初三复习过关练习十一------四边形(一)正

合集下载

初三数学中考复习 正方形 专题练习题 含答案

初三数学中考复习  正方形   专题练习题 含答案

2019 初三中考数学复习正方形专题练习题1. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A.BC=CD B.AB=CD C.AD=BC D.AC=BD2. 下列说法不正确的是( )A.一组邻边相等的矩形是正方形B.对角线相等的矩形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的菱形是正方形3. 在四边形ABCD中,点O是对角线AC,BD的交点,能判定这个四边形是正方形的条件是( )A.AC=BD,AB∥CD,AB=CDB.AO=BO=CO=DO,AC⊥BDC.AD∥BC,∠A=∠CD.AO=CO,BO=DO,AB=BC4. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF5. 如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE的长为( )A.2 B.3 C.2 2 D.236. 正方形具有而菱形不一定具有的性质是( )A.对角线互相平分B.内角和为360°C.对角线相等D.对角线平分内角7. 能判定一个四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补8. 矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线垂直平分C.对角线平分一组对角D.对角线互相平分9. 正方形ABCD在平面直角坐标系中的位置如图所示,已知点A的坐标为(0,4),点B坐标为(-3,0),则点C的坐标为( )A.(1,3) B.(1,-3) C.(1,-4) D.(2,-4)10. 如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有( ) A.4个 B.6个 C.8个 D.10个11. 如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是____________.12. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是____.13. 如图,已知正方形ABCD的边长为1,连结AC,BD,CE平分∠ACD交BD于点E,则DE=_________________.14. 如图,四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与AO,BO交于M,N,求证:(1)BM=CN;(2)BM⊥CN.15. 如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连结DE.(1)求证:△ABE≌△DAF;(2)若AF =1,四边形ABED 的面积为6,求EF 的长.参考答案:1---10 ABBDC CCDBC11. 45°12. 4 13. 2-114. 解:(1)∵MN∥AB,∴∠OMN=∠OAB,∠ONM =∠OBA,∵OA=OB ,∴∠OAB=∠OBA,∴∠OMN =∠ONM,∴OM=ON ,∴AM=OA -OM =OB -ON =BN ,在△ABM 和△BCN 中,⎩⎨⎧AB =BC∠MAB=∠NBC AM =BN,∴△ABM≌△BCN(SAS),∴BM=CN(2)由△ABM≌△BCN 得,∠ABM=∠BCN,又∵∠ABM+∠CBM=90°,∴∠BCN+∠CBM=90°,∴CN⊥BM15. 解:(1)∵四边形ABCD 是正方形,∴AB=AD ,∵DF⊥AG,BE⊥A G ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE 和△DAF 中,⎩⎨⎧∠BAE=∠ADF,∠AEB=∠DFA,AB =AD ,∴△ABE≌△DAF(AAS)(2)设EF =x ,则AE =DF =x +1,由题意2×12×(x+1)×1+12×x×(x+1)=6,解得x =2或-5(舍弃),∴EF=2。

中考数学模拟题汇总《四边形》专项练习(附答案解析)

中考数学模拟题汇总《四边形》专项练习(附答案解析)

