a6,故选项B符合题意;C.a6÷a2=a4,故选项C不合题意;D.(a+b)2=a2+2ab+b2,故选项D不合题意.故选:B.9. (2019·贵州贵阳·3分)选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【分析】直接利用平方差公式计算得出答案.【解答】解:选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.故选:B.【点评】此题主要考查了多项式乘法,正确应用公式是解题关键.10.(2019•海南省•3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【点评】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.11 (2019•河北省•3分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4C.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.12. (2019•海南省•3分)当m=﹣1时,代数式2m+3的值是()A.﹣1 B.0 C.1 D.2【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.【点评】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.13.(2019湖北宜昌3分)下列计算正确的是()A.3ab﹣2ab=1 B.(3a2)2=9a4C.a6÷a2=a3D.3a2•2a=6a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、3ab﹣2ab=ab,故此选项错误;B、(3a2)2=9a4,正确;C、a6÷a2=a4,故此选项错误;D、3a2•2a=6a3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.14.(2019湖北宜昌3分)化简(x﹣3)2﹣x(x﹣6)的结果为()A.6x﹣9 B.﹣12x+9 C.9 D.3x+9【分析】直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案.【解答】解:原式=x2﹣6x+9﹣x2+6x=9.故选:C.【点评】此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.15.(2019浙江丽水3分)计算a6÷a3,正确的结果是()A.2 B.3a C.a2D.a3【分析】根据同底数幂除法法则可解.【解答】解:由同底数幂除法法则:底数不变,指数相减知,a6÷a3=a6﹣3=a3.故选:D.【点评】本题是整式除法的基本运算,必须熟练掌握运算法则.本题属于简单题.16.(2019•山东临沂•3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【分析】多项式a3b﹣ab有公因式ab,首先考虑用提公因式法提公因式ab,提公因式后,得到多项式(x2﹣1),再利用平方差公式进行分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组.17.(2019•山东临沂•3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.18.(2019•山东青岛•3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.19.(2019•山东泰安•4分)下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a4【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a6÷a3=a3,故此选项正确;B、a4•a2=a6,故此选项错误;C、(2a2)3=8a6,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:A.【点评】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.20.(2019•山东威海•3分)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.【点评】本题考查了合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质.熟练掌握法则是解题的关键.21.(2019•山东潍坊•3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a9【分析】根据单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、3a×2a=6a2,故本选项错误;B、a8÷a4=a4,故本选项错误;C、﹣3(a﹣1)=3﹣3a,正确;D、(a3)2=a6,故本选项错误.故选:C.【点评】本题考查了单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质.熟练掌握法则是解题的关键.22.(2019•山东潍坊•3分)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C .a 2+2ab ﹣4b 2=(a +2b )2D .﹣ax 2+2ax ﹣a =﹣a (x ﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可. 【解答】解:A 、3ax 2﹣6ax =3ax (x ﹣2),故此选项错误; B 、x 2+y 2,无法分解因式,故此选项错误; C 、a 2+2ab ﹣4b 2,无法分解因式,故此选项错误; D 、﹣ax 2+2ax ﹣a =﹣a (x ﹣1)2,正确. 故选:D .【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 23.(2019•湖北宜昌•3分)下列计算正确的是( ) A .3ab -2ab =1B .(3a 2)2=9a 4C .a 6÷a 2=a 3D .3a 2•2a =6a 2【考点】整式的运算.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案. 【解答】解:A 选项3ab -2ab =ab ,故此选项错误;B 选项(3a 2)2=9a 4,正确; C 选项a 6÷a 2=a 4,故此选项错误;D 选项3a 2•2a =6a 3,故此选项错误.故选B . 【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.24.(2019•湖北宜昌•3分)化简(x -3)2-x (x -6)的结果为( ) A .6x ﹣9B .﹣12x +9C .9D .3x +9【考点】整式的运算.【分析】直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案. 【解答】解:原式=x 2-6x +9-x 2+6x =9.故选C .【点评】此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.25.(2019•云南•4分)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .121)1(---n n x B .12)1(--n n x C .121)1(+--n n x D .12)1(+-n n x【考点】单项式的系数与次数.【分析】观察各单项式,发现奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n (n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n .【解答】解:观察可知,奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n (n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n ,故选C .【点评】此题主要考查了数式规律探究.奇数项系数为正,偶数项系数为负,一般可用1)1(--n 或1)1(+-n (n 为大于等于1的整数)来调节正负.25.(2019•浙江丽水•3分)计算a 6÷a 3,正确的结果是( ) A .2B .3aC .a 2D .a 3【考点】整式的乘除---同底数幂的除法. 【分析】根据同底数幂除法法则可解.【解答】解:由同底数幂除法法则:底数不变,指数相减知,a 6÷a 3=a 6﹣3=a 3.故选D . 【点评】本题是整式除法的基本运算,必须熟练掌握运算法则.本题属于简单题. 1. 3.(2019黑龙江省绥化3分)下列计算正确的是( )A ±3B .(﹣1)0=0C D 2答案:D考点:整式的运算。
中考数学总复习《整式与因式分解》专题训练-附答案
中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。
《整式及因式分解》专项练习和中考真题(含答案解析含点睛)
《整式及因式分解》专项练习1.、下列代数式中,整式为( )A .x +1B .11x +CD .1x x+ 【答案】A【解析】【分析】直接利用整式、分式、二次根式的定义分析得出答案. 【详解】A 、x+1是整式,故此选项正确;B 、1x 1+是分式,故此选项错误;C D 、x 1x +是分式,故此选项错误,故选A . 【点睛】本题考查了整式、分式、二次根式的定义,熟练掌握相关定义是解题关键.2.、因式分解a 2﹣4的结果是( )A .(a +2)(a ﹣2)B .(a ﹣2)2C .(a +2)2D .a (a ﹣2)【答案】A 【分析】利用平方差公式进行分解即可.【解析】解:原式=(a +2)(a ﹣2),故选:A .【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.3.、如果整式2252n x x x --+是关于x 的三次三项式,那么n 等于A .3B .4C .5D .6【答案】C【解析】根据多项式次数的定义得到n -2=3,解得:n =5.故选C .4.、下列单项式中,与3a 2b 为同类项的是( ) A .2a b -B .2abC .3abD .3【答案】A 【分析】单项式3a 2b 含有字母a 、b ,且次数分别为2、1,根据同类项的定义进行判断.【解析】解:∵3a 2b 含有字母a 、b ,且次数分别为2、1,∴与3a 2b 是同类项的是﹣a 2b .故选:A .【点睛】本题考查了同类项的定义,解题的关键是熟知同类项的定义.5.下列计算正确的是( )A .x •x =2xB .x +x =2xC .(x 3)3=x 6D .(2x )2=2x 2【答案】B【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解析】解:A .x •x =x 2,故本选项不合题意;B .x +x =2x ,故本选项符合题意;C .(x 3)3=x 9,故本选项不合题意;D .(2x )2=4x 2,故本选项不合题意.故选:B .【点睛】此题考查整式的计算法则:同底数法则,掌握各计算公式是解题的关键.6.下面是用黑色棋子摆成的美丽图案, A .148B .152 【答案】C 【分析】观察各图可知,第一个图案需要黑[(1+2+3+4)×2+2×1](个),第三个图案需要[(1+2+3+4+5+6)×2+2×3](个)…由此可以推所以第10个图案需要的个数只需将【解析】解:由图知第一个图案需要黑色棋第二个图案需要的个数为[(1+2+3+4)×2+2×第三个图案需要的个数为[(1+2+3+4+5)×2+第四个图案需要的个数为[(1+2+3+4+5+6)×第n 个图案需要的个数为{123[++∴第10个图案需要的个数为[(1+2+3+4+5+【点睛】本题考查了图形的变化.解题的关7.下列各正方形中的四个数之间都有相同A .135B .153 【答案】C 【分析】由观察发现每个正方形内有:关系求解x 即可.【解析】解:由观察分析:每个正方形内有同底数幂的乘法法则,合并同类项法则,幂的乘方运,按照这样的规律摆下去,第10个这样的图案需要黑C .174D .202需要黑色棋子的个数为(1+2+3)×2(个),第二个图案案需要的个数为[(1+2+3+4+5)×2+2×2](个),第四个图可以推出第n 个图案需要的个数为{123[+++⋯+n=10代入即可.黑色棋子的个数为(1+2+3)×2(个);×2+2×1](个);5)×2+2×2](个);5+6)×2+2×3](个);…()()}1]222n n +⋯++⨯+-(个)+4+5+6+7+8+9+10+11+12)×2+2×9=174(个)故选题的关键是观察各个图形找到它们之间的规律.有相同的规律,根据此规律,x 的值为( ) C .170 D .189224,236,248,⨯=⨯=⨯=可求解b ,从而得到形内有:224,236,248,⨯=⨯=⨯=乘方运算法则以及积的乘方运算需要黑色棋子的个数为( )个图案需要的个数为四个图案需要的个数为()()}1]222n n ⋯++⨯+-(个),选C .得到a ,再利用,,a b x 之间的218,b ∴= 9,b ∴= 由观察发现:又每个正方形内有:2419,36⨯+=18,b a x ∴+= 1898170.x ∴=⨯+=【点睛】本题考查的是数字类的规律题,8.若x ﹣1x =3,则241x x +=( ) A .11B .7 【答案】C 【分析】先由x ﹣1x =3两边同时平方变形【解析】解:∵x ﹣1x =3,∴22?x +∴42111x x +=,∴241111x x =+,故选:【点睛】此题要运用完全平方公式进行变形数.易错点是忘记加上两数积的2倍.9.下列分解因式正确的一项是( )A .x 2﹣9=(x+3)(x ﹣3)C .x 2﹣2x ﹣1=(x ﹣1)2【答案】A【分析】各式分解得到结果,即可作出判断【解析】解:A 、原式=(x+3)(x ﹣3,C 、原式不能分解,不符合题意;D 、原式【点睛】此题考查了提公因式法与公式法的10.用大小相同的圆点摆成如图所示的图案A.59B .65 【答案】C 【分析】由题意观察图形可知,第1个图形8,a =220,48335,⨯+=⨯+=0. 故选C .,掌握由观察,发现,总结,再利用规律是解题的C .111 D .17方变形为22111x x +=,进而变形为42111x x+=,从而2119x x x+=,∴22111x x +=, :C . 