2015-2016学年河北省邯郸市成安县七年级(下)期末数学试卷
人教版2015-2016学年七年级下册期末考试数学试卷(含答案)
2015-2016学年下学期初中七年级期末考试数学试卷一、精心选一选(本题共10小题,每小题3分,共30分) 1.19的平方根是 A.13B. 13±C. 13-D. 181± 2. 下列调查中,适合用全面调查方式的是A. 了解某班学生“50米跑”的成绩B. 了解一批灯泡的使用寿命C. 了解一批袋装食品是否含有防腐剂D. 了解一批炮弹的杀伤半径 3. 点(-2,1)在平面直角坐标系中所在的象限是 A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知a<b ,则下列不等式一定成立的是 A. 55a b +>+ B. 22a b -<- C.3322a b >D. 770a b -<5. 将点A(2,1)向左..平移2个单位长度得到点A',则点A'的坐标是 A. (2,3)B. (2,-1)C. (4,1)D. (0,1)6. 若下列各组值代表线段的长度,则不能构成三角形的是 A. 3,8 ,4 B. 4,9,6C. 15,20,8D. 9,15,87. 如图,下列条件中,不能判断直线1l ∥2l 的是A. ∠2=∠3B. ∠1=∠3C. ∠4=∠5D. ∠2+∠4 =180°8. 估算19的值是在 A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间9. 若不等式组12x x k<≤⎧⎨>⎩无解,则k 的取值范围是A. k ≤2B. k<1C. k ≥2D. 1≤k<210. 如图,三边均不等长的锐角△ABC,若在此三角形内找一点O,使得△OAB、△OBC、△OCA的面积均相等. 下列作法中正确的是A. 作中线AD,再取AD的中点OB. 分别作AB、BC的高线,再取此两高线的交点OC. 分别作中线AD、BE,再取此两中线的交点OD. 分别作∠A、∠B的角平分线,再取此两角平分线的交点O二、认真填一填(本题共8小题,每小题2分,共16分)11. 在实数227,0.13∙,π,49-,7-,1.131131113……(每两个3之间依次多一个1)中,无理数的个数是___________个.12. 已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为__________.13. 不等式31122xx-+≥的非负整数解.....是_______________.14. 如图所示,直线AB与CD相交于点O,已知∠1=30°,OE是∠BOC的平分线,则∠2=_____________,∠3=___________________.15. 一个多边型的每一个外角都等于18°,它是__________边形.16. 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=___°17. 一副三角板如图所示叠放在一起,则图中∠α的度数是________________.18. 如图,在第1个△ABA 1中,∠B=20°,∠BAA 1=∠BA 1A ,在A 1B 上取一点C ,延长AA 1到A 2,使得在第2个△A 1CA 2中,∠A 1CA 2=∠A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得在第3个△A 2DA 3中,∠A 2DA 3=∠A 2A 3D ;……,按此做法进行下去,第三个三角形中,以A 3为顶点的内角的度数为_________;第n 个三角形中以A n 为顶点的内角的度数为_____________.三、仔细算一算(本题共2小题,每小题5分,共10分) 19. 计算234492712(1)3-+-+-.20. 解不等式组3(2)42113x x x x --<⎧⎪+⎨≥-⎪⎩,并把解集在数轴上表示出来.四、积极想一想(本题共8小题,共44分) 21.(本小题4分)按图填空,并注明理由. 已知:如图,∠1=∠2,∠3=∠E. 求证:AD ∥BE.证明:∵∠1=∠2(已知)∴_______________∥__________________().∴∠E=∠_______________。
七年级数学下学期期末测试试题新人教版
2015—2016学年度第二学期期末检测七年级数学试题一.选择题(共12个小题,每题3分,共36分) 1.16的算术平方根是( )A .4B .±4C .8D .±82.已知M (1,﹣2),N (﹣3,﹣2),那么直线MN 与x 轴,y 轴的位置关系别离为( ) A .相交,相交B .平行,平行C .垂直相交,平行D .平行,垂直相交3.假设a >b ,那么以下不等式变形正确的选项是( )A .a+5<b+5B .33a b< C .﹣4a >﹣4b D .3a ﹣2>3b ﹣2 4.如图,已知AB∥CD,BC 平分∠ABE,∠C=33°,那么∠BED 的度数是( ) A .16° B .33°C .49°D .66°5.已知11x y =⎧⎨=-⎩是方程2x ﹣ay=3的一组解,那么a 的值为( )A .1B .3C .﹣3D .﹣156.如图,把一块含有45°的直角三角形的两个极点放在直尺的对边上.若是∠1=20°,那么∠2的度数是( ) A .15° B .20°C .25°D .30°7.能确信某学生在教室中的具体位置的是( )A .第3排B .第2排以后C .第2列D .第3排第2列8.以下事件中最适合利用全面调查方式搜集数据的是( ) A .为制作校服,了解某班同窗的身高情形 B .了解全市初三学生的视力情形 C .了解一种节能灯的利用寿命D .了解我省农人的年人均收入情形9.以下图形中,线段PQ 的长表示点P 到直线MN 的距离是( )A .B .C.D.10.将点A(﹣3,﹣2)向左平移5个单位,再向下平移4个单位取得点B,那么点B的坐标为()A.(﹣8,2)B.(﹣8,﹣6)C.(2,﹣2)D.(2,2)11.如图,点E在AC的延长线上,以下条件能判定AB∥CD的是()①∠1=∠2;②∠3=∠4;③∠A=∠DCE;④∠D+∠ABD=180°.A.①③④B.①②③C.①②④ D.②③④12.已知实数x、y同时知足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1 B.p<1 C.p<﹣1 D.p>1二.填空题(共8个小题,每题3分,共24分)13.不等式﹣4x≥﹣12的正整数解为.14.假设点(m﹣4,1﹣2m)在第三象限内,那么m的取值范围是.15.若是关于x的一元一次不等式组的解集在数轴上的表示如下图,那么该不等式组的解集为.16.如图是依照某初中为地震灾区捐钱的情形而制作的统计图,已知该校在校学生有200人,请依照统计图计算该校共捐钱元.(16题图)(18题图)17.某次数学考试中有16道选择题,评分方法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么那个同窗至少要答对道题,成绩才能在60分以上.18.某景点拟在如图的矩形荷塘上架设小桥,假设荷塘中小桥的总长为100米,那么荷塘周长为.羽毛球20% 踢键子 40%跳绳 10%其它 x %20 15 10 510520羽毛球 跳绳 踢键子 其它喜爱活动19.已知5+的整数部分为a ,5﹣的小数部份为b ,那么a+b 的值为 .20.已知关于x 的不等式组041x a x -≥⎧⎨->⎩的整数解共有5个,那么a 的取值范围是三.解答题(60分,写出必要的解题步骤和进程。
15—16学年下学期七年级期末考试数学试题(附答案)
2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。
2015-2016学年度第二学期期末检测七年级数学试题及答案
abb(1) (2) (3)2015-2016学年度第二学期期末检测七年级数学试题考试时间:90分钟 班级: 姓名: 一、选择题:(每小题3分,共36分。
每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。
)1.如图,下列条件中不一定能推出a ∥b 的是( ) A.∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180°2.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A.(3,3)B.(3,-3)C.(-3,3)D.(-3,-3) 3.下列各式中计算正确的是( ) A.()532x x= B. 422743x x x =+C. ()()639x x x =-÷- D. ()x x x x x x ---=+--23214.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把这个数值用科学记数法表示为( )A.1×10 9B. 1×1010C. 1×10 -9D. 1×10 -105.已知三角形两边的长分别为2a 、3a ,则第三边的长可以是( ) A. a B. 3 a C. 5 a D. 7 a6.如图,将等边三角形ABC 剪去一个角后,则∠1+∠2的大小为( ) A. 120° B. 180° C. 200° D. 240°7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 C.正四边形 B.正六边形 D.正八边形 8.以5厘米的长为半径作圆,可以作( ) A. 1个 B. 2个 C. 3个 D. 无数个9.用如图所示的卡片拼成一个长为(2a+3b ),宽为(a+b )的长方形,则需要(1)型卡片、(2)型卡片和(3)型卡片的张数分别是( )A.2,5,3B.2,3,5C.3,5,2D.3,2,510.等腰三角形的周长为13cm ,其中一边的长为3cm ,则该等腰三角形的腰长为( )A.7cmB.3cmC.7cm 或3cmD.5cm11.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A.5 B.6 C.7 D.812.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的有( )A.1个B.2个C.3个D.4个 二、填空题(每空3分,共30分)13.已知点A 到x 轴的距离为3,到y 轴的距离为4,且它在第二象限内,则点A 的坐标为 . 14.若2 m=3,,2 n=4,则22m-n= .15.若25-+=+÷+)()()(y x y x y x m ,则m 的值为 . 16.计算:=⨯+--2331(5)2( .17.一个长方形的面积是)(2269ab b a -平方米,其长为3ab 米,则宽为 米(用含a 、b 的式子表示)18.一个多边形的内角和等于108019.如图,已知∠A=20°, ∠B=45° AC ⊥DE 于点则∠D= ,∠BED= . 20.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个正三角形和 个正四边形.三、解答题(共54分,解答应写出必要的计算过程、推演步骤或文字说明) 21(15分) (1)223102)2(a a a a ÷-+∙(2))2()12)(2(--++-a a b a b a (3))1)(2(2)3(3)2(2-+++-+x x x x xa b1243c22(6分)解方程组⎩⎨⎧-=+=-22382y x y x23(7分)如图,AD 是△ABC 的中线,BE 是△ABD 的中线 (1) 若∠ABE=15°,∠BAD=30°,求∠BED 的度数; (2) 画出△BED 的BD 边上的高线EF ;(3) 若△ABC 的面积为40,BD=5,求BD 边上的高EF 。
2015-2016学年七年级第二学期期末考试数学试题带答案
2015-2016学年度初一年下学期期末质量检测数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程63-=x 的解是( )A .2-=xB .6-=xC .2=xD .12-=x 2.若a >b ,则下列结论正确的是( ).A.55-<-b aB. b a 33>C. b a +<+22D.33ba <3.下列图案既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( ) A . 1 B . 2 C . 3 D . 4 5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购 其中某一种地砖镶嵌地面,可供选择的地砖共有( ) A .1种 B .2种 C .3种 D .4种6.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设1,2x y ︒︒∠=∠=,则可得方程组为( )50.180x y A x y =-⎧⎨+=⎩ 50.180x y B x y =+⎧⎨+=⎩ 50.90x y C x y =+⎧⎨+=⎩ 50.90x y D x y =-⎧⎨+=⎩7.已知,如图,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( )A .∠BAC <∠ADCB .∠BAC =∠ADC C . ∠BAC >∠ADCD . 不能确定 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若25x y -+=,则________=y (用含x 的式子表示). 9.一个n 边形的内角和是其外角和的2倍,则n = .第6题图第7题图10.不等式93-x <0的最大整数....解是 . 11.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .12.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .13.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是3,则图中阴影部分的面积为 .14.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE = ______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 道题.