Pore-Scale Modeling of Multiphase Flow and Transport Achievements and Perspectives

合集下载

英汉对照 journal of food engering

英汉对照 journal of food engering

3D CFD simulation of bottle emptying processes容器排空过程的三维CFD模拟A 3-D computational fluid dynamics model for forced air cooling of eggs placed in trays强迫空气冷却纸盘中鸡蛋的流体力学3-D计算模型A kinetic study of the release of vanillin encapsulated in Carnauba wax microcapsules香兰素封装在巴西棕榈蜡微胶囊中释放的动力学研究A machine vision system for identification of micro-crack in egg shell鉴别蛋壳细微裂缝的机器影像系统On the usage of acoustic properties combined with an artificial neural network – A new approach of determining presence of dairy fouling利用声学特性结合人工神经网络-鉴定乳产品存在污染的一种新方法A potentiometric electronic tongue for the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile根据原植物用电子舌的电位差区别蜂蜜.与传统方法:理化性参数和挥发性进行对比A rapid method to discriminate season of production and feeding regimen of butters based on infrared spectroscopy and artificial neural networks 一个基于红外光谱和人工神经网络来区分季节性生产和黄油供给方案的快速方法A review: Crispness in dry foods and quality measurements based on acoustic–mechanical destructive techniques评审:基于声音仪器的破坏性试验对干燥食品酥脆度和质量的测量Aeration of model gels: Rheological characteristics of gellan and agar gels凝胶通气模式:结冷胶和琼脂凝胶的流变学特性Agglomeration of durum wheat semolina: Thermodynamic approaches for hydration properties measurements硬质小麦粗面粉的凝聚:热力学方法对于水合性能的测量Alleviating bottlenecks in a microbiology laboratory减少在微生物实验室中的瓶颈Effect of the amount of steam during baking on bread crust features and water diffusion面包在烘烤期间蒸汽对面包表皮特征和水扩散的影响An enzyme sensor for the determination of total amines in dry-fermented sausages一种酶传感器在腊肠风干发酵中对总有机胺的决定性An improved model of the seeded batch crystallization of glucose monohydrate from aqueous solutions从含水的溶解液中分批处理去籽的结晶化葡萄糖一水合物的一种改良模式An RFID application in the food supply chain: A case study of convenience stores in Taiwan无线射频识别在食品供应链中的应用:台湾便利储藏的案例研究Analytical model for variable moisture diffusivity estimation and drying simulation of shrinkable food products分析模型对可变湿度扩散性的估计和可收缩食品的干燥模拟Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries红草莓在高压和热处理下花青素退化的动力学Application of hybrid image features for fast and non-invasive classification of raisin图像特征混合对葡萄干快速和非侵入分类的应用Application of NIR hyperspectral imaging for discrimination of lamb muscles近红外高光谱对识别羔羊肌肉的应用Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling从洛神花中萃取花青素的实验历程和建模Aseptically packaged UHPH-treated apple juice: Safety and quality parameters during storage无菌包装超高压均质处理苹果汁:储藏中的安全与质量参数Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy利用可见近红外光谱对鳕鱼(大西洋鳕)鱼片新鲜度的自动评估Beer quality screening by FT-IR spectrometry: Impact of measurement strategies, data pre-processings and variable selection algorithms傅里叶变换红外光谱学光谱测定法对啤酒品质的筛选:测量方法,数据预处理和多变的算法选择对测量的影响Calcium effect on mechanical properties of model cell walls and apple tissue钙对典型细胞壁和苹果组织机械性能的作用CFD model development and validation of a thermonebulisation fungicide fogging system for postharvest storage of fruit热雾化杀菌剂系统对采收后食品储藏计算流体动力学模型的发展和确立Changes in orange juice characteristics due to homogenization and centrifugation橘子饮料特性因均化作用和离心分离所出现的变化Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging聚丙烯薄膜附加香芹酚和百里香酚对活性包装的表征和抗菌活性研究Characterization of bread dough: Rheological properties and microstructure面包面团的特性表述:流变性能和微观结构Coffee beans microstructural changes induced by cultivation processing: An X-ray microtomographic investigation种植加工引诱咖啡豆微观结构的变化:X射线微观层析成象的调查Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying在干燥情况下,利用数字图像和激光灯的结合对灯笼椒的水分含量和颜色同时进行预测Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers利用丙三醇和木糖醇作为增塑剂在高低直链淀粉质食品薄膜形成状况的对比性研究Comparison of