行变形.根据a 2+b 2=(a+b)2-2ab 把原式变为221x x +=) B .2xy+4x =2(xy+2x ) D .x 2+y 2=(x+y )2出判断.),符合题意;B 、原式=2x (y+2),不符合题意原式不能分解,不符合题意.故选:A .式法的综合运用,熟练掌握因式分解的方法是解本题的图案,按照这样的规律摆放,则第10个图案中共有C .70 D .71个图形共有圆点5+2个;第2个图形共有圆点5+2+3解题的关键.从而得解. 11,再通分,最后再取倒题意;解本题的关键.中共有圆点的个数是( )个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n 个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【解析】解:根据图中圆点排列,当n =1时,圆点个数5+2;当n =2时,圆点个数5+2+3;当n =3时,圆点个数5+2+3+4;当n =4时,圆点个数5+2+3+4+5,…∴当n =10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11) =1411(111)2+⨯⨯+70=.故选:C . 【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.11.观察下列等式:01234571,77,749,7343,72401,716807,,======L 根据其中的规律可得01220197777++++L 的结果的个位数字是( )A .0B .1C .7D .8【答案】A【分析】首先得出尾数变化规律,进而得出01220197777++++L 的结果的个位数字.【解析】∵01234571,77,749,7343,72401,716807,,======L∴个位数4个数一循环,∴()201914505+÷=, ∴179320+++=,∴01220197777++++L 的结果的个位数字是:0.故选A .【点睛】此题主要考查了尾数特征,正确得出尾数变化规律是解题关键.12.若2()21a c b -+=,2()2019a c b ++=,则2222a b c ab +++的值是A .1020B .1998C .2019D .2040【答案】A【分析】根据完全平方公式即可求出答案.【解析】∵()()22212019a c b a c b ,-+=++=,∴()()22221a b c c a b ++-+= ,()()2222019a b c c a b ++++=, 两式相加得:()22222040a b c ++=,∴22221020a b c ab +++=.故选A . 【点睛】本题考查了完全平方公式,解题的关键是熟练运用完全平方公式.13.如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停A .C 、EB .E 、F 【答案】D 【分析】设顶点A ,B ,C ,D ,E ,F 1+2+3+…+k =12k (k +1),然后根据题目中【解析】设顶点A ,B ,C ,D ,E ,F 因棋子移动了k 次后走过的总格数是1+2+这时P 是整数,且使0≤12k (k +1)﹣12k (k +1)﹣7p =1,3,6,3,1,0设k =7+t (t =1,2,3)代入可得,1由此可知,停棋的情形与k =t 时相同,故选:D .【点睛】本题考查的是探索图形、数字变化的关键.14.将正偶数按照如下规律进行分组排列是第2组第1个数字,“16”是第4组第【答案】65【分析】根据题目中数字的特点,可知每组是多少组第多少个数,从而可以得到m 【解析】∵将正偶数按照如下规律进行分组∴第m 组有m 个连续的偶数,∵2020∵1+2+3+…+44=44(441)2⨯+=990∴2020是第45组第1010-990=20个数【点睛】本题考查探索规律,认真观察所给15.若13a x y -与4312x y 是同类项,则【答案】5【分析】根据同类项的定义(所含字母相同可能停留的顶点是( )C .G 、C 、ED .E 、C 、F,G 分别是第0,1,2,3,4,5,6格,因棋子移动题目中所给的第k 次依次移动k 个顶点的规则,可得,G 分别是第0,1,2,3,4,5,6格, 1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时, ,0,发现第2,4,5格没有停棋,若7<k ≤2020,2k (k +1)﹣7p =7m +12t (t +1), ,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子字变化规律,从图形中提取信息,转化为数字信息排列,依次为(2),(4,6),(8,10,12),(14,2个数字,若2020是第m 组第n 个数字,则m +知每组的个数依次增大,每组中的数字都是连续的偶、n 的值,然后即可得到m +n 的值.行分组排列,依次为(2),(4,6),(8,10,12),(=2×1010,∴2020是第1010个偶数,,1+2+3+…+45=45(451)2⨯+=1035, 个数,∴m =45,n =20,∴m +n =65.故答案为:察所给数据总结出规律是解题的关键.a 的值是___________. 母相同,相同字母的指数相同)列出方程,求出a 子移动了k 次后走过的总格数是可得到不等式最后求得解. 7p 格, , 棋子不可能停到. 信息,探索数字变化规律是解答16,18,20)…,我们称“4”n =_____.续的偶数,然后即可求出202014,16,18,20)…, :65.的值.【解析】解:∵13a x y -与4312x y 是同类项,∴a-1=4,∴a=5,故答案为:5. 【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.16.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.【解析】2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键. 17.已知实数m ,n 满足13m n m n -=⎧⎨+=⎩,则代数式22m n -的值为_____. 【答案】3.【分析】先利用平方差公式因式分解,再将m+n 、m-n 的值代入、计算即可得出答案.【解析】∵1m n -=,3m n +=,∴22()()313m n m n m n -=+-=⨯=.故答案为3.【点睛】本题考查平方差公式,解题关键是根据平方差公式解答.18.一组按规律排列的式子:4682,,,,357a a a a ⋅⋅⋅则第n 个式子是 . 【答案】2n2n 1a -(n 为正整数) 【解析】寻找规律:已知式子可写成:21222324,,,,211221231241a a a a ⨯⨯⨯⨯⋅⋅⋅⨯-⨯-⨯-⨯-,分母为奇数,可写成2n-1,分子中字母a 的指数为偶数2n .∴第n 个式子是2n2n 1a -(n 为正整数). 19.若221m m -=,则代数式2243m m -+的值为________.【答案】5【分析】把2243m m -+化为22(2)3m m -+的形式,再整体代入求值即可.【解析】解:∵221m m -=,∴222432(2)32135m m m m -+=-+=⨯+=.故答案为:5.【点睛】本题考查了求代数式的值,运用整体的数学思想是解决问题的关键.20.计算:))201820192+的结果是_____.2+【分析】逆用积的乘方运算法则以及平方差【解析】))201820192+==)))201822⎡⎤⎣⎦⨯⨯++=(5【点睛】本题考查了积的乘方的逆用,平方21.根据数值转换机的示意图,输出的值为 【答案】19【分析】利用代入法和负整数指数幂的计算【解析】解:当x =﹣3时,31+x =3﹣2【点睛】本题考查了代入求值及负整数指数的结果即为代数式的值. 22.若m ﹣1m =3,则m 2+21m=_____【答案】11【分析】根据完全平方公式,把已知式子变【解析】解:∵21m m ⎛⎫- ⎪⎝⎭=m 2﹣2+【点睛】此题主要考查完全平方公式的应用23.已知(2019﹣a )2+(a ﹣2017)2【答案】32- 【分析】根据完全平方公式的变式:【解析】解:∵(2019﹣a )2+(a ﹣∴(2019﹣a )(a ﹣2017)=12{[(2019故答案为:32-. 【点睛】本题考查了完全平方公式的应用24.已知2510x x --=,求代数式平方差公式即可求得答案. )))2018201822⨯⨯ =(5-4)2018×)2+平方差公式,熟练掌握相关的运算法则是解题的关的值为_____.的计算方法进行计算即可. =19,故答案为:19. 数指数幂.用具体的数值代替代数式中的字母,按照___. 式子变形,然后整体代入求值计算即可得出答案.21m =9,∴m 2+21m =11,故答案为11. 的应用,解题的关键是熟知完全平方公式的变形.=7,则代数式(2019﹣a )(a ﹣2017)的值是_____ab=()()2222a b a b +-+ 利用整体代入的思想求解即2017)2=7,019﹣a )+(a ﹣2017)]2﹣[(2019﹣a )2+(a ﹣2017应用,熟练掌握公式的变式是解题关键.(32)(32)(2)x x x x +-+-的值. 题的关键.按照代数式规定的运算,求出. .求解即可.)2]}=32-,【答案】21024x x --,-2【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.【解析】解:原式=22942x x x -+-2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-.【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键. 25.已知:ab =1,b =2a -1,求代数式12a b -的值. 【答案】-1.【分析】根据ab=1,b=2a-1,可以求得b-2a 的值,从而可以求得所求式子的值.【解析】∵ab =1,b =2a -1,∴b -2a =-1,∴122111b a a b ab ---===- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++W ,发现系数“W ”印刷不清楚.(1)他把“W ”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“W ”是几?【答案】(1)–2x 2+6;(2)5.【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【解析】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“”是a ,则原式=(ax 2+6x+8)﹣(6x+5x 2+2)=ax 2+6x+8﹣6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∵标准答案的结果是常数,∴a ﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.27.先化简,再求值:(2)2()a a b b a b +-+,其中a =,b =. 【答案】222a b -,1-.【分析】先根据整式的乘法法则化简整式,再将字母的值代入结果计算求值即可.【解析】(2)2()a a b b a b +-+22222a ab ab b =+--222a b =-当a b ==时,原式222561=-⨯=-=-.【点睛】本题主要考查了整式的混合运算----化简求值,解答本题的关键是明确整式化简求值的方法.28.如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图(2)请写出上述过程所揭示的乘法公式【答案】解:(1)22121S a b S 2=-,(2)()()22a b a b a b +-=-. 【解析】解:(1)∵大正方形的边长为S 2=12(2a +2b )(a -b )=(a +b )(a -b (2)根据题意得: (a +b )(a -b )=《1.下列运算正确的是:( )A .22a a -=B .326a a a ⋅=【答案】C【分析】根据整式的加减与幂的运算法则即【解析】A.2a a a -=,故错误; C.32a a a ÷=,正确; D.()3228a a 【点睛】此题主要考查整式与幂的运算,2.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6【答案】A【分析】根据各个选项中的运算,可以计算【解析】解:∵(﹣2a 3)2=4a 6,故选项∵3a +a 2不能合并,故选项C 错误;∵(【点睛】本题考查的是积的乘方,同底数幂3.下列计算正确的是( )2中阴影部分面积为S 2,请直接用含a,b 的代数式公式.()()()()2a 2b a b a b a b 2=+-=+-. 为a ,小正方形的边长为b , ∴221S a b =-.); 22a b - .《整式及因式分解》中考真题C .32a a a ÷=D .()32526a a = 法则即可判断.B.325a a a ⋅= ,故错误;6= ,故错误;故选C .,解题的关键是熟知其运算法则.C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣以计算出正确的结果,从而可以解答本题.选项A 正确;∵a 2•a 3=a 5,故选项B 错误;(a ﹣b )2=a 2﹣2ab +b 2,故选项D 错误;故选:底数幂的乘法,合并同类项,完全平方公式,掌握以代数式表示S 1和S 2;b 2:A .掌握以上知识是解题的关键.A .22423a a a +=B .63a a a ÷=【答案】D 【分析】由合并同类项、同底数幂除法,【解析】解:A 、22223a a a +=,故C 、222()2a b a ab b -=-+,故C 错误【点睛】本题考查了同底数幂除法,积的乘解题.4.已知132n x y +与4313x y 是同类项,则A .2B .3 【答案】B【分析】根据同类项的概念可得关于n 的一【解析】解:∵132n x y +与4313x y 是同类项【点睛】本题考查了同类项,解决本题的关同,二看相同字母的指数是否相同.5.人行道用同样大小的灰、白两种不同颜果按图①②③…的次序铺设地砖,把第 A .150B .200 【答案】C 【分析】由图形可知图①中白色小正方形地地砖有12+7×2块,…,可知图中白色小【解析】解:由图形可知图中白色小正方当n=50时,原式=7×50+5=355(块)故选【点睛】考查了规律型:图形的变化,解决量上增加(或倍数)情况的变化,找出数量6.