中考数学模拟题汇总《四边形》专项练习(附答案解析)一、单选题1.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .42.如图,正方期ABCD 的边长为4,点E 在对角线BD 上,且22.5,BAE EF AB ︒∠=⊥为F ,则EF 的长为( )A .2BC .D .4-3.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③∠GDB =45°;④S △BEF =725.在以上4个结论中,正确的有( )A .1B .2C .3D .44.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE //CD 于点E ,PF //BC 于点F ,连接AP ,EF.给出下列结论:①PD =;②四边形PECF 的周长为8;③APD 一定是等腰三角形;④AP EF =;⑤EF 的最小值为其中正确结论的序号为( )A .①②④⑤B .①③④⑤C .②④⑤D .②③⑤5.如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF 给出结论:①DE EF =;②45CDF ∠=︒;③75AM DF =;④若正方形的边长为2,则点M 在射线AB 上运动时,CF .其中结论正确的是( )A .①②③B .①②④C .①③④D .②③④6.如图,E 、F 分别是正方形ABCD 的边BC 、CD 的中点,连接AF 、DE 交于点P ,过B 作BG ∥DE 交AD 于G ,BG 与AF 交于点M .对于下列结论:①AF ⊥DE ;②G 是AD 的中点;③∠GBP =∠BPE ;④S △AGM :S △DEC =1:4.正确的个数是( )A .1个B .2个C .3个D .4个7.如图,在正方形ABCD 中,点E 是边BC 上的点,且CE =2BE ,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于点F ,下列结论:①∠AED +∠EAC +∠EDB =90°;②AP =FP ;③AE =10AO ;④若四边形OPEQ 的面积为2,则该正方形的面积为36;⑤CE ·EF =EQ ·DE .其中正确的结论有( )A .1个B .2个C .3个D .4个8.如图,四边形ABCD 是边长为2的正方形,点P 为线段AB 上的动点,E 为AD 的中点,射线PE 交CD 的延长线于点Q ,过点E 作PQ 的垂线交CD 于点H 、交BC 的延长线于点F ,则以下结论:①AEP CHF ;②EHQ CHF ;③当点F 与点C 重合时3PA PB ;④当PA PB =时,CF =( )A .①③④B .②③④C .①③D .②④二、填空题9.如图,已知矩形ABCD 中,3AB =,4BC =,点M ,N 分别在边AD ,BC 上,沿着MN 折叠矩形ABCD ,使点A ,B 分别落在E ,F 处,且点F 在线段CD 上(不与两端点重合),过点M 作MH BC ⊥于点H ,连接BF .当四边形CDMH 为正方形时,NC =______;若13DF DC =,则折叠后重叠部分的面积为______.10.如图,将边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFC的位置,则图中阴影部分的面积为_______.11.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠AEB=75°,③EG=FG且∠AGE=90°,④BE=FG⑤S△ABE=1 2S△CEF.其中正确结论是_____(填序号).12.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________ .13.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为_________.14.如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为______.15.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG其中正确的结论是_____.(填2入正确的序号)16.如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,BC=______.连接CO,如果AC=4,CO=三、解答题17.已知正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.(1)如图1,DE⊥FG,求证:BF=AE+AG;(2)如图2,DE⊥DF,P为EF中点,求证:BE=2PC;(3)如图3,EH交FG于O,∠GOH=45°,若CD=4,BF=DG=1,则线段EH的长为.18.已知正方形ABCD中AC与BD交于点O,点M在线段BD上,作直线AM交直线DC于点E,过D作DH⊥AE于H,设直线DH交AC于点N.(1)如图1,当M在线段BO上时,求证:OM=ON;(2)如图2,当M在线段OD上,连接NE和MN,当EN//BD时,求证:四边形DENM是菱形;(3)在(2)的条件下,若正方形边长为4,求EC的长.19.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且∠EAF =45°,将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,连接EQ .(1)求证:EA 是∠QED 的平分线; (2)已知BE =1,DF =3,求EF 的长.20.如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .(1)求证AE =MN ;(2)如图2,若垂足P 恰好为AE 的中点,连接BD ,交MN 于点Q ,连接EQ ,并延长交边AD 于点F .求∠AEF 的度数;(3)如图3,若该正方形ABCD 边长为10,将正方形沿着直线MN 翻折,使得BC 的对应边B ′C ′恰好经过点A ,过点A 作AG ⊥MN ,垂足分别为G ,若AG =6,请直接写出AC ′的长________.21.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .θ=︒时,求点A的坐标;(1)若30(2)设MBN△的周长为P,在旋转正方形OABC的过程中,P值是否有变化?请证明你的结论;22.在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC,CD,CF之间的数量关系为:.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①②是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明,(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若AB=,CD=1,请求出GE的长.23.如图1,已知正方形ABCD 顶点A ,B 分别在y 轴和x 轴上,边CD 交x 轴的正半轴于点E .(1)若()20,45A a a -+,且2a =,求A 点的坐标.(2)在(1)的条件下,若34AO EO =,D 点的坐标.(3)如图2,连结AC 交x 轴于点F ,点H 是A 点上方轴上一动点,以AF ,AH 为边作平行四边形AFGH ,使G 点恰好落在AD 边上.求证:22224HG DG BF +=.24.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.25.如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长.26.基础探究:如图①,在正方形ABCD中,点E为AD上一点,DF⊥CE交AB于F,垂足为点O.求证:CE=DF.应用拓展:如图②,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为点O.若正方形ABCD的边长为12,DE=5,则四边形EFCG的面积为_______.参考答案与解析一、单选题1.【答案】D【分析】证明△ABE≌△DCE,可得结论①正确;由正方形的性质可得AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE≌△DCE,△ABG≌△CBG,可得∠BCF=∠CDE,由余角的性质可得结论②;证明△DCE≌△CBF可得结论③,证明△CHF∽△CBF即可得结论④正确.【详解】解:∵四边形ABCD是正方形,点E是BC的中点,∴AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS)∴∠DEC=∠AEB,∠BAE=∠CDE,DE=AE,故①正确,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴∠BAE=∠BCF,∴∠BCF=∠CDE,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故②正确,∵∠CDE=∠BCF,DC=BC,∠DCE=∠CBF=90°,∴△DCE≌△CBF(ASA),∴CE=BF,∵CE=12BC=12AB,∴BF=12 AB,∴AF=BF,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC ∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF∽△CBF∴CH CE BC CF=∵BC=2CE,∴2BC CE CE CE CHCF CF==∴22CE CH CF=⋅故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.2.【答案】D【分析】在AF上取FG=EF,连接GE,可得△EFG是等腰直角三角形,根据等腰直角三角形的性质可得,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF,设EF=x,最后根据AB=AG+FG+BF列方程求解即可.【详解】解:如图,在AF上取FG=EF,连接GE,∵EF⊥AB,∴△EFG是等腰直角三角形,∴,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF,∵∠BAE=22.5°,∠EGF=45°,∴∠BAE=∠AEG=22.5°,∴AG=EG,在正方形ABCD中,∠ABD=45°,∴△BEF是等腰直角三角形,∴BF=EF,设EF=x,∵AB=AG+FG+BF,∴,解得x=4故选:D.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,难点在于作辅助线构造出等腰直角三角形并根据正方形的边长AB列出方程.3.【答案】C【解析】试题解析:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12-x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12-x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=12×6×8=24,S△BEF=EFEGS△GBE=62410⨯=725,④正确.故选C.考点:正方形综合题.4.【答案】A【分析】①根据正方形的对角线平分对角的性质,得PDF是等腰直角三角形,在Rt DPF中,2222222DP DF PF EC EC EC=+=+=,求得DP=;②根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;③根据P的任意性可以判断APD△不一定是等腰三角形;④由PECF为矩形,则通过正方形的轴对称性,证明AP EF=;⑤当AP最小时,EF最小,EF的最小值等于【详解】①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵PE ⊥BC ,PF ⊥CD ,∠BCD=90°, ∴四边形PECF 为矩形,∴PF=CE , ∵GF ∥BC ,∴∠DPF=∠DBC ,∵四边形ABCD 是正方形, ∴∠DBC=45°∴∠DPF=∠DBC=45°, ∴∠PDF=∠DPF=45°, ∴PF=EC=DF ,∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴. 故①正确;②∵四边形PECF 为矩形,∴四边形PECF 的周长=2CE+2PE=2CE+2BE=2BC=8, 故②正确;③∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP=45︒, ∴当∠PAD=45︒或67.5︒或90︒时,△APD 是等腰三角形, 除此之外,△APD 不是等腰三角形, 故③错误;④∵四边形PECF 为矩形, ∴PC=EF ,由正方形为轴对称图形, ∴AP=PC , ∴AP=EF , 故④正确;⑤=由EF=PC ,∴当PC 最小时,EF 最小,则当PC ⊥BD 时,即PC=12BD=12⨯=EF 的最小值等于故⑤正确;综上所述,①②④⑤正确,故选:A.【点评】本题考查了正方形的性质,等腰三角形的判定和性质,勾股定理的应用.本题难度较大,综合性较强,在解答时要认真审题.5.【答案】B【分析】①延长AE交DC的延长线于点H,由“AAS”可证△AME≌△HCE,可得AE=EH,由直角三角形的性质可得AE=EF=EH,即可判断;②由四边形内角和定理可求2∠ADE+2∠EDF=270°,可得∠ADF=135°,即可判断;③由连接AC,过点E作EP⊥AD于点P,过点F作FN⊥EP于N,交CD于G,连接CF,由梯形中位线定理可求PE=12(AM+CD),由“AAS”可证△APE≌△ENF,可得AP=NE=12AD,即可求AM=2DG=2,即可判断;④由垂线段最短,可得当CF⊥DF时,CF有最小值,由等腰直角三角形的性质可求CF的最小值,即可判断.【详解】①如图,延长AE交DC的延长线于点H,∵点E是CM的中点,∴ME=EC,∵AB∥CD,∴∠MAE=∠H,∠AME=∠HCE,∴△AME≌△HCE(AAS),∴AE=EH,又∵∠ADH=90°,∴DE=AE=EH,∵AE绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∴AE=DE=EF,故①正确;②∵AE=DE=EF,∴∠DAE=∠ADE,∠EDF=∠EFD,∵∠AEF+∠DAE+∠ADE+∠EDF+∠EFD=360°,∴2∠ADE+2∠EDF=270°,∴∠ADF=135°,∴∠CDF=∠ADF−∠ADC=135°−90°=45°,故②正确;③∵EP⊥AD,AM⊥AD,CD⊥AD,∴AM∥PE∥CD,∴AP ME=PD EC=1,∴AP=PD,∴PE是梯形AMCD的中位线,∴PE=12(AM+CD),∵∠FDC=45°,FN⊥CD,∴∠DFG=∠FDC=45°,∴DG=GF,DF,∵∠AEP+∠FEN=90°,∠AEP+∠EAP=90°,∴∠FEN=∠EAP,又∵AE=EF,∠APE=∠ENF=90°,∴△APE≌△ENF(AAS),∴AP =NE =12AD , ∵PE =12(AM +CD )=NE +NP =12AD +NP , ∴12AM =NP =DG ,∴AM =2DG =2DF ,∴AMDF,故③错误; ④如图,连接AC ,过点E 作EP ⊥AD 于点P ,过点F 作FN ⊥EP 于N ,交CD 于G ,连接CF ,∵EP ⊥AD ,FN ⊥EP ,∠ADC =90°, ∴四边形PDGN 是矩形, ∴PN =DG ,∠DGN =90°, ∵∠CDF =45°, ∴点F 在DF 上运动,∴当CF ⊥DF 时,CF 有最小值, ∵CD =2,∠CDF =45°,∴CF故选:B .【点评】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定和性质,旋转的性质,平行线分线段成比例,梯形中位线的定理等知识,灵活运用这些性质解决问题是本题的关键. 6.【答案】C【分析】根据正方形性质得出AD BC DC ==;12EC DF BC ==;ADF DCE ∠=∠,证ADF ≌()DCE SAS ,推出AFD DEC ∠=∠,求出90DGF ∠=︒即可判断①;证明四边形GBED 为平行四边形,则可知②正确;由平行线的性质可得③正确;证明AGM ∽AFD ,可得出AGMS:1DECS=:5.则④不正确.【详解】解:∵正方形ABCD ,E ,F 均为中点 ∴AD =BC =DC ,EC =DF =12BC , ∵在△ADF 和△DCE 中,AD DC ADF DCE DF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△DCE (SAS ), ∴∠AFD =∠DEC , ∵∠DEC +∠CDE =90°, ∴∠AFD +∠CDE =90°=∠DGF , ∴AF ⊥DE ,故①正确, ∵//BG DE ,//GD BE , ∴四边形GBED 为平行四边形, ∴GD =BE , ∵BE =12BC , ∴GD =12AD , 即G 是AD 的中点,故②正确, ∵//BG DE , ∴∠GBP =∠BPE , 故③正确.∵//BG DG ,AF ⊥DE , ∴AF ⊥BG ,∴∠ANG =∠ADF =90°, ∵∠GAM =∠FAD , ∴△AGM ∽△AFD ,设AG =a ,则AD =2a ,AF,∴21()5AGM AFDS AG SAF ==. ∵△ADF ≌△DCE , ∴S △AGM :S △DEC =1:5. 故④错误. 故选:C .【点评】本题主要考查了正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,平行线的性质,平行四边形的判定与和性质等知识,熟练掌握正方形的性质是解题的关键. 7.【答案】B【分析】①先根据正方形的性质证得∠AOP 是直角,再利用三角形的外角的性质即可判定;②直接利用四点共圆可证∠AFP=∠ABP=45°;③设BE=a 则EC=2a ,然后利用勾股定理得到AE 和OA 的长,即可得出结论;④利用相似得到BP 与DP 的比导出BP 与OP 的比,同理求出OQ 与QC 的比,设△BEP 的面积为S ,再利用同高时面积比即为底的比求出△OPE 和△OQE 的面积,表示出四边形OPEQ 的面积,求出S 的值,再通过正方形面积是24S 即可求出结果;⑤如果当E 是BC 边中点时可得△FPE ∽DCE ,可得结论,因为已知中EC=2BE 时,所以△FPE 与△DCE 不相似,所以错误.【详解】解:如图,连接OE 、 AF , ∵ABCD 是正方形, ∴AC ⊥BD ,∴∠AOP=90°,∵∠AED+∠EDB=∠APO,∴∠AED+∠EAC+∠EDB=∠APO+∠EAC=90°,故①正确;∵PF⊥AE,∴∠APF=∠ABF=90°,即A、P、B、F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确;设BE=a,则EC=2a,则a,a,∴3AEAO,∴,故③错误;连接OE,∵CE=2BE,∴BE:EC:BC==1:2:3∵AD//BC∴△BEP∽△DAP,△EQC∽△DQA,∴BP:DP=1:3,CQ:AQ=2:3,∴BP:OP=1:1,OQ:CQ=1:4,∴设S△BEP=S,则S△OPE=S,则S△BEO=2S,S△ECO=4S,∴S△OEQ =45S,S△BCO=2S+4S=6S,∵四边形OPEQ的面积是2,∴S+45S=2,∴S=109,∴正方形ABCD的面积=4S△BCO =24S=803,故④错误;∵BE=2EC∴∠PEB≠∠CED,且PE EC PF CD∴△FPE不一定与△DCE相似,∴EF PEED EC≠,又∵EQ≠PE,∴CE·EF≠EQ·DE,故⑤错误;共有2个正确.故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,综合性强,难度大,灵活运用所学知识解决问题是解答本题的关键.8.【答案】C【点评】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的性质和判定、勾股定理等知识,解题的关键是学会利用全等三角形解决问题.二、填空题 9.【答案】32 5512【分析】根据正方形的性质证明MHN BCF △△,令HN x =,则3CN x =-,1FN BN x ==+,求得FGN MHN △△,得到2GN =,再证明MEO NCF △△,得到43EO =,即可得到结果;【详解】解:∵四边形CDMH 为正方形, ∴3MH HC ==, ∴1BH =, ∵MHN BCF △△,∴MH BCHN CF=, 令HN x =,则3CN x =-,1FN BN x ==+,∴CF ==∴3x =∴132x =,23x =(不符合题意,舍去), ∴12HN HC =,即N 为HC 的中点, ∴1322NC CH ==,∵13DF DC =,3AB CD ==,∴1DF =,2CF =,∴BF ===∴BG GF == ∵MHN BCF △△,∴MH BCHN CF=, ∴32HN =, ∴FGN MHN △△,∴GN =,∴52FN ===,∴32CN ===, ∴334122BH BC HN NC =--=--=,∵EMO CNF ∠=∠,90MEO NCF ∠=∠=︒, ∴MEO NCF △△, ∴ME NCEO CF=, ∴43EO =, ∴折叠后重叠部分的面积为:()1122MEO MEFN S S ME FN ME EO +=+-⨯△梯形,151455*********⎛⎫=+⨯-⨯⨯= ⎪⎝⎭. 故答案为:32;5512. 【点评】本题主要考查了正方形的性质,相似三角形的判定与性质,准确分析计算是解题的关键.10.【分析】过点M 作MH DE ⊥于点H ,利用正方形的性质和旋转的性质可证得△ADE 为等边三角形,由等腰三角形的判定可得△MDE 为等腰三角形,继而求得12DH EH ==,然后设MH x =,则2DM x =,根据勾股定理列方程求解可得MH =,进而由三角形面积公式即可求解. 【详解】如图,过点M 作MH DE ⊥于点H , ∵四边形ABCD 为正方形,∴1AB AD ==,90B BAD ADC ∠=∠=∠=︒,∵正方形ABCD 绕点A 逆时针旋转30°到正方形AEFG 的位置, ∴1AE AB ==,30BAE ∠=︒,90AEF B ∠=∠=° ∴60DAE ∠=︒∴△ADE 为等边三角形,∴60AED ADE ∠=∠=︒,1DE AD == ∴30MED MDE ∠=∠=︒, ∴△MDE 为等腰三角形, ∴12DH EH ==. 在Rt MDH 中,设MH x =,则2DM x =,∴221(2)4x x =+解得:16x =,26x =-(舍去),∴MH =, ∴1.2MDE S DE MH ∆=⨯⨯1126=⨯⨯12=.故答案为:12【点评】本题考查了旋转的性质,正方形的性质,等边三角形判定与性质,解直角三角形,利用等边三角形和等腰三角形的性质求出12DH EH ==,30MED MDE ∠=∠=︒是解题的关键.11.【答案】①②③⑤.【分析】通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE =∠DAF ,BE =DF ,∠AEB =75°;由正方形的性质就可以得出EC =FC ,得AC 垂直平分EF ,得EG =FG 且∠AGE =90°;设EC =x ,BE =y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和2S △ABE ,再通过比较大小就可以得出结论. 【详解】解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,AE AFAB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ), ∴BE =DF , 所以故①正确;∵∠BAE =∠DAF ,∠BAE +∠DAF =30°, ∴∠BAE =∠DAF =15°, ∴∠AEB =75°, 所以②正确; ∵BC =CD ,∴BC ﹣BE =CD ﹣DF ,即CE =CF , ∵AE =AF , ∴AC 垂直平分EF , ∴EG =FG 且∠AGE =90°, 所以③正确;设EC =x ,由勾股定理,得EF ,∴AE =EF ,∴FG =BG =CG =2x , ∵∠EAG =30°,AG ,∴AC =AG +CG +2x ,∴AB=2x ,∴BE =BC ﹣CE ﹣x =, ∴BE ≠FG , 所以④错误; ∵S △CEF =12CE 2=12x 2,S △ABE =12AB •BE =12•2x =14x 2,∴S △ABE =12×12x 2=12S △CEF , 所以⑤正确.综上所述,①②③⑤正确, 故答案为:①②③⑤.【点评】本题考查正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.12.【答案】72【分析】由直角三角形的中线,求出DE 的长度,利用三角形中位线定理和勾股定理,求出BE 的长度,即可求出答案.【详解】解:∵四边形ABCD 是正方形, ∴∠DCE=90°,OD=OB , ∵DF=FE , ∴CF=FE=FD ,∵EC+EF+CF=18,EC=5, ∴EF+FC=13, ∴DE=13,∴12=, ∴BC=CD=12, ∴BE=BC-EC=7, ∵OD=OB ,DF=FE ,∴OF=12BE=72;故答案为:72. 【点评】本题考查正方形的性质,三角形的中位线定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】2【分析】过E 作EM AB ⊥于M ,根据正方形性质得出AO BD ⊥,AO OB OC OD ===,由勾股定理求出AO OB ==Rt BME ∆中,由勾股定理得:222ME BE =,求出即可. 【详解】解:过E 作EM AB ⊥于M ,四边形ABCD 是正方形,AO BD ∴⊥,AO OB OC OD ===,则由勾股定理得:222AO BO AB +=, ∴AO OB ==EM AB ⊥,BO AO ⊥,AE 平分CAB ∠,∴,90OAE MOE AOE AME ∠=∠∠=∠=︒, ∵AE=AE,∴AOE AME ≅△△,EMEO ,AM AO ==四边形ABCD是正方形,∴∠=︒=∠,MBE MEB45∴==,BM ME OE在Rt BME∆中,由勾股定理得:22=,2ME BE即22=,2(2BEBE=,2故答案为:2.【点评】本题考查了角平分线性质和正方形性质,勾股定理的应用,注意:角平分线上的点到线段两个端点的距离相等.14.【答案】【分析】连接BE,DF,过E作EN⊥BF于点N,证明△DCE≌△BCE和△BEF为等腰三角形,设AF=x,用x表示DE与EF,由根据四边形ADEF的面积为4,列出x的方程求得x,进而求得四边形ADEF的周长.【详解】解:如图,连接BE,DF,过E作EN⊥BF于点N,∵四边形ABCD为正方形,∴CB=CD ,∠BCE=∠DCE=45°, 在△BEC 和△DEC 中,DC BC DCE BCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ), ∴DE=BE ,∠CDE=∠CBE , ∴∠ADE=∠ABE ,∵∠DAB=90°,∠DEF=90°, ∴∠ADE+∠AFE=180°, ∵∠AFE+∠EFB=180°, ∴∠ADE=∠EFB , ∴∠ABE=∠EFB , ∴EF=BE , ∴DE=EF ,设AF=x ,则BF=3-x ,∴FN=BN=12BF=32x -,∴AN=AF+FN=32x+, ∵∠BAC=∠DAC=45°,∠ANF=90°,∴EN=AN=32x+,∴=∵四边形AFED 的面积为4, ∴S △ADF +S △DEF =4,∴12×3x+12×24=⎝⎭, 解得,x=-7(舍去),或x=1, ∴AF=1,DE=EF=2= ∴四边形AFED 的周长为:故答案为:4+【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理,等腰三角形的性质,解题的关键是由面积列出x 的方程,属于中考选择题中的压轴题. 15.【答案】①②③【分析】依据四边形AEGF 为平行四边形,以及AE GE =,即可得到平行四边形AEGF 是菱形;依据1AE =,即可得到HED 的面积)11111122DH AE =⨯=+=边形AEGF 是菱形,可得267.5135AFG GEA ∠=∠=⨯︒=︒;根据四边形AEGF 是菱形,可得1FG AE ==,进而得到11BC FG +=+=. 【详解】解:正方形ABCD 的边长为1,90BCD BAD ∴∠=∠=︒,45CBD ∠=︒,BD =,1AD CD ==.由旋转的性质可知:90HGD BCD ∠==︒,45H CBD ∠=∠=︒,BD HD =,GD CD =,1HA BG ∴==,45H EBG ∠=∠=︒,90HAE BGE ∠=∠=︒,HAE ∴和BGE 1的等腰直角三角形,AE GE ∴=.在Rt AED 和Rt GED 中, DE DEAD GD =⎧⎨=⎩, Rt AED ∴≌()Rt GED HL ,()118067.52AED GED BEG ∴∠=∠=︒-∠=︒,AE GE =, 1801804567.567.5AFE EAF AEF AEF ∴∠=︒-∠-∠=︒-︒-︒=︒=∠, AE AF ∴=.AE GE =,AF BD ⊥,EG BD ⊥, AF GE ∴=且//AF GE ,∴四边形AEGF 为平行四边形, AE GE =,∴平行四边形AEGF 是菱形,故①正确;21HA =,45H ∠=︒,1AE ∴=,HED ∴的面积)11111122DH AE =⨯=+=②正确; 四边形AEGF 是菱形,267.5135AFG GEA ∴∠=∠=⨯︒=︒,故③正确; 四边形AEGF 是菱形,1FG AE ∴==,11BC FG ∴+==④不正确. 故答案为:①②③.【点评】本题考查旋转的性质,正方形的性质,全等三角形的判定和性质,菱形的判定和性质,等腰直角三角形的性质等知识,解题的关键是掌握旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 16.【答案】8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC . ∵根据题意,四边形ABED 为正方形, ∴∠4=∠5=45°,∠EBA=90°, ∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边, ∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO , 在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO , ∴CO =GO=7=∠6, ∵∠7+∠8=90°, ∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形, ∴,∵CG=CB+BG ,∴CB=CG -BG=12-4=8, 故答案为8.【点评】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键. 三、解答题17.【答案】(1)见解析;(2)见解析;(3 【分析】(1)作GM ⊥BC 于M .证△DAE ≌△GMF ,得AE =FM ,AG =BM .所以BF =AE+AG . (2)作EQ ∥CP 交BC 于Q .证EQ =2CP ,EQ可得BE .(3)作BM ∥GF 交AD 于M ,作BN ∥EH 交CD 于N ,得BM =GF ,BF =MG =1,BN =EH ,延长DC 到P ,使CP =AM =2,证△BAM ≌△BCP 得∠ABM =∠CBP ,BM =BP ,再证△MBN ≌△PBN 得MN =PN ,设CN =x ,则MN =PN =CN+PC =x+2,DN =4﹣x ,在Rt △DMN 中,由DM 2+DN 2=MN 2求得x =43,再在△BCN 中利用勾股定理求解可得.【详解】解:(1)如图1,过点G作GM⊥BC于M,则∠GMB=∠GMF=90°,∵四边形ABCD是正方形,∴AD=AB,∠A=∠B=90°,∴四边形ABMG是矩形,∴AG=BM,∵DE⊥GF,∴∠ADE+∠DGF=∠ADE+∠AED=90°,∴∠AED=∠DGF,又∠DGF=∠MFG,∴∠AED=∠MFG,∴△DAE≌△GMF(AAS),∴AE=MF,则BF=BM+MF=AG+AE;(2)如图2,过点E作EQ∥PC,交BC于点Q,∵P是EF的中点,∴PC是△EQF的中位线,则EQ=2PC,QC=CF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,又∵∠A=∠DCF=90°,AD=CD,∴△ADE≌△CDF(ASA),∴AE=CF=QC,∵AB=BC,∴BE=BQ,则∠BEQ=45°,∴EQ,则2PC BE,∴BE;(3)如图3所示,作BM∥GF交AD于M,作BN∥EH交CD于N,则四边形BFGM和四边形BEHN是平行四边形,∴BM=GF,BF=MG=1,BN=EH,∵DG=1,CD=AD=4,∴AM=2,延长DC到P,使CP=AM=2,∵BA=BC,∠A=∠BCP=90°,∴△BAM≌△BCP(SAS),∴∠ABM=∠CBP,BM=BP,∵∠GOH=45°,BN∥EH,BM∥GF,∴∠MBN=45°,∴∠ABM+∠CBN =45°,∴∠CBP+∠CBN =45°,即∠PBN =45°, ∴△MBN ≌△PBN (SAS ), ∴MN =PN ,设CN =x ,则MN =PN =CN+PC =x+2,DN =4﹣x ,在Rt △DMN 中,由DM 2+DN 2=MN 2可得22+(4﹣x )2=(x+2)2,解得x =43,则EH =BN =3,. 【点评】本题考查正方形背景中的线段和差,线段倍分,求线段长问题,掌握垂线的性质,平行线的性质,全等三角形的性质与判定,勾股定理等知识,引垂线构造全等,转化线段的相等关系,利用平行线,构造中位线与等腰直角三角形,确定倍数关系,利用勾股定理解决线段的长度问题.18.【答案】(1)见解析;(2)见解析;(3)8-.【分析】(1)先证明:ODN NAH ∠=∠, 再证明:DON AOM ≌,可得结论;(2)利用正方形的性质证明:AC BD ⊥, 45CDO ∠=︒, 结合:DON AOM ≌,利用全等三角形的性质证明:45NMO ∠=︒, 可得://,ED MN 结合://EN BD , DH AE ⊥, 从而可得结论;(3)利用正方形的性质先求解AC = 再利用菱形的性质可得:AH 是DN 的垂直平分线,证明4AN AD ==,求解4NC =, 再证明:,CN EN = 利用勾股定理可得答案. 【详解】(1)证明:∵DH ⊥AE , ∴∠DHA =90°, ∴∠NAH +∠ANH =90°,∵∠ODN +∠DNO =90°,∠ANH =∠DNO , ∴∠ODN =∠NAH , 在DON △和AOM 中,ODN HAN DON AOM OD OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴DON AOM ≌(AAS ), ∴OM =ON ;(2)证明: 正方形ABCD ,AC BD ∴⊥, 45CDO ∠=︒,由(1)可知,DON AOM ≌, ∴OM =ON ,∴∠NMO =45°=∠CDO , ∴ED ∥NM , ∵EN ∥DM ,∴四边形DENM 是平行四边形, ∵DN ⊥AE ,∴平行四边形DENM 是菱形;(3)∵四边形ABCD 为正方形,AD =4, ∴AC= ∵四边形DENM 是菱形,∴AH 是DN 的垂直平分线, ∴AN =AD =4, ∴NC=4, ∵EN ∥DM ,∴∠ENC =∠DOC =90°, ∵∠ECN =45°,∴EC=8==-【点评】本题考查的是三角形全等的判定与性质,垂直平分线的性质,勾股定理的应用,平行四边形的判定,菱形的判定,正方形的性质,掌握以上知识是解题的关键. 19.【答案】(1)见解析;(2【分析】(1)直接利用旋转的性质得出△AQE ≌△AFE (SAS ),进而得出∠AEQ =∠AEF ,即可得出答案;(2)由全等三角形的性质可得QE =EF ,∠ADF =∠ABQ ,再结合勾股定理得出答案. 【详解】证明:(1)∵将△ADF 绕点A 顺时针旋转90°后,得到△ABQ , ∴QB =DF ,AQ =AF ,∠BAQ =∠DAF , ∵∠EAF =45°, ∴∠DAF +∠BAE =45°, ∴∠QAE =45°, ∴∠QAE =∠FAE , 在△AQE 和△AFE 中,AQ AF QAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AQE ≌△AFE (SAS ), ∴∠AEQ =∠AEF , ∴EA 是∠QED 的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,∠ADF=∠ABQ,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,∴∠ABQ=45°,∴∠QBE=∠ABQ+∠ABD=90°,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2=1+9=10,∴EF.【点评】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,证明△AQE≌△AFE是解题关键.20.【答案】(1)见解析;(2)∠AEF=45°;(3)10﹣【分析】(1)过点B作BF∥MN交CD于点F,则四边形MBFN为平行四边形,得出MN=BF,BF ⊥AE,由ASA证得△ABE≌△BCF,得出AE=BF,即可得出结论;(2)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,则四边形ABIH为矩形,得出HI ⊥AD,HI⊥BC,HI=AB=AD,证△DHQ是等腰直角三角形,得HD=HQ,AH=QI,由HL证得Rt △AHQ≌Rt△QIE,得∠AQH=∠QEI,证∠AQE=90°,得△AQE是等腰直角三角形,即可得出结果;(3)延长AG交BC于E,则EG=AG=6,得AE=12,由勾股定理得BE=,则CE=BC﹣BE=10﹣,由折叠的性质即可得出结果.【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC,AB∥CD,过点B作BF∥MN交CD于点F,如图1所示:∴四边形MBFN 为平行四边形, ∴MN =BF ,BF ⊥AE , ∴∠ABF +∠BAE =90°, ∵∠ABF +∠CBF =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中,90BAE CBF AB BC ABE BCF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△ABE ≌△BCF (ASA ), ∴AE =BF , ∴AE =MN ;(2)解:连接AQ ,过点Q 作HI ∥AB ,分别交AD 、BC 于点H 、I ,如图2所示:∵四边形ABCD 是正方形, ∴四边形ABIH 为矩形,∴HI ⊥AD ,HI ⊥BC ,HI =AB =AD ,∵BD 是正方形ABCD 的对角线, ∴∠BDA =45°,∴△DHQ 是等腰直角三角形, ∴HD =HQ ,AH =QI , ∵MN 是AE 的垂直平分线, ∴AQ =QE ,在Rt △AHQ 和Rt △QIE 中,AQ QEAH QI =⎧⎨=⎩, ∴Rt △AHQ ≌Rt △QIE (HL ), ∴∠AQH =∠QEI , ∴∠AQH +∠EQI =90°, ∴∠AQE =90°,∴△AQE 是等腰直角三角形,∴∠EAQ =∠AEQ =45°,即∠AEF =45°; (3)解:延长AG 交BC 于E ,如图3所示:则EG =AG =6, ∴AE =12,在Rt △ABE 中,BE ==∴CE=BC﹣BE=10﹣,由折叠的性质得:AC'=CE=10﹣,故答案为:10﹣.【点评】本题是四边形综合题,主要考查了正方形的性质、平行四边形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、折叠的性质、垂直平分线的性质、勾股定理、平行线的性质等知识;熟练掌握正方形的性质和折叠的性质是解题的关键.21.【答案】(1)(2,);(2)不变【详解】解:(1)如图1,过A作AD⊥y轴,交y轴于点Dθ=︒,正方形OABC的边长是4∵AD⊥y轴,30∴AD=2,∴A的坐标是(2,(2)P值无变化.证明:延长BA交y轴于E点.(如图2)在△OAE 与△OCN 中90?AOE CON OAE OCN OA OC =⎧⎪==⎨⎪=⎩∠∠∠∠∴△OAE ≌△OCN (AAS ) ∴OE=ON ,AE=CN .在△OME 与△OMN 中45?OE ON MOE MON OM OM =⎧⎪∠=∠=⎨⎪=⎩,∴△OME ≌△OMN (SAS ) ∴MN=ME=AM+AE , ∴MN=AM+CN ,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=8.∴在旋转正方形OABC 的过程中,P 值无变化.【点评】此题主要考查了一次函数的综合应用、全等三角形的判定与性质等知识,利用图形旋转的变化规律得出对应边之间关系是解题关键.22.【答案】(1)①BC ⊥CF ;②BC =CF+CD ;(2)BC ⊥CF 成立;BC =CD+CF 不成立,CD =CF+BC ,见解析;(3.【分析】(1)①由题意易得∠BAC =∠DAF =90°,则有∠BAD =∠CAF ,进而可证△DAB ≌△FAC ,然后根据三角形全等的性质可求解;②由△DAB ≌△FAC 可得CF =BD ,然后根据线段的数量关系可求解;(2)由题意易证△DAB ≌△FAC ,则可得∠ACB =∠ABC =45°,进而可得BC ⊥CF ,然后根据线段的数量关系可求解;(3)过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,则有DH =CH+CD =3,进而可求四边形CMEN 是矩形,然后可得△ADH ≌△DEM ,则可证△BCG 是等腰直角三角形,最后根据勾股定理可求解.【详解】解:(1)①∵正方形ADEF 中,AD =AF ,∠DAF =90°, ∴∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,在△DAB 与△FAC 中,AD AFBAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△FAC (SAS ),。