total milk-clotting activity measurement precision using the Berridge clotting time method and a proposed optical method对比利用贝里奇凝固时间的方法和拟议光学方法对牛奶凝固活度的测量精度Compressive textural attributes, opacity and syneresis of gels prepared from gellan, agar and their mixtures压缩性组织的特性,从结冷胶,琼脂以及它们的混合物中凝胶准备的不透明度和脱水收缩作用Computer simulation model development and validation for radio frequency (RF) heating of dry food materials无线电频率对干燥食物材料加热的计算机模拟模型的发展和验证Crispiness of a microwave-expanded imitation cheese: Mechanical, acoustic and sensory evaluation微波扩大人造干酪的松脆物:力学,声学和感官评价Classification of black tea liquor using cyclic voltammetry利用循环伏安法对红茶白酒的分类Determination and removal of malondialdehyde and other2-thiobarbituric acid reactive substances in waste cooking oil检测和去除废弃食用油中丙二醛和其他2-硫代巴比土酸的反应物Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks利用高光谱影像和适应促进神经网络测定全部葡萄皮中花青素浓度Determination of translucent content in mangosteen by meansof near infrared transmittance利用近红外透光率的方法对山竹果透明率的检测Development of a novel method to measure the film thickness of cured can coatings一个对腌罐头镀膜薄膜厚度测定新方法的发展Dielectric properties of sea cucumbers (Stichopus japonicus ) and model foods at 915 MHz典型食品和海参(刺参)在915MHz下的介电性能DMA peaks in potato cork tissue of different mealiness动态力学分析法在不同粉性的土豆软木组织的应用Influence of drying and hydrothermal treatment of corn on the denaturation of salt-soluble proteins and color parameters干燥和热处理玉米在可溶性盐蛋白和颜色参数变性上的影响Drying characteristics of mango slices using the Refractance Window™ technique芒果切片的干燥特性在折射窗薄层干燥技术上的应用Drying kinetics using superheated steam and quality attributes of dried pork slices for different thickness, seasoning and fibers distribution干燥动力学利用干燥猪肉切片的过热蒸汽和品质特性对不同厚度,风干和纤维分布的应用Dynamic oscillatory rheological measurement and thermal propertiesof pea protein extracted by salt method: Effect of pH and NaCl利用盐法对豌豆蛋白萃取的动态震荡流变测量和热性能:PH和盐的作用Dynamic oscillatory shear properties of O/W model system meat emulsions: Linear viscoelastic analysis for effect of temperature and oil concentration on protein network formation油水比率的动态振动剪切性能模型系统肉乳剂:线性粘弹性分析对温度和含油浓度在蛋白质网状形成的影响Effect of dimensions and geometry of co-field and co-linear pulsed electric field treatment chambers on electric field strength and energy utilization在电场强度和能量利用上共线性和共面性电场脉冲处理chambers的尺寸规模和几何体的影响Effect of high or low molecular weight of components of feed on transmembrane flux during forward osmosis促进渗透期间以跨膜通量为能源成分的分子量的高或低的影响Effect of morphology on water sorption in cellular solid foods. Part II: Sorption in cereal crackers水吸附在多细胞固体食品形态学的影响第二部分:吸附谷类饼干的吸附Effect of morphology on water sorption in cellular solid foods.Part I: Pore scale network model水吸附在多细胞固体食品形态学的影响第一部分:气孔比例网状模型Effect of salt and sucrose content on dielectric properties and microwave freeze drying behavior of re-structured potato slices盐和蔗糖含量对土豆切片复合组织介电性能和微博冷冻干燥的影响Effect of some operating variables on the microstructure and physical properties of a novel Kefir formulation一些运行变量对新克菲尔构想的微观结构和物理性能的影响Effects of electroplasmolysis treatment on chlorophyll and carotenoid extraction yield from spinach and tomato电质壁分离对菠菜和番茄中叶绿素和类胡萝卜素提取率的影响Effects of vacuum frying on structural changes of bananas真空油炸对香蕉结构变化的影响A finite element model for mechanical deformation of single tomato suspension cells一种对于单一番茄悬浮细胞的机械变形的有限元模式Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose提高在葡萄糖前将装入乳酸菌鼠李糖GG的微胶囊进行喷雾干燥的残余物Enzymatic browning in sliced and puréed avocado: A fractal kinetic study 鳄梨和切片中的酶促褐变:一种分形动力学研究Enzyme inactivation kinetics and colour changes in Garlic (Allium sativum L.)blanched under different conditions在不同条件下大蒜变白中酶失活动力学和颜色的变化Evaluating banana ripening status from measuring