根据图中数字的规律,若第n个图中出2 C .222()a b a b -=- D .222()ab a b =,完全平方公式、积的乘方,分别进行判断,即可A 错误;B 、633a a a ÷=,故B 错误;错误;D 、222()ab a b =,故D 正确;故选:D . 积的乘方,完全平方公式,合并同类项,解题的关键则n 的值是( ) C .4 D .5 的一元一次方程,求解方程即可得到n 的值. 同类项,∴n+1=4,解得,n=3,故选:B. 题的关键是判断两个项是不是同类项,只要两看,不同颜色的小正方形地砖铺设而成,如图中的每一个小n 个图形用图表示,那么图㊿中的白色小正方形 …C .355D .505方形地砖有12块,图②中白色小正方形地砖有12+7白色小正方形地砖有12+7(n-1)=7n+5,再令n=50,小正方形地砖有12+7(n-1)=7n+5(块)故选:C解决这类问题首先要从简单图形入手,后一个图形出数量上的变化规律,从而推出一般性的结论. 图中出现数字396,则n =( ) 即可得到答案.的关键是熟练掌握运算法则进行,即一看所含有的字母是否相一个小正方形表示一块地砖.如正方形地砖的块数是( ).块,图③中白色小正方形,代入即可.个图形与前一个图形相比,在数A .17B .18C .19 【答案】B【分析】观察上三角形,下左三角形,下中立,否则舍去.【解析】根据图形规律可得:上三角形的数据的规律为:2(1n n +,下左三角形的数据的规律为:21n -,若下中三角形的数据的规律为:21n -,若下右三角形的数据的规律为:(n n +,【点睛】本题考查了有关数字的规律,能准7.下列图中所有小正方形都是全等的.个小正方形组成的32⨯方格纸片.把“图(3)中的4种不同放置方法,图(4)(4)中,使它恰好盖住其中的4个小正方A .160B .128 【答案】A 【分析】先计算出66⨯方格纸片中共含有【解析】由图可知,在66⨯方格纸片中则404160n =⨯=故选:A .【点睛】本题考查了图形类规律探索,正确8.(1+y )(1﹣y )=( )A .1+y 2B .﹣1﹣y 2D .20下中三角形,下右三角形各自的规律,让其等于),若2(1)396n n +=,解得n 不为正整数,舍去;若21396n -=,解得n 不为正整数,舍去;若21396n -=,解得n 不为正整数,舍去;4),若(4)396n n +=,解得18n =,或22n =-能准确观察到相关规律是解题的关键..图(1)是一张由4个小正方形组成的“L ”形纸“L ”形纸片放置在图(2)中,使它恰好盖住其中)是一张由36个小正方形组成的66⨯方格纸片小正方形,共有n 种不同放置方法,则n 的值是(C .80D .48共含有多少个32⨯方格纸片,再乘以4即可得.片中,32⨯方格纸片的个数为54240⨯⨯=(个)正确得出在66⨯方格纸片中,32⨯方格纸片的个C .1﹣y 2 D .﹣1+y2等于396,解得n 为正整数即成;,舍去。
【试题研究】江苏中考数学复习讲练:第3课时 整式及因式分解(word解析版)
第一章数与式第3课时整式及因式分解江苏~中考真题精选命题点1 代数式及其求值(近3年39套卷,考查6次,考查11次,年考查7次)命题解读代数式及其求值近3年共考查24次,题型以填空题为主,主要考查的形式有:①结合提公因式,完全平方公式求代数式的值;②与方程、函数图象结合求代数式的值;③列代数式和求代数式的最值.1. (苏州9题3分)已知x-1x=3,则4-12x2+32的值为 ( )A .1 B. 32C.52D.722. (盐城9题3分)“x的2倍与5的和”用代数式表示为 .3. (泰州11题3分)若m=2n+1,则m2-4mn+4n2的值是 .4. (连云港11题3分)已知m+n=mn,则(m-1)(n-1)= .5. (淮安14题3分)若m2-2m-1=0,则代数式2m2-4m+3值为 .6. (宿迁16题3分)当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为 .7. (盐城16题3分)已知x(x+3)=1,则代数式2x2+6x-5的值为 .8. (泰州14题3分)已知a2+3ab+b2=0(a≠0,b≠0),则代数式b aa b的值等于 .9. (淮安18题3分)观察一列单项式:x,3x2,5x3,7x,9x2,11x3,…,则第个单项式是_________.10. (南通18题3分)已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于_________.11. (南通18题3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于 .命题点2 整式的运算(近3年39套卷,考查12次,考查14次,考查17次)命题解读整式及其运算近3年共考查43次,选择题、填空题主要考查整式的运算,解答题主要考查整式化简及求值.考查的内容有:①下列运算正确的是;②计算XX的结果;化简XX或化简后再求值.1. (淮安2题3分)计算a×3a的结果是()A. a 2B. 3a2C. 3aD. 4a2. (南京2题2分)计算(-xy3)2的结果是()A. x2y6B. -x2y6C. x2y9D.-x2y93. (徐州2题3分)下列各式的运算结果为x6的是()A. x9÷x3B. (x3)3C. x2·x3D. x3+x34. (扬州2题3分)若□×3xy=3x2y,则□内应填的单项式是( )A. xyB. 3xyC. xD. 3x5. (镇江15题3分)计算-3(x-2y)+4(x-2y)的结果是()A. x-2yB. x+2yC. -x-2yD. -x+2y6. (连云港2题3分)下列运算正确的是()A. 2a+3b=5abB. 5a-2a=3aC. a2·a3=a6D. (a+b)2=a2+b27. (苏州11题3分)计算:a4÷a2= .8. (连云港10题3分)计算:(2x+1)(x-3)= .9. (南通13题3分)计算:(x-y)2-x(x-2y)= .10. (镇江11题3分)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏级地震释放的能量是3级地震释放能量的324倍.11. (无锡19(2)题4分)计算:(x+1)(x-1)-(x-2)2.12. (南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.13. (盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(近3年39套卷,考查7次,考查5次,考查5次)1. (盐城11题3分)分解因式:a2-2a= .2. (苏州12题3分)因式分解:a2+2a+1=.3. (南通12题3分)因式分解:a3b-ab= .4. (南京10题3分)分解因式(a-b)(a-4b)+ab的结果是 .【答案】命题点1 代数式及其求值1. D【解析】∵x-1x=3,∴x2-1=3x,∴x2-3x=1,∴原式=4-12(x2-3x)=4-12=72.2. 2x+5【解析】根据题中表述可得该式应为2x+5.3. 1【解析】∵m=2n+1,∴m-2n=1,∴原式=(m-2n)2=1.4. 1【解析】∵(m-1)(n-1)=mn-m-n+1=mn-(m+n)+1,由已知mn=m+n,得原式=1.5. 5【解析】由m2-2m-1=0得m2-2m=1,所以2m2-4m+3=2(m2-2m)+3=2×1+3=5.6. 3【解析】由题意可知,二次函数y=x2-2x+3的对称轴是直线x=1,则m+n=2,把x=2代入x2-2x+3,得22-2×2+3=3.7. -3【解析】∵x(x+3)=1,∴2x2+6x-5=2x(x+3)-5=2×1-5=2-5=-3.8. -3【解析】∵a2+3ab+b2=0,∴a2+b2=-3ab,∴原式=2233.b a abab ab+-==-9. 4025x3【解析】系数依次为1,3,5,7,9,11,…,2n-1;x的指数依次是1,2,3,1,2,3,可见三个单项式一个循环,故可得第个单项式的系数为4025;∵20133=671,∴第个单项式指数为3,故可得第个单项式是4025x3.10. 4【解析】∵m-n2=1,即n2=m-1≥0,得m≥1,∴原式=m2+2m-2+4m-1=m2+6m+9-12=(m+3)2-12,则代数式m2+2n2+4m-1的最小值等于(1+3)2-12=4.11. 3【解析】∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x=2223+3222m n m n m n+++++=;又∵二次函数y=x2+4x+6的对称轴为直线x=-2,∴3322m n++=-2,∴3m+3n+2=-4,即m+n=-2.∴当x=3(m+n+1)=3(-2+1)=-3时,x2+4x+6=(-3)2+4×(-3)+6=3.命题点2整式的运算1. B【解析】本题主要考查单项式的乘法.单项式乘单项式:把系数和相同字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式.a×3a=3a2.2. A【解析】根据积的乘方运算法则计算可得:(-xy3)2=(-x)2·(y3)2=x2y6.3. A【解析】A. x9÷x3=x9-3=x6,故本选项正确;B. (x3)3=33x⨯=x9,故本选项错误;C.x2·x3=x2+3=x5,故本选项错误;D. x3+x3=2x3,故本选项错误.4. C【解析】根据题意得:3x2y÷3xy=x.5. A【解析】-3(x-2y)+4(x-2y)=x-2y.6. B【解析】本题考查合并同类项、同底数幂的乘法和完全平方公式,通过上述考查点所涉及的运算法则和公式进行逐项分析.选项逐项分析正误A 2a和3b不是同类项,不能合并×B 5a-2a=(5-2)a=3a√C a2·a3=a2+3=a5≠a6×D (a+b)2=a2+2ab+b2≠a2+b2×7. a2【解析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.原式=a4 -2=a2.8. 2x2-5x-3【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.9. y2【解析】(x-y)2-x(x-2y)=x2-2xy+y2-x2+2xy=y2.10. 7【解析】设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n-1=323-1×324=326,得n-1=6,n=7.11. 解:原式=x2-1-x2+4x-4=4x-5…………………………………………………………(4分)12. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y…………………………………………(3分)=x2y(2xy-2)÷x2y=2xy-2.…………………………………………………………………………(5分)13. 解:原式=a2+4ab+4b2+b2-a2……………………………………………………………(3分)=4ab+5b2,………………………………………………………………………(5分)当a=-1,b=2时,原式=4×(-1)×2+5×22=12.……………………………………………(8分)命题点3因式分解1. a(a-2)【解析】提取公因式a,即求得a2-2a=a(a-2).2. (a+1)2【解析】a2+2a+1=(a+1)2.3. ab(a+1)(a-1)【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).4. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式因式分解得:a2-4ab+4b2=(a-2b)2.。
2019中考数学试题分类解析—第3章整式与因式分解.doc
2019中考数学试题分类解析—第3章整式与因式分解第3章整式与因式分解【一】选择题1.〔2018安徽,3,4分〕计算32)2(x -的结果是〔〕A.52x -B.68x -C.62x -D.58x -解析:根据积的乘方和幂的运算法那么可得、解答:解:6323328)()2()2(x x x -=-=-应选B 、点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义.2.〔2018安徽,4,4分〕下面的多项式中,能因式分解的是〔〕A.n m +2B.12+-m mC.n m -2D.122+-m m解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,此题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解、就能判断出只有D 项可以.解答:解:22)1(12-=+-m m m 应选D 、点评:在进行因式分解时,首先是提公因式,然后考虑用公式,〔两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.〕如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.3.〔2018安徽,5,4分〕某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,那么5月份的产值是〔〕A.〔a -10%〕〔a +15%〕万元B.a 〔1-10%〕〔1+15%〕万元C.〔a -10%+15%〕万元D.a 〔1-10%+15%〕万元解析:根据4月份比3月份减少10﹪,可得4月份产值是〔1-10﹪〕a,5月份比4月份增加15﹪,可得5月份产值是〔1-10﹪〕〔1+15﹪〕a,解答:A 、点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.4、〔2018福州〕以下计算正确的选项是A 、a +a =2aB 、b 3·b 3=2b 3C 、a 3÷a =a 3D 、(a 5)2=a 7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方、 专题:计算题、分析:分别根据合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法那么对各选项进行逐一计算即可、解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误、应选A、点评:此题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法那么,熟知以上知识是解答此题的关键、5、〔2018•广州〕下面的计算正确的选项是〔〕A、6a﹣5a=1B、a+2a2=3a3C、﹣〔a﹣b〕=﹣a+bD、2〔a+b〕=2a+b考点:去括号与添括号;合并同类项。