最新中考数学总复习专题训练:四边形(解析版)

最新中考数学总复习专题训练:四边形(解析版)

最新中考数学总复习专题训练四边形一、选择题1.若正多边形的一个外角是,则该正多边形的内角和为()A. B. C. D.2.如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()A. 26cmB. 24cmC. 20cmD. 18cm3.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A. 28°B. 52°C. 62°D. 72°4.如图,平行四边形ABCD中,AE⊥BC,AF⊥DC,AB:AD=2:3,∠BAD=2∠ABC,则CF:FD的结果为()A. 1:2B. 1:3C. 2:3D. 3:45.如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A. 1<m<11B. 2<m<22C. 10<m<12D. 2<m<66.把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A. 9B. 10C. 11D. 以上都有可能7.如图,在正方形ABCD中,对角线AC,BD交于点0,过点0的直线分别交边AD,BC于点E,F,EF=6.则AE2+BF2的值为()A. 9B. 16C. 18D. 368.已知ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 对角线互相平分的四边形是平行四边形9.如图,□ABCD的周长为36,对角线AC、BD相交于点O.点E是CD的中点,BD=14,则△DOE的周长为()A. 50B. 32C. 16D. 910.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E.则阴影部分面积为()A. 6-πB. 2 -πC. πD. π11.如图,ABCD中,点E,F分别在AD,AB上,依次连接EB,EC,FC,FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A. 4B. 5C. 6D. 7二、填空题12.如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC= ,AC=6,则BD的长是________.13.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.14.点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H 分别是BC边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是________15.如图,正六边形的顶点分别在正方形的边上.若,则=________.16.如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.17.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是_________.(把你认为正确的都填上)18.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3 M2,对角线A1 M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n________.三、解答题19.如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F。

2021年九年级中考数学复习:四边形专练

2021年九年级中考数学复习:四边形专练
A. B. C. D.
11.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BO的长为( )
A.5B.8C.10D.11
12.如图,在 中, ,点 是斜边 的中点,分别以点 , 为圆心,以 的长为半径画弧,两弧交于点 ,连接 , , 得到四边形 ,依次连接四边形 四条边中点得到四边形 ,若 ,那么四边形 的周长为()
A. B. C. D.
13.如图,菱形 的边长为 ,对角线 , 交于点 , ,则菱形 的面积为()
A. B. C.2D.4
14.如图,在菱形 中, ,E、F分别是边 、 的中点, 于点P,则 的度数是().
A.50°B.45°C.40°D.30°
15.如图,在矩形 中, 平分 交 于点 , 交 于点 ,若 , ,则 等于()
A.5B.6C.7D.8
16.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为2的等边三角形,则正方形的边长是( )
A. B. +1C. D.
17.如图,边长为 的正方形 的对角线 与 交于点 ,将正方形 沿直线 折叠,点 落在对角线 上的点 处,折痕 交 于点 ,则 长是().
A.①②B.③④C.①③④D.①②③④
23.如图,在平面直角坐标系中,菱形 的顶点A,D在反比例函数 的图象上,对角线 平行x轴,点O在 上,且 ,连接 , ,若 ,则k的值为()
A.25B. C.45D.
24.如图,在平面直角坐标系中,平行四边形 的边 在y轴的正半轴上,反比例函数 的图像分别交 于中点D,交 于点E,且 ,连接 ,若 ,则k的值为()
21.如图,在平面直角坐标系中,四边形OABC是菱形,∠AOC=120°,点B的坐标为(6,0),点D是边BC的中点,现将菱形OABC绕点O顺时针旋转,每秒旋转60°,则第2021秒时,点D的坐标为( )

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021中考数学三轮复习专题:正方形及四边形综合问题一、选择题1. 下列条件不能判断▱ABCD是正方形的是()A.∠ABC=90°且AB=ADB.AB=BC且AC⊥BDC.AC⊥BD且AC=BDD.AC=BD且AB=BC2. 下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形又是中心对称图形3. 如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.24. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.-1 D.5. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A 顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.6. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A. 2B. 3C. 2D. 17. (2020·温州)如图,在R t△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为A.14 B.15 C.83D.658. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)10. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且E,A,B三点共线,AB=4,则阴影部分的面积是.11. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.12. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,若△EFC的周长为12,则EC的长为.13. 如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是________.14. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:________,使得▱ABCD为正方形.15. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.16. 七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图①所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图②所示的“拼搏兔”造型(其中点Q,R分别与图②中的点E,G 重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是.三、解答题17. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC 于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.18. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C 作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.19. (2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.20. 已知,在Rt△ABC中,∠ACB=90°,BC=AC,AB=6,D是AB的中点,动点E从点D出发,在AB边上向左或右运动,以CE为边向左侧作正方形CEFG,直线BG,FE相交于点N(点E向左运动时如图①,点E向右运动时如图②).(1)在点E的运动过程中,直线BG与CD的位置关系为________;(2)设DE=x,NB=y,求y与x之间的函数关系式,并求出y的最大值;(3)如图②,当DE的长度为3时,求∠BFE的度数.21. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.2021中考数学三轮复习专题:正方形及四边形综合问题-答案一、选择题1. 【答案】B[解析]A.▱ABCD中,若∠ABC=90°,则▱ABCD是矩形,再由AB=AD 可得是正方形,故此选项错误;B.▱ABCD中,若AB=BC,则▱ABCD是菱形,再由AC⊥BD仍可得是菱形,不能判定为正方形,故此选项正确;C.▱ABCD中,若AC⊥BD,则▱ABCD是菱形,再由AC=BD可得是正方形,故此选项错误;D.▱ABCD中,若AC=BD,则▱ABCD是矩形,再由AB=BC可得是正方形,故此选项错误.故选B.2. 【答案】B3. 【答案】D[解析]由旋转的性质可知,△ADE ≌△ABF ,∴BF=DE=1,∴FC=6,∵CE=4,∴EF===2.故选:D .4. 【答案】C[解析]连接EF .∵AE=AF ,∠EAF=60°,∴△AEF 为等边三角形,∴AE=EF .∵四边形ABCD 为正方形,∴∠B=∠D=∠C=90°,AB=AD ,∴Rt △ABE ≌Rt △ADF (HL),∴BE=DF ,∴EC=CF .设CF=x ,则EC=x ,AE=EF==x ,BE=1-x.在Rt △ABE 中,AB 2+BE 2=AE 2,∴1+(1-x )2=(x )2,解得x=-1(舍负).故选C .5. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x xx x +-=-+-,解得:x =154.故选B.6. 【答案】B【解析】∵AB =2,∴BF =2,又∵BM =12BC =1,由勾股定理得FM =FB 2-BM 2= 3.7. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP ∽△CBQ ,所以CD DP CB BQ =,即2CD CD PECB CB PE-=-,解得:BC =2CD ,所以CQ =2CP ,则CP =5,CQ =10,由于PQ ∥AB ,所以∠CBA =∠BCQ =∠DCP ,则tan ∠BCQ =tan ∠DCP =tan ∠CBA =12,不妨设DP =x ,则DC =2x ,在R t △DCP 中,22(2)25x x +=,解得x 5∴DC =5,BC =5AB =10,△ABC 的斜边上的高=25454AC BC AB ⋅⨯==,所以CR =14,所以因此本题选A .8. 【答案】⎝⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题9. 【答案】-1 [解析]∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到正方形FECG 的位置,使得点D 落在对角线CF 上, ∴CF=,∠CFE=45°,∴△DFH 为等腰直角三角形,∴DH=DF=CF -CD=-1.故答案为-1.10. 【答案】8[解析]∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠CAE+∠BAF=90°,又∠CAE+∠ECA=90°,∴∠ECA=∠BAF,则在△ACE和△F AB中,∵∴△ACE≌△F AB(AAS),∴AB=CE=4,∴阴影部分的面积=AB·CE=×4×4=8.11. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.12. 【答案】5[解析]∵四边形ABCD 是正方形,AC 为对角线,∴∠F AE=45°,又∵EF ⊥AC , ∴∠AFE=90°,∴∠AEF=45°, ∴EF=AF=3,∵△EFC 的周长为12, ∴FC=12-3-EC=9-EC ,在Rt △EFC 中,EC 2=EF 2+FC 2, ∴EC 2=9+(9-EC )2, 解得EC=5.13. 【答案】(3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).解图14. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.15. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE=90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.16. 【答案】4[解析]如图,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4.三、解答题17. 【答案】【思维教练】求三条线段之间的关系,一般是线段的和差关系或线段平方的和差关系.由ABCD是正方形,BD是角平分线,可想到连接CG,易得CG=AG,再由四边形CEGF是矩形可得AG2=GE2+GF2;(2)给出∠AGF=105°,可得出∠AGB=60°,再由∠ABG=45°,可想到过点A作BG的垂线,交BG于点M,分别在两个直角三角形中得出BM和MG的长,相加即可得出BG的长.解:(1)AG2=GE2+GF2;(1分)理由:连结CG,∵ABCD是正方形,∴∠ADG=∠CDG=45°,AD=CD,DG=DG,∴△ADG≌△CDG,(2分)∴AG=CG,又∵GE⊥DC,GF⊥BC,∠GFC=90°,∴四边形CEGF是矩形,(3分)∴CF=GE,在直角△GFC中,由勾股定理得,CG2=GF2+CF2,∴AG2=GE2+GF2;(4分)(2)过点A作AM⊥BD于点M,∵GF⊥BC,∠ABG=∠GBC=45°,∴∠BAM=∠BGF=45°,∴△ABM,△BGF都是等腰直角三角形,(6分)∵AB=1,∴AM=BM=2 2,∵∠AGF=105°,∴∠AGM=60°,∴tan60°=AMGM,∴GM=66,(8分)∴BG=BM+GM=22+66=32+66.(10分)18. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF.(2)∵AB是☉O的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE+∠ECF=90°,∠D+∠EFC=90°.由(1)得∠ECF=∠CFE,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF.即点E为线段DF的中点.①四边形ECFG为菱形时,CF=CE.∵CE=EF,∴CE=CF=EF.∴△CEF为等边三角形.∴∠CFE=60°.∴∠D=30°. 故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE , ∴∠D=∠DCE=22.5°. 故填22.5°.19. 【答案】解: (1)(2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠BAB′=,∴∠AB′B=90°-2a,∵∠B′AD=a -90°,AD=AB′,∴∠AB′D=135-2a,∴∠EB′D=∠AB′D -∠AB′B=45°.∵DE ⊥BB′,∴∠EDB′=∠EB′D=45°,∴△DEB′是等腰直角三角形,∴DB DE′∵四边形ABCD 为正方形,∴BD CD BDC=45°.∴DB DE ′=BDCD, ∵∠EDB ′=∠BDC ,∴∠EDB′+∠EDB=∠BDC+∠EDB ,即∠BDB′=∠CDE.∴△B′DB ∽△EDC ,∴2BB BD CE CD′; ②3或1.思路提示:分两种情况.情形一,如图,当点B′在BE 上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m ,于是得到BE B E ′2=3m mm.情形二,如图,当点B′在BE 延长线上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m 。