dielectric properties利用介电性能测量香蕉成熟状况的评估Evaluating non-stick properties of different surface materials for contact frying不同表面材料的非粘性对接触油炸的评估Evaluation of Photoshop software potential for food colorimetry Photoshop软件对食品比色法可能性的评估Fast determination of boiling time of yardlong bean using visible and near infrared spectroscopy and chemometrics利用可见和近红外光谱学以及化学计量学快速测定长豇豆的沸腾时间Feasibility of NIR spectroscopy for non-destructive characterizationof table olive traits近红外光谱对表橄榄特性无损检测的可行性Food supply chain leanness using a developed QFD model食品供给链缺乏使用一种成熟的质量功能展开模式Fractal analysis of the retrogradation of rice starch by digital image processing利用数字图像处理米粉糊液凝沉的分形分析Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating利用电介质加热杀菌法与果汁中与温度和频率有关的介电性能的相关性Development of a rapid, non-destructive method for egg contentdetermination in dry pasta using FT-NIR technique利用傅里叶变红外光谱技术测量鸡蛋内部的一种快速无损检测方法的发展Gelation properties of chicken myofibrillar protein induced by transglutaminase crosslinking利用转谷氨酰胺酶交联诱导鸡肉肌原纤维蛋白的胶凝特性Generalized microstructural change and structure-quality indicators of a food product undergoing different drying methods and conditions一种食品经过不同条件下和不同干燥方法的一般性微观结构变化和结构性能质量指标Glass transition phenomenon on shrinkage of papaya during convective drying木瓜在对流干燥期间玻璃转化现象的收缩Effect of saccharides on glass transition temperatures of frozen and freeze dried bovine plasma protein糖类在冷冻和冻结干燥牛血浆蛋白的玻璃转化温度的影响Heat transfer modelling in a refrigerated display cabinet: The influence of operating conditions冷藏展示柜的热传递模型:操作条件的影响Specific volume and compressibility measurements of tomato pasteat moderately high pressure as a function of temperature番茄酱在适当高压下作为温度函数比容和可压缩性测量Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Coupled fluid transport and stress equations基于在干燥期间玉米粒水分运输和压力发展的杂交混合理论:耦合流体运输和压力方程式Hydrodynamic, thermo-analytical and molecular structural investigations of enzyme interesterified oil and its thermo-oxidative stabilityby thermogravimetric analysis利用热重量分析对酯化油和其热氧化稳定的流体力学,热解析和分子结构的分析Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging利用高光谱影像对新鲜大西洋鲑鱼切片在不同气压下储藏的分类Imaged based estimation of food volume using circular referentsin dietary assessment饮食评估中食品体积的估计使用循环参照物的影像基础Quality classification of cooked, sliced turkey hams using NIR hyperspectral imaging system利用近红外高光谱影像系统对熟火鸡火腿切片的品质分级Implication of water activity and glass transition on the mechanicaland optical properties of freeze-dried apple and banana slices水活性和玻璃转化在冷冻干燥苹果和香蕉切片的力学光学性能的含义Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments酿酒酵母在菠萝,葡萄和蔓越橘汁脉冲和连续热声波降解法处理下的失活Investigating the performance of thermo nebulisation fungicide fogging system for loaded fruit storage room using CFD model利用流体力学模型计算热雾化杀菌剂雾化系统对已装水果储藏室性能的研究An Exploration of Why People Participate in Second Life Social Support Groups关于人们参加第二人生社会扶持组织原因的探索Kinetics of quality changes of pumpkin (Curcurbita maxima L.) stored under isothermal and non-isothermal frozen conditions南瓜储藏在等温和非等温冷冻条件下动力学性能的变化Kinetics studies during NaCl and KCl pork meat brining猪肉盐浸处理中氯化钠和氯化钾的动力学研究Linear and non-linear viscoelastic behaviors of crosslinked tapioca starch/polysaccharide systems交联木薯淀粉/多糖系统的线性和非线性粘弹性行为Monitoring changes in feta cheese during brining by magnetic resonanceimaging and NMR relaxometry在浸盐作用期间利用磁共振影像和核磁共振弛豫时间监测羊奶酪的变化Mathematical model of pork slice drying using superheated steam利用过热蒸汽干燥猪肉切片的数学模型Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA)利用反作用工程方法间歇性和对流干燥大米,咖啡的数学建模Mathematical modeling of swelling in high moisture whey protein gels膨胀高水分乳清蛋白凝胶的数学建模Mathematical modeling of the heat and mass transfer in a stationary potato sphere impinged by a single