中考数学试题整式与因式分解分类汇编及答案
适用精选文件资料分享2011 年中考数学整式与因式分解分及答案第 3 章整式与因式分解一、 1.(2011 江无, 3,3 分)分解因式 2x2 - 4x + 2的最果是() A .2x(x- 2) B .2(x2 - 2x + 1) C.2(x - 1)2D.(2x - 2)2【答案】 C 2.(2011 河北,3,2 分)以下分解因式正确的选项是() A . B .2a-4b+2=2(a-2b )C. D.【答案】 D 3. (2011 浙江省, 10,3 分)如,下边是依据必定律画出的“数形”,察可以: A2 比 A1 多出 2 个“ 枝”, A3 比 A2多出 4个“ 枝”, A4 比 A3 多出 8 个“ 枝”,⋯⋯,照此律, A6 比 A2 多出“ 枝” () A.28 B.56 C.60 D. 124 【答案】 C 4. (2011 广广州市, 7,3 分)下边的算正确的选项是(). A .3x2?4x2=12x2 B.x3?x5=x15C.x4÷x=x3 D.(x5)2=x7 【答案】 C 5. (2011 江州, 2,3 分)以下算正确的选项是() A. B. (a+b)(a-2b)=a2-2b2 C. (ab3)2=a2b6D.5a―2a=3 【答案】 C 6. (2011 山日照, 2,3 分)以下等式必定成立的是()(A) a2+a3=a5 (B)(a+b)2=a2+b2 (C)(2ab2)3=6a3b6 (D)(x-a )(x-b )=x2- (a+b)x+ab 【答案】 D 7.(2011山泰安, 2 ,3 分)以下运算正确的选项是()A.3a3+4a3=7a6B.3a2-4a2=-a2 C.3a2?4a3=12a3 D.(3a3)2 ÷4a3=34a2 【答案】 B8. (2011 山泰安, 5 ,3 分)以下等式不成立的是() A.m2-16=(m-4)(m+4) B.m2+4m=m(m+4) C.m2-8m+16=(m-4)2 D.m2+3m+9=(m+3)2【答案】 D 9. (2011 山威海, 4,3 分)以下运算正确的选项是()A .B . C. D.【答案】 D 10.(2011 山烟台, 3,4 分)以下算正确的选项是() A.a2 +a3=a5 B. a6 ÷a3=a2 C. 4x2 -3x2=1 D.( -2x2y)3 =- 8 x6y3 【答案】 D 11. (2011 四川南充市,1,3 分)算 a+( -a) 的果是()(A)2a (B)0 (C)-a2 (D)- 2a 【答案】 B 12. (2011 浙江杭州, 9,3)若,() A .有最小 B .有最大 1 C.有最大 2 D.有最小【答案】 C 13. (2011 浙江湖州, 2,3) 算,正确的果是A. B. C. D.【答案】 D 14. (2011 宁波市, 2,3 分)以下算正确的选项是 A .(a2)3= a6 B .a2+ a2 = a4 C .(3a)?(2a) = 6a D.3a-a=3 【答案】 A 15. (2011 宁波市, 12,3 分)把四适用精选文件资料分享形状大小完整相同的小正方形卡片(如图○ 1)不重叠的放在一个底面为长方形(长为 mcm,宽为 ncm)的盒子底部(如图○ 2)盒子底面未被卡片覆盖的部分用暗影表示,则图○2 中两块暗影部分的周长和是 A . 4mcmB. 4ncm C. 2(m +n)cm D. 4(m -n)cm 【答案】 B 16.(2011 浙江台州, 4,4 分)计算的结果是() A. B. C. D. 【答案】D 17. (2011 浙江义乌, 3, 3 分)以下计算正确的选项是()A. B. C. D.【答案】 D18.(2011 四川重庆, 2,4 分)计算 (a3)2 的结果是 ( ) A.a B.a5 C.a6 D.a9 【答案】 C 19. (2011 浙江省嘉兴, 4,4 分)以下计算正确的选项是()(A)(B)(C)(D)【答案】 A 20.(2011台湾台北, 5)计算 x2(3x +8) 除以 x3 后,得商式和余式分别为什么?A.商式为 3,余式为 8x2 B.商式为 3,余式为 8 C.商式为 3x+8,余式为 8x2 D.商式为 3x+8,余式为 0 【答案】 B 21. (2011 台湾台北,7)化简 ( -4x+8) -3(4 -5x) ,可得以下哪一个结果? A .-16x-10 B .-16x-4C.56x-40D.14x-10 【答案】D22. (2011 台湾台北, 13)若 a:b:c=2:3:7,且 a-b+3=c-2b,则 c 值为什么? A .7 B.63 C. D.【答案】 C 23. (2011 台湾台北, 24)以下四个多项式,哪一个是的倍式?A . B. C. D .【答案】 C24. (2011台湾全区, 3)化简以后,可得以下哪一个结果? A .2x-27 B.8x-15 C.12x-15 D.18x-27 【答案】D25. (2011 台湾全区,8)若,则之值为什么? A .18 B.24 C.39 D.45 【答案】D26. (2011台湾全区, 10)若(a -1) :7=4:5,则 10a+8 之值为什么? A . 54 B 66 C. 74 D . 80 【答案】C 27. (2011 台湾全区, 22)计算多项式除以 (x -2)2 后,得余式为什么? A . 1 B. 3 C. x -1 D. 3x -3 【答案】D 28. (2011 江西,4,3 分)以下运算正确的选项是().第 3 题图 A.a+b=ab B.a2?a3=a5 C.a2+2ab-b2=(a-b)2 D.3a-2a=1 【答案】 B 29. (2011 湖南邵阳, 2, 3 分)假如□× 3ab=3a2b,则□内应填的代数式是() A.ab B.3ab C.a D.3a 【答案】 C 30. (2011湖南益阳, 4,4 分)以下计算正确的选项是A. B . C. D.【答案】D 31. (2011 广东株洲, 2,3 分)计算 x2?4x3 的结果是()A .4x3B.4x4 C.4x5 D.4x6 【答案】 C 32. (2011 江苏连云港, 2,3 分)a2?a3() A.a5 B. a6 C.a8 D. a9【答案】A 33.(2011江苏连云港, 3,3 分)计算( x+2)2 的结果为 x2+□x+4, 则“□”中的数为() A.- 2 B .2 C.- 4 D.4 【答案】 D 34. (2011 江苏苏州,4,3 分)若 m?23=26,则 m=A.2 B.4 C.6 D.8 【答案】D 35. (2011江苏宿迁 ,4,3 分)计算 ( -a3)2 的结果是() A .-a5 B.a5 C.a6 D.-a6 【答案】 C 36. (2011 江苏泰州, 2,3 分)计算 2a2?a3 的结果是A .2a6 B.2a5 C.4a5 D.4a6 【答案】B 37. (2011 山东济宁, 2,3 分)以下等式成立的是 A .a2+a2=a5 B.a2-a2=a C.a2 a2=a 6 D.(a2)3=a6 【答案】 D 38. (2011 山东聊城, 5, 3 分)以下运算不正确的选项是() A . B . C. D.【答案】B 39. (2011山东聊城,10,3 分)如图,用围棋子按下边的规律摆图形,则摆第n 个图形需要围棋子的枚数是() A .5n B.5n-1 C.6n-1 D.2n2+1 【答案】 C 40. (2011 四川成都, 5,3 分)以下计算正确的选项是 D(A) (B) (C) (D)【答案】D 41.(2011四川宜宾,3,3分)以下运算正确的选项是() A .3a-2a=1 B. C. D.【答案】 C 42.(2011江西南昌, 4,3 分)以下运算正确的选项是(). A.a+b=abB.a2?a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=1【答案】 B 43.(2011 湖南怀化,3,3 分)以下运算正确的选项是 A.a?a3=a3 B.(ab)3=ab3 C.a3+a3=a6 D.(a3)2=a6【答案】D 44. (2011江苏南京,2,2分)以下运算正确的是 A .a2+a3=a5 B.a2?a3=a6C.a3÷a2=a D.(a2)3=a8 【答案】C 45. (2011 山东临沂, 2,3 分)以下运算中正确的选项是()A.(-ab)2=2a2b2 B.(a+1)2 =a2+1 C.a6÷a2= a3 D.2a3+a3=3a3【答案】D 46. (2011 四川绵阳 2,3)以下运算正确的选项是 A.a+a2=a3B. 2a+3b= 5abC.(a3)2 = a9D. a3÷a2 = a【答案】D 47.(2011安徽芜湖, 9,4 分)如图,从边长为( a+4)cm的正方形纸片中剪去一个边长为 cm 的正方形,节余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(). A. B . C. D.【答案】 D 48.(2011 湖南衡阳,5,3 分)以下计算,正确的选项是()A .B .C.D.【答案】 A 49. (2011 湖南邵阳, 2, 3 分)假如□×3ab=3a2b,则□内应填的代数式是() A.ab B.3ab C.a D.3a【答案】C 50.(2011湖北襄阳, 2,3 分)以下运算正确的选项是 A. B. C. D. 【答案】 B 51.(2011 湖北襄阳, 3,3 分)若 x,y 为实数,且,则的值是 A.0 B.1 C.-1 D. -2011 【答案】 C 52.(2011 湖南永州, 9,3 分)以下运算正确是() A . B . C. D.【答案】 D. 53. (2011 江苏盐城,2,3 分)以下运算正确的选项是 A .x2+ x3 = x5 B.x4?x2 = x6 C.x6÷x2 =x3 D .( x2 )3 = x8 【答案】 B 54. (2011 江苏盐城, 4,3 分)已知 a -b =1 ,则代数式 2a -2b -3 的值是 A .-1 B .1 C.-5 D .5【答案】A 55. (2011 山东东营,2,3 分)以下运算正确的选项是()A B. C. D.【答案】 D 56. (20011 江苏镇江 ,2,2分)以下计算正确的是 ( ) A. B. C.3m+3n=6mn D. 答案【 D 】 57. (2011 内蒙古乌兰察布, 2,3 分)以下计算正确的选项是() A . B. C. D. 【答案】 A 58. (2011 重庆市潼南 ,2,4 分)计算 3a 2a 的结果是 A .6a B.6a2C. 5aD. 5a 【答案】 B 59 .(2011 广东湛江 7,3 分)以下计算正确的选项是 A B C D 【答案】 A 60. (2011 河北, 4,2 分)以下运算中,正确的选项是() A .2x-x=1 B . C. D.【答案】 D 61. (2011山东枣庄, 9,3 分)如图,边长为 (m+3)的正方形纸片剪出一个边长为m的正方形以后,节余部分可剪拼成一个矩形 ( 不重叠无缝隙 ) ,若拼成的矩形一边长为3,则另一边长是()A .m+3B.m+6C.2m+3 D.2m+6 【答案】 C 62. (2011 湖北荆州, 3,3 分)将代数式化成的形式为 A .B.C.D.【答案】C 63.(2011湖北宜昌,7,3 分)以下计算正确的选项是 ( ). A.3a -a = 3 B. 2a .a3=a6C.(3a3)2 =2a6D. 2a ÷a = 2 【答案】 D 64. (2011 浙江金华, 3,3 分)以下各式能用完整平方式进行分解因式的是() A .x2 +1B.x2+2x -1C.x2+x+1D.x2+4x+4 【答案】 D 65. (2011 山东济宁,4,3 分)把代数式分解因式,结果正确的选项是()A .B . C.D.【答案】 D 66. (2011 浙江丽水, 3, 3 分)以下各式能用完整平方式进行分解因式的是() A .x2 +1 B.x2+2x -1C.x2+x+1D.x2+4x+4 【答案】D 67. (2011 台湾全区,5)以下四个多项式,哪一个是的因式?A .2x-1 B.2x-3 C .x-1 D .x-3 【答案】 A 68. (2011浙江省舟山, 4,3 分)以下计算正确的选项是()(A)(B)(C)(D)【答案】 A 69.(2011安徽芜湖,9,4分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为cm 的正方形,节余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(). A. B. C. D.【答案】 D70.二、填空题 1.(2011浙江金华,11,4分)“x与y的差”用代数式可以表示为 .【答案】x? Cy 2.(2011广东东莞,8,4分)按下面程序计算:输入x=3,则输出的答案是 __ _.【答案】 26 3.(2011山东济宁,12,3分)若代数式可化为,则的值是.【答案】 5 4.(2011浙江杭州,12,4)当时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.【答案】-6 5.(2011浙江省,14,3 分)某计算程序编写以以下图,当输入 x= 时,输出的 y=3. 【答案】 12 或 6. (2011 浙江省, 15,3 分)定义新运算“ ? ”以下:当 a≥b时,a? b=ab+b,当 a<b 时,a? b=ab-a;若(2x-1) ? (x+2)=0,则 x= .【答案】 -1 或 7. (2011 浙江温州, 15,5 分)汛期来临前,滨海区决定实行“海堤加固”工程,某工程队承包了该项目,计划每日加固 60 米.在施工前,获得气象部门的预告,近期有“台风”侵袭滨海区,于是工程队改变计划,每日加固的海堤长度是原计划的1.5 倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为 a 米,则完成整个任务的实质时间比原计划时间少用了天(用含 a 的代数式表示).【答案】 8. (2011 浙江丽水, 11,4 分)“x与 y 的差”用代数式可以表示为 . 【答案】 x? Cy 9. (2011 广东株洲,10,3 分)当x=10,y=9 时,代数式x2-y2 的值是.【答案】19 10.(2011 江苏泰州,12,3 分)多项式与m2+m-2 的和是m2-2m.【答案】- 3m+211. (2011 广东广州市, 16,3 分)定义新运算“”,规定: a b=13a-4b,则12 (-1)=.【答案】 8 12.(2011江苏淮安,9,3分)计算:a4?a2= .【答案】a6 13. (2011 上海, 7,4 分)计算: __________.【答案】 14.(2011 四川乐山 12,3 分)体育委员带了 500 元钱去买体育用品,已知一个足球 a 元,一个篮球 b 元。