2021年九年级中考数学三轮综合复习专题:四边形专项(一)

2021年九年级中考数学三轮综合复习专题:四边形专项(一)

2021年九年级中考数学三轮综合复习专题:四边形专项(一)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,H是AF的中点,CH=3,那么CE的长是()A.3 B.4 C.D.2.如图,正方形ABCD中,AC、BD相交于点O,P是BC边上的一点,且PC=2PB,连接AP、OP、DP,线段AP、DP分别交对角线BD、AC于点E、F.过点E作EQ⊥AP,交CB的延长线于Q.下列结论中:①∠PAO+∠PDO+∠APD=90°;②AE=EQ;③sin∠PAC=;④S正方形ABCD =10S四边形OEPF,其中正确的结论有()A.1个B.2个C.3个D.4个3.如图,在菱形ABCD中,O、E分别是AC、AD的中点,连接OE,若AB=3,AC=4,则tan ∠AOE的值为()A.B.C.D.4.如图,已知菱形OABC的顶点O(0,0),C(2,0)且∠AOC=60°,若菱形绕点O逆时针旋转,每秒旋转45°,则第2020秒时,菱形的对角线交点D的坐标为)A.(3,﹣)B.(﹣1,﹣)C.()D.()5.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD 一定是等腰三角形.其中正确的结论有()A.①②④B.①②③C.②③④D.①②③④6.如图,在平行四边形ABCD中,∠ABC=60°,过对角线BD上任意一点P作EF∥BC,GH ∥AB,且AH=2HD,若S=1,则S▱ABCD=()△HDPA.9 B.C.12 D.187.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当四边形ABCD的中点四边形EFGH是菱形时,则四边形ABCD也是菱形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=10cm,点P从点A出发,以1cm/s的速度向D运动,同时,点Q从点C以相同的速度向B运动.当点P运动到点D时,点Q 随之停止运动.若设运动的时间为t秒,以点A、B、C、D、P、Q任意四个点为顶点的四边形中同时存在两个平行四边形,则t的值是()A.2 B.3 C.4 D.59.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE 的度数为()A.22.5°B.27.5°C.30°D.35°10.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF,AF.若AB=2,AD=3,则∠AEF的大小为()A.30°B.45°C.60°D.不能确定11.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,S=24,则OH的长为()菱形ABCDA.B.3 C.D.12.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和213.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,sinα等于()A.B.C.D.14.如图所示,AB⊥AD于点A,CD⊥AD于点D,∠C=120°.若线段BC与CD的和为12,则四边形ABCD的面积可能是()A.24B.30C.45 D.15.在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC,垂足为E,交BC于点E,若AC=,AE=2,则菱形ABCD的面积为()A.5 B.4 C.2D.316.某小区打算在一块长80m,宽7.5m的矩形空地的一侧,设置一排如图所示的平行四边形倾斜式停车位若干个(按此方案规划车位,相邻车位间隔线的宽度忽略不计).已知规划的倾斜式停车位每个车位长6m,宽2.5m,如果这块矩形空地用于行走的道路宽度不小于4.5m,那么最多可以设置停车位()A.16 个B.15 个C.14 个D.13 个17.如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,OC=4,∠AOC=60°且以点O 为圆心,任意长为半径画弧,分别交OA、OC于点D、E;再分别以点D、点E为圆心,大于DE的长度为半径画弧,两弧相交于点F,过点O作射线OF,交BC于点P.则点P 的坐标为()A.(4,2)B.(6,2)C.(2,4)D.(2,6)18.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE,添加一个条件,使四边形AEBD是菱形,这个条件是()A.∠BAD=∠BDA B.AB=DE C.DF=EF D.∠BDC=∠BAD 19.如图,五边形ABCDE中,AE∥BC,AC,BE交于点O,四边形OCDE是平行四边形,若△ABE的面积是5,四边形OCDE的面积是6,则△AOE的面积是()A.2 B.2.5 C.3 D.420.如图,在边长为的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=5的点P的个数是()A.0 B.4 C.8 D.16参考答案1.解:连接AC,CF,如图,∵四边形ABCD和四边形CEFG为正方形,∴AB=BC=1,CE=EF,∠ACD=∠GCF=45°.∴∠ACF=45°×2=90°.∵H是AF的中点,CH=3,∴AF=2CH=6.在Rt△ABC中,AC=BC=.在Rt△ACF中,CF==.在Rt△ECF中,∵CE2+EF2=CF2,CE=EF,∴CE=CF==.故选:D.2.解:①∵∠POB=∠PDO+∠OPD,∠POC=∠PAO+∠APO,∠POB+∠POC=∠BOC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠PDO+∠OPD+∠PAO+∠APO=90°,∴∠PAO+∠APO+∠PDO=90°,∴①正确;②连接AQ,∵QE⊥AP,∴∠QEP=∠AEQ=∠ABQ=90°,∴A、Q、B、E四点共圆,∴∠AQE=∠ABE=∠ABC=45°,∴∠QAE=45°,∴AE=EQ,∴②正确;③过P作AC的垂线于点G,设BP=a,PC=2a,∴BC=3a,∴AP==a,∴AC=3a,∴AO=BO=a,∵BD⊥AC,PE⊥AC,∴BD∥PG,∴===,∴PG=×a=a,∴sin∠PAC==,∴③错误;④∵AD∥BC,∴△BEP∽△DEA,△PFC∽△DFA,∴BE:DE=1:3,CF:AF=2:3,∴BE:ED=1:1,OF:CF=1:4,设设S △BEP =s ,则S △OEP =s ,S △BPO =2s ,S △POC =4s ,∴S △OPE =s ,∴S △BCO =2s +4s =6s ,∴S 四边OPEQ =s +s =s ,S 正方形ABCD =4s ×6=24s ,∴④错误,综上①②正确,故选:B .3.解:连接OD ,如图所示:∵四边形ABCD 为菱形,∴AD =CD =AB =3,∵O 是AC 的中点∴OD ⊥AC ,OA =OC =AC =2, 由勾股定理得,OD ===,∵O 、E 分别是AC 、AD 的中点,∴OE 是△ACD 的中位线,∴OE ∥CD ,∴∠AOE =∠ACD ,∴tan ∠AOE =tan ∠ACD ==, 故选:B .4.解:连接AC 、OB 交于点D ,过A 作AE ⊥OC 于E ,如图所示: ∵C (2,0),∴OC =2,∵四边形OABC 是菱形,∴OA=OC,AD=CD,∵∠AOC=60°,∴△AOC是等边三角形,∴OA=OC=2,∵AE⊥OC,∴OE=OC=1,∴AE===,∴A(1,),∴D(,),∵菱形绕点O逆时针旋转,每秒旋转45°,45°×8=360°,∴转8秒回到原位置,∵2020÷8=252.5(周),即菱形OABC旋转了252周半,此时位于第三象限,∴此时菱形的对角线交点的坐标为(﹣,﹣),故选:D.5.解:延长PF交AB于点G,∵PF⊥CD,AB∥CD,∴PG⊥AB,即∠PGB=90°.∵PE⊥BC,PF⊥CD,∴四边形GBEP为矩形,又∵∠PBE=∠BPE=45°,∴BE=PE,∴四边形GBEP为正方形,四边形PFCE为矩形.∴GB=BE=EP=GP,∴GP=PE,AG=CE=PF,又∠AGP=∠C=90°,∴△AGP≌△FPE(SAS).∴AP=EF,∠PFE=∠BAP,故①、②正确;在Rt△PDF中,由勾股定理得PD=,故③正确;∵P在BD上,∴当AP=DP、AP=AD、PD=DA时,△APD才是等腰三角形,∴△APD是等腰三角形共有3种情况,故④错误.∴正确答案有①②③,故选:B.6.解:由题意可得,四边形HPFD是平行四边形,四边形AEPH、四边形PGCF均为平行四边形,且它们的面积相等,四边形EBGP是平行四边形,∵S=1,△HDP∴S▱HPDF=2,∵AH=2HD,∴S▱AEPH=S▱PGFC=4,∴S▱EBGP=8,∴S▱ABCD=2+4+4+8=18,故选:D.7.解:连接AC,BD,∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形;(①正确)∵四边形ABCD是矩形,∴AC=BD,∵EF=AC,EH=BD,∴EF=EH,∴四边形EFGH是菱形;(②错误)∵四边形EFGH是菱形,∴AC⊥BD,∴四边形ABCD不一定是矩形;(③错误)∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,∴四边形EFGH是正方形.(④正确)∴正确的是①④.故选:B.8.解:A.t=2时,AP=2cm,PD=3cm,CQ=2cm,BQ=8cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;B.t=3时,AP=3cm,PD=2cm,CQ=3cm,BQ=7cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;C.t=4时,AP=4cm,PD=1cm,CQ=4cm,BQ=6cm,因AD∥BC,此时只构成一个平行四边形APCQ,不符合题意.D.t=5时,AP=5cm,CQ=5cm,BQ=5cm,则CQ=BQ=AD,因AD∥BC,此时有2个平行四边形:平行四边形ADCQ和平行四边形ADQB,符合题意.故选:D.9.解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°.故选:A.10.解:∵四边形ABCD是矩形,AD=3,AB=2,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵点E是CD的中点,FC=2BF,∴CE=DE=1,BF=1,CF=2,∴AB=CF=2,CE=BF=1,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴AF=EF,∠BAF=∠CFE,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣(∠CFE+∠AFB)=180°﹣9°=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,故选:B.11.解:∵四边形ABCD是菱形,∴AC⊥BD,DO=BO,AO=OC,∵OA=4,∴AC=2OA=8,=24,∵S菱形ABCD∴8×BD=24,解得:BD=6,∵DH⊥BC,∴∠DHB=90°,∵DO=BO,∴OH=BD=6=3,故选:B.12.解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.13.解:如图,∵四边形ABCD和四边形EFGH是矩形,∴∠ADC=∠HDF=90°,CD=AB=2cm,∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°,∴△CDM≌△HDN(ASA),∴MD=ND,且四边形DNKM是平行四边形,∴四边形DNKM是菱形,∴KM=MD,∵sinα=sin∠DMC=,∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=KM=acm,则CM=8﹣a(cm),∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=(cm),∴sinα=sin∠DMC===,故选:B.14.解:过C作CH⊥AB于H,∵AB⊥AD,CD⊥AD,∴∠A=∠ADC=∠AHC=90°,CD∥AB,∴四边形ADCH是矩形,四边形ABCD是直角梯形,∴∠DCH=90°,CD=AH,∵∠BCD=120°,∴∠BCH=30°,设BC=x,则CD=12﹣x,∴AH=12﹣x,BH=x,CH=x,∴四边形ABCD的面积=(CD+AB)•CH=(12﹣x+12﹣x+x)×x,∴四边形ABCD的面积=﹣(x﹣8)2+24,∴当x=8时,四边形ABCD的面积有最大值24,即四边形ABCD的面积可能是24,故选:A.15.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=,∵AE⊥BC,∴△ABC的面积=BC×AE=AC×OB,∴==,设BC=x,则OB=2x,在Rt△OBC中,由勾股定理得:(x)2﹣(2x)2=()2,解得:x=,∴BC=,∴菱形ABCD的面积=BC×AE=×2=5;故选:A.16.解:如图,根据题意可知:AB=7.5,BC≥4.5,∴AC≤3,当AC=3时,∵AD=GF=6,∴∠ADC=30°,CD=3,∴∠EFD=∠ADC=30°,∵DE=2.5,∴DF=5,设最多可以设置停车位x个,根据题意可得,∵S=DF•AC=5×3=15,平行四边形ADFGS=CD•AC=,△ADC∴15x+2×≤80×3,解得x≤14.96,所以最多可以设置停车位14个.故选:C.17.解:延长BC交y轴于E,如图所示:则BE⊥y轴,∴∠OEC=90°,∵∠AOC=60°,∴∠COE=30°,∴CE=OC=2,OE=CE=2,由题意得:OP平分∠AOC,∴∠AOP=∠COP,∵四边形OABC是平行四边形,∴OA∥BC,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴PC=OC=4,∴PE=PC+CE=6,∴点P的坐标为(6,2);故选:B.18.解:添加一个条件∠BDC=∠BAD,使四边形AEBD是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠BAD=∠C,∴AD∥BE,∴∠ADF=∠BEF,∵点F是AB的中点,∴AF=BF,在△ADF和△BEF中,,∴△ADF≌△BEF(AAS),∴AD=BE,又∵AD∥BE,∴四边形AEBD是平行四边形,∵∠BDC=∠BAD,∠BAD=∠C,∴∠BDC=∠C,∴BD=BC,∵AD=BC,AD=BE,∴BD=BE,∴四边形AEBD是菱形;故选:D.19.解:连接EC,如图:∵AE∥BC,∴△ABE和△ACE同底等高,∴S△ACE =S△ABE=5.∵四边形OCDE是平行四边形,∴OE=DC,OC=DE.在△OCE和△DEC中,,∴△OCE≌△DEC(SSS).∴S△OCE =S△DEC=S四边形OCDE=×6=3,∴S△AOE =S△ACE﹣S△OCE=5﹣3=2.故选:A.20.解:作点F关于BC的对称点M,连接CM,连接EM交BC于点P,如图所示:则PE+PF的值最小=EM;∵点E,F将对角线AC三等分,且边长为,∴AC=15,∴EC=10,FC=5=AE,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=,同理:在线段AB,AD,CD上都存在1个点P,使PE+PF=5;∴满足PE+PF=5的点P的个数是4个;故选:B.。