round liquid jet in a hydro fluidization system利用单轮液体喷射在水电流态化系统在高温和质量传递在静止土豆表面撞击的数学建模An approach for the enhancement of the mechanical properties and film coating efficiency of shellac by the formation of composite films based on shellac and gelatin利用基于虫胶和明胶复合薄膜形成对虫胶的镀膜效率和机械性能提高的方法Mechanical relaxation times as indicators of stickiness in skimmilk–maltodextrin solids systems机械力松弛时间作为在粘性表层物牛奶麦芽糖糊精固体系统的指标Effect of composition on the mechanical response of agglomeratesof infant formulae初期公式的附聚物的机械回应成分的影响Combination of optical and non-destructive mechanical techniquesfor the measurement of maturity in peach光学和无损机械技术组合对桃子成熟的测量Expansion mechanism of extruded foams supplemented with wheat bran 增补挤压泡沫体伴随麦麸的膨胀原理Mechanistic model of in vitro salt release from model dairy gels based on standardized breakdown test simulating mastication乳品凝胶基于模拟粉碎稳定性试验标准在使观众盐释放的机械模型Mechanistic model to couple oxygen transfer with ascorbic acid oxidation kinetics in model solid food在固体食品模型中机械模型对结合氧运输随着抗坏血酸氧化的动力学Effect of sugar, citric acid and egg white type on the microstructuraland mechanical properties of meringues调和蛋白的糖,柠檬酸和蛋白类型在微观结构和机械性能的影响Microstructure and mechanical properties of soy protein/agar blend films: Effect of composition and processing methods大豆蛋白和琼脂膜混合的微观结构和机械性能:成分和处理方法的影响Coffea arabica beans microstructural changes induced by roasting: AnX-ray microtomographic investigation利用烘烤引诱咖啡豆微观结构的变化:一种X射线微层析调查The impact of microwave heating of infant formula model on neo-formed contaminant formation, nutrient degradation and spore destruction初级理论模型在新成立的污染物形成的微波加热的影响:营养退化和孢子退化Modeling and experimental validation of mass transfer from carbonated beverages in polyethylene terephthalate bottles从碳酸饮料在聚对苯二甲酸乙二醇酯瓶子中质量传递的实验验证和建模Modeling microbial kinetics as a function of temperature: Evaluationof dynamic experiments to identify the growth/inactivation interface根据温度对微生物动力学建模:动态实验的评估来鉴定增长/失活的分界面Modeling rehydration of porous food materials: I. Determinationof characteristic curve from water sorption isotherms多孔渗水食品材料的再水化建模:1,水等温吸附线中特性曲线的测定Modeling rehydration of porous food materials: II. The dual porosity approach多孔渗水食品材料的再水化建模:2,双重多孔性方法Modeling the effects of initial nitrogen content and temperatureon fermentation kinetics of hard cider初始含氮量和温度在苹果酒的发酵动力学的建模作用Modelling flow behaviour of dairy foams through a nozzle乳品泡沫通过喷嘴的建模流动状况Modelling of coupled heat and mass transfer during a contact baking process在联系烘烤进程期间耦合高温和质量传递的建模Monitoring and grading of tea by computer vision – A review利用计算机视觉对茶叶监测和分级-一个评审Monitoring of ATP and viable cells on meat surface by UV–Vis reflectance spectrum analysis利用紫外-可见反射比光谱分析对肉表面ATP和活细胞的监测Monitoring the dynamic density of dough during fermentation using digital imaging method利用数字影像方法在发酵期间对生面团的动态密度监测Microwave puffing: Determination of optimal conditions using a coupled multiphase porous media – Large deformation model微波膨化:利用一种耦合多相多孔介质对最适条件的测定-大型变形模型Red to far-red multispectral fluorescence image fusion for detection offecal contamination on apples利用红色对远红外多谱线的荧光影像融合对苹果排泄污染物的检测Artificial neural network model for prediction of cold spot temperature in retort sterilization of starch-based foods人工神经网络模型对淀粉性食物的蒸煮杀菌的冷点温度的预测Non-destructive analysis of anthocyanins in cherries by means of Lambert–Beer and multivariate regression based on spectroscopy and scatter correction using time-resolved analysis利用Lambert–Beer和多元回归基于光谱学和散射修正使用时间分辨分析对樱桃花青素的无损检测分析Non-destructive internal quality assessment of ‘‘Hayward’’ kiwifruitby waveguide spectroscopy利用波导光谱学对“Hayward”猕猴桃的内部品质无损检测Non-destructive maturity classification of mango based on physical, mechanical and optical