中考数学专题复习之 03 整式与因式分解(含解析)1 精编
03 整式与因式分解(含解析)一、选择题1.(2分)(2016•南京)下列计算中,结果是a 6的是( )A .a 2+a 4B .a 2•a 3C .a 12÷a 2D .(a 2)3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】推理填空题.【分析】A :根据合并同类项的方法判断即可.B :根据同底数幂的乘法法则计算即可.C :根据同底数幂的除法法则计算即可.D :幂的乘方的计算法则:(a m )n =a mn (m ,n 是正整数),据此判断即可.【解答】解:∵a 2+a 4≠a 6,∴选项A 的结果不是a 6;∵a 2•a 3=a 5,∴选项B 的结果不是a 6;∵a 12÷a 2=a 10,∴选项C 的结果不是a 6;∵(a 2)3=a 6,∴选项D 的结果是a 6.故选:D .【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =amn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.2.(3分)(2016•苏州)下列运算结果正确的是( )A .a+2b=3abB .3a 2﹣2a 2=1C .a 2•a 4=a 8D .(﹣a 2b )3÷(a 3b )2=﹣b【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A 、a+2b ,无法计算,故此选项错误;B 、3a 2﹣2a 2=a 2,故此选项错误;C 、a 2•a 4=a 6,故此选项错误;D 、(﹣a 2b )3÷(a 3b )2=﹣b ,故此选项正确;故选:D .【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、积的乘方运算等知识,正确把握相关定义是解题关键.3.(3分)(2016•广州)下列计算正确的是( ) A . ()220x x y y y=≠ B .()21202xy xy y y ÷=≠C . ()0,0x y +=≥≥.(xy 3)2=x 2y 6【考点】二次根式的加减法;幂的乘方与积的乘方;分式的乘除法.【分析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A 、22x y无法化简,故此选项错误;B 、xy 2÷12y =2xy 3,故此选项错误;C 、 ,无法计算,故此选项错误;D 、(xy 3)2=x 2y 6,正确.故选:D .【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.4.(2016•黄冈)下列运算结果正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A 、a 2与a 3是加,不是乘,不能运算,故本选项错误;B 、a 2•a 3=a 2+3=a 5,故本选项错误;C 、a 3÷a 2=a 3﹣2=a ,故本选项正确;D 、(a 2)3=a 2×3=a 6,故本选项错误.故选C .【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2016•黄石)下列运算正确的是( )A .a 3•a 2=a 6B .a 12÷a 3=a 4C .a 3+b 3=(a+b )3D .(a 3)2=a 6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法、合并同类项以及幂的乘方与积的乘方计算法则进行解答. 【解答】解:A 、原式=a 3+2=a 5,故本选项错误;B 、原式=a 12﹣3=a 9,故本选项错误;C 、右边=a 3+3a 2b+3ab 2+b 3≠左边,故本选项错误;D 、原式=a 3×2=a 6,故本选项正确.故选:D .【点评】本题考查了同底数幂的乘除法、合并同类项以及幂的乘方与积的乘方,熟记计算法则即可解答该题.6.(3分)(2016•荆州)下列运算正确的是( )A .m 6÷m 2=m 3B .3m 2﹣2m 2=m 2C .(3m 2)3=9m 6D .12m•2m 2=m 2 【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案.【解答】解:A 、m 6÷m 2=m 4,故此选项错误;B 、3m 2﹣2m 2=m 2,正确;C 、(3m 2)3=27m 6,故此选项错误;D 、12m•2m 2=m 3,故此选项错误; 故选:B .【点评】此题主要考查了同底数幂的除法运算以及合并同类项、积的乘方运算、单项式乘以单项式等知识,熟练应用相关运算法则是解题关键.7.(3分)(2016•扬州)下列运算正确的是( )A .3x 2﹣x 2=3B .a•a 3=a 3C .a 6÷a 3=a 2D .(a 2)3=a 6【分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答】解:A 、原式=(3﹣1)x 2=2x 2,故本选项错误;B 、原式=a 1+3=a 4,故本选项错误;C 、原式=a 6﹣3=a 3,故本选项错误;D 、原式=a 2×3=a 6,故本选项正确.故选:D .【点评】本题考查了同底数幂的乘除法,合并同类项以及幂的乘方与积的乘方的计算,熟记计算法则即可解答该题.8.3分)(2016•宿迁)下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 5D .a 5÷a 2=a 3【考点】合并同类项;同底数幂的乘法;幂的乘方;同底数幂的除法.【分析】根据合并同类项,可判断A ,根据同底数幂的乘法底数不变指数相加,可判断B ,根据幂的乘方底数不变指数相乘,可判断C ,根据同底数幂的除法底数不变指数相减,可判断D .【解答】解:A .不是同类项不能合并,故A 错误;B .同底数幂的乘法底数不变指数相加,故B 错误;C .幂的乘方底数不变指数相乘,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选:D .【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.9.(3分)(2016•江西)下列运算正确的是( )A .224a a a +=B .()326b b -=-C .23222x x x ⋅=D .()222m n m n -=- 【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A 、2222a a a +=,故本选项错误;10.(2分)(2016•沈阳)下列计算正确的是( )A .x 4+x 4=2x 8B .x 3•x 2=x 6C .(x 2y )3=x 6y 3D .(x ﹣y )(y ﹣x )=x 2﹣y 2【考点】整式的混合运算.【专题】存在型.【分析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.【解答】解:∵x 4+x 4=2x 4,故选项A 错误;∵x 3•x 2=x 5,故选项B 错误;∵(x 2y )3=x 6y 3,故选项C 正确;∵(x ﹣y )(y ﹣x )=﹣x 2+2xy ﹣y 2,故选项D 错误;故选C .【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.11.(3分)(2016•包头)下列计算结果正确的是( )A .BC .(﹣2a 2)3=﹣6a 6D .(a+1)2=a 2+1 【考点】二次根式的乘除法;幂的乘方与积的乘方;完全平方公式.【分析】依次根据合并同类二次根式,二次根式的除法,积的乘方,完全平方公式的运算.【解答】解:A 、A 错误;B ,所以B 正确;C 、(﹣2a 2)3=﹣8a 6≠﹣6a 6,所以C 错误;D 、(a+1)2=a 2+2a+1≠a 2+1,所以D 错误.故选B【点评】此题是二次根式的乘除法,主要考查了合并同类二次根式,二次根式的除法,积的乘方,完全平方公式的运算.,掌握这些知识点是解本题的关键.12.(3分)(2016•济南)下列运算正确的是()A.a2+a=2a3B.a2•a3=a6C.(﹣2a3)2=4a6 D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方以及同底数幂的除法法则进行解答.【解答】解:A、a2与a不是同类项,不能合并,故本选项错误;B、原式=a2+3=a5,故本选项错误;C、原式=(﹣2)2•a3×2=4a6,故本选项正确;D、原式=a6﹣2=a4,故本选项错误;故选:C.【点评】本题综合考查了合并同类项、同底数幂的乘法、幂的乘方与积的乘方以及同底数幂的除法,熟练掌握运算性质和法则是解题的关键.13.(3分)(2016•济宁)下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题;实数.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=1x,错误,故选A【点评】此题考查了负整数指数幂,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.14.(3分)(2016•济宁)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.【点评】本题主要考查的是求代数式的值,将x﹣2y=3整体代入是解题的关键.15.(3分)(2016•青岛)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式=a6﹣4a6=﹣3a6.故选:D.【点评】此题主要考查了同底数幂的乘法运算法则以及积的乘方运算,正确掌握运算法则是解题关键.16.(4分)(2016•漳州)下列计算正确的是()A.a2+a2=a4 B.a6÷a2=a4 C.(a2)3=a5D.(a﹣b)2=a2﹣b2【分析】直接利用合并同类项、同底数幂的除法、幂的乘方以及完全平方公式的知识求解即可求得答案.【解答】解:A、.a2+a2 =2a2,故本选项错误;B、a6÷a2=a4,故本选项正确;C、(a2)3=a6,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,故本选项错误.故选B.【点评】此题考查了合并同类项、同底数幂的除法、幂的乘方以及完全平方公式.注意掌握指数的变化是解此题的关键.17.(3分)(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【考点】整式的混合运算—化简求值,整体代入法.【专题】计算题;整式.【分析】原式利用完全平方公式,平方差公式化简,去括整理后,将已知等式变形代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则并灵活运用整体代入法是解本题的关键.18.(3分)(2016•茂名)下列各式计算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+3a2=4a4D.a4÷a2=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a2+3a2=4a2,故本选项错误;D、a4÷a2=a4﹣2=a2,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.19.(3分)(2016•梅州)分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2【考点】提公因式法与公式法的综合运用.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.20.(3分)(2016•深圳)下列运算正确的是()A.8a﹣a=8 B.(﹣a)4=a4 C.a3•a2=a6 D.(a﹣b)2=a2﹣b2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则分别化简求出答案.【解答】解:A、8a﹣a=7a,故此选项错误;B、(﹣a)4=a4,正确;C、a3•a2=a5,故此选项错误;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:B.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算等知识,正确掌握相关运算法则是解题关键.21.(3分)(2016•贵港)下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab6【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】分别利用单项式乘以单项式以及合并同类项法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、3a+2b无法计算,故此选项错误;B、3a•2b=6ab,正确;C、(a3)2=a6,故此选项错误;D、(ab2)3=a3b6,故此选项错误;故选:B.【点评】此题主要考查了单项式乘以单项式以及合并同类项以及积的乘方运算、幂的乘方运算等知识,正确掌握运算法则是解题关键.22.(3分)(2016•百色)分解因式:16﹣x2=()A.(4﹣x)(4+x)B.(x﹣4)(x+4)C.(8+x)(8﹣x)D.(4﹣x)2【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案.【解答】解:16﹣x2=(4﹣x)(4+x).故选:A.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.23.(3分)(2016•贺州)下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3•b3=2b3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、幂的乘方底数不变指数相乘,故A正确;B、同底数幂的除法底数不变指数相减,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.24.(3分)(2016•贺州)n是整数,式子18[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数D.