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α (90<<αo ),若∠1=110°,则α=______°.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)解方程:62221+-=--y y y19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.20.(9分)解方程组:⎩⎨⎧=+=-16323y x y x第16题图DEA BCB第12题图第13题图第14题图第17题图21.(9分)解不等式组: 338213(1)8x x x-⎧+≥⎪⎨⎪--<-⎩(注:必须通过画数轴求解集)22.(9分)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD沿AD 折叠得到△AED ,AE 与BC 交于点F . (1)填空:∠AFC = 度; (2)求∠EDF 的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得||2PC PA -的值最大.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴);⑵过一条边的四等分点作这边的垂线段(图⑵)(图⑵中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图⑶、图⑷两个正方形中画出另外两种不同的分割方法.............(正确画图,不写画法)ACDB E F25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元; 假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点D .①当70α=时,∠②BDC ∠α的代数式表示);(2)如图2,若ABC ∠的平分线与ACE ∠角平分线交于点F ,求BFC ∠的度数(用含α的代数式表示).(3)在(2)的条件下,将FBC ∆以直线BC 为对称轴翻折得到GBC ∆,GBC ∠的角平分线与GCB ∠的角平分线交于点M (如图3),求BMC ∠的度数(用含α的代数式表示).BACBAA图1图22015-2016学年度初一年下学期期末质量检测数学试卷参考答案说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B 二、填空题(每题4分,共40分)8.52+x ;9.6;10.2; 11.⎪⎩⎪⎨⎧===632z y x ;12.4;13.30;14.15;15.5;16.20; 17.(1)11;(2)120.三、解答题:(89分) 18.(9分)解: 62221+-=--y y y )2(12)1(36+-=--y y y ………………3分 212336--=+-y y y ………………5分 321236--=+-y y y74=y …………………………8分 47=y …………………………9分 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来. 解:1335+≤-x x ……………………2分 42≤x ………………………4分 2≤x ………………………6分它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分 20.(9分)解方程组:⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-)()(2163213y x y x方法一:用代入法解的得分步骤解:由(1)得 3+=y x (3)……3分 把(3)代入(2)得1633(2=++y y ) 解得2=y ………6分把2=y 代入(3) 得5=x ……8分方法二:用加减法解的得分步骤解:由(2)-(1)×2得 105=y …………………4分 2=y ……………6分 把2=y 代入(1)得5=x ……………………8分21.(9分)解:由(1)得13≥x ……………………3分由(2)得2->x ……………………6分在数轴上表示两个解集(略)………7分所以原不等式组的解是:13≥x …………9分 22.(9分)解:(1)110; ………………………………………… 3分(2)解法一:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………… 7分 ∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. … 9分解法二: ∵∠B=50°,∠BAD=30°, ∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到, ∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角, ∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分) 23.(9分)解:作图如下:24.(9分)答案不惟一.P ACD BEF (1)正确画出△A 1B 1C 1. ………………3分 (2)正确画出△A 2B 2C 2. ………………6分 (3)正确画出点P . ……………………9分(注:画对一个得5分,两个得9分)∵只能为正整数 ∴m 最小为434答:他当月至少要卖434件.………………………………………………10分 (3)设一件甲为a 元,一件乙为b 元,一件丙为c 元,则⎩⎨⎧=++=++3703235023c b a c b a …………………………………………………………11分 将两等式相加得720444=++c b a 则180=++c b a答:购买一件甲、一件乙、一件丙共需180元.………………………………13分26.(13分)解:(1)①125;②α2190+;………………………………4分 (2)∵BF 和CF 分别平分ABC ∠和ACE ∠ ∴ABC FBC ∠=∠21,ACE FCE ∠=∠21……………5分 ∴FBC FCE BFC ∠-∠=∠……………………………6分 )(21ABC ACE ∠-∠= A ∠=21……………………………………………7分 即α21=∠BFC ………………………………………………8分(3)由轴对称性质知:α21=∠=∠BFC BGC ………………10分 由(1)②可得BGC BMC ∠+=∠2190………………12分 ∴α4190+=∠BMC .……………………………………13分。
初一七年级期末考试数学期末测试卷(含答案)
2015-2016学年第二学期七年级期末考试数学试卷一、选择题(本题共10小题, 每小题2分,共20分.)1、16的算术平方根是( )A.4B.±4C. ±2D. 22、为了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是:( )A.每一台电视机的使用寿命B.这批的电视机使用寿命C.抽取的100台电视机的使用寿命D.1003、若x >y ,则下列式子错误..的是( ) A .x-3>y-3 B. 3-x >3-y C. -2x <-2y D.3x >3y4、如图,不能判定AB ∥CD 的条件的是( ) A.︒=∠+∠180BCD B B.21∠=∠ C.43∠=∠; D. 5∠=∠B .5、在平面直角坐标系中,点A 位于第二象限,距离x 轴1个单位长度,距y 轴4个单位长度,则点A 的坐标为( )A .(-4,1)B .(1,4)C .(-1,4)D .(4,-1)6、解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩7、如图所示,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′位置,若∠EFB=65°,则∠AED ′等于( )A.50°B.55°C.60°D.65° 8、已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx a x9、某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( )A .六折B .七折C .八折D .九折10、如图,在平面直角坐标系上有点A (1,0),点A 第一次跳动至点A 1(-1,1),第二次向右跳动3个单位至点A 2(2, 1),第三次跳动至点A 3(-2, 2),第四次向右跳动5个单位至点A 4(3,2),…,依此规律跳动下去,点A 第101次跳动至点A 101的坐标是( ).A .(-101, 101)B .(51, 51)C .( -51, 51)D .(-50, 50)二、填空题(本大题共8小题,每小题3分,共24分. ) 11、一个正数的平方根是2m-3与5-m ,则m =_______12、妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了统计数学的 思想.13、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是_______________。
邯郸七年级下册数学期末试卷章末训练(Word版 含解析)
邯郸七年级下册数学期末试卷章末训练(Word 版 含解析)一、解答题1.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.2.如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒.(1)证明://MN ST ;(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由;(3)如图3,若180ACB n︒∠=(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.3.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由; (3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)4.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数. 5.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.二、解答题6.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.7.已知:直线1l ∥2l ,A 为直线1l 上的一个定点,过点A 的直线交 2l 于点B ,点C 在线段BA 的延长线上.D ,E 为直线2l 上的两个动点,点D 在点E 的左侧,连接AD ,AE ,满足∠AED =∠DAE .点M 在2l 上,且在点B 的左侧.(1)如图1,若∠BAD =25°,∠AED =50°,直接写出∠ABM 的度数 ;(2)射线AF 为∠CAD 的角平分线.① 如图2,当点D 在点B 右侧时,用等式表示∠EAF 与∠ABD 之间的数量关系,并证明; ② 当点D 与点B 不重合,且∠ABM +∠EAF =150°时,直接写出∠EAF 的度数 .8.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).9.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论. 10.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.三、解答题11.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.12.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)13.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.14.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有个以线段AC为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .15.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.【参考答案】一、解答题1.(1)见解析;(2),证明见解析. 【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解析:(1)见解析;(2)902FME α∠=︒-,证明见解析.【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明://AB CD ,CEH EHB ∴∠=∠, GFB CEH ∠=∠, GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠, FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠, FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.2.(1)见解析;(2)见解析;(3)n-1 【分析】(1)连接AB ,根据已知证明∠MAB+∠SBA=180°,即可得证; (2)作CF ∥ST ,设∠CBT=α,表示出∠CAN ,∠ACF ,∠BCF ,根据解析:(1)见解析;(2)见解析;(3)n -1 【分析】(1)连接AB ,根据已知证明∠MAB +∠SBA =180°,即可得证;(2)作CF ∥ST ,设∠CBT =α,表示出∠CAN ,∠ACF ,∠BCF ,根据AD ∥BC ,得到∠DAC =120°,求出∠CAE 即可得到结论;(3)作CF ∥ST ,设∠CBT =β,得到∠CBT =∠BCF =β,分别表示出∠CAN 和∠CAE ,即可得到比值. 