properties基于物理,机械和光学特性对芒果成熟等级的无损检测Non-destructive prediction of hardening pericarp disorder in intact mangosteen by near infrared transmittance spectroscopy利用近红外线透射比光谱学对完整的山竹果无序表皮樱花的无损检测Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries非热能技术和食品防腐剂解决方案对草莓的微生物负荷减低和质量保持的功效Numerical modeling of heat and mass transfer during coffee roasting process咖啡豆烘烤进程的高温和质量传递数值模拟Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating利用欧姆加热对芽孢杆菌的加速钝化Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction利用微波能量从柑橘果皮对酚酸萃取的优化:美拉德反应的重要性Effect of guar gum content on some physical and nutritional properties of extruded products瓜尔豆胶在挤压产品的一些物理和营养特性的作用Physical properties of acerola and blueberry pulps金虎尾和蓝莓果肉的物理特性Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight不同分子量的壳聚糖基可食用薄膜合并生物活性的化合物的理化特性Predicting cleaning time of ventilation duct systems in the food industry 通风管系统在食品工业的清洗时间预测Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique利用可见/近红外高光谱散射影像技术队牛肉质量特性的预测Prediction of colloidal stability in white wines using infrared spectroscopy利用红外线光谱学对白葡萄酒胶体稳定性的预测Prediction of dry mass glass transition temperature and the spray drying behaviour of a concentrate using a desorption method利用解析方法对浓缩的干质量玻璃化温度和喷雾干燥状况的预测Production, recovery and applications of xanthan gum by Xanthomonas campestris利用白菜黄单胞菌对黄原胶的生产,恢复和应用Pulsed electric field assisted aqueous extraction of colorants from red beet电场脉冲协助红甜菜中色素的萃取Investigation of Raman chemical imaging for detection of lycopene changes in tomatoes during postharvest ripening利用拉曼化学成像在采收后成熟期间对番茄红素变化的检测的调查研究Real-time modeling of milk coagulation using in-line near infrared spectroscopy利用管线式近红外光谱学对牛奶凝结的即时性建模Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods用不同方法利用臭氧微气泡的产生对蔬菜杀虫剂(杀螟松)残渣的去除Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp温度对松果菊果肉的动态和稳态切变流变学的影响Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum由一种相比阿拉伯树胶的新水状胶体(Angum胶)制成的D-柠檬烯乳胶的流变特性和稳定性Modeling and estimation of rheological properties of food productsfor manufacturing simulations食品的流变特性对于制造模型的建模和评估Rheological, textural and spectral characteristics of sorbitol substituted mango jam山梨醇替代芒果果酱的流变的,组织的和光谱特性Rheology and microstructure of myofibrillar protein–plant lipid composite gels: Effect of emulsion droplet size and membrane type肌原纤维蛋白-植物油脂附和凝胶剂的流变学特性和微观结构:乳滴尺寸和薄膜类型的影响Rheometric non-isothermal gelatinization kinetics of mung bean starchslurry: Effect of salt and sugar – Part 1绿豆淀粉泥浆的流变测定非等温凝胶化动力学:盐和糖的作用-第一部分Scale-up unit of a unique moderately high pressure unit to enhance microbial inactivation唯一适度高压单元的增大单元来提高微生物失活Particle surface moisture content estimation using population balance modeling in fluidised bed agglomeration利用平衡建模的数量对使底座结块液化微粒表面水分含量的估测Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder铝箔聚乙烯分层包装真空干燥椰子汁粉保质期的预测Effect of modified atmosphere and active packaging on the shelf-lifeof fresh bluefin tuna fillets改良环境和有效包装在新鲜金枪鱼切片保质期的影响Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions短波红外线高光谱影像对被感染洋葱皮发酵的测定Wavelength selection in vis/NIR spectra for detection of bruises on apples by ROC analysis利用ROC分析用可见/近红外光谱对苹果损伤测定波长的选择Maltodextrin/pectin microparticles by spray drying as carrier fornutraceutical extracts喷雾干燥利用麦芽糖糊精/果胶微粒作为载体对保健品提取Structural properties of freeze-dried rice经过冷冻干燥大米的结构特性Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves(Ugni molinae Turcz) extract基于murta叶片薄膜萃取羧甲基纤维素接触角,湿润度和水蒸气渗透性的研究Granularity and its importance for traceability in a farmed salmon supply chain间隔尺寸以及其重要性对于养殖鲑鱼供给链的可追溯性Texture prediction during deep frying: A mechanistic approach油炸期间的质地预测:一种机械型工作设计方法The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis苹果软细胞组织附和橡黄素衍生物与X-射线孔隙结构分析结合的真空浸渍在营养强化上的影响The