可能是奇数也可能是偶数【考点】因式分解的应用.【专题】探究型.【分析】根据题意,可以利用分类讨论的数学思想探索式子18[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,1 8[1﹣(﹣1)n](n2﹣1)=18[1﹣1](n2﹣1)=0,当n是奇数时,1 8[1﹣(﹣1)n](n2﹣1)=18×(1+1)(n+1)(n﹣1)=()()114n n+-,设n=2k﹣1(k为整数),则()()114n n+-=()()2112114k k-+--=k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.【点评】本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题.25.(3分)(2016•南宁)下列运算正确的是()A.a2﹣a=aB.ax+ay=axyC.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.26.(3分)(2016•安顺)下列计算正确的是()A.a2•a3=a6B.2a+3b=5ab C.a8÷a2=a6D.(a2b)2=a4b【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用积的乘方及幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、a2•a3=a5,本选项错误;B、2a+3b不能合并,本选项错误;C、a8÷a2=a6,本选项正确;D、(a2b)2=a4b2,本选项错误.故选C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.27.(2016•贵州)下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】由合并同类项、完全平方公式、同底数幂的除法法则得出A、B、C不正确,由积的乘方法则得出D正确即可.【解答】解:A、a3+a2=a5不正确;B、∵(x+y)2=x2+2xy+y2,∴选项B不正确;C、x8÷x2=x4不正确;D、(ab)2=a2b2正确;故选:D.【点评】本题考查了合并同类项、完全平方公式、同底数幂的除法法则、积的乘方法则;熟记有关公式和法则是解决问题的关键.28.(3分)(2016•毕节市)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5 C.a3+4a=14a3 D.3a2•2a3=6a5【考点】单项式乘单项式;合并同类项;去括与添括;幂的乘方与积的乘方.【专题】计算题;整式.【分析】A、原式去括得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用单项式乘单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D【点评】此题考查了单项式乘单项式,合并同类项,去括与添括,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.29.(3分)(2016•孝感)下列运算正确的是()A.a2+a2=a4 B.a5﹣a3=a2 C.a2•a2=2a2 D.(a5)2=a10【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别化简判断即可.【解答】解:A、a2+a2=2a2,故此选项错误;B、a5﹣a3,无法计算,故此选项错误;C、a2•a2=a4,故此选项错误;D、(a5)2=a10,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘法运算和幂的乘方运算,正确掌握相关运算法则是解题关键.30.(3分)(2016•宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌【考点】因式分解的应用.【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,∴结果呈现的密码信息可能是“爱我宜昌”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.31.(3分)(2016•常德)若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.5【考点】同类项.【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x 3y a 与x by 是同类项,∴a=1,b=3,则a+b=1+3=4.故选C .【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.32.(3分)(2016•衡阳)下列各式中,计算正确的是( )A .3x+5y=8xyB .x 3•x 5=x 8C .x 6÷x 3=x 2D .(﹣x 3)3=x 6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘除法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A 、3x+5y ,无法计算,故此选项错误; B 、x 3•x 5=x 8,故此选项正确;C 、x 6÷x 3=x 3,故此选项错误;D 、(﹣x 3)3=﹣x 9,故此选项错误;故选:B .【点评】此题主要考查了同底数幂的乘除法运算以及合并同类项、积的乘方运算等知识,正确把握相关定义是解题关键.33.(4分)(2016•永州)下列运算正确的是( )A .﹣a •a 3=a 3B .﹣(a 2)2=a 4C .x 13-x =23D .2))=﹣1 【考点】二次根式的混合运算;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.【解答】解:A 、﹣a •a 3=﹣a 4,故选项错误;B 、﹣(a 2)2=﹣a 4,选项错误;C 、x ﹣13x =23x ,选项错误;D 、2))=2﹣22=3﹣4=﹣1,选项正确.故选D .【点评】本题考查了同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式,理解运算性质以及公式是关键.34.(5分)(2016•益阳)下列运算正确的是( )A .2x+y=2xyB .x •2y 2=2xy 2C .2x ÷x 2=2xD .4x ﹣5x=﹣1【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A 、2x+y 无法计算,故此选项错误;B 、x •2y 2=2xy 2,正确;C 、2x ÷x 2=2x,故此选项错误; D 、4x ﹣5x=﹣x ,故此选项错误;故选:B .【点评】此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.35.(3分)(2016•岳阳)下列运算结果正确的是( )A .a 2+a 3=a 5B .(a 2)3=a 6C .a 2•a 3=a 6D .3a ﹣2a=1【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.⋯⋯【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项.【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误,故选B.【点评】本题考查了幂的乘方与积的乘方、合并同类项及同底数幂的乘法的知识,解题的关键是牢记有关幂的运算性质,难度不大.36.(4分)(2016•宁波)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5 D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.37.(3分)(2016•张家界)下列运算正确的是()=-D.(2x2)3=6x6A.(x﹣y)2=x2﹣y2B.x2•x4=x63【考点】幂的乘方与积的乘方;算术平方根;同底数幂的乘法;完全平方公式.【专题】探究型.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵(x﹣y)2=x2﹣2xy+y2,故选项A错误;∵x2•x4=x6,故选项B正确;,故选项C错误;∵(2x2)3=8x6,故选项D错误;故选B.【点评】本体考查完全平方差公式、同底数幂的乘法、算术平方根、积的乘方,解题的关键是明确它们各自的计算方法.38.(2分)(2016•吉林)计算(﹣a3)2结果正确的是()A.a5 B.﹣a5 C.﹣a6 D.a6【考点】幂的乘方与积的乘方.【专题】计算题;整式.【分析】原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断.【解答】解:原式=a6,故选D39.(2分)(2016•吉林)小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A .(3a +4b )元B .(4a +3b )元C .4(a +b )元D .3(a +b )元【考点】列代数式.【分析】直接利用两种颜色的珠子的价格进而求出手链的价格.【解答】解:∵黑色珠子每个a 元,白色珠子每个b 元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b .故选:A .【点评】此题主要考查了列代数式,正确得出各种颜色珠子的数量是解题关键.40.(3分)(2016•长春)把多项式x 2﹣6x +9分解因式,结果正确的是( )A .(x ﹣3)2B .(x ﹣9)2C .(x +3)(x ﹣3)D .(x +9)(x ﹣9)【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:x 2﹣6x +9=(x ﹣3)2,故选A【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.41.(3分)(2016•舟山)计算2a 2+a 2,结果正确的是( )A .2a 4B .2a 2C .3a 4D .3a 2【分析】根据合并同类项法则合并即可.【解答】解:2a 2+a 2=3a 2,故选D .【点评】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.42.(4分)(2016•重庆)计算(x 2y )3的结果是( )A .x 6y 3B .x 5y 3C .x 5yD .x 2y 3【考点】幂的乘方与积的乘方.【分析】根据积的乘方和幂的乘方法则求解. 【解答】解:(x 2y )3=(x 2)3y 3=x 6y 3,故选A .【点评】本题考查了积的乘方和幂的乘方,熟练掌握运算法则是解题的关键.43.(4分)(2016•重庆)若m =﹣2,则代数式m 2﹣2m ﹣1的值是( )A .9B .7C .﹣1D .﹣9【考点】代数式求值. 【分析】把m =﹣2代入代数式m 2﹣2m ﹣1,即可得到结论.【解答】解:当m =﹣2时,原式=(﹣2)2﹣2×(﹣2)﹣1=4+4﹣1=7,故选B .【点评】本题考查了代数式求值,也考查了有理数的计算,正确的进行有理数的计算是解题的关键.44.(3分)( 2016•广西省来宾)下列计算正确的是( )A .224x x x +=B .2352x x x +=C .321x x -=D .2222x y x y x y -=- 【考点】合并同类项【分析】本题考查了整式的运算,解题的关键是正确掌握合并同类项的运算法则.A 、C 、D 选项都可以进行合并同类项,按合并同类项法则进行排除.B 选项不能进行计算.【解析】解:选项A ,2222x x x +=;选项B ,2x 与3x 不是同类项,不能合并;选项C ,32x x x -=;选项D 正确,故选择D .【点评】含字母相同,并且相同字母的次数也分别相同的项叫做同类项,只有同类项才能合并.合并同类项的法则是:系数相加减,字母及其字母的指数不变.45.(3分)(2016•广西省来宾)下列计算正确的是( )A .()235x x -=B .()22436x x -=C .()221x x --=D .842x x x ÷= 【考点】幂的乘方;同底数幂的除法;负整数指数幂【分析】本题考查了幂的乘方、负指数幂、同底数幂的除法运算,解题的关键是熟练掌握与幂相关的运算法则.选项A 、B 运用公式()m m mn a a=计算,选项C 运用公式1n n a a -=(a ≠0,n 是正整数)计算,选项D 运用公式(0)m n m n a a a a -÷=≠计算.【解析】解:选项A 、B ,幂的乘方,底数不变,指数相乘,得()23236xx x ⨯-==,()()222224339x x x ⨯-=-=,正确.选项C ,任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数,得()()22211x x x --==-.同底数幂的除法:底数不变,指数相减,得84844x x x x -÷==.故选择C .【点评】与幂相关的运算,常见的有以下几种:(1)同底数幂的乘法:底数不变,指数相加;公式m n m n a a a +⨯=.(2)幂的乘方,底数不变,指数相乘;公式()m m mn a a =.(3)积的乘方,等于各因式乘方的积;公式()n n nab a b =.(4)同底数幂的除法:底数不变,指数相减;公式(0)m n m n a a a a -÷=≠.(5)负整指数幂:任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数;公式1(0,n n aa n a -=≠是正整数).(6)特别规定:任何非0数字的0次幂都是1;公式:01(0)a a =≠.46.(3分)(2016•广西省来宾)计算()()2112x x --结果正确的是( )A .241x -B .214x -C .2441x x -+-D .2441x x -+ 【考点】多项式与多项式相乘;完全平方公式【分析】本题考查了整式的乘法法则,解题的关键是熟练掌握整式的完全平方公式、平方差公式.把()()2112x x --提个负,转化为()()1212x x ---,再利用完全平方公式展开即可.【解析】解:()()()()()222112=1212144144x x x x x x x x-----=--+=-++,故选择C . 【点评】此类问题容易出错的地方是完全平方公式与平方差公式相混淆. 