【详解】解:(1)如图,连接AB ,,360MAC ACB SBC ∠+∠+∠=︒,180ACB ABC BAC ∠+∠+∠=︒,180MAB SBA ∴∠+∠=︒, //MN ST ∴(2)2CAE CAN ∠=∠,理由:作//CF ST ,则////,MN CF ST 如图,设CBT α∠=,则2DAE α∠=.BCF CBT α∠=∠=,60CAN ACF α∠=∠=︒-,//AD BC ,180120DAC ACB ∠=︒-∠=︒,12012022(60)2CAE DAE CAN αα∴∠=︒-∠=︒-=︒-=∠.即2CAE CAN ∠=∠.(3)作//CF ST ,则////,MN CF ST 如图,设CBT β∠=,则MAE n β∠=.//CF ST ,CBT BCF β∴∠=∠=, 180180n ACF CAN n nββ︒︒-∠=∠=-=, 1801180180(180)n CAE MAE CAN n n n nβββ︒-∠=︒-∠-∠=︒--+=︒-, 11::1n CAE CAN n n n-∠∠==-, 故答案为1n -. 【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.3.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP ,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP +∠FBP ,理由见解析;(3)①∠P =2∠P 1,理由见解析;②∠AP 2B=11802β︒-.【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM =∠DAP ,再根据平行公理求出CD ∥EF 然后根据两直线平行,内错角相等可得∠MPB =∠FBP ,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),=180°- 12∠APB,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.4.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵PQ ∥MN ,∴∠BJA =∠PBD =50°,∴∠ADB =∠AJB -∠JAD =50°-∠JAD =50°-∠CAM ,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM +50°-∠CAM =25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.5.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠,12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒, CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.二、解答题6.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M 作MN ∥AB ,由平行线的性质即可求得∠M 的值.(2)延长BA ,DC 交于E ,解析:(1)50°;(2)∠A +∠C =30°+α,理由见解析;(3)∠A -∠DCM =30°+α或30°-α【分析】(1)过M 作MN ∥AB ,由平行线的性质即可求得∠M 的值.(2)延长BA ,DC 交于E ,应用四边形的内角和定理与平角的定义即可解决问题. (3)分两种情形分别求解即可;【详解】解:(1)过M 作MN ∥AB ,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A -∠C =30°+α.②如图所示,210-∠A =(180°-∠D CM )+α,即∠A -∠DCM =30°-α.综上所述,∠A -∠DCM =30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l ∥AB ,利用平行线的性质(两直线平行内错角相等)将所求的角∠M 与已知角∠A 、∠C 的数量关系联系起来,从而求得∠M 的度数.7.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①2ABD EAF ∠=∠,见解析;②30或110︒【分析】(1)由平行线的性质可得到:DEA EAN =∠∠,MBA BAN =∠∠,再利用角的等量代换换算即可;(2)①设EAF α∠=,AED=DAE=β∠∠,利用角平分线的定义和角的等量代换表示出ABD ∠对比即可;②分类讨论点D 在B 的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在1l 上有一点N 在点A 的右侧,如图所示:∵12//l l∴DEA EAN =∠∠,MBA BAN =∠∠∴50AED DAE EAN ==︒∠=∠∠∴255050125BAN BAD DAE EAN =++=︒+︒+︒=︒∠∠∠∠125BAM =︒∠(2)①2ABD=EAF ∠∠.证明:设EAF α∠=,AED=DAE=β∠∠.∴+=+FAD EAF DAE αβ=∠∠∠.∵AF 为CAD ∠的角平分线,∴22+2CAD FAD αβ==∠∠.∵12l l ,∴EAN=AED=β∠∠.∴2+22CAN CAD DAE EAN αβββα=--=--=∠∠∠∠.∴=22ABD CAN EAF α∠∠==∠.②当点D 在点B 右侧时,如图:由①得:2ABD EAF ∠=∠又∵180ABD ABM +=︒∠∠∴2180ABM EAF +=︒∠∠∵150ABM EAF ∠+∠︒=∴18015030EAF =︒-︒=︒∠当点D 在点B 左侧,E 在B 右侧时,如图:∵AF 为CAD ∠的角平分线 ∴12DAF CAD =∠∠ ∵12l l∴AED NAE =∠∠,CAN ABE =∠∠∵DAE AED NAE ==∠∠∠∴11()22DAE DAE NAE DAN =+=∠∠∠∠ ∴11()(360)22EAF DAF DAE CAD DAN CAN =+=+=︒-∠∠∠∠∠∠ 11802ABE =︒-∠ ∵180ABE ABM +=︒∠∠∴11180(180)9022EAF ABM ABM =︒-︒-=︒+∠∠∠ 又∵150EAF ABM +=︒∠∠∴1190(150)16522EAF EAF EAF =︒+⨯︒-=︒-∠∠∠ ∴110EAF =︒∠当点D 和F 在点B 左侧时,设在2l 上有一点G 在点B 的右侧如图:此时仍有12DAE DAN =∠∠,12DAF CAD =∠∠∴11(360)1802211180(180)9022EAF DAE DAF CAN ABG ABM ABM =+=︒-=︒-=︒-︒-=︒+∠∠∠∠∠∠∠ ∴110EAF =︒∠综合所述:30EAF ∠=︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.8.(1)见解析;(2)见解析【分析】(1)过点M 作MP ∥AB .根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC .∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M 作MP ∥AB .根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC .∠AEM+∠EMF+∠MFC=360°.证明:过点M 作MP ∥AB .∵AB ∥CD ,∴MP ∥CD .∴∠4=∠3.∵MP ∥AB ,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC ;证明:过点M 作MQ ∥AB .∵AB ∥CD ,∴MQ ∥CD .∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.10.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案; (2)首先根据角解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB .【详解】解:(1)∵CE //AB , ∴∠ACE =∠A ,∠ECD =∠B , ∵∠ACD =∠ACE+∠ECD , ∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD , ∴∠FCD =12∠ECD ,∠HAF =12∠HAD ,∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB , ∴∠ECD =∠B , ∵AH //BC , ∴∠B+∠HAB =180°, ∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下:GR 平分QGD ∠,12QGR QGD ∴∠=∠.GN 平分AQG ∠,12NQG AQG ∴∠=∠.//QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG =180°﹣∠QGR ﹣∠NQG =180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.三、解答题11.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒. 【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠.故答案为:1902D A ∠=︒+∠. ②连结BE . ∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒.故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒;180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒. 【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.12.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)° 【详解】 【模型】(1)证明:过点E 作EF ∥CD , ∵AB ∥CD , ∴EF ∥AB , ∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)° 【详解】 【模型】(1)证明:过点E 作EF ∥CD ,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.13.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.14.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.15.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。
河北省邯郸市七年级下学期数学期末考试试卷
河北省邯郸市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2019七下·乌兰浩特期中) 在式子x+6y=9,x+ =2,3x﹣y+2z=0,7x+4y,5x=y中,二元一次方程有()A . 1个B . 2个C . 3个D . 4个2. (3分)使分式有意义,x应满足的条件是()A . x≠1B . x≠2C . x≠1或x≠2D . x≠1且x≠23. (3分)(2016·巴中) 一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为()A . 41×10﹣6B . 4.1×10﹣5C . 0.41×10﹣4D . 4.1×10﹣44. (3分)计算(2ab2)3 ,结果正确的是()A . 2a3b6B . 6a3b6C . 8a3b5D . 8a3b65. (3分)下列调查中,适合采用普查的是()A . 调查全国中学生心理健康现状B . 调查我市食品合格情况C . 调查你所在的班级同学的身高情况D . 调查桂林电视台某电视节目的收视率6. (3分)下列四个多项式中,能因式分解的是()B . a2﹣2a+1C . x2+5yD . x2﹣5y7. (3分) (2019七下·融安期中) 如下图,∠1和∠2是()A . 内错角B . 同旁内角C . 同位角D . 对项角8. (3分)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A .B .C .D .9. (3分)解分式方程−=8 ,可知方程()A . 解为x=7B . 解为x=8C . 解为x=15D . 无解10. (3分)如图,直角三角形ABC的两直角边BC=12,AC=16,则△A BC的斜边AB上的高CD的长是()。
河北省邯郸市七年级下学期数学期末考试试卷
河北省邯郸市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的平方根是()A . 9B . 3C .D .2. (2分)(2017·商河模拟) 下列计算正确的是()A . + =B . x6÷x3=x2C . =2D . a2(﹣a2)=a43. (2分)若x>y,则下列式子中错误的是()A . x+ >y+B . ﹣3>y﹣3C . >D . ﹣3x>﹣3y4. (2分)化简的结果是()A . 3B . ±3C . 9D . ±95. (2分)若点P1(2﹣m,5)关于原点对称的点是P2(3,2n+1),则m﹣n的值为()A . 6B . -3C . 8D . 96. (2分)某调查小组就400名学生对小品的喜欢程度进行了调查,并将调查结果用条形统计图进行了表示。