potential of electrospraying for hydrophobic film coating on foods 电喷镀对于在食品疏水性薄膜敷层的可能性The use of biodosimetry to measure the UV-C dose delivered to a sphere,and implications for the commercial treatment of fruit利用生物计量测定法测定紫外-C线剂量传递到球面,对于水果商业化处理的影响Corrigendum to ‘‘Theoretical and experimental analyses of drop deformation and break-up in a scale model of a high-pressure homogenizer’’ [Journal of Food Engineering 103/1 (2010) 21–28]勘误表:“高压均质器的液滴变形和终止缩尺模型的理论和实验分析”[食品工程杂志103/1(2010)21-28]Development of a two-band spectral imaging system for real-time citrus canker detection双频段光谱影像对于即时性检测柑橘溃疡的发展Shape determination of horticultural produce using two-dimensional computer vision – A review利用二维计算机影像对园艺产品形状的检测-一份评审Comparative study of high intensity ultrasound effects on foodproteins functionality高强度超声波作用在食物蛋白功能的对比性研究Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process不确定性和灵敏度分析:耦合高温和质量传递对于联系烘烤进程的数学模型Variable selection in visible and near-infrared spectra: Application toon-line determination of sugar content in pears可见和近红外光谱的可变性选择:应用于梨含糖量的即时检测Application of visible and near infrared spectroscopy for rapidand non-invasive quantification of common adulterants in Spirulina powder可见和近红外光谱对于螺旋藻粉共同掺杂物的快速以及非侵入性定量的应用Classification of longan fruit bruising using visible spectroscopy利用可见光谱学对桂圆损伤的分类Water diffusion and enzyme activities during malting of barley grains: A relationship assessment在大麦谷粒的麦粒发芽期间水扩散和酶活性:一个相关性评估Water transport properties of artificial cell walls人造细胞壁的水运输性能Weight loss of frozen bread dough under isothermal and fluctuating temperature storage conditions冷冻面包面团在等温和变动温度储藏条件下的质量损失Automated fish bone detection using X-ray imaging利用X-射线影像对鱼骨的自动化检测X-ray microtomography to study the microstructure of mayonnaiseX-射线显微断层显像对蛋黄酱微观结构的研究Influence of yeast and frozen storage on rheological, structural andmicrobial quality of frozen sweet dough酵母和冷冻储藏对冷冻甜面团的流变性,结构和微生物质量的影响Yield improvement in progressive freeze-concentration by partial melting of ice通过冷冻食品局部融化利用逐步冷冻浓缩提高产量。

COMSOL微孔流动

COMSOL微孔流动

Pore-Scale FlowIntroductionThis model uses Creeping Flow (Stokes Flow) to solve the flow in the interstices of a porous medium. The model comes from pore-scale flow experiments conducted by Arturo Keller, Maria Auset, and Sanya Sirivithayapakorn of the University ofCalifornia, Santa Barbara. To produce the model geometry they used electronmicroscope images. This type of non-conventional pore-scale modeling withCOMSOL Multiphysics sheds new light on the movement of large particulates and colloids moving through variable-pore geometries in the subsurface. Several of these researchers have published results from their COMSOL Multiphysics modeling in the publication Water Resources Research (Ref. 1 and Ref. 2).Keller, Auset, and Sirivithayapakorn designed their lab experiments on the basis of scanning electron microscope (SEM) images of thinly sliced rock sections (Figure 1).They etched the geometric patterns from the images onto a solid with an elaborate process similar to the etching of silicon wafers. They then transferred these images to DXF files, which they finally imported into COMSOL Multiphysics.Figure 1: Scanning electron microscope image of the repeat pattern in the silicon wafer.The scale at bottom indicates that pore throat and body dimensions are on the order of1 μm–100 μm (Ref. 1).It is typical to represent fluid flow in the subsurface as a continuum process using average or “continuous” properties for the bulk rather than detailing the shape and orientation of each solid particle within a porous medium. Inserting