47.(3分)(2016•广西省来宾)当6x =,2y =-时,代数式()222x y x y --的值为( )A .2B .43C .1D .12【考点】代数式的值【分析】本题考查了求代数式的值,解题的关键是代入后的正确运算.把x =6,y =-2代入代数式()222x y x y --,求值即可.当然也可以先化简,再代入求值.【解析】解:()()()()2222==x y x y x y x y x y x y x y +--+---,当x =6,y =-2时,原式=12,故选择D . 【点评】些数学问题直接求解困难,甚至不能解出,可把要解决的问题看作一个整体,进行化简求值.通过研究问题的整体形式、整体结构或做种种整体处理以后,达到顺利而又简捷的解决问题的目的.整体思想作为重要的思想方法之一,在我们的解题过程中,经常使用.48.(3分)(2016•株洲)下列等式错误的是( )A .(2mn )2=4m 2n 2B .(﹣2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(﹣2m 2n 2)3=﹣8m 5n 5【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答】解:A 、结果是4m 2n 2,故本选项错误;B 、结果是4m 2n 2,故本选项错误;C 、结果是8m 6n 6,故本选项错误;B 、结果是﹣8m 6n 6,故本选项正确;故选D .【点评】本题考查了幂的乘方和积的乘方的应用,能熟记法则的内容是解此题的关键.49.(3分)(2016•淮安)下列运算正确的是( )A .a 2•a 3=a 6B .(ab )2=a 2b 2C .(a 2)3=a 5D .a 2+a 2=a 4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;幂的乘方,底数不变指数相乘;以及合并同类项法则对各选项分析判断即可得解.【解答】解:A 、a 2•a 3=a 2+3=a 5,故本选项错误;B 、(ab )2=a 2b 2,故本选项正确;C 、(a 2)3=a 2×3=a 6,故本选项错误;D 、a 2+a 2=2a 2,故本选项错误.故选B .【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.50.(3分)(2016•淮安)已知a ﹣b=2,则代数式2a ﹣2b ﹣3的值是( )A .1B .2C .5D .7【考点】代数式求值.【分析】直接利用已知a ﹣b=2,再将原式变形为2(a ﹣b )﹣3代入a ﹣b=2求出答案.【解答】解:∵a ﹣b=2,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×2﹣3=1.故选:A .【点评】此题主要考查了代数式求值,利用整体思想代入是解题关键.51.(3分)(2016•连云港)计算:5x ﹣3x=( )。
整式运算及因式分解(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)
专题02整式运算及因式分解(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01代数式及其应用--------------------------------------------------------------------------------------------------------------1二、考点02整式及其运算-----------------------------------------------------------------------------------------------------------------6三、考点03因式分解----------------------------------------------------------------------------------------------------------------------20考点01代数式及其应用一、考点01代数式及其应用1.(2024·四川广安·中考真题)代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商【答案】C【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x -中的运算关系解答即可.【详解】解:代数式3x -的意义可以是3-与x 的积.故选C .2.(2023·湖南常德·中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .0【答案】A【分析】把2340a a +-=变形后整体代入求值即可.【详解】∵2340a a +-=,∴234+=a a ∴()222632332435a a a a +-=+-=⨯-=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.3.(2023·山东·中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .24.(2023·甘肃兰州·中考真题)关于x 的一元二次方程20x bx c ++=有两个相等的实数根,则()2212b c -+=()A .-2B .2C .-4D .4【答案】A【分析】由一元二次方程根的情况可得240b c -=,再代入式子即可求解.【详解】∵关于x 的一元二次方程20x bx c ++=有两个相等的实数根∴240b c ∆=-=∴()2221242022b c b c -+=--=-=-,故选:A.【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.5.(2023·江苏·中考真题)若圆柱的底面半径和高均为a ,则它的体积是(用含a 的代数式表示).【答案】3πa 【详解】根据圆柱的体积=圆柱的底面积⨯圆柱的高,可得23ππV a a a == .故答案为:3πa .【点睛】本题主要考查代数式和整式的乘法运算,牢记整式乘法的运算性质是解题的关键.6.(2023·江苏·中考真题)若210a b +-=,则36a b +的值是.【答案】3【分析】根据已知得到2=1a b +,再代值求解即可.【详解】解:∵210a b +-=,∴2=1a b +,∴()36323a b a b +=+=,故答案为:3.【点睛】本题考查代数式求值,利用整体思想求解是解答的关键.7.(2024·山东济宁·中考真题)已知2210a b -+=,则241ba +的值是.8.(2023·江苏宿迁·中考真题)若实数m 满足()()22202320242025m m -+-=,则()()20232024m m --=.【答案】1012-【分析】根据完全平方公式得()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m -=-+---+--,再代值计算即可.【详解】解: ()()22202320242025m m -+-=()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m ∴=-+--+----12025=-2024=-()()220232021041m m ∴=---故答案为:1012-.【点睛】本题考查完全平方公式的应用,求代数式值,掌握完全平方公式222()2a b a ab b ±=±+及其变式是解题本题的关键.9.(2024·江苏苏州·中考真题)若2a b =+,则()2b a -=.【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.10.(2024·四川成都·中考真题)若m ,n 为实数,且()240m +=,则()2m n +的值为.11.(2024·广东广州·中考真题)若2250a a --=,则2241a a -+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a --=,得225a a -=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a --= ,225a a ∴-=,()2224122125111a a a a ∴-+=-+=⨯+=,故答案为:11.12.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+=.【答案】7【分析】本题考查了求代数式的值.对已知等式变形得到2246x x -=,再整体代入计算求解即可.【详解】解:∵2230x x --=,∴223x x -=,∴2246x x -=,∴2241617x x -+=+=,故答案为:7.13.(2023·西藏·中考真题)按一定规律排列的单项式:5a ,28a ,311a ,414a ,⋯.则按此规律排列的第n 个单项式为.(用含有n 的代数式表示)【答案】()32nn a+【分析】根据系数和字母的次数与单项式的序号关系写出即可.【详解】解:5a 系数为3125⨯+=,次数为1;28a 系数为3228⨯+=,次数为2;311a 系数为33211⨯+=,次数为3;414a 系数为34214⨯+=,次数为4;∴第n 个单项式的系数可表示为:32n +,字母a 的次数可表示为:n ,∴第n 个单项式为:()32nn a +.【点睛】本题考查数字变化类规律探究,掌握单项式的系数和次数并发现其变化规律是解题的关键.14.(2024·四川成都·中考真题)在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.【答案】9144【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;15.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.考点02整式及其运算二、考点02整式及其运算16.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=()A .aB .a-C .2aD .2a-【答案】D【分析】本题主要考查了整式的混合运算,先计算单项式乘以多项式,再合并同类项即可.【详解】解:22(1)2a a a --22222a a a =--2a=-故选:D .17.(2024·贵州·中考真题)计算23a a +的结果正确的是()A .5aB .6aC .25a D .26a 【答案】A【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:235a a a +=,故选:A .18.(2024·四川内江·中考真题)下列单项式中,3ab 的同类项是()A .33ab B .232a b C .22a b -D .3a b【答案】A【分析】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【详解】解:A .是同类项,此选项符合题意;B .字母a 的次数不相同,不是同类项,故此选项不符合题意;C .相同字母的次数不相同,不是同类项,故此选项不符合题意;D .相同字母的次数不相同,不是同类项,故此选项不符合题意.故选:A .19.(2024·四川广元·中考真题)如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出,m n 的值,再确定点(),m n 的位置即可【详解】解:∵单项式23m x y -与单项式422n x y -的和仍是一个单项式,∴单项式23m x y -与单项式422n x y -是同类项,∴24,23m n =-=,解得,2,1m n ==-,∴点(),m n 在第四象限,故选:D20.(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【答案】D【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.【详解】解:设一个三位数与一个两位数分别为10010x y z ++和10m n +如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mznz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,A 、“20”左边的数是248⨯=,故本选项不符合题意;、“20”右边的“□”表示4,故本选项不符合题意;a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .21.(2024·云南·中考真题)下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .22.(2024·河北·中考真题)下列运算正确的是()A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .23.(2024·广东·中考真题)下列计算正确的是()A .2510a a a ⋅=B .824a a a ÷=C .257a a a-+=D .()5210a a =【答案】D【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .24.(2024·辽宁·中考真题)下列计算正确的是()A .2352a a a +=B .236a a a ⋅=C .()325a a =D .2(1)a a a a+=+【答案】D【分析】根据合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式等知识点进行判定即可.【详解】A .3332a a a +=,故本选项原说法不符合题意;B .235a a a ⋅=,故本选项原说法不合题意;C .236()a a =,故本选项原说法不合题意;D .2(1)a a a a +=+,故本选项符合题意.故选:D .【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式的运算,熟练掌握运算法则是解本题的关键.25.(2024·青海·中考真题)计算1220x x -的结果是()A .8xB .8x -C .8-D .2x 【答案】B【分析】此题考查了合并同类项.根据合并同类项法则计算即可.【详解】解:12208x x x -=-,故选:B .26.(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B .12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .27.