初三数学综合巩固训练-----四边形

初三数学综合巩固训练-----四边形

初三数学综合巩固训练-----四边形一:知识点回顾(1)两组对边分别________的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作________。

(2)平行四边形的两组对边分别________且________;平行四边形的两组对角分别________;两邻角________;平行四边形的对角线________;平行四边形的面积=底边长×________.(3)平行四边形的判定的方法有从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角__________的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形__________是平行四边形.(4) ①三角形的中位线:连结三角形两边_________叫做三角形的中位线.②三角形的中位线定理是三角形的中位线_________第三边,并且等于_________.矩形(5) ①矩形的定义:_________________的平行四边形叫做矩形.②矩形的性质:矩形是一个特殊的平行四边形,它具有四边形和平行四边形所有的性质,还有:矩形的四个角___________;矩形的对角线___________;矩形是轴对称图形,它的对称轴是___________.③矩形的判定:一个角是直角的___________是矩形;对角线___________的平行四边形是矩形;有___________个角是直角的四边形是矩形菱形(6)菱形的定义:_______________的平行四边形叫做菱形.(7)菱形的性质:菱形是特殊的平行四边形,它具有四边形和平行四边形的_________还有:菱形的四条边_________;菱形的对角线_________,并且每一条对角线平分_________;菱形的面积等于_________,它的对称轴是_________.(8)菱形的判定:一组邻边相等的_________是菱形;四条边_________的四边形是菱形;对角线_________的平行四边形是菱形.正方形(1)正方形的定义:有一组邻边_____并且有一个角是_____的平行四边形叫做正方形,因此正方形既是一个特殊的有一组邻边相等的_____,又是一个特殊的有一个角是直角的_______.(2)正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都________;四条边都________且________;正方形的两条对角线________,并且互相________,每条对角线平分________对角.它有________条对称轴.(3)正方形的判定:①_____________的平行四边形是正方形;②_____________的矩形是正方形;③______________的菱形是正方形;(4)对角线________________的四边形是正方形.二:综合运用1.已知:如图,□ABCD中,AE、CF分别平分∠BAD、∠BCD.求证:AE=CF.2.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.3.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.4.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.5.已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.6.已知:如图,DB ∥AC ,且,21AC DB E 是AC 的中点,求证:BC =DE .7.已知:如图,四边形ABCD 中,AB =DC ,AD =BC ,点E 在BC 上,点F 在AD 上,AF =CE ,EF 与对角线BD 交于点O ,求证:O 是BD 的中点.8.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.9.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.10.已知:如图,E 为□ABCD 中DC 边的延长线上一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .11.已知:如图△ABC 中,D 是BC 边的中点,AE 平分∠BAC ,BE ⊥AE 于E 点,若AB =5,AC =7,求ED .12. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________13.如上图右,在Rt △ABC 中,∠ACB =90°,AC =3,AB =6,点D 是AB 的中点,则∠ACD =_________°.14.如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=21BC ,连结DE ,CF 。

初三数学四边形练习题

初三数学四边形练习题

初三数学四边形练习题第一题:计算正方形的周长和面积已知一个正方形的边长为8cm,请你计算它的周长和面积。

解答:正方形的周长等于边长乘以4,所以这个正方形的周长为8cm×4 =32cm。

正方形的面积等于边长的平方,所以这个正方形的面积为8cm×8cm = 64cm²。

第二题:计算矩形的周长和面积已知一个矩形的长为12cm,宽为5cm,请你计算它的周长和面积。

解答:矩形的周长等于长乘以2加上宽乘以2,所以这个矩形的周长为12cm×2 + 5cm×2 = 34cm。

矩形的面积等于长乘以宽,所以这个矩形的面积为12cm×5cm =60cm²。

第三题:计算平行四边形的周长和面积已知一个平行四边形的底边长为6cm,高为4cm,请你计算它的周长和面积。

解答:平行四边形的周长等于底边长乘以2加上高乘以2,所以这个平行四边形的周长为6cm×2 + 4cm×2 = 20cm。

平行四边形的面积等于底边长乘以高,所以这个平行四边形的面积为6cm×4cm = 24cm²。

第四题:计算梯形的周长和面积已知一个梯形的上底长为8cm,下底长为12cm,高为5cm,请你计算它的周长和面积。

解答:梯形的周长等于上底长加下底长再加上梯形的两条斜边的长度,所以这个梯形的周长为8cm + 12cm + 2×斜边的长度。

梯形的面积等于上底长加下底长乘以高再除以2,所以这个梯形的面积为(8cm + 12cm)× 5cm ÷ 2 = 50cm²。

第五题:计算菱形的周长和面积已知一个菱形的对角线长度分别为6cm和8cm,请你计算它的周长和面积。

解答:菱形的周长等于对角线的长度乘以2,所以这个菱形的周长为(6cm + 8cm)× 2 = 28cm。

菱形的面积等于对角线长度之积再除以2,所以这个菱形的面积为6cm×8cm ÷ 2 = 24cm²。

2021年中考九年级数学专题复习过关训练:四边形综合型压轴题

2021年中考九年级数学专题复习过关训练:四边形综合型压轴题

2021年中考九年级数学专题复习过关训练:四边形综合型压轴题1、如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.2、如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.3、在⊥ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知⊥A=60°;(1)若BC =8,AB =6,当AP 的长为多少时,⊥CPE 的面积最大,并求出面积的最大值. (2)试探究当⊥CPE ⊥⊥CPB 时,⊥ABCD 的两边AB 与BC 应满足什么关系?4、已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE ⊥AP ,DF ⊥AP ,垂足分别是E 、F .(1)求证:EF=AE–BE ;(2)连接BF ,如果BF AF ADDF,求证:EF=EP .5、如图,在⊥ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF=BC ,求证:四边形OCFE 是平行四边形.6、如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD于点F ,AE 与BF 交于点P ,连接EF ,PD . (1)求证:四边形ABEF 是菱形;(2)若4AB =,6AD =,60ABC ∠=︒,求tan ADP ∠的值.7、如图1,2,已知四边形ABCD 为正方形,在射线AC 上有一动点P ,作PE ⊥AD (或延长线)于E ,作PF ⊥DC (或延长线)于F ,作射线BP 交EF 于G .(1)在图1中,设正方形ABCD 的边长为2, 四边形ABFE 的面积为y , AP =x ,求y 关于x 的函数表达式.(2)结论GB ⊥EF 对图13,图14都是成立的,请任选一图形给出证明; (3)请根据图14证明:△FGC ∽△PFB .8、在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE DE ,,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若20PAB ∠=︒,求ADF ∠的度数;(3)如图2,若4590PAB ︒<∠<︒,用等式表示线段AB FE FD ,,之间的数量关系,并证明.9、如图,矩形ABCD 中,AB=20,BC=10,点P 为AB 边上一动点,OP 交AC 于点Q . (1)求证:⊥APQ ⊥⊥CDQ ;(2)P 点从A 点出发沿AB 边以每秒1个单位长度的速度向B 点移动,移动时间为t 秒. ①当t 为何值时,DP ⊥AC ?图 1PD CBA A BCDP图 2②设S⊥APQ+S⊥DCQ=y,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.10、如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,⊥AEP=90°,且EP 交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.11、分别以□ABCD (CDA ∠≠90°) 的三边AB ,CD ,DA 为斜边作等腰直角三角形,△ABE ,△CDG ,△ADF .(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF与EF 的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.12、如图,在矩形ABCD 中,AB=4,BC=3,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD ﹣DO ﹣OC 以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ ⊥AB 于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与⊥ABD 重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒). (1)求点N 落在BD 上时t 的值;(2)直接写出点O 在正方形PQMN 内部时t 的取值范围;(3)当点P 在折线AD ﹣DO 上运动时,求S 与t 之间的函数关系式; (4)直接写出直线DN 平分⊥BCD 面积时t 的值.ABCDGF E图1ABCDGFE图213、菱形ABCD 的对角线AC,BD 相交于点O ,4AC BD ==,动点P 在线段BD 上从点B 向点D 运动,PP ′⊥AB 于点P ′,四边形PFBG 关于BD 对称。

初三数学中考冲刺四边形过关练习(SVIP)

初三数学中考冲刺四边形过关练习(SVIP)

初三数学中考冲刺四边形过关练习1.一个正多边形的每个外角都是36°,这个正多边形的边数是。

2.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形(只需添加一个即可)3.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为。

4.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为____________。

5.如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=____________。

6.一个多边形的内角和是720°,则这个多边形的边数是____________。

7.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为____________。

8.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求。

连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是。

9.如果菱形的两条对角线的长为a和b,且a,b满足那么菱形的面积等于___________。

10.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于___________。

11.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为____________.12.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=__________°。

13.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分。

2020年九年级数学中考三轮冲刺复习:《四边形综合训练》(解析版)

2020年九年级数学中考三轮冲刺复习:《四边形综合训练》(解析版)