the bulk properties into an equation, such as Darcy’s law or Brinkman equations, gives an average flow rate for the total volume. While bulk approximations typically produce excellent estimates sufficient for considering flow over large areas, they might miss the between-grain nuances that a close-up Stokes flow analysis would give.This exercise is divided in two models: The first model takes one of the SEM images of Keller, Auset, and Sirivithayapakorn and solves for the flow velocity and pressure drop in the pore throats using the Creeping Flow interface. The geometry is imported as DXF file and only the pore space is meshed, but not the solid regions. The second model is devoted to the modeling of the whole slice, by importing the SEM image and deriving porous medium properties, such as porosity and permeability for further use in the Brinkman Equations interface.Model DefinitionThe entire model covers 640 μm by 320 μm. Water moves from right to left across the geometry. The flow in the pores does not penetrate the solid grains. The inlet and outlet fluid pressures are known. Assume no flow at the top and bottom boundaries. The primary zone of interest is the rectangular region with an upper left corner at (0, 0) μm and lower right coordinates at (581.6, −265.0) μm.InletOutlet SymmetrySymmetryFigure 2: A 640 μm by 320 μm geometry and boundary conditions.Since the channels are at most 0.1 mm in width and the maximum velocity is lower than 10-4 m/s, the maximum Reynolds number is less than 0.01. Since Reynoldsnumber is far less than one, the model uses the Creeping Flow (Stokes Flow) interface, instead of the Laminar Flow (Navier-Stokes) interface. The fluid is consideredisothermal and with constant density. Owing to the problem’s small scale, the model does not consider gravity.The Creeping Flow interface solves Stokes equations in the channels. Theincompressible assumption together with the stationary condition readshere, p is the pressure, u is the velocity field, and μ is the dynamic viscosity of the fluid.At the model’s physical boundaries, the inlet pressure and the outlet pressure are known. Velocities are zero at the grain boundaries, which implies a no-slip condition. The flow is symmetric about the top and bottom boundaries. Table 1 summarizes the boundary conditions.BOUNDARY T YPE BOUNDARY CONDITION VALUE InletPressure, no viscous stress p = p 0OutletPressure, no viscous stress p = 0Grain wallsWall no slip Symmetry sides Symmetry -Here p 0 is a specified pressure drop. Table 2 collects the relevant model data.QUANTITY VALUE DESCRIPTIONρ01000 kg/m 3Fluid density μ00.001 kg/(m·s)Fluid dynamic viscosity p 00.715 Pa Pressure dropResults and DiscussionFigure 3 shows the COMSOL Multiphysics solution predicted with the creeping flow analysis for the fluid velocity field in the pore spaces of a micro-scale porous slice. The velocity magnitude is higher in the narrowest pores than at the inlet, tending to decrease in stretches where the channels’ cross-sectional area increases.TABLE 1: BOUNDARY CONDITIONSTABLE 2: MODEL DATA0∇–p ∇μ∇u ∇u T+()⋅+=∇u ⋅0=Figure 3: Surface and arrow plots of the velocity field calculated by the Creeping Flow interface.Model DefinitionThe second model takes a completely different approach than the first model. Here, the scanning electron microscope image is imported and physical properties are derived from the color scale. As opposed to consumer cameras, SEM images are grayscale, but in this example, the color code is binary, see Figure 4.Instead of solving for the creeping flow in the channels, the incompressible, stationary