已知条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为6:9:2:1,那么将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的中心角的度数是()A . 18°B . 20°C . 36°D . 40°7. (2分)(2016·赤峰) 如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A . AB∥BCB . BC∥CDC . AB∥DCD . AB与CD相交8. (2分)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF的度数为()A . 100°B . 120°C . 115°D . 130°9. (2分) (2017七下·海安期中) 已知是二元一次方程4x+ay=7的一组解,则a的值为()A .B . 5C . ﹣5D . ﹣10. (2分) (2017·曹县模拟) 若点A(a+1,b﹣1)在第二象限,则点B(﹣a,b+2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共6分)11. (1分) (2016七下·罗山期中) =________.12. (1分) (2016九上·江夏期中) 如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是________13. (1分) (2019七上·施秉月考) 观察下列多项式:,,,,…按此规律,则可以得到第个多项式是________.14. (1分) (2017七上·哈尔滨月考) 已知 =5, =4,且 ,则 ________.15. (1分) (2016七下·建瓯期末) 学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制________套.型号身高(x/cm)人数(频数)小号145≤x<15522中号155≤x<16545大号165≤x<17528特大号175≤x<185516. (1分) (2017七下·栾城期末) 不等式组的解集是0<x<2,那么a+b的值等于________.三、解答题 (共8题;共74分)17. (5分)解不等式组,并写出不等式组的整数解.18. (5分) (2016七上·南江期末) 已知:如图,点E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,试说明∠B=∠C.阅读下面的解题过程,在横线上补全推理过程或依据.解:∵∠1=∠2(已知)∠2=∠3(对顶角相等)∴∠1=∠3(等量代换)∴AF∥DE()∴∠4=∠D()又∵∠A=∠D(已知)∴∠4=∠A()∴()∴∠B=∠C()19. (5分)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?20. (9分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有________人,并补全条形统计图;(2)在扇形统计图中,m=________,n=________,表示区域C的圆心角是________;(3)小明是被问卷调查的同学,那么他参加了哪项活动的可能性最大?21. (15分)(2019·锡山模拟) 如图,过、作x轴的垂线,分别交直线于C、D 两点抛物线经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若沿CD方向平移点C在线段CD上,且不与点D重合,在平移的过程中与重叠部分的面积记为S,试求S的最大值.22. (10分) (2018七下·长春月考) 已知,在△ABC中,AB=8,且BC=2a+2,AC=22,(1)求a的取值范围;(2)若△ABC为等腰三角形,求这个三角形的周长。
河北省邯郸市七年级下学期数学期末试卷
河北省邯郸市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·凤山期末) 下列图形中,对称轴的条数最多的是()A . 长方形B . 正方形C . 等腰三角形D . 线段2. (2分)(2017·历下模拟) 下列计算正确的是()A . a6÷a3=a3B . (a2)3=a8C . (a﹣b)2=a2﹣b2D . a2+a2=a43. (2分) (2018七上·澧县期中) 下列各对式子是同类项的是()A . 3x2y 与 4y2xB . 3abc 与 2bcC . ﹣与﹣2aD . ﹣x2y3 与 5y3x24. (2分) (2016七下·临河期末) 下列4对数值中是方程2x-y=1的解的是()A .B .C .D .5. (2分)(2018·河池模拟) 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是()A . 中位数和众数都是8小时B . 中位数是25人,众数是20人C . 中位数是13人,众数是20人,D . 中位数是6小时,众数是8小时6. (2分)在同一平面内,两条不重合直线的位置关系可能是()。
A . 平行或相交B . 垂直或相交C . 垂直或平行D . 平行、垂直或相交7. (2分) (2019七上·道外期末) 有下列命题:①无理数是无限不循环小数;②64的平方根是8;③过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同位角相等,其中正确的个数是()A . 1B . 2C . 3D . 48. (2分)如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A . 65°B . 80°C . 105°D . 115°9. (2分) (2017八上·淅川期中) 若(x-3)(x+5)= +px+q,则p+q的值为()A . -15B . 2C . 17D . -1310. (2分) (2020七上·龙岩期末) 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2019·温州模拟) 因式分解:1﹣4a2=________.12. (1分) (2016七下·砚山期中) (﹣0.25)100×4101=________.13. (1分)(2019·吴兴模拟) 因式分解:a2﹣4a+4=________14. (1分)数据2、4、5、3、9、4、5、8的众数是________,中位数是________.15. (1分) (2019七上·海安期末) 如图,直线DE经过三角形ABC的顶点A,则∠DAC与∠C的关系是________.(填“内错角”或“同旁内角”)16. (1分)若实数满足 ,则 =________.17. (1分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于________.18. (1分)如图,A,B两点的坐标分别为A(﹣1,),B(﹣,0),则△OAB的面积(精确到0.1)为________.三、解答题 (共8题;共61分)19. (2分)如图a,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案在如图b所示的网格中设计符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同)(1)是轴对称图形也是中心对称图形;(2)是轴对称图形但不是中心对称图形;(3)是中心对称图形但不是轴对称图形.20. (2分) (2017七下·海珠期末) 解下列方程组:(1);(2).21. (5分)求值:(2+1)•(22+1)•(24+1)•(28+1)•(216+1)-232 .22. (10分)某市为了了解高峰时段16路公交车从总站乘该路车出行的人数情况,随机抽查了10个班次乘该路车的人数,结果如下:14,23,16,25,23,28,26,27,23,25.(1)这组数据的众数为________,中位数为________;(2)计算这10个班次乘该路车人数的平均数;(3)如果16路公交车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?23. (6分) (2018八下·永康期末) 如图,在平面直角坐标系中,矩形OABC的顶点A在y轴上,C在x轴上,把矩形OABC沿对角线AC所在的直线翻折,点B恰好落在反比例函数的图象上的点处,与y轴交于点D,已知, .(1)求的度数;(2)求反比例函数的函数表达式;(3)若Q是反比例函数图象上的一点,在坐标轴上是否存在点P,使以P,Q,C,D为顶点的四边形是平行四边形?若存在,请求出P点的坐标;若不存在,请说明理由.24. (10分) (2019八上·驿城期中) 观察图,先填空,然后回答问题(1)由上而下第行的白球与黑球总数比第行多________个.若第行白球与黑球的总数记作,写出与的关系式________。
七年级数学下学期期末试卷含解析北师大版5
2021-2016学年河北省邯郸市成安县七年级(下)期末数学试卷一、选择题(每题2分,共28分)1.以下整式计算正确的选项是()A.(2a)3=6a3B.x4÷x4=x C.x2•x3=x5D.(m3)3=m62.现有两根木棒,它们长别离是40cm和50cm,假设要钉成一个三角形木架,那么以下四根木棒应选取()A.10cm的木棒B.40cm的木棒C.90cm的木棒D.100cm的木棒3.以下各式中正确的选项是()A.(a+4)(a﹣4)=a2﹣4 B.(5x﹣1)(1﹣5x)=25x2﹣1C.(﹣3x+2)2=4﹣12x+9x2 D.(x﹣3)(x﹣9)=x2﹣274.以下五家银行行标中,是轴对称图形的有()A.1个B.2个C.3个D.4个5.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.6.以下事件中,是必然事件的是()A.掷一枚均匀的六面体骰子,骰子停止后朝上的点数是6B.打开电视机,任意选择一个频道,正在播新闻C.在地球上,抛出去的篮球会下落D.随机地从0,1,2,…,9这十个数当选取两个数,和为207.面积相等的两个三角形()A.必然全等 B.必定不全等C.不必然全等D.以上答案都不对8.如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的依照是()A.SAS B.ASA C.AAS D.SSS9.以下说法正确的选项是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①② C.②③ D.①③10.如图是一个能够自由转动的转盘,转动那个转盘后,转出()色的可能性最小.A.红B.黄C.绿D.不确定11.角平分线的尺规作图,其依照是构造两个全等三角形,由作图可知:判定所构造的两个三角形全等的依据是()A.SSS B.ASA C.SAS D.AAS12.张大爷出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了20分钟报纸后,用了15分钟返回家,如图中表示张大爷离家时刻与距离之间的关系()A. B.C.D.13.在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判定中错误的选项是()A.假设添加条件AC=A′C′,那么△ABC≌△A′B′C′B.假设添加条件BC=B′C′,那么△ABC≌△A′B′C′C.假设添加条件∠B=∠B′,那么△ABC≌△A′B′C′D.假设添加条件∠C=∠C′,那么△ABC≌△A′B′C′14.如图,D在AB上,E在AC上,且∠B=∠C,那么补充以下一个条件后,仍无法判定△ABE ≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC二、填空题(每题3分,共18分)15.氢原子的直径为,用科学记数法表示为______m.16.30°角的余角是______,补角是______.17.化简:()2﹣()2=______.18.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,假设要使△ABC≌△DEF,那么还须补充一个条件______.(只要填一个)19.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,那么∠C=______°.20.如图,AC⊥BD于O,BO=OD,图中共有全等三角形______对.三、解答题(2一、2二、23、24每题5分,共54分)21.﹣(﹣a2)3•(﹣a)3÷(﹣a2)22.利用平方差公式进行计算:102×98.23.先化简,再求值:(x+2)2﹣(x+1)(x﹣1),其中x=.24.已知ab=2,求(2a+3b)2﹣(2a﹣3b)2的值.25.某地某天的温度转变情形如下图,观看表格回答以下问题:(1)上午9时的温度是______,12时的温度是______;(2)这一天______时的温度最高,最高温度是______;这一天______时的温度最低,最低温度是______;(3)这一天的温差是______,从最高温度到最低温度通过了______;(4)在什么时刻范围内温度在上升?______;在什么时刻范围内温度在下降?______ (5)图中A点表示的是什么?B点呢?______(6)你能预测第二天凌晨1时的温度吗?说说你的理由.______.26.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)假设∠ABC=40°、∠ACB=50°,那么∠BOC=______;(2)假设∠ABC+∠ACB=116°,那么∠BOC=______;(3)假设∠A=76°,那么∠BOC=______;(4)假设∠BOC=120°,那么∠A=______;(5)请写出∠A与∠BOC之间的数量关系______(没必要写出理由).27.如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为条件,余下一个作为结论,写出所有方案.选其中一个说明理由.(1)假设______,______,______,那么______;(2)假设______,______,______,那么______;(3)假设______,______,______,那么______;证明:2021-2016学年河北省邯郸市成安县七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题2分,共28分)1.以下整式计算正确的选项是()A.(2a)3=6a3B.x4÷x4=x C.x2•x3=x5D.