中考三轮冲刺复习:《四边形综合训练》1.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t 2﹣32t +144=0无解,∴PB ≠BQ .③若PB =PQ .由PB 2=PQ 2,得4t 2+242=(32﹣4t )2+242 整理,得3t 2﹣64t +256=0.解得t 1=,t 2=16(舍去) 综合上面的讨论可知:当t =秒或t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形.(3)设存在时刻t ,使得PQ ⊥BD .如图2,过点Q 作QE ⊥AD 于E ,垂足为E .∵AD ∥BC∴∠BQF =∠EPQ ,又∵在△BFQ 和△BCD 中∠BFQ =∠C =90°,∴∠BQF =∠BDC ,∴∠BDC =∠EPQ ,又∵∠C =∠PEQ =90°,∴Rt △BDC ∽Rt △QPE ,∴=,即=,解得t =9.所以,当t =9秒时,PQ ⊥BD .2.综合与实践在Rt△ABC中,∠ACB=90°,点D为斜边AB上的动点(不与点A,B重合).(1)操作发现:如图①,当AC=BC=8时,把线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE.①∠CBE的度数为45°;②当BE=4时,四边形CDBE为正方形;(2)探究证明:如图②,当BC=2AC时,把线段CD绕点C逆时针旋转90°后并延长为原来的两倍,记为线段CE,连接DE,BE.①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形.解:(1)①∵∠ACB=90°,AC=BC,∴∠A=∠CBA=45°,∵∠ACB=90°,∠DCE=90°,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS)∴∠CBE=∠A=45°,故答案为:45°;②∵∠ACB=90°,AC=BC=8,∴AB==8,当四边形CDBE为正方形时,CD⊥AB,BE=BD=AD,∴BE=AB=4,故答案为:4;(2)①∠CBE=∠A.理由如下:∵BC=2AC,CE=2CD,∴==,∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴∠CBE=∠A;②证明:∵∠CBE=∠A,∠DBC+∠A=90°,∴∠DBE=∠DBC+∠CBE=∠DBC+∠A=90°,∵CD⊥AB,∴∠CDB=90°,又∵∠DCE=90°,∴四边形CDBE是矩形.3.如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合)EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP(2)若点E坐标为(3、0)时.①在y轴上是否存在点M使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.②在平面内是否存在点Q,使四边形CEPQ为正方形,若存在,请直接写出Q点坐标,若不存在,说明理由.(1)证明:如图1,在OC上截取OK=OE.连接EK,∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°,∵AP为正方形OCBA的外角平分线,∴∠BAP=45°,∴∠EKC=∠PAE=135°,∴CK=EA,∵EC⊥EP,∴∠CEF=∠COE=90°,∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA,在△CKE和△EAP中,,∴△CKE≌△EAP(ASA),∴EC=EP;(2)①解:y轴上存在点M,使得四边形BMEP是平行四边形.如图2,过点B作BM∥PE交y轴于点M,连接BP,EM,则∠CQB=∠CEP=90°,所以∠OCE=∠CBQ,∵在△BCM和△COE中,∵,∴△BCM≌△COE(ASA),∴BM=CE,∵CE=EP,∴BM=EP.∵BM∥EP,∴四边形BMEP是平行四边形,∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.故点M的坐标为(0,2).②如图3,存在点Q使四边形CEPQ是正方形,过点Q作QH⊥y轴于点Q,则∠QHC=∠COE=90°,∴∠HQC+∠HCQ=90°,∴∠HCQ+∠ECO=90°,∴∠ECO=∠CHQ,∵四边形CEPQ是正方形,∴CQ=EC,∴△HCQ≌△OEC(AAS),∴HC=OE=2,HQ=OC=5,则HO=7,∴点Q的坐标为(5,7).4.如图,正方形ABCD中,E为BC边上任意点,AF平分∠EAD,交CD于点F.(1)如图1,若点F恰好为CD中点,求证:AE=BE+2CE;(2)在(1)的条件下,求的值;(3)如图2,延长AF交BC的延长线于点G,延长AE交DC的延长线于点H,连接HG,当CG=DF时,求证:HG⊥AG.解:(1)如图1,延长BC交AF的延长线于点G,∵AD∥CG,又∵AF平分∠DAE,∴∠DAF=∠EAF,∴∠G=∠EAF,∴EA=EG,∵点F为CD的中点,∴CF=DF,又∵∠DFA=∠CFG,∠FAD=∠G,∴△ADF≌△GCF(AAS),∴AD=CG,∴CG=BC=BE+CE,∴EG=BE+CE+CE=BE=2CE=AE;(2)设CE=a,BE=b,则AE=2a+b,AB=a+b,在Rt△ABE中,AB2+BE2=AE2,即(a+b)2+b2=(2a+b)2,解得b=3a,b=﹣a(舍),∴==;(3)如图2,连接DG,∵CG=DF,DC=DA,∠ADF=∠DCG,∴△ADF≌△DCG(SAS),∴∠CDG=∠DAF,∴∠HAF=∠FDG,又∵∠AFH=∠DFG,∴△AFH∽△DFG,∴=,又∵∠AFD=∠HFG,∴△ADF∽△HGF,∴∠ADF=∠FGH,∵∠ADF=90°,∴∠FGH=90°,∴AG⊥GH.5.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,将∠MBN 绕点B旋转,它的两边分别交边AD、DC(或它们的延长线)于点E、F.(1)当∠MBN绕点B旋转到AE=CF时(如图1),①求证:△ABE≌△CBF;②求证:AE+CF=EF;(2)当∠MBN绕点B旋转到如图2所示的位置时,AE≠CF,此时,(1)中的两个结论是否还成立?请直接回答.(1)①证明;∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);②证明:∵△ABE≌△CBF,∴BE=BF,∠ABE=∠CBF,∵∠MBN=60°,∴△BEF是等边三角形.∠ABE=∠CBF=(∠ABC﹣∠MBN)=(120°﹣60°)=30°.∴BE=BF=EF,AE=BE,CF=BF,∴AE+CF=BE+BF=EF;(2)解:①△ABE≌△CBF不成立;②AE+CF=EF成立,理由如下:∵AE≠CF,∴△ABE≌△CBF不成立延长DC至点K,使CK=AE,连接BK,如图2所示:在△BAE与△BCK中,,∴△BAE≌△BCK(SAS),∴BE=BK,∠ABE=∠CBK,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠CBK=60°,∴∠KBF=∠FBE=60°,在△KBF与△EBF中,,∴△KBF≌△EBF(SAS),∴KF=EF,∴AE+CF=KC+CF=KF=EF.6.已知:如图①,在矩形ABCD中,AB=3,AD=4,AE⊥BD,垂足是E.点F是点E关于AB 的对称点,连接AF、BF.(1)求AF和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD 交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,在Rt△ABD中,AB=3,AD=4,由勾股定理得:BD===5,∵S=BD•AE=AB•AD,△ABD∴AE===,∵点F是点E关于AB的对称点,∴AF=AE=,BF=BE,∵AE⊥BD,∴∠AEB=90°,在Rt△ABE中,AB=3,AE=,由勾股定理得:BE===.(2)设平移中的三角形为△A′B′F′,如图①﹣1所示:由对称点性质可知,∠1=∠2.BF=BE=,由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=,即m=;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=,∴BB′=BD﹣B′D=5﹣=,即m=.(3)存在.理由如下:在旋转过程中,等腰△DPQ依次有以下4种情形:①如图③﹣1所示,点Q落在BD延长线上,且PD=DQ,则∠Q=∠DPQ,∴∠2=∠Q+∠DPQ=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=3,∴F′Q=F′A′+A′Q=+3=.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣5;②如图③﹣2所示,点Q落在BD上,且PQ=DQ,则∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:()2+(﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=5﹣=;③如图③﹣3所示,点Q落在BD上,且PD=DQ,则∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=3,∴F′Q=A′Q﹣A′F′=3﹣=.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=5﹣;④如图④﹣4所示,点Q落在BD上,且PQ=PD,则∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=3,∴DQ=BD﹣BQ=5﹣3=2.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为2或或或.7.如图,在Rt△ABD中,∠BAD=90°,AB=5,过点A作AC⊥BD,垂足为C,且AC=4,E 是线段CD上一点,过E作EF⊥AD,垂足为F﹒(1)请直接写出AD的长为;(2)如图1,若点F在∠ABD的角平分线上,求DF的长;(3)如图2,连接CF,点G为点A关于CF的对称点.①连结DG,CG,当四边形CGDF中有两边互相平行时,求CE的长;②连结AG交BD于点H,点H在点E的上方,若∠BAC﹣∠EAH=30°,则=.解:(1)∵AC⊥BD,∴∠ACB=90°,∵AB=5,AC=4,∴BC===3,∵∠ABC=∠ABD,∠ACB=∠BAD=90°,∴△BAC∽△BDA,∴==,∴==,∴BD=,AD=.故答案为.(2)如图1中,作FH⊥BD于H.∵∠FAB=∠FHB=90°,∠FBA=∠FBH,BF=BF,∴△FBA≌△FBH(AAS),∴AF=FH,BA=BH=5,∵BD=,∴DH=﹣5=,设AF=FH=x,则DF=﹣x,在Rt△DFH中,∵DF2=DH2+FH2,∴(﹣x)2=()2+x2,∴x=,∴DF=﹣=.(3)①如图2﹣1中,当DG∥CF时,设CF交AG于P.∵A,G关于CF对称,∴CF垂直平分线段CF,∴AP=PG,∠APF=90°,∵PF∥DG,AP=PG,∴AF=DF,∵EF∥AB,∴DE=BE=,∴EC=BE﹣CB=﹣3=.如图2﹣2中,当DF∥CG时,∵CG∥AD,∴∠AFC=∠FCG,∵∠FCG=∠FCA,∴∠AFC=∠ACF,∴AF=AC=4,∵EF∥AB,∴=,∴=,∴BE=5,∴EC=BE﹣BC=5﹣3=2,综上所述,满足条件的EC的值为2或.②如图3中,设CF交AG于P.∵∠ACH=∠APC=90°,∴∠PCH+∠ACP=90°,∠ACP+∠PAC=90°,∴∠PCH=∠PAC,设∠PAC=∠PCH=α,∵∠AFE=90°,∴∠AFE+∠PCE=180°,∴A,F,E,C四点共圆,∴∠FAE=∠ECF=α,设∠CAB=β,∵∠DAB=90°,∴α﹣∠EAG+α+β=90°,∵β﹣∠EAG=30°,∴2α=60°,∴α=30°,设PC=k,则AP=PG=k,PH=k,∴GH=k﹣k=k,AH=k+k=k,∴==.故答案为.8.问题背景:峰兄在探究几何图形的时候,发现了一组非常神奇的性质:如图1,等边三角形△ABC,△CDE中,连接AD,BE可以得到△ACD≌△BCE,好学的他发问取AD,BE的中点,得到的△CMN是特殊三角形吗?请说明理由;迁移应用:如图2,在正方形ABCD中,点O为CB的中点,构造正方形EHMF绕O点进行旋转,OE=OF,连接AH,BE,DM,求的值;联系拓展:如图3,等腰Rt△ABC,△BDE中,AB=AC,BD=DE,∠BDE=∠BAC=90°,当△BDE绕B点旋转的过程中取AD,CE的中点M,N,连接MN,若AB=BD,且∠ABD =30°,BD=1时,直接写出MN的长度.解:问题背景:如图1中,△CMN是等边三角形.理由如下:∵△ACB,△DCE都是等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵AM=AD,BN=BE,∴AM=AN,∵AC=CB,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∴∠ACB=∠MCN=60°,∴△MCN是等边三角形.迁移应用:如图2中,连接AO,OH.∵四边形ABCD,四边形EFMH是正方形,∴∠ABO=∠HEO=90°,AB=BC,HE=,∵OB=OC,OE=OF,∴AB=2BO,EH=2OE,OA=OB,OH=OE,∴=,∴=,∴△ABO∽△HEO,∴∠AOB=∠HOE,∴∠BOE=∠AOH,∵==,∴△AOH∽△BOE,∴==.联系拓展:如图3中,连接BM,延长BM到K,使得MK=BM,连接DK,AK,BN,作KJ⊥BD交BD的延长线于J.∵AB=BD,BD=1,∴AB=,∵AM=DM,BM=MK,∴四边形ABDK是平行四边形,∴AB=DK=,AB∥DK,∴∠KDJ=∠ABD=30°,∵KJ⊥BJ,∴∠J=90°,∴KJ=DK=,DJ=KJ=,BJ=BD+DJ=1+=,∴BK===,∴BM=MK=BK=,∵△BDE,△ABC都是等腰直角三角形,∴∠ABC=∠DBE=45°,BC=AB,BE=BD,∴=,∠CBE=∠ABD,∴△ABD∽△CBE,∴∠ADB=∠CEB,=,∵AM=DM,EN=CN,∴=,∵∠BDM=∠BEN,∴△BDM∽△BEN,∴∠MBD=∠EBN,==,∴∠MBN=∠DBE=45°,作NM′⊥BK于M′,在Rt△BNM′中,BM′=BN•cos45°=BN,∵BM=BN,∴BM=BM′,∴M与M′重合,∴△BMN是等腰直角三角形,∴MN=BM=.9.如图,在长方形OABC中,O为平面直角坐标系的原点,点A,点C分别在x轴,y轴上,点B坐标为(4,6),点P从点O出发,以每秒2个单位长度的速度沿O→C→B方向运动,到点B停止设点P运动的时间为t(秒).(1)点A的坐标为(4,0);(2)当t=1秒时,点P的坐标(0,2);(3)当点P在OC上运动,请直接写出点P的坐标(用含有t的式子表示);(4)在移动过程中,当点P到y轴的距离为1个单位长度时,求t的值.解:(1)∵四边形OABC是矩形,∴∠OAB=90°,∵B(4,6),∴AB=6,OA=4,∴A(4,0),故答案为(4,0).(2)t=1时,OP=2×1=2,∴OP=2,此时点P在线段OC上,∴P(0,2),故答案为(0,2).(3)当点P在OC上运动时,P(0,2t).(4)当点P到y轴的距离为1个单位长度时,可知点P在BC上,∴点P的坐标为(2t﹣6,6),∴2t﹣6=1,解得:t=3.5.答:当点P到y轴的距离为1个单位长度时,t的值为3.5.10.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G ∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC于点Q,设OC与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF ∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴i )若S △OMH =2S △ONH ,且两三角形都以OH 为底 ∴MP =2NQ =8x∴解得:x =∴CN = ii )若2S △OMH =S △ONH ,则MP =NQ =2x∴解得:x =∴CN =综上所述,CN 的长为或.11.如图,菱形ABCD 中,BE ⊥AD ,且BE =,∠ABE =30°,连接BD 、CE ,作DF ⊥CE ,垂足为F . (1)判断△BCD 的形状(直接写出即可);(2)求DF 的长度.(3)若动点P ,Q 同时从点B 出发,在△ABD 边上运动,P 沿B →A →D 路径匀速运动,Q 沿B →D +A 路径匀速运动,当两点相遇时运动停止,已知点P 的运动速度为2单位/秒,点Q 的运动速度为1单位/秒,设运动时间为x 秒,△PBQ 的面积为y ,求当x 为何值时,y取得最大值?最大值为多少?解:(1)∵BE⊥AD,∴∠BEA=90°,∵∠ABE=30°,∴∠A=60°,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠BCD=∠A=60°,∴△BCD是等边三角形;(2)在Rt△ABE中,∵BE=,∠A=60°,∴AB===4,∵∠ABE=30°,∴AE=AB=×4=2,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∵BE⊥AD,∴DE=AE=2,∵四边形ABCD是菱形,∴AD∥BC,∴S=DE•BE=×2×2=2,△CED∵AD∥BC,BE⊥AD,∴BC⊥BE,在Rt△BCE中,CE===2,∵DF⊥CE,∴S=DF•EC=DF,△CED∴DF=2,∴DF=;(3)∵AB=AD=4,点P的运动速度为2单位/秒,点Q的运动速度为1单位/秒,∴P到达A点时为2s,到达D得时为4s,则Q在BQ上;P到达D时,Q也到达D;①当0<x≤2时,P在BA上运动,Q在BD上运动,过点Q作QG⊥AB于G,如图1所示:则QG=BQ•sin60°=x,∴y=BP•QG=×2x×x=x2,∴x=2时,y有最大值,最大值为2;②2≤x<4时,P在AD上运动,Q在BD上运动,过点P作PH⊥BD于H,如图2所示:∵DP=8﹣2x,∴PH=DP•sin60°=(8﹣2x)=4﹣x,∴y=PH•BQ=(4﹣x)x=﹣x2+2x=﹣(x2﹣4x)=﹣(x﹣2)2+2,∴当x=2时,y取最大值,最大值为2;综上所述,当x=2时,y有最大值,最大值为2.12.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.解:(1)设点M到BC的距离为h,由S△ABC =S△ABM+S△BCM,即×5×4=×5×+×5h,∴h=,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=(5﹣t)×,即S=﹣t+(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=[5﹣(10﹣t)]×,即S=t﹣(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=,综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.13.如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.已知,OA=2,OC=4,点D为x轴上一动点,以BD为一边在BD右侧作正方形BDEF.(1)若点D与点A重合,请直接写出点E的坐标;(2)若点D在OA的延长线上,且EA=EB,求点E的坐标;(3)若OE=2,求点E的坐标.解:(1)当点D与点A重合时,如图1,∴BD=OC=4,∵四边形BDFE是正方形,∴BD=DE=4,∠BDE=90°,∵OA=2,∴OE=OA+AE=2+4=6,∴E(6,0);(2)如图2,过E作EG⊥AB于G,作EH⊥x轴于H,∵EB=EA,∴AG=BG=2,∵∠AGC=∠GAH=∠AHE=90°,∴四边形AGEH是矩形,∴EH=AG=2,∵四边形BDEF是正方形,∴BD=DE,∠BDE=90°,∴∠ADB+∠EDH=∠ADB+∠ABD=90°,∴∠EDH=∠ABD,∵∠BAD=∠DHE=90°,∴△BAD≌△DHE(ASA),∴DH=AB=4,AD=EH=2,∴OH=8,∴E(8,2);(3)分两种情况:①D在点A的右侧时,如图3,过E作EH⊥x轴于H,由(2)知:△BAD≌△DHE,∴DH=AB=4,AD=EH,设AD=x,则EH=x,OH=2+4+x=6+x,在Rt△OEH中,由勾股定理得:OE2=OH2+EH2,∴,解得:x=2或﹣8(舍),∴E(8,2);②D在点A的左侧时,如图4,过E作EH⊥x轴于H,由(2)知:△BAD≌△DHE,∴DH=AB=4,AD=EH,设AD=x,则EH=x,OH=x﹣2﹣4=x﹣6,在Rt△OEH中,由勾股定理得:OE2=OH2+EH2,∴=x2+(x﹣6)2,解得:x=﹣2或8(舍),∴OH=﹣2﹣6=﹣8,∴E(﹣2,﹣8);综上,点E的坐标是(8,2)或(﹣2,﹣8).14.如图,已知点B(a,b),且a,b满足|2a+b﹣13|+=0.过点B分别作BA⊥x轴、BC⊥y轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边OA上的一个动点(不与点A重合),∠CMA的角平分线交射线CB于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由;(3)在四边形OABC的边上是否存在点P,使得BP将四边形OABC分成面积比为1:4的两部分?若存在,请直接写出点P的坐标;若不存在,说明理由.解:(1)∵|2a+b﹣13|+=0.∴,∴,∴B(5,3);(2)的值不变,其值为1,理由:∵BC⊥y轴,∴BC∥x轴,∴∠CNM=∠AMN,∵MN是∠CMA的平分线,∴∠CMN=∠AMN,∴∠CNM=∠CMN,∴=1;(3)由(1)知,B(5,3),∵BA⊥x轴、BC⊥y,∴A(5,0),C(0,3),∵BA⊥x轴、BC⊥y,∴∠OCB=∠OAB=90°=∠AOC,∴四边形AOBC是矩形,∴AB=OC=3,BC=OA=5,∴S四边形OABC=OA•OC=15,当点P在OC上时,设P(0,m),∴CP=3﹣m,∴S△BPC=BC•CP=×5(3﹣m)=(3﹣m),∵BP将四边形OABC分成面积比为1:4的两部分,∴S△BPC =S四边形OABC=3,∴(3﹣m)=3,∴m=,∴P(0,)当点P在OA上时,设P(0,n),∴AP=5﹣n,∴S△BPC=AB•AP=×3(5﹣n)=(5﹣n),∵BP将四边形OABC分成面积比为1:4的两部分,∴S△BPA =S四边形OABC=3,∴(5﹣n)=3,∴n=3,∴P(3,0),即:满足条件的点P的坐标为(0,)或(3,0).15.如图1,正方形ABCD中,O是对角线BD的中点,点E在边AB上,点F在边AD上,且OE⊥OF(1)求证:BE=AF;(2)如图2,延长FO交BC于H,连结EH,若BE=12,DF=5,求EH的长;(3)如图3,连结EF,若AB=16,求△AEF的面积的最大值.解:(1)如图1,连接AO,∵四边形ABCD是正方形,且O是BD中点,∴OA=OB,∠OBE=∠OAF=45°,∠AOB=90°,即∠BOE+∠AOE=90°,又∵OE⊥OF,即∠AOF+∠AOE=90°,∴∠BOE=∠AOF,∴△BOE≌△AOF(ASA),∴BE=AF;(2)∵∠OBH=∠ODF=45°,OB=OD,∠BOH=∠DOF,∴△BHO≌△DFO(ASA),∴BH=DF=5,∵BE=12,∠EBH=90°,∴EH=13;(3)如图3,作ON⊥AD于N,则ON=8,∵S △AEF =S 四边形AEOF ﹣S △EOF ,又S 四边形AEOF =S △AOE +S △AOF =S △AOE +S △BOE =S △BOA =64,∴S △AEF =64﹣OF 2,∵OF ≥ON ,∴S △AEF ≤64﹣×82=32,∴△AEF 面积的最大值为32.16.在综合与实践课上,老师组织同学们以“矩形纸片的折叠”为主题开展数学活动.(1)奋进小组用图1中的矩形纸片ABCD ,按照如图2所示的方式,将矩形纸片沿对角线AC 折叠,使点B 落在点B ′处,则△ADC 与△AB ′C 重合部分的三角形的形状是 等腰三角形 .(2)勤学小组将图2中的纸片展平,再次折叠,如图3,使点A 与点C 重合,折痕为EF ,然后展平,则以点A 、F 、C 、E 为顶点的四边形是什么特殊四边形?请说明理由.(3)创新小组用图4中的矩形纸片ABCD 进行操作,其中AD =8cm ,AB =6cm ,先沿对角线BD 对折,点C 落在点C '的位置,BC ′交AD 于点G ,再按照如图5所示的方式折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M ,则EM 的长为 cm .解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,由折叠知,∠BAC=∠B'AC,∴∠B'AC=∠DAC,∴AM=CM∴△MAC是等腰三角形,故答案为:等腰三角形;(2)菱形,理由:如图3,连接AE,CF,设EF与AC的交点为M,由折叠知,∠AME=∠CME=90°,AM=CM,∴AE=CE,AF=CF,∵四边形ABCD是矩形,∴EC∥AF,∴∠ECM=∠FAM,∠CEM=∠AFM,∴△ECM≌△FAM(AAS),∴EC=FA,∴AE=EC=FC=FA,∴以点A,F,C,E为顶点的四边形是菱形;(3)∵AD=8cm,AB=6cm,∴BD==10cm由(1)可知BG=GD,∵BG2=AB2+AG2,∴BG2=36+(8﹣BG)2,∴BG=cm∴AG=cm由折叠的性质可得AM=MD=4cm,EM⊥AD∵∠BAD=∠BC'D=90°,∠AGB=∠C'GD∴∠ABG=∠C'DG,且∠BAG=∠EMD=90°∴△ABG∽△EMD∴∴∴EM=cm故答案为:17.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD (AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组成员意外的发现图①中(三角板一边与OC重合),BN、CN、CD这三条线段之间存在一定的数量关系:CN2=BN2+CD2,请你对这名成员在图①中发现的结论说明理由;(2)在图③中(三角板一直角边与OD重合),试探究图③中BN、CN、CD这三条线段之间的数量关系,直接写出你的结论.(3)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(1)证明:连结AN,∵矩形ABCD∴AO=CO,∠ABN=90°,AB=CD,∵ON⊥AC,∴NA=NC,∵∠ABN=90°,∴NA2=BN2+AB2,∴CN2=BN2+CD2.(2)如图2,连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND2=NC2+CD2,∴BN2=NC2+CD2.(3)CM2+CN2=DM2+BN2理由如下:延长MO交AB于E,∵矩形ABCD,∴BO=DO,∠ABC=∠DCB=90°,AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO(AAS),∴OE=OM,BE=DM,∵NO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE2=BE2+BN2,NM2=CN2+CM2,∴CN2+CM2=BE2+BN2 ,即CN2+CM2=DM2+BN2 .18.如图,在平面直角坐标系中,边长为3的正方形OABC的边OC落在x轴的正半轴上,边OA落在y轴的正半轴上,点E从点A出发以每秒1个单位长度的速度沿着射线AB的方向运动,点A关于OE的对称点为点F.运动时间为t秒,连接OF、EF、BF、CF.(1)如图1、当∠AOE=30°时,求∠CFB的度数;(2)如图2,当t=1时,求证:BF⊥CF.(3)如图3,过点F作FG⊥CF,且FG=CF,连接AG.M为AG的中点,连接CM.则当t =(3+3)s时,CM有最小值,CM的最小值为3﹣.解:(1)如图1中,连接AF.由翻折想性质可知:∠AOE=∠EOF=30°,OA=OF,∴∠AOF=60°,∴△AOF是等边三角形,∴AF=FO,∠OAF=60°,∵四边形OABC是正方形,∴AB=OC,∠OAB=∠AOC=∠ABC=∠OCB=90°,∴∠BAF=∠COF=30°,∵AB=AF=OF=OC,∴∠ABF=∠AFB=∠OCF=∠OFC=75°,∴∠FCB=∠FBC=15°,∠CFB=180°﹣15°﹣15°=150°.(2)如图2中,作FM⊥AB于M,交OC于N.设FM=x,EM=y.∵∠OAM=∠AMN=∠AON=90°,∴四边形AMNO是矩形,∴MN=AO=3,AM=ON=1+y,FN=3﹣x,在Rt△EFM和Rt△OFM中,则有,解得,∴BM=CN=3﹣1﹣=,∴BF==,CF==,∴CF2+BF2=+=9=BC2,∴∠CFB=90°,∴CF⊥BF.(3)如图3中,AO的延长线上截取OK=OC,连接KC,KG,OM.∵OC=OF=OK,∠COK=90°,∴∠CFK=135°,∵CF⊥FG,∴∠CFG=90°,∴∠KFG=360°﹣135°﹣90°=135°,∴∠KFC=∠KFG,∵KF=KF,FC=FG,∴△KFC≌△KFG(SAS),∴KC=KG=3,∵OA=OC=OK,AM=MG,∴OM=KG=,∴点M的运动轨迹是以O为圆心,OM长为半径的圆弧,∴当点M落在线段OC上时,CM定值最小,最小值=3﹣,此时易证:∠AOE=∠EOF=67.5°,可得BE=OB=3,∴AE=3+3,∴t=(3+3)s.故答案为:3+3,3﹣.19.如图,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB﹣BC以5cm/s的速度运动,当点P与点B不重合时,连结PB,以线段PB为对角线作正方形PDBE,设点P的运动时间为t(s),正方形PDBE的面积为S(cm2).(1)当正方形PDBE有两边同时落在△ABC的边上时,求t的值;(2)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式以及自变量t的取值范围;(3)在整个运动过程中,正方形PDBE至少有一个顶点落在∠A的平分线上时,直接写出t的值.解:(1)当正方形PDBE有两边同时落在△ABC的边上时,设正方形的边长为x,如图1所示:∵PE∥AB,∴=,即:=,解得:x=,∴PE=,∴EC=BC﹣BE=4﹣=,∴PC===,∴t==s;(2)①当0≤t≤1时,作PH⊥BC于H,如图2所示:则PH∥AB,∴△CPH∽△CAB,∴==,∵∠ABC=90°,AB=3cm,BC=4cm,∴AC===5(cm),∵CP=5t,∴HC=4t,PH=3t,∴BH=BC﹣HC=4﹣4t,在Rt△PHB中,PB2=PH2+BH2=(3t)2+(4﹣4t)2=25t2﹣32t+16,∴S=PB2=t2﹣16t+8;②当1<t<时,如图3所示:∵PB=8﹣5t,∴S=PB2=(8﹣5t)2=t2﹣40t+32,综上所述,S=;(3)①当D、E在∠BAC的平分线上时,如图4所示:∵AH⊥PB,PH=BH,∴△ABP是等腰三角形,∴AB=AP=3,∴PC=AC﹣AP=5﹣3=2,∴t=s;②当点P运动到点A时,满足条件,此时t=1s;③当点E在∠BAC的平分线上时,作EH⊥BC于H,如图5所示:∵四边形PDBE是正方形,∴∠EBP=45°,∴EB平分∠ABC,∴点E是△ABC的内心,四边形EOBH是正方形,∴OB=EH=EO=BH===1,∴PB=2OB=2,∴AP=1,∴CA+AP=6,∴t=s;④当点P在边BC上,点D在∠BAC的平分线上时,作DN⊥BC于N,作DM⊥AB于M,如图6所示:∵四边形PDBE是正方形,∴∠DBP=45°,∴DB平分∠ABC,∴点D是△ABC的内心,四边形DMBN是正方形,四边形PDBE是正方形,∴DM=BN=PN==1,∴CA+AB+BP=5+3+1+1=10,∴t=2s;⑤当点P在边BC上,且AP是∠BAC的平分线时,作CM∥AP交BA的延长线于M,如图7所示:则∠ACM=∠PAC,∠M=∠BAP,∵AP是∠BAC的平分线,∴∠BAP=∠PAC,∴∠ACM=∠M,∴AM=AC,∵CM∥AP,∴=,∴==,∴BP=BC=,∴CA+AB+BP=5+3+=,∴t=÷5=;综上所述:在整个运动过程中,正方形PDBE至少有一个顶点落在∠A的平分线上时,t 的值为s或1s或s或2s或s.20.如图1,在三角形△ABC中,BA=BC,△ADC和△ABC关于AC对称(1)将图1中的△ACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是菱形;(2)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB和CC′,得到四边形BCC′D,请判断四边形BCC′D的形状,并说明理由;(3)如图3中,BC=,AC=10,将△AC′D沿着射线DB方向平移a,得到△A′C″D′,進接BD′,CC″,使四边形BCC″D′恰好为正方形,请直接写出a的值.解:(1)∵△△ADC和△△ABC关于AC对称,∴DC=BC,DA=AB,∠BAC=∠DAC,∠BCA=∠DCA,∵BA=BC,∴DC=BC=DA=AB,∠BAC=∠DAC=∠BCA=∠DCA,∵△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到△AC′D,∴∠CAC′=∠BAC=∠AC′D=∠BCA,∴AC∥DE,AC′∥BE,∴四边形ACEC′是平行四边形,由旋转可得:AC=AC′,∴四边形ACEC′是菱形,故答案为:菱形;(2)四边形BCC′D是矩形;理由如下:过点A作AE⊥C′C于点E,如图3所示:由旋转的性质,得AC′=AC,∴∠CAE=∠C′AE=α=∠ABC,∠AEC=90°,∵BA=BC,∴∠BCA=∠BAC∴∠CAE=∠BCA,∴AE∥BC.同理,AE∥DC′,∴BC∥DC′,∵BC=DC′,∴四边形BCC′D是平行四边形,∵AE∥BC,∠AEC′=90°,∴∠BCC′=90°,∴四边形BCC′D是矩形;(3)过点B作BF⊥AC于F,∵BA=BC,∴CF=AF=AC=×10=5,在Rt△BCF中,BF=10,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF,∴=,即=,解得:EC=4,∵AC=AC′,AE⊥CC′,∴CC′=2CE=2×4=8,。