(2022·山东德州·中考真题)已知2M a a =-,2N a =-(a 为任意实数),则M N -的值()A .小于0B .等于0C .大于0D .无法确定【答案】C【分析】本题主要考查了非负数的性质.熟练掌握整式的加减,完全平方式与配方法,非负数的性质,是解题的关键.根据完全平方式利用配方法把M N -的代数式变形,根据偶次方的非负性判断即可.【详解】M N -()22a a a -=--222a a =-+()211a =-+,∵()210a -≥,∴()2111a -+≥,∴M N -大于0,故选:C .28.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=【答案】B【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分29.(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a ba a ab b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b=C .83a b +=D .38a b=+【答案】A【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .30.(2024·湖南长沙·中考真题)下列计算正确的是()A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为.【答案】21-y 【分析】本题考查整式的加减运算,根据题意“一个多项式加上234y xy +-,结果是2325xy y +-”,进行列出式子:()()2232534xy y y xy +--+-,再去括号合并同类项即可.【详解】解:依题意这个多项式为()()2232534xy yy xy +--+-2232534xy y y xy =+---+21y =-.故答案为:21-y 32.(2024·河南·中考真题)请写出2m 的一个同类项:.【答案】m (答案不唯一)【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m33.(2024·重庆·中考真题)一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是.34.(2023·江苏泰州·中考真题)若230a b -+=,则2(2)4a b b +-的值为.【答案】6-【分析】由230a b -+=,可得23a b -=-,根据()2(2)422a b b a b +-=-,计算求解即可.【详解】解:由230a b -+=,可得23a b -=-,∴()2(2)442442226a b b a b b a b a b +-=+-=-=-=-,故答案为:6-.【点睛】本题考查了代数式求值.解题的关键在于正确的运算.35.(2024·天津·中考真题)计算86x x ÷的结果为.【答案】2x 【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.【详解】解:862x x x ÷=,故答案为:2x .36.(2024·上海·中考真题)计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .37.(2024·江苏苏州·中考真题)计算:32x x ⋅=.【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.38.(2023·江苏·中考真题)先化简,再求值:2(1)2(1)x x +-+,其中x =.【答案】21x -;1【分析】利用完全平方公式和整式加减的运算法则进行化简,根据平方根的性质即可求得答案.【详解】原式22122x x x =++--39.(2023·湖南·中考真题)先化简,再求值:()()233(3)a b a b a b -++-,其中3,3a b =-=.40.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b -+的值.41.(2024·陕西·中考真题)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -.【答案】222x y +,6【分析】本题考查了整式的混合运算以及求值.根据完全平方公式和单项式乘以多项式法则进行运算,再合并同类项,最后代入即可求解.【详解】解:()()22x y x x y ++-22222x xy y x xy=+++-222x y =+;当1x =,=2y -时,原式()22212246=⨯+-=+=.42.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.43.(2023·湖南·中考真题)先化简,再求值:()()()222233a a a a a -+-++,其中3a =-.345.(2022·吉林·中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例先去括号,再合并同类项:m (A )6(1)m -+.解:m (A )6(1)m -+2666m m m =+--=.【答案】6A m =+,解答过程补充完整为26m -【分析】利用26m m +除以m 可得A ,再根据合并同类项法则补充解答过程即可.【详解】解:观察第一步可知,()26A m m m =+÷,解得6A m =+,将该例题的解答过程补充完整如下:(6)6(1)m m m +-+2666m m m =+--26m =-,故答案为:26m -.【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键.46.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.47.(2024·甘肃·中考真题)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.【答案】2a b +,3【分析】本题主要考查了整式的化简求值,先根据平方差公式和完全平方公式去小括号,然后合并同类项,再根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦()()22224442a ab b a b b⎡⎤=++--÷⎣⎦()22224442a ab b a b b =++-+÷()2422ab b b=+÷2a b =+,当2a =,1b =-时,原式()2213=⨯+-=.考点03因式分解三、考点03因式分解48.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .49.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .50.(2023·山东·中考真题)下列各式从左到右的变形,因式分解正确的是()A .22(3)69+=++a a a B .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+【答案】C【分析】根据因式分解的概念可进行排除选项.【详解】解:A 、22(3)69+=++a a a ,属于整式的乘法,故不符合题意;B 、()24444a a a a -+=-+,不符合几个整式乘积的形式,不是因式分解;故不符合题意;C 、()()22555ax ay a x y x y -=+-,属于因式分解,故符合题意;D 、因为()()22242828a a a a a a -+=+-≠--,所以因式分解错误,故不符合题意;故选C .【点睛】本题主要考查因式分解,熟练掌握因式分解的概念是解题的关键.51.(2023·河北·中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B 【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.52.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.53.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +54.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.55.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.56.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.57.(2024·甘肃临夏·中考真题)因式分解:214x -=.58.(2023·广东深圳·中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.59.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b c m n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.60.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式与因式分解
一.选择题
1.(2018·广西贺州·3分)下列运算正确的是()
A.a2•a2=2a2B.a2+a2=a4C.(a3)2=a6D.a8÷a2=a4
【解答】解:A.a2•a2=a4,错误;
B.a2+a2=2a2,错误;
C.(a3)2=a6,正确;
D.a8÷a2=a6,错误;
故选:C.
2.(2018·广西贺州·3分)下列各式分解因式正确的是()
A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2
C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)
【解答】解:A.x2+6xy+9y2=(x+3y)2,正确;
B.2x2﹣4xy+9y2=无法分解因式,故此选项错误;
C.2x2﹣8y2=2(x+2y)(x﹣2y),故此选项错误;
D.x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项错误;
故选:A.
3.(2018·广西梧州·3分)下列各式计算正确的是()
A.a+2a=3aB.x4•x3=x12C.()﹣1=﹣D.(x2)3=x5
【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断即可.【解答】解:A.a+2a=3a,正确;
B.x4•x3=x7,错误;
C.,错误;
D.(x2)3=x6,错误;
故选:A.
【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是根据法则计算.
4.(2018·湖北荆州·3分)下列代数式中,整式为()
A.x+1B.C.D.
【解答】解:A.x+1是整式,故此选项正确;
B.,是分式,故此选项错误;
C.是二次根式,故此选项错误;
D.,是分式,故此选项错误;
故选:A.
5.(2018·湖北荆州·3分)下列计算正确的是()
A.3a2﹣4a2=a2B.a2•a3=a6C.a10÷a5=a2D.(a2)3=a6
【解答】解:A.3a2﹣4a2=﹣a2,错误;
B.a2•a3=a5,错误;
C.a10÷a5=a5,错误;
D.(a2)3=a6,正确;
故选:D.
6.(2018·湖北十堰·3分)下列计算正确的是()
A.2x+3y=5xyB.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2D.6y2÷2y=3y
【分析】根据整式的运算法则即可求出答案.
【解答】解:(A)原式=2x+3y,故A错误;
(B)原式=﹣8x6,故B错误;
(C)原式=﹣3y3,故C错误;
故选:D.
【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
7.(2018·四川省攀枝花·3分)下列运算结果是a5的是()
A.a10÷a2B.(a2)3C.(﹣a)5D.a3•a2
解:A.a10÷a2=a8,错误;
B.(a2)3=a6,错误;
C.(﹣a)5=﹣a5,错误;
D.a3•a2=a5,正确;
故选D.
8.(2018·云南省曲靖·4分)下列计算正确的是()
A.a2•a=a2B.a6÷a2=a3
C.a2b﹣2ba2=﹣a2bD.(﹣)3=﹣
【解答】解:A.原式=a3,不符合题意;
B.原式=a4,不符合题意;
C.原式=﹣a2b,符合题意;
D.原式=﹣,不符合题意,
故选:C.
9.(2018·云南省·4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()
A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n
【分析】观察字母a的系数、次数的规律即可写出第n个单项式.
【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.
故选:C.
【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.
10.(2018·辽宁省沈阳市)(2.00分)下列运算错误的是()
A.(m2)3=m6B.a10÷a9=aC.x3•x5=x8D.a4+a3=a7
【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.
【解答】解:A.(m2)3=m6,正确;
B.a10÷a9=a,正确;
C.x3•x5=x8,正确;
D.a4+a3=a4+a3,错误;
故选:D.
【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.
11.(2018·辽宁省盘锦市)下列运算正确的是()
A.3x+4y=7xyB.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3
【解答】解:A.3x、4y不是同类项,不能合并,此选项错误;
B.(﹣a)3•a2=﹣a5,此选项错误;
C.(x3y)5=x15y5,此选项错误;
D.m10÷m7=m3,此选项正确;
故选D.
12.(2018·辽宁省葫芦岛市) 下列运算正确的是()
A.﹣2x2+3x2=5x2B.x2•x3=x5C.2(x2)3=8x6D.(x+1)2=x2+1
【解答】解:A.﹣2x2+3x2=x2,错误;
B.x2•x3=x5,正确;
C.2(x2)3=2x6,错误;。