(m3)3=m6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】依照同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判定后利用排除法求解.【解答】解:A、(2a)3=8a3,选项错误;B、x4÷x4=1,选项错误;C、x2•x3=x5,选项正确;D、(m3)3=m9,选项错误.应选C.2.现有两根木棒,它们长别离是40cm和50cm,假设要钉成一个三角形木架,那么以下四根木棒应选取()A.10cm的木棒B.40cm的木棒C.90cm的木棒D.100cm的木棒【考点】三角形三边关系.【分析】此题从边的方面考查三角形形成的条件,应知足三角形的三边关系定理:任意两边之和>第三边.【解答】解:已知三角形的两边是40cm和50cm,那么10<第三边<90.应选40cm的木棒.应选:B.3.以下各式中正确的选项是()A.(a+4)(a﹣4)=a2﹣4 B.(5x﹣1)(1﹣5x)=25x2﹣1C.(﹣3x+2)2=4﹣12x+9x2 D.(x﹣3)(x﹣9)=x2﹣27【考点】平方差公式;多项式乘多项式;完全平方公式.【分析】A、原式利用平方差公式化简取得结果,即可作出判定;B、原式利用完全平方公式化简取得结果,即可作出判定;C、原式利用完全平方公式化简取得结果,即可作出判定;D、原式利用多项式乘以多项式法那么计算取得结果,即可作出判定.【解答】解:A、原式=a2﹣16,错误;B、原式=﹣(5x﹣1)2=﹣25x2+10x﹣1,错误;C、原式=9x2﹣12x+4,正确;D、原式=x2﹣12x+27,错误,应选C4.以下五家银行行标中,是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】轴对称图形的概念:若是一个图形沿一条直线折叠,直线两旁的部份能够相互重合,那个图形叫做轴对称图形,这条直线叫做对称轴,这时,咱们也能够说那个图形关于这条直线(成轴)对称可得答案.【解答】解:第一、二、三个图形是轴对称图形,第四、五个图形不是轴对称图形,应选:C.5.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【考点】概率公式.【分析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案.【解答】解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是: =.应选C.6.以下事件中,是必然事件的是()A.掷一枚均匀的六面体骰子,骰子停止后朝上的点数是6B.打开电视机,任意选择一个频道,正在播新闻C.在地球上,抛出去的篮球会下落D.随机地从0,1,2,…,9这十个数当选取两个数,和为20【考点】随机事件.【分析】依照事件发生的可能性大小判定相应事件的类型即可解答.【解答】解:A.掷一枚均匀的六面体骰子,骰子停止后朝上的点数是6是随机事件;B.打开电视机,任意选择一个频道,正在播新闻是随机事件;C.在地球上,抛出去的篮球会下落是必然事件;D.随机地从0,1,2,…,9这十个数当选取两个数,和为20是不可能事件,应选:C.7.面积相等的两个三角形()A.必然全等 B.必定不全等C.不必然全等D.以上答案都不对【考点】全等三角形的判定.【分析】两个面积相等的三角形,那么面积的2倍也相等,也确实是底乘高相等;可是一个数能够有许多不同的因数,因此说这两个三角形的对应边和对应高不必然相等,故面积相等的两个三角形不必然全等.【解答】解:因为两个面积相等的三角形,那么面积的2倍也相等,也确实是底乘高相等;可是一个数能够有许多不同的因数,因此说这两个三角形的对应边、对应高不必然相等;故面积相等的两个三角形不必然全等.应选C.8.如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的依照是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定.【分析】依照∠1=∠2,求出∠BCA=∠DCE,依照SAS证△ABC≌△ECD即可.【解答】解:∵∠1=∠2,∴∠1+∠DCA=∠2+∠DCA,即∠BCA=∠DCE,在△ABC和△ECD中,∴△ABC≌△ECD(SAS),应选A9.以下说法正确的选项是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①② C.②③ D.①③【考点】三角形的角平分线、中线和高.【分析】依照三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高能够在内部,也能够在外部,直角三角形有两条高在边上作答.【解答】解:①、②正确;而关于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.应选B.10.如图是一个能够自由转动的转盘,转动那个转盘后,转出()色的可能性最小.A.红B.黄C.绿D.不确定【考点】可能性的大小.【分析】找到份数最小的颜色即可.【解答】解:因为转盘被平均分为8份,黄色为2份,红色为3份,绿色为3份,因此转动那个转盘后转出可能性最小的颜色是黄色.应选:B.11.角平分线的尺规作图,其依照是构造两个全等三角形,由作图可知:判定所构造的两个三角形全等的依据是()A.SSS B.ASA C.SAS D.AAS【考点】全等三角形的判定;作图—大体作图.【分析】依照作图进程可知用到的三角形全等的判定方式是SSS.【解答】解:如下图:作法:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再别离以F、E为圆心,大于EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图进程可得用到的三角形全等的判定方式是SSS.应选A.12.张大爷出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了20分钟报纸后,用了15分钟返回家,如图中表示张大爷离家时刻与距离之间的关系()A. B.C.D.【考点】函数的图象.【分析】依照离家时距离家的距离愈来愈远,那么图象上升,看报时,那么离家的距离不变,回家那么离家愈来愈近,图象下降,可得出答案.【解答】解:从家走了20分钟,到一个离家900米的阅报亭,那么前20分钟内离家的距离愈来愈远,图象上升,在报亭20分钟,那么这段时刻内离开家的距离仍是900米,现在图象为平行x轴的线段,又用15分钟返回家,那么在这段时刻内图象下降,又总的历时为20+20+15=55分,应选A.13.在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判定中错误的选项是()A.假设添加条件AC=A′C′,那么△ABC≌△A′B′C′B.假设添加条件BC=B′C′,那么△ABC≌△A′B′C′C.假设添加条件∠B=∠B′,那么△ABC≌△A′B′C′D.假设添加条件∠C=∠C′,那么△ABC≌△A′B′C′【考点】全等三角形的判定.【分析】依照全等三角形的判定方式对各个选项进行分析,从而取得答案.【解答】解:A,正确,符合SAS判定;B,不正确,因为边BC与B′C′不是∠A与∠A′的一边,因此不能推出两三角形全等;C,正确,符合AAS判定;D,正确,符合ASA判定;应选B.14.如图,D在AB上,E在AC上,且∠B=∠C,那么补充以下一个条件后,仍无法判定△ABE ≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC【考点】全等三角形的判定.【分析】依照AAS即可判定A;依照三角对应相等的两三角形不必然全等即可判定B;依照AAS即可判定C;依照ASA即可判定D.【解答】解:A、依照AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD,正确,故本选项错误;B、三角对应相等的两三角形不必然全等,错误,故本选项正确;C、依照AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;D、依照ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;应选:B.二、填空题(每题3分,共18分)15.氢原子的直径为,用科学记数法表示为1×10﹣10m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所利用的是负指数幂,指数由原数左侧起第一个不为零的数字前面的0的个数所决定.【解答】解:=1×10﹣10;故答案为:1×10﹣10.16.30°角的余角是60°,补角是150°.【考点】余角和补角.【分析】依照互余的两角之和为90°,互补的两角之和为180°,即可得出答案.【解答】解:90°﹣30°=60°,180°﹣30°=150°.答:30°的角的余角是60°,补角是150°.故答案为:60°,150°.17.化简:()2﹣()2= 6x .【考点】因式分解-运用公式法.【分析】直接利用平方差公式求解即可求得答案.【解答】解:()2﹣()2=(+3+﹣3)(+3﹣+3)=6x.故答案为:6x.18.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,假设要使△ABC≌△DEF,那么还须补充一个条件AC=DF .(只要填一个)【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS来判定.【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.19.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,那么∠C= 20 °.【考点】全等三角形的判定与性质.【分析】在△BAE和△CAD中由∠A=∠A,AD=AE,AB=AC证明△BAE≌△CAD,于是取得∠B=∠C,结合题干条件即可求出∠C度数.【解答】解:在△BAE和△CAD中,,∴△BAE≌△CAD(SAS),∴∠B=∠C,∵∠B=20°,∴∠C=20°,故答案为20.20.如图,AC⊥BD于O,BO=OD,图中共有全等三角形 3 对.【考点】全等三角形的判定.【分析】依照三角形全等的性质来判定,在△AOB和△AOD中,AC⊥BD,BO=DO,AO为公共边,∴△AOB≌△AOD.一样的道理推出△BOC≌△DOC.再由AB=AD,BC=DC,AC为公共边,推出△ABC≌△ADC,故得出有三对全等三角形.【解答】解:①∵AC⊥BD,BO=DO,AO为公共边,∴△AOB≌△AOD,②∵BO=OD,AC⊥BD,OC为公共边,∴△BOC≌△DOC,③∵AB=AD,BC=DC,AC为公共边,∴△ABC≌△ADC,∴图中共有全等三角形3对.故填3.三、解答题(2一、2二、23、24每题5分,共54分)21.﹣(﹣a2)3•(﹣a)3÷(﹣a2)【考点】整式的混合运算.【分析】先算乘方(注意第一步确信结果的符号),再算乘除(也可先确信结果的符号),即可得出答案.【解答】解:原式=﹣(﹣a6)•(﹣a3)÷(﹣a2)=a6+3﹣2=a7.22.利用平方差公式进行计算:102×98.【考点】平方差公式.【分析】原式变形后,利用平方差公式计算即可取得结果.【解答】解:原式=×=10000﹣4=9996.23.先化简,再求值:(x+2)2﹣(x+1)(x﹣1),其中x=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再归并同类项,最后代入求出即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5,当x=.时,原式=7.24.已知ab=2,求(2a+3b)2﹣(2a﹣3b)2的值.【考点】完全平方公式.【分析】原式利用平方差公式整理后,将已知等式代入计算即可求出值【解答】解:(2a+3b)2﹣(2a﹣3b)2=(2a+3b+2a﹣3b)(2a+3b﹣2a+3b)=4a•6b=24ab,当ab=2时,原式=24×2=48答:(2a+3b)2﹣(2a﹣3b)2的值是48.25.某地某天的温度转变情形如下图,观看表格回答以下问题:(1)上午9时的温度是27℃,12时的温度是31℃;(2)这一天15 时的温度最高,最高温度是37℃;这一天 3 时的温度最低,最低温度是23℃;(3)这一天的温差是14℃,从最高温度到最低温度通过了12 ;(4)在什么时刻范围内温度在上升?3时到15时;在什么时刻范围内温度在下降?0时到3时(5)图中A点表示的是什么?B点呢?A点表示的是21时的温度是31℃,B点表示的是0时的温度是26℃(6)你能预测第二天凌晨1时的温度吗?说说你的理由.依照图形的转变趋势.【考点】函数的图象.【分析】(1)上午9时的温度,12时的温度;(2)观看函数的图象,找出最高点表示的气温即可,(2)在函数的图象上找出气温在31度以上的部份即可;(3)在函数的图象上找出温度在上升的部份即可;(4)观看函数的图象,估量出第二天凌晨1点的气温即可.【解答】解:(1)上午9时的温度是27℃,12时的温度是31℃;(2)由图可知这一天15时的温度最高,最高温度是37℃;这一天3时的温度最低,最低温度是23℃;(3)这一天的温差是37﹣23=14℃;从最高温度到最低温度通过了15﹣3=12小时;(4)在3时到15时温度在上升;在0时到3时,15时到24时温度在下降;(5)图中A点表示的是21时的温度是31℃,B点表示的是0时的温度是26℃(6)大约24℃,依照图形的转变趋势.故答案为;27℃,31℃,15,37℃,3,23℃,3时到15时,14℃,12,A点表示的是21时的温度是31℃,B点表示的是0时的温度是26℃,24℃.依照图形的转变趋势.26.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)假设∠ABC=40°、∠ACB=50°,那么∠BOC= 135°;(2)假设∠ABC+∠ACB=116°,那么∠BOC= 122°;(3)假设∠A=76°,那么∠BOC= 128°;(4)假设∠BOC=120°,那么∠A= 60°;(5)请写出∠A与∠BOC之间的数量关系∠A=2∠BOC﹣180°(没必要写出理由).【考点】三角形内角和定理;三角形的外角性质.