中考数学四边形练习

中考数学四边形练习

中考数学四边形练习第三课时四边形初三()班学号:姓名:一、多边形的有关概念1、三角形形的内角和等于。

2、四边形的内角和等于。

3、n边形的内角和等于。

4、n边形的外角和等于。

二、几种专门四边形的特点:二、几种专门四边形的识别方法:1、定义:一组对边另一组对边的四边形叫做梯形,平行的两边叫做梯形的,不平行的两边叫做梯形的,两底的距离叫做梯形的。

2、一腰垂直于底的梯形叫做梯形。

3、两腰相等的梯形叫做梯形。

4、等腰梯形的性质(1)等腰梯形同一底边上的两个内角。

(2)等腰梯形的对角线。

EEECEC5、等腰梯形的识别(1)同一底边上的两个内角的梯形是等腰梯形。

(2)对角线的梯形是等腰梯形。

6、三角形、梯形的中位线连结梯形的线段叫做梯形的中位线。

定理:梯形的中位线平行于,且等于。

7、解决梯形问题,添加辅助线的常见方法:梯形内平移一腰梯形外平移一腰过一腰中点平移另一腰平移对角线延长两腰作高连结一顶点与腰中点的线段并延长五、面积、周长的运算方法1、平行四边形的面积= ,周长= 。

(边长为a,b,h为a边上的高)2、菱形的面积= = ,周长= 。

(边长为a, h为a边上的高,两条对角线为c,d)3、矩形的面积= ,周长= 。

(边长为a,b)4、正方形的面积= ,周长= 。

(边长为a)习题1、下面条件中不能判别四边形是平行四边形的是( )A .对角线互相平分B .一组对边平行,另一组对边相等C .一组对边平行且相等D .一组对边平行,一组对角相等 2、下面不是平行四边形的特点的是( )A .对角互补B .邻角互补C .对边平行D .对角线互相平分 3、矩形有而菱形不一定有的特点是( )A .邻边相等B .对角线互相垂直平分C .对角线相等且互相平分D .有一组邻边相等 4、对角线相等的四边形一定是( )A .矩形B .菱形C .正方形D .以上答案都不对 5、正方形具有而矩形不具有的特点是( ) A .对边相等 B .对角线相等 C .对角线互相平分 D .对角线互相垂直 6.正方形具有而菱形不具有的特点是( ) A .对边相等 B .对角线相等 C .对角线互相平分 D .对角线互相垂直7、在平行四边形ABCD 的周长是20cm ,且AB=6cm ,则AC= 8、在平行四边形ABCD 中,∠A=40度,∠C= ,∠B= 9、在平行四边形ABCD 中,∠A-∠B=30度,则∠A= ,∠B= 10、在平行四边形ABCD 中,AC=12, BD=18,CD=9,则△ABO 的周长是11、如图,菱形ABCD 中,AC 与BD 交于点O , 若∠D AB=140º,则∠ABO=12、右图,在等腰梯形ABCD 中,AD ∥BC 、 ∠B=70º,则∠A= ,∠C= , ∠D= 。

最新2022人教初中中考四边形知识点综合复习及配套测试练习题

最新2022人教初中中考四边形知识点综合复习及配套测试练习题

四边形综合复习—知识讲解及练习【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch (a 、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高). S 平行四边形 =ah(a 为平行四边形的边,h 为a 上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、多边形及其镶嵌1. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.举一反三:【变式】一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.82.下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形 B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形类型二、特殊的四边形3.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)判断四边形EHFG的形状;(2)在什么情况下,四边形EHFG为菱形?举一反三:【变式】已知:如图所示,四边形ABCD 中,∠C =90°,∠ABD =∠CBD ,AB =CB ,P 是BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为E 、F ,求证:PA =EF .4.(1)如图①,▱ABCD 的对角线AC ,BD 交于点O ,直线EF 过点O ,分别交AD ,BC 于点E ,F .求证:AE=CF .(2)如图②,将▱ABCD (纸片)沿过对角线交点O 的直线EF 折叠,点A 落在点A 1处,点B 落在点B 1处,设FB 1交CD 于点G ,A 1B 1分别交CD ,DE 于点H ,I .求证:EI=FG .5.如图,在△AOB 中,OA=OB=8,∠AOB=90︒,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上.(1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积;(2)若tan ∠CDO=,求矩形CDEF 面积的最大值.34B OC6 .ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △ 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE .(1)如图(a )所示,当点D 在线段BC 上时.①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立?(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.举一反三: 【变式】如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.A D C BE B C E DA F P F【巩固练习】一、选择题1.下列说法中,正确的是( ).A.等腰梯形的对角线互相垂直B.菱形的对角线相等C.矩形的对角线互相垂直 D.正方形的对角线互相垂直且相等2.如图,在中,于且是一元二次方程x2+x-2=0 的根,则的周长为().A.4+2B.4+22C.8+22D.2+23.如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为().A.B.C.D.4.下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有().A.1个 B.2个 C.3个 D.4个5.(2015•蓬溪县校级模拟)下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形 B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形6.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=15°,则∠A′BD的度数为().A. 15°B. 20°C. 25°D. 30°第6题7.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是______度.8. 矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为_________平方单位.9.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.10.如图,点,是正方形的两个顶点,以它的对角线为一边作正方形,以正方形的对角线为一边作正方形,以正方形的对角线为一边作正方形,…,依次进行下去,则点的坐标是__________________.11.如图,若△ABC的边AB=3,AC=2,Ⅰ、Ⅱ、Ⅲ分别表示以AB、AC、BC为边的正方形,则图中三个阴影部分面积之和的最大值为________.12.(2014秋•隆化县校级期中)如图,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=,则BE的长为.13. 如图,过正方形ABCD的顶点作,且作,又.求证:.14. 如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求∠CBD的度数.15.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.16已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)。