Brinkman equations, with the Stokes-Brinkman assumption is usedhere, p is the pressure, u is Darcy’s velocity field, μ is the dynamic viscosity of the fluid, εp is the porosity, and κ is the permeability of the medium.0∇–p ∇μεp ----∇u ∇u T +()μκ--u –⋅+=∇u ⋅0=In order to define physical properties from the image color code, the following relations has been implemented for the porosity and permeability(1) (2)here, im1 is a image function derived from the SEM image, which in this example ranges from 0 to 1 as a function of position. Other expressions can be implementedwhen importing RGB or grayscale images.Figure 4: SEM image. The color code is blue for 0 and red for 1. COMSOL Multiphysics can handle grayscale and RGB images.After solving Brinkman equations with the material parameters derived from the SEM image, it is possible to observe a very similar pressure and velocity profiles in the porous slice as obtained with the Creeping flow model. Compare Figure 5 with the results in Figure 3.κx y ,()κ0100*im1x y ,()0,1+----------------------------------------------------=εp x y ,()10,99*im1x y ,()–=Figure 5: Surface and arrow plots of the velocity field calculated by the Brinkman Equations interface. The porosity and permeability are taken from the SEM image, as written in Equation 1 and Equation 2.Notes About the COMSOL ImplementationIn this model, and external image is used to infer material properties, such as porosity and permeability. The same technique can be used to derive other material properties, like density, thermal or electric conductivity.To find out more about how to import images, see the section Image in the COMSOL Multiphysics Reference Manual.References1. M. Auset and A.A. Keller, “Pore-scale Processes that Control Dispersion of Colloids in Saturated Porous Media,” Water Resources Research, vol. 40, no. 3, 2004.2. S. Sirivithayapakorn and A.A. Keller, “Transport of Colloids in Saturated Porous Media: A Pore-scale Observation of the Size Exclusion Effect and ColloidAcceleration,” Water Resources Research, vol. 39, no. 4, 2003.Model Library path: Subsurface_Flow_Module/Fluid_Flow/pore_scale_flow Modeling InstructionsM O D E L W I Z A R D1Go to the Model Wizard window.2Click the 2D button.3Click Next.4In the Add physics tree, select Fluid Flow>Single-Phase Flow>Creeping Flow (spf).5Click Next.6Find the Studies subsection. In the tree, select Preset Studies>Stationary.7Click Finish.G E O M E T R Y11In the Model Builder window, under Model 1 click Geometry 1.2In the Geometry settings window, locate the Units section.3From the Length unit list, choose µm.Import 11Right-click Model 1>Geometry 1 and choose Import.2In the Import settings window, locate the Import section.3Click the Browse button.4Browse to the model’s Model Library folder and double-click the file pore_scale_flow.mphbin.5Click the Import button.6Click the Build Selected button.7Click the Zoom Extents button on the Graphics toolbar.G L O B A L D E F I N I T I O N SParameters1In the Model Builder window, right-click Global Definitions and choose Parameters .2In the Parameters settings window, locate the Parameters section.3In the table, enter the following settings:M A T E R I A L S Material 11In the Model Builder window, under Model 1 right-click Materials and choose Material .2In the Material settings window, locate the Material Contents Expression Descriptionrho01000[kg/m^3]Fluid density eta00.001[kg/(m*s)]Dynamic viscosity p00.715[Pa]Pressure drop3In the table, enter the following settings:Property Name ValueDensity rho rho0Dynamic viscosity mu eta0C R E E P I N G F L O W1In the