【分析】(1)、(2)在△BOC中利用三角形内角和定理来求∠BOC的度数;(2)第一在△ABC中利用三角形内角和定理求得(∠ABC+∠ACB)的度数,然后在△BOC中利用三角形内角和定理来求∠BOC的度数;(3)第一在△BOC中利用三角形内角和定理来求(∠OBC+∠OCB)的度数;然后利用角平分线的性质和△ABC的内角和定理来求∠A的度数.(4)依照以上计算结果填空.【解答】解:∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠OBC+∠OCB=(∠ABC+∠ACB),(1)当∠ABC=40°、∠ACB=50°时,∠OBC+∠OCB=×(40°+50°)=45°,∴在△BOC中,∠BOC=180°﹣(∠OBC+∠OCB)=135°.故答案是:135°;(2)假设∠ABC+∠ACB=116°,那么∠OBC+∠OCB=×116°=58°,∴在△BOC中,∠BOC=180°﹣(∠OBC+∠OCB)=122°.故答案是:122°;(3)在△ABC中,∠A=76°,那么∠ABC+∠ACB=180°﹣76°=104°.∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠OBC+∠OCB=(∠ABC+∠ACB)=52°,∴在△BOC中,∠BOC=180°﹣(∠OBC+∠OCB)=128°.故答案是:128°;(4)假设∠BOC=120°,那么∠OBC+∠OCB=60°,∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=120°,∴在△ABC中,∠A=180°﹣120°=60°.故填:60°;(5)设∠BOC=α,∴∠OBC+OCB=180°﹣α,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠ABC+∠ACB=2(∠OBC+OCB)=2=360°﹣2α,∴∠A=180°﹣(ABC+∠ACB)=180°﹣=2α﹣180°,故∠BOC与∠A之间的数量关系是:∠A=2∠BOC﹣180°.故答案是:∠A=2∠BOC﹣180°.27.如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为条件,余下一个作为结论,写出所有方案.选其中一个说明理由.(1)假设①AD=CB,③∠B=∠D ,④AD∥BC ,那么②AE=CF;(2)假设②AE=CF,③∠B=∠D ,④AD∥BC ,那么①AD=BC;(3)假设①AD=CB,②AE=CF,④AD∥BC ,那么③∠B=∠D ;证明:【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】依照全等三角形的判定方式,即可解决问题.【解答】解:(1)假设①AD=BC,③∠B=∠D,④AD∥BC,那么②AE=CF.理由:∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE,∴AF=CE,∴AE=CF,故答案别离为①AD=BC,③∠B=∠D,④AD∥BC,②AE=CF.(2)假设②AE=CF,③∠B=∠D,④AD∥BC,那么①AD=BC.理由:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AF=EC,在△ADF和△CBF中,,∴△ADF≌△CBE,∴AD=BC,故答案别离为②AE=CF,③∠B=∠D,④AD∥BC,①AD=BC.(3)假设①AD=BC,②AE=CF,④AD∥BC,那么,③∠B=∠D.理由:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AF=EC,在△ADF和△BCE中,,∴△ADF≌△CBE,∴∠B=∠D.故答案为①AD=BC,②AE=CF,④AD∥BC,③∠B=∠D.。
【3套打包】邯郸市七年级下册数学期末考试试题(含答案)
最新七年级下册数学期末考试题及答案一、选择题(本大题共 8 小题,每题 3 分,共 24 分) 1.如图,是一个“七”字形,与∠1 是内错角的是( )A .∠2B .∠3C .∠4D .∠52.如图,有一底角为 35°的等腰三角形纸片,现过底边上一点, 沿与腰垂直的方向将其剪开,分成三角形和四边形两部分, 则四边形中,最大角的度数是( )A .110°B .125°C .140°D .160°3.点 P (-2,3)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.某班共有学生 49 人,一天该班某男生因事请假,当天的男生人数恰为女生人数的一 半.若该班男生人数为 x ,女生人数为 y ,则下列方程组中,能正确求出 x 、y 的是( )A .492(1)x y y x -=⎧⎨=+⎩B .492(1)x y y x +=⎧⎨=+⎩C .492(1)x y y x -=⎧⎨=-⎩D .492(1)x y y x +=⎧⎨=-⎩5.在正整数范围内,方程 3x +y =10 的解有( ) A .0 组B .1 组C .2 组D .3 组6.已知 a <b ,则下列不等式中正确的是()A .a +3>b +3B .3a >3bC .-3a >-3bD .33a b> 7.不等式-3x ≤6 的解集在数轴上正确表示为()8.下面各调查中,最适合使用全面调查方式收集数据的是()A .了解一批节能灯的使用寿命B .了解某班全体同学的身高情况C .了解动物园全年的游客人数D .了解央视“新闻联播”的收视率 二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9.如图,把长方形 ABCD 沿 E F 对折后,使两部分重合,若∠1=52°,则∠AEF = 度. 10.在平面直角坐标系中,若点 Q (m ,-2m +4)在第一象限 则 m 的取值范围是 . 11.在△ABC 中,已知两条边 a =3,b =4,则第三边 c 的取值 范围是 .12.方程3x-5y=15,用含x的代数式表示y,则y=.13.已知57xy=⎧⎨=⎩是二元一次方程k x-2y-1=0 的一组解,则k=.14.某种药品的说明书上,贴有如右表所示的标签,一次服用这种药品的剂量xmg(毫克)的范围是.15.如图,是小恺同学6 次数学测验的成绩统计表,则该同学6 次成绩中的最低分是.16.本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下:若用同一小班的计划人数与报名人数的比值大小来衡量进入该班的难易程度,学生中对于进入各活动小班的难易有以下预测:①篮球和航模都能进;②舞蹈比写作容易;③写作比奥数容易;④舞蹈比奥数容易.则预测正确的有(填序号即可).三、解下列方程组、不等式(组)(本大题共4小题,每小题6分,共24 分)17.43624x yx y+=⎧⎨+=⎩18.15(2)3224x x yx y⎧-+=⎪⎨⎪+=⎩19.2151132x x-+-<20.936325xx-≥⎧⎨-≤⎩四、应用题(本大题共2小题,每小题8分,共16 分)21.某风景点的团体购买门票票价如下:今有甲、乙两个旅行团,已知甲团人数少于50 人,乙团人数不超过100 人.若分别购票,两团共计应付门票费1950 元,若合在一起作为一个团体购票,总计应付门票费1545 元.(1)请你判断乙团的人数是否也少于50 人;(2)求甲、乙两旅行团各有多少人?(3)甲旅行团单独购票,有无更省钱的方案?说明理由.22.“你记得父母的生日吗?”这是某中学在七年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50 名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)已知该校七年级共900 名学生,据此推算,该校七年级学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?五、综合题(本题12 分)23.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4 位选手的短信支持率,情况如图2,第二次公布短信支持率时,每位选手的短信支持条数均有增加,且每位选手增加的短信支持条数相同.图1图2(1)比较图1,图2的变化情况,写出2条结论;(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,写出a、b之间的等式关系,并证明这个等式关系.(3)若第三次公布4 位选手的短信支持率情况时,1、2、3 号选手没有增加短信支持,而4号选手增加短信支持30 条,因此高于1号的短信支持率但仍低于3号的短信支持率,求第一次4位选手短信支持总条数a的取值范围.参考答案1.A.2.B.3.B.4.D.5.D.6.C.7.D.8.B.9.116;10.0<m<2;11.c>7;12.0.6x-3;13最新七年级下册数学期末考试题及答案一、选择题(本大题共 8 小题,每题 3 分,共 24 分) 1.如图,是一个“七”字形,与∠1 是内错角的是( )A .∠2B .∠3C .∠4D .∠52.如图,有一底角为 35°的等腰三角形纸片,现过底边上一点, 沿与腰垂直的方向将其剪开,分成三角形和四边形两部分, 则四边形中,最大角的度数是( )A .110°B .125°C .140°D .160°3.点 P (-2,3)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.某班共有学生 49 人,一天该班某男生因事请假,当天的男生人数恰为女生人数的一 半.若该班男生人数为 x ,女生人数为 y ,则下列方程组中,能正确求出 x 、y 的是( )A .492(1)x y y x -=⎧⎨=+⎩B .492(1)x y y x +=⎧⎨=+⎩C .492(1)x y y x -=⎧⎨=-⎩D .492(1)x y y x +=⎧⎨=-⎩5.在正整数范围内,方程 3x +y =10 的解有( ) A .0 组B .1 组C .2 组D .3 组6.已知 a <b ,则下列不等式中正确的是()A .a +3>b +3B .3a >3bC .-3a >-3bD .33a b> 7.不等式-3x ≤6 的解集在数轴上正确表示为()8.下面各调查中,最适合使用全面调查方式收集数据的是()A .了解一批节能灯的使用寿命B .了解某班全体同学的身高情况C .了解动物园全年的游客人数D .了解央视“新闻联播”的收视率 二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9.如图,把长方形 ABCD 沿 E F 对折后,使两部分重合,若∠1=52°,则∠AEF = 度. 10.在平面直角坐标系中,若点 Q (m ,-2m +4)在第一象限 则 m 的取值范围是 .11.在△ABC 中,已知两条边a=3,b=4,则第三边c的取值范围是.12.方程3x-5y=15,用含x的代数式表示y,则y=.13.已知57xy=⎧⎨=⎩是二元一次方程k x-2y-1=0 的一组解,则k=.14.某种药品的说明书上,贴有如右表所示的标签,一次服用这种药品的剂量xmg(毫克)的范围是.15.如图,是小恺同学6 次数学测验的成绩统计表,则该同学6 次成绩中的最低分是.16.本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下:若用同一小班的计划人数与报名人数的比值大小来衡量进入该班的难易程度,学生中对于进入各活动小班的难易有以下预测:①篮球和航模都能进;②舞蹈比写作容易;③写作比奥数容易;④舞蹈比奥数容易.则预测正确的有(填序号即可).三、解下列方程组、不等式(组)(本大题共4小题,每小题6分,共24 分)17.43624x yx y+=⎧⎨+=⎩18.15(2)3224x x yx y⎧-+=⎪⎨⎪+=⎩19.2151132x x-+-<20.936325xx-≥⎧⎨-≤⎩四、应用题(本大题共2小题,每小题8分,共16 分)21.某风景点的团体购买门票票价如下:今有甲、乙两个旅行团,已知甲团人数少于50 人,乙团人数不超过100 人.若分别购票,两团共计应付门票费1950 元,若合在一起作为一个团体购票,总计应付门票费1545 元.(1)请你判断乙团的人数是否也少于50 人;(2)求甲、乙两旅行团各有多少人?(3)甲旅行团单独购票,有无更省钱的方案?说明理由.22.“你记得父母的生日吗?”这是某中学在七年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50 名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)已知该校七年级共900 名学生,据此推算,该校七年级学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?五、综合题(本题12 分)23.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4 位选手的短信支持率,情况如图2,第二次公布短信支持率时,每位选手的短信支持条数均有增加,且每位选手增加的短信支持条数相同.图1图2(1)比较图1,图2的变化情况,写出2条结论;(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,写出a、b之间的等式关系,并证明这个等式关系.(3)若第三次公布4 位选手的短信支持率情况时,1、2、3 号选手没有增加短信支持,而4号选手增加短信支持30 条,因此高于1号的短信支持率但仍低于3号的短信支持率,求第一次4位选手短信支持总条数a的取值范围.参考答案10.A.11.B.12.B.13.D.14.D.15.C.16.D.17.B.18.116;10.0<m<2;11.c>7;12.0.6x-3;13新七年级(下)数学期末考试题(含答案)一、填空题(本大题共6个小题,每小题3分,共18分) .1.2的相反数是_____________.2.6的算术平方根是_____________.3.不等式组1 1120xx+<⎧⎨->⎩的解集是_____________.4.如图1,将块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为______________.