2018-2019学年下学期初三中考冲刺数学《四边形》专题总复习

2018-2019学年下学期初三中考冲刺数学《四边形》专题总复习

2018-2019学年下学期初三中考冲刺数学《四边形》专题总复习2018-2019学年下学期初三中考冲刺数学《四边形》专题总复习一、单选题1.已知▱ABCD中,AC、BD交于点O.下列结论中,不一定成立的是()A. ▱ABCD关于点O对称 B. OA=OC C. AC=BDD. ∠B=∠D2.正八边形的每一个内角的度数为( )A. 45°B. 60°C. 120°D. 135°3.若多边形的边数由3增加到n(n为大于3的整数),则其外角和的度数A. 增加B. 减少 C. 不变 D. 不能确定4.下列性质中,菱形对角线不具有的是()A. 对角线互相垂直B. 对角线所在直线是对称轴 C. 对角线相等 D. 对角线互相平分5.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A. 平行四边形B. 矩形C. 对角线相等的四边形D. 对角线互相垂直的四边形6.在平行四边形ABCD 中,∠A:∠B:∠C:∠D的值可以是()A. 1:2:1:2B. 1:2:2:1 C. 1:2:3:4 D. 1:1:2:2 7. 如图,在菱形ABCD中,AC=8,BD=6,则△ABC 的周长是()A. 14B. 16C. 18D. 208.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A. 135°B. 120°C. 112.5° D. 67.5°9.已知非零向量,,,下列条件中,不能判定∥的是()A. ∥,∥B.C. =D. = ,=A. AC=BDB. AD=BCC. AB=CDD. AB=BC14.▱ABCD中,∠A比∠B小20°,则∠A的度数为()A. 60°B. 80°C. 100°D. 120°15.如图,正方形ABCD的边长为4,点E在对角线BD 上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C. 4﹣2 D. 3﹣416.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论①AE=BF;②AE⊥BF;③ AO=OE;④中,错误的有()A. 1个B. 2个C. 3个 D. 4个二、填空题17.一个多边形从一个顶点向其余各顶点连接对角线有27条,则这个多边形的边数为________ .18.如图,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3.点A3到x轴的距离是________.19.如图,在菱形ABCD中,AC=8,BD=6,则△ABC 的周长是________.20.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=440°则∠BGD=________.21.如图,任意四边形ABCD中,点E、F、G、H分别是AD、BC、BD、AC的中点,给四边形ABCD添加一个条件,使四边形EGFH是菱形,你添加的一个条件是________.请加以说明.三、解答题22.用若干块边长为20cm的正三角形瓷砖和一块边长为20cm正六边形的瓷砖铺成一边长为1.2m的正六边形的地面,则需要这样的正三角形瓷砖多少块?23.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG 的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE等于多少时,四边形CEDF是矩形;②当AE等于多少时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)24. 已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.25.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE垂直且平分线段BO,垂足为点E,BD=15cm,求AC、AB的长.四、综合题26. 如图,点A,B,C,D在同一条直线上,点E,F 分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形(2)若AD=10,DC=3,∠EBD=60°,则BE=________ 时,四边形BFCE是菱形27.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.答案一、单选题1.C2.D3.C4.C5.C6.A7.C8.C9.B10.A11.D 12.A 13.A 14.B 15.C 16.A二、填空题17.30 18.19.18 20.80°21.AB=CD三、解答题22.解:∵边长为1.2m的正六边形的地面的面积为:×1202×6=21600(cm2),一块边长为20cm正六边形的瓷砖的面积为:×202×6=600(cm2),一块边长为20cm的正三角形瓷砖的面积为:×202=100(cm2),∴需要这样的正三角形瓷砖(21600﹣600)÷100=210块.23.证明:(1)∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,24.解:设多边形为n边形,由题意,得n﹣2=,整理得:n2﹣5n+4=0,即(n﹣1)(n﹣4)=0,解得:n1=4,n2=1(不合题意舍去),所以内角和为(4﹣2)×180°=360°.25.解:∵四边形ABCD是矩形,∴AC=BD=15cm,OA=AC,OB=BD,∴OA=OB=7.5cm,∵AE垂直且平分线段BO,∴AB=OA=7.5cm.四、综合题26.(1)证明:∵AB=DC,∴AC=DF,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形(2)427.(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°。

中考数学第一轮复习专题训练之十一多边形及四边形含答案

中考数学第一轮复习专题训练之十一多边形及四边形含答案

中考数学第一轮复习专题训练之十一多边形及四边形含答案2012年中考数学第一轮复习专题训练(十一)多边形及四边形一、填空题:(每题 3 分,共 36 分) 1、五边形的内角和为____。

2、在□ABCD 中,∠A +∠C =200°,则∠A =____。

3、矩形的两边长分别是 3cm 和 4cm ,则对角线长____cm 。

4、等腰梯形的中位线长为 6,腰长为 5,则周长为____。

5、如果矩形一条较短的边是 5,两条对角线的夹角是 60°,则对角线长是____。

6、菱形两条对角线的长分别是 12 和 16,则它的边长为____。

7、如图,正方形的周长为 8cm ,则矩形EFC 的周长为____。

8、两条对角线____________的四边形是正方形。

9、等腰梯形的锐角等于60°,它的两底分别为 15cm ,19cm ,则它的腰长为_____。

10、顺次连续四边形ABCD 各边的中点,组成_A E FB GCD A BE C D F___四边形。

11、如图,一张矩形的纸片,要折出一个正方形,只要把一个角沿折痕AE 翻折上去,使AB 和AD边上的AF 重合,则四边形ABEF就是一个正方形,判断的根据是________。

12、如图,请写出等腰梯形ABCD(AB ∥CD )特有而一般梯形不具有的三个特征:________________。

二、选择题:(每题 4 分,共 24 分)1、下列多边形中,不能铺满地面的是( )A 、正三角形B 、正方形C 、正五边形D 、正六边形 2、一个多边形的内角和等于外角和的 2 倍,则它的边数是( )A 、5B 、6C 、7D 、8 3、四个内角都相等的四边形是( )A 、矩形B 、菱形C 、正方形D 、平行四边形4、符合下列条件的四边形不一定是菱形的是( )AB C DA 、四边都相等B 、两组邻边分别相等C 、对角线互相垂直平分D 、两条对角线分别平分一组对角5、已知:梯形ABCD 中,AD ∥BC ,AB =AD =CD ,BD ⊥CD ,则∠C =( )A 、30°B 、45°C 、60°D 、75° 6、如图,延长正方形ABCD 的一边BC 至E ,使CE =AC ,连结AE 交CD 于F ,则∠AFC 的度数是( )A 、112.5°B 、120°C 、122.5°D 、135°三、解答题:(每题 9 分,共 54 分)1、已知五边形ABCD 中,AE ∥CD ,∠A =100°,∠B =120°,求∠C 的度数。

2019年中考总复习数学几何与图形模块《四边形》复习强化练习含答案

2019年中考总复习数学几何与图形模块《四边形》复习强化练习含答案

2019年中考总复习数学几何与图形模块《四边形》复习强化练习一、选择题1.下列命题中,不正确的是().A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分2.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A. 6B. 5C. 8D. 73.如图,在▱中,M是延长线上的一点,若∠135°,则∠的度数是()A. 45°B. 55°C. 65°D. 75°4.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为()A. 13B. 15C. 13或15 D. 15或16或175.如图,若要使平行四边形成为菱形.则需要添加的条件是()A. B. C.D.6.如下图,平行四边形的周长为40,△的周长比△的周长多10,则长为()A. 20B. 15C. 10D. 57.如图,在□中,,,与交于点O,则该图中的平行四边形的个数共有()A. 7 个B. 8个 C. 9个 D. 11个8.如图,在七边形中的延长线相交于O点.若图中∠1,∠2,∠3,∠4的角度和为220°,则∠的度数为( )A. 40°B. 45°C. 50°D. 60°9.若一个菱形的两条对角线长分别是5和10,则与该菱形面积相等的正方形的边长是()A. 6B. 5C.D. 7.510.能够铺满地面的正多边形组合是()A. 正三角形和正五边形B. 正方形和正六边形C. 正方形和正五边形D. 正五边形和正十边形二、填空题11.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是.12.如图,是□的对角线,点E、F在上,要使四边形是平行四边形,还需增加的一个条件是13.已知平行四边形中,5,平分∠交所在直线于点E,2,则.14.如图:矩形的对角线相交于点O,4,∠60°,则.15.八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来盆红花.如果一条对角线用了25盆红花,还需要从花房运来盆红花.16.在正三角形、正方形、正五边形、正六边形中不能镶嵌成一个平面图案的是.17.已知菱形的周长为40,两条对角线之比3:4,则菱形面积为2.18.梯形的底的长度等于底的2倍,也等于腰的2倍,设对角线的长为3,腰的长为4,则梯形的高为.19.如图,在▱中,4,8,∠30°,以点A为圆心,的长为半径画弧交于点E,连接,则阴影部分的面积是.(结果保留π)20.如图所示,在平行四边形中,分别以、为边作等边△和等边△,分别连接、和,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上).①△≌△;②△是等边三角形;③∠∠;④⊥.三、解答题21.如图,已知▱中,平分∠,平分∠,分别交、于E、F.求证:.22.如图,四边形中,∥,∠90°,F为上一点,且,E为上一点,交于点G,.求证:.23.如图,平行四边形的对角线和相交于点O ,E ,F分别为,的中点,过点O任作一直线分别交,于点G ,H.试说明:∥.24.如图,是△的角平分线,点E,F分别在,上,且∥,∥.(1)求证:;(2)若∠60°,12,求的长与四边形的面积.25.如图,正方形的边长为8,E、F、G分别是、、上的动点,且.(1)求证:四边形是正方形;(2)判断直线是否经过某一定点,说明理由;(3)求四边形面积的最小值.26.如图,四边形中,平分∠,平分∠.(1)如果∠∠120°,则∠的度数.(直接写出结果)(2)根据(1)的结论,猜想∠∠C与∠之间的关系,并证明.27.如图1,△和△都是边长为1的等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
初三复习过关练习十一-------四边形(一)
一、选择题:
1.下列条件中,不能判断四边形ABCD 是平行四边形的是( ) A 、∠A=∠C ,∠B=∠D B 、AB ∥CD ,AB=CD
C 、AB=C
D ,AD ∥BC D 、AB ∥CD ,AD ∥BC 2.在
中,下列说法正确的是( ). A 、一组对边相等,一组对角相等的四边形是平行四边形 B 、两条对角线相等的四边形是矩形 C 、四条边都相等的四边形是正方形 D 、四条边都相等的四边形是菱形
3.一组对边平行,并且对角线互相垂直且相等的四边形是( ).
A 、菱形或矩形
B 、正方形或等腰梯形
C 、矩形或等腰梯形
D 、菱形或直角梯形 4.顺次连结菱形四边中点所得的四边形一定是( )
A 、平行四边形
B 、矩形
C 、菱形
D 、正方形
5.在线段、等边三角形、等腰梯形、矩形、平行四边形、菱形、正方形、圆这些图形中,既是中心对称又是轴对称的有( )个
A 、3
B 、4
C 、5
D 、6
6.平行四边形的边长为5,则它的对角线长可能是( ) A 、4和6 B 、2和12 C 、4和8 D 、4和3
7.菱形和矩形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分
C 、对角线平分一组对角
D 、对角线互相垂直 8.如图,正方形ABCD 中,
E 为CD 边上一点,
F 为BC 延长线 上一点,CE=CF 。

若∠BEC=80°,则∠EFD 的度数为( )
A 、20°
B 、25°
C 、35°
D 、40°
9.已知四边形ABCD 的对角线相交于O ,给出下列 5个条件:①AB ∥CD ; ②AD ∥BC ;③AB =CD ; ④∠BAD =∠DCB ,从以上4个条件中任选 2个条件为一组,能推出四边形ABCD 为平行四边形的有( ).
A 、6组
B 、5组
C 、4组
D 、3组
10.如图所示, E 是边长为1的正方形ABCD 的对角线BD 上一点, 且BE = BC , P 为CE 上任意一点, PQ ⊥BC 于点Q , PR ⊥BE 于点R , 则 PQ + PR 的值是( )
(A ) 22 (B ) 2
1 (C )
2
3
(D )
3
2
Q
C 11. 如图, 在正方形ABC
D 中,
E 为CD 上的一点, 延长BC 至点F
, 使CF = CE , 连结DF 、BE , BE 的延长线与DF 相交于G , 则下面 结论错误的是 ( ) A . BE = DF B . ∠F +∠CEB = 90︒ C . BG ⊥DF
D . ∠FDC +∠ABG = 90︒
12.给出5种图形: ① 矩形 ② 菱形 ③ 等腰三角形 (腰与底边不相等) ④ 等边三角形⑤ 平行四边形 (不含矩形, 菱形), 其中可用两块能完全重合的含30︒ 角的三角板拼成的图形是 ( ) A . ①②③
B . ②④⑤
C . ①③④⑤
D . ①②③④⑤
二、填空题
13.菱形ABCD 中,∠A =60º,对角线BD =8,则菱形ABCD 的周长等于______. 14.如右图,在矩形ABCD 中,对角线交于点O ,已知∠AOB=56°
则∠ADB= 度。

15.如右图,在矩形ABCD 中,对角线AC 、BD 交于点O ,
若∠AOD=120°,AB=1,则AC= 。

16.如图,AD 是△ABC 的角平分线,DE ∥AC 交AB 于E , DF ∥AB 交AC 于F 。

且AD 交EF 于O ,则∠AOF= 度。

17.在正方形ABCD 中,E 在BC 上,BE=2,CE=1,P 在BD 上的动点,则PE 和PC 的长度之和最小可达到_____________
18.已知:如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为
D
C
B
A E
F G
A B C
D E F
O 三、解答题:
19.如图,BD 平分∠ABC,DE//BC,EF//AC,试判断BE 与CF 是否相等?并说明理由。

A B
C
D
E F
20.已知:如图,在四边形ABCD 中,AB=DC,AD=BC ,点E 、F 分别在边BC 、AD 上,AF=CE ,EF 与对角线BD 交于O.
求证:O 是BD 的中点.
21.已知:如图,把长方形纸片ABCD 沿EF 折叠后,点D 与点B 重合,点C 落在点C ´的位置上,若∠1=0
60,AE=1.
(1)求∠2、∠3的度数;(2)求长方形纸片ABCD 的面积.
C '
3
2
1
F E D
C
B
A

22.⑴如图矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作DP ∥OC ,且DP=OC ,连接CP ,判断四边形CODP 的形状并说明理由
⑵如果题目中的矩形变为菱形结论应变为什么,说明理由
⑶如果题目中的矩形变为正方形,结论又应变为什么?说明理由
23.如图,正方形ABCD 中对角线AC 、BD 相交于O ,E 为AC 上一点,AG ⊥EB 交EB 于G ,AG 交BD 于F 。

(1) 证明OE=OF ;
(2) 在(1)中,若E 为AC 延长线上,AG ⊥EB 交EB 的延长线于G ,AG 、BD 的延长线交于F ,其他条件不变,如图2,则结论:“OE=OF ”还成立吗?请说明理由。

A B
C D
O
E
F G
E。

相关文档
最新文档