图15.已知直线AB//x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为_____________.6.如图,用黑白两色正方形瓷砖按一定的规律铺设地面,第n个图案中白色瓷砖有_____________.块(用含n的式子表示) .二、选择题(本大题共8个小题,每小题4分,共32分) .7. 2019年一季度,曲靖市经济保持了较快增长,全市生产总值437.74亿元,同比增长10.1%,实现“开门红”. 437.74亿元用科学记数法表示为( )A. 437.74×109元B. 4.3774×1010元C. 0. 43774×1011元D. 4. 3774×1011元8.下面的调查中,不适合抽样调查的是( )A. 一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间9.下列图形中,不能通过其中一个四边形平移得到的是( )10.若点P(x ,y)在第四象限,且|x|=2, |y|=3, 则x+y= ( )A. ─1B.1C. 5D. ─511.不等式组31 2 840x x ->⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A. B.C. D.12.如图2所示,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCED. ∠D+∠ACD=180°图213.小颖家离学校1200米,其中有一段为上坡路, 另一段为下坡路,她去学校共用了16分钟,上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,设小颖上坡用了x 分钟,下坡用了y 分钟,据题意可列方程组为( )A.351200 16 x y x y +=⎧⎨+=⎩B.35 1.2 606016x y x y ⎧+=⎪⎨⎪+=⎩ C.35 1.2 16 x y x y +=⎧⎨+=⎩ D.351200 606016x y x y ⎧+=⎪⎨⎪+=⎩ 14.如图3,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF//BC ,以下四个结论①AH ⊥EF , ②∠ABF=∠EFB ,③AC // BE ,④∠E= ∠ABE.其中正确的有( )A.①②③④B.①②C.①③④D.①②④图3三、解答题(本大题共9个小题,共70分)15. (5分)2|1+-16. (6 分)解方程组29 32 1 x yx y+=⎧⎨-=-⎩①②17.(6分)解不等式组5(1)312151132x xx x-<+⎧⎪-+⎨-≤⎪⎩并将解集在数轴上表示出来.18.(7 分)完成推理填空:如图4,在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+ 6 EFD=180°(邻补角定义) ,∠1+∠2=180° (已知)∴_________________________(同角的补角相等) ①∴_________________________(内错角相等,两直线平行) ②∴∠ADE=∠3( ) ③∵∠3=∠B( ) ④∴______________=___________( 等量代换) ⑤∴DE//BC ( ) ⑥图4 ∴∠AED=∠C( ) ⑦19. (8分) 已知2m+3和4m+9是x的平方根,求x的值.20. (8 分)在读书月活动中,学校准备购买─批课外读物. 为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类) ,如图5是根据调查结果绘制的两幅不完整的统计图.条形统计图扇形统计图图5请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了____________名同学;(2)条形统计图中,m________,n=_______(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买“其他”类读物多少册比较合理?21. (8分)如图6,已知AB// DE,∠B=60°,AE⊥BC,垂足为点E.(1)求∠AED的度数:(2)当∠EDC满足什么条件时,AE// DC ?证明你的结论。
邯郸市七年级下学期期末数学试卷
邯郸市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A .B .C .D .2. (2分) (2018七下·中山期末) 如图,直线a,b被直线c所截,且a∥b,若∠1=55°,则∠2的度数为()A . 145°B . 125°C . 55°D . 45°3. (2分) (2018八上·南召期末) 下列计算正确的是()A . 4a2 ÷2a2=2a2B . ﹣( a3 )2=a6C . (﹣2a)(﹣a)=2a2D . (a﹣b)(﹣a﹣b)=a2﹣b24. (2分)下列运算正确的是()A . 2x2•x3=2x5B . (x﹣2)2=x2﹣4C . x2+x3=x5D . (x3)4=x75. (2分)(2020·西安模拟) 下列运算正确的是()A . 3x2-x2=2x2B . x2·x=x2C . (-3x3)2=6x5D . x8÷x4=x26. (2分)如图,在△ABC中,∠A=45°,∠C=75°,BD是△ABC的角平分线,则∠BDC的度数为()A . 60°B . 70°C . 75°D . 105°7. (2分)甲、乙两人各自掷一个普通的正方体骰子,如果两者之积为偶数,甲得1分;如果两者之积为奇数,乙得1分,此游戏()A . 对甲有利B . 对乙有利C . 是公平的D . 以上都有不对8. (2分)下列计算正确的是()A . (2x﹣3)2=4x2+12x﹣9B . (4x+1)2=16x2+8x+1C . (a+b)(a﹣b)=a2+b2D . (2m+3)(2m﹣3)=4m2﹣39. (2分)化简:(a+1)2-(a-1)2=()A . 2B . 4C . 4aD . 2a2+210. (2分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1 , S2 ,则S1+S2的值为()A . 16B . 17C . 18D . 19二、填空题 (共6题;共6分)11. (1分) (2017·南岗模拟) 若一个等腰三角形的两条边的边长之比3:2,则这个等腰三角形底角的正切值为________.12. (1分) (2017七下·揭西期末) 计算: ________。
邯郸市初一下学期数学期末试卷带答案
邯郸市初一下学期数学期末试卷带答案一、选择题1.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124°2.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2D .14a 2 3.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 4.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--5.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y 6.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 7.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( )A .1B .3C .4D .6 8.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .69.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④10.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( ) A .23m ≤ B .23m < C .23m ≥ D .23m > 二、填空题11.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.12.已知2m+5n ﹣3=0,则4m ×32n 的值为____13.已知一个多边形的每个外角都是24°,此多边形是_________边形.14.因式分解:224x x -=_________.15.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .16.计算:x (x ﹣2)=_____17.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 18.分解因式:m 2﹣9=_____.19.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.20.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 三、解答题21.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )22.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .23.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-24.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.(1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?25.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.26.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩.27.己知关于x 、y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值。
邯郸市人教版(七年级)初一下册数学期末测试题及答案
邯郸市人教版(七年级)初一下册数学期末测试题及答案一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .3.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 4.下列各式由左边到右边的变形,是因式分解的是( ) A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭5.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 6.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 9 7.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 8.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)9.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)210.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75°B.72°C.78°D.82°二、填空题11.分解因式:m2﹣9=_____.12.34xy=⎧⎨=-⎩是方程3x+ay=1的一个解,则a的值是__________.13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.14.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.15.有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为_________.16.分解因式:x2﹣4x=__.17.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是_____.18.若a m=2,a n=3,则a m+n的值是_____.19.如图,在三角形纸片ABC中剪去∠C得到四边形ABDE,且∠C=40°,则∠1+∠2的度数为_____.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.因式分解:(1)249x - (2) 22344ab a b b --22.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;23.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.24.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .25.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab -+-(3)(32)(32)x y x y +-(4)()()a b c a b c ++-+26.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩ 27.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.28.因式分解:(1)m 2﹣16;(2)x 2(2a ﹣b )﹣y 2(2a ﹣b );(3)y 2﹣6y +9;(4)x 4﹣8x 2y 2+16y 4.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误;故选C.2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 4.B解析:B【分析】根据因式分解的意义求解即可.【详解】A、从左边到右边的变形不属于因式分解,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、从左边到右边的变形不属于因式分解,故C不符合题意;D、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D不符合题意.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.C解析:C【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.6.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.7.B解析:B【分析】根据三角形中线的性质作答即可.【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线.故选:B.【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.8.A解析:A先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.二、填空题11.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.12.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值.13.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.14.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得,即,由图乙得,得2ab=10,解析:11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得222()1a b a b b ---=,即2221a ab b -+=,由图乙得222()10a b a b +--=,得2ab=10,∴2211a b +=,故答案为:11.【点睛】此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键. 16.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).17.20cm .【分析】根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.【详解】解:∵△ABE 向右平移2cm 得到△DCF,∴D解析:20cm .【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=16+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为20cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.18.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n=am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m+n=a m•a n=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m+n=a m•a n是解题的关键;19.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED ,∠2=∠C+∠EDC ,∴∠1+∠2=∠C+∠CED+∠EDC+∠C ,∵∠C+∠CED+∠EDC =180°,∠C =40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键.三、解答题21.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值 (3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2 ∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y =5,x•y =94 ∴52-(x-y)2=4×94∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m ﹣2020)=-1∴[(2019﹣m)+(m ﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m ﹣2020)+ (m ﹣2020)2=1∵(2019﹣m)2+(m ﹣2020)2=15∴2(2019﹣m)(m ﹣2020)=1-15=-14∴(2019﹣m)(m ﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.24.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.25.(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解:(1)原式2443x y xy =⋅3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+-2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.26.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.27.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.28.(1)(m +4)(m ﹣4);(2)(2a ﹣b )(x +y )(x ﹣y );(3)(y ﹣3)2;(4)(x+2y)2(x﹣2y)2【分析】(1)原式利用平方差公式因式分解即可;(2)原式提取公因式,再利用平方差公式因式分解即可;(3)原式利用完全平方公式因式分解即可;(4)原式利用完全平方公式,以及平方差公式因式分解即可.【详解】解:(1)原式=(m+4)(m﹣4);(2)原式=(2a﹣b)(x2﹣y2)=(2a﹣b)(x+y)(x﹣y);(3)原式=(y﹣3)2;(4)原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.。
邯郸市人教版七年级下册数学期末试卷及答案
(1)求证: .
(2)如图②, 分别为 的平分线所在直线,试探究 与 的数量关系;
(3)如图③,在(2)的前提下,且有 ,直线 交于点 , ,请直接写出 ______________.
23.因式分解:
(1)12abc﹣9a2b;
(2)a2﹣25;
(3)x3﹣2x2y+xy2;
故选A.
【点睛】
考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.
2.D
解析:D
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
如图,
∵a∥b,
∴∠2=∠3,
∵∠3=∠1+90°,∠1=34°,
∴∠3=124°,
∴∠2=∠3=124°,
故选:D.
【点睛】
此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
3.B
解析:B
【分析】
根据三角形内角和为180°,求出三个角的度数进行判断即可.
【详解】
解:∵三角形内角和为180°,
∴
,
∴△ABC为直角三角形,
故选:B.
【点睛】
此题考查三角形内角和,熟知三角形内角和为180°,根据各角占比求出各角度数即可判断.
4.D
解析:D
【分析】
利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.
邯郸市人教版七年级下册数学期末试卷及答案
一、选择题
1.如图,∠1=∠2,则下列结论一定成立的是()
A.AB∥CDB.AD∥BCC.∠B=∠DD.∠1=∠2
2.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河北省邯郸市成安县七年级(下)期末数
学试卷
学校:___________姓名:___________班级:___________考号:___________
一、选择题(本大题共14小题,共28.0分)
1.下列整式计算正确的是()
A.(2a)3=6a3
B.x4÷x4=x
C.x2•x3=x5
D.(m3)3=m6
2.现有两根木棒,它们长分别是40cm和50cm,若要钉成一个三角形木架,则下列四根木棒应选取()
A.10cm的木棒
B.40cm的木棒
C.90cm的木棒
D.100cm的木棒
3.下列各式中正确的是()
A.(a+4)(a-4)=a2-4
B.(5x-1)(1-5x)=25x2-1
C.(-3x+2)2=4-12x+9x2
D.(x-3)(x-9)=x2-27
4.以下五家银行行标中,是轴对称图形的有()
A.1个
B.2个
C.3个
D.4个
5.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()
A.1 2
B.1
3
C.5
12
D.1
4
6.下列事件中,是必然事件的是()
A.掷一枚均匀的六面体骰子,骰子停止后朝上的点数是6
B.打开电视机,任意选择一个频道,正在播新闻
C.在地球上,抛出去的篮球会下落
D.随机地从0,1,2,…,9这十个数中选取两个数,和为20
7.面积相等的两个三角形()
A.必定全等
B.必定不全等
C.不一定全等
D.以上答案都不对
8.如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的
根据是()
A.SAS
B.ASA
C.AAS
D.SSS
9.下列说法正确的是()
①三角形的三条中线都在三角形内部;②三角形的三条角平分
线都在三角形内部;③三角形三条高都在三角形的内部.
A.①②③
B.①②
C.②③
D.①③
10.如图是一个可以自由转动的转盘,转动这个转盘后,转出()色的可能性最小.
A.红
B.黄
C.绿
D.不确定
11.角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是()
A.SSS
B.ASA
C.SAS
D.AAS
12.张大爷出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了20分钟报纸后,用了15分钟返回家,如图中表示张大爷离家时间与距离之间的关系()
A. B. C.
D.
13.在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()
A.若添加条件AC=A′C′,则△ABC≌△A′B′C′
B.若添加条件BC=B′C′,则△ABC≌△A′B′C′
C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′
D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′
14.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下
列一个条件后,仍无法判定△ABE≌△ACD的是()
A.AD=AE
B.∠AEB=∠ADC
C.BE=CD
D.A
B=AC
二、填空题(本大题共6小题,共18.0分)
15.氢原子的直径为0.0000000001m,用科学记数法表示为______ m.
16.30°角的余角是______ ,补角是______ .
17.化简:(x
2+3)2-(x
2
−3)2= ______ .
18.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,
若要使△ABC≌△DEF,则还须补充一个条件______ .(只
要填一个)
19.如图,点D在AB上,点E在
AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,则∠C= ______ °.
20.如图,AC⊥BD于O,BO=OD,图中
共有全等三角形______ 对.
三、计算题(本大题共2小题,共10.0
分)
21.-(-a2)3•(-a)3÷(-a2)
22.利用平方差公式进行计算:102×98.
四、解答题(本大题共5小题,共44.0分)
23.先化简,再求值:(x+2)2-(x+1)(x-1),其中x=1
.
2
24.已知ab=2,求(2a+3b)2-(2a-3b)2的值.
25.某地某天的温度变化情况如
图所示,观察表格回答下列问题:
(1)上午9时的温度是______ ,
12时的温度是______ ;
(2)这一天______ 时的温度最
高,最高温度是______ ;这一天
______ 时的温度最低,最低温度是
______ ;
(3)这一天的温差是______ ,
从最高温度到最低温度经过了
______ ;
(4)在什么时间范围内温度在上
升?______ ;在什么时间范围内
温度在下降?______
(5)图中A点表示的是什么?B点呢?______
(6)你能预测次日凌晨1时的温度吗?说说你的理由.______ .
26.如图,在△ABC中,∠ABC、∠ACB的平分线相交
于点O.
(1)若∠ABC=40°、∠ACB=50°,则∠BOC= ______ ;
(2)若∠ABC+∠ACB=116°,则∠BOC= ______ ;
(3)若∠A=76°,则∠BOC= ______ ;
(4)若∠BOC=120°,则∠A= ______ ;
(5)请写出∠A与∠BOC之间的数量关系______ (不必写出理由).
27.如图,在△AFD和△BEC中,点A、E、F、C在同一直
线上,有下面四个论断:
①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中
三个作为条件,余下一个作为结论,写出所有方案.选其中
一个说明理由.
(1)若______ ,______ ,______ ,则______ ;
(2)若______ ,______ ,______ ,则______ ;
(3)若______ ,______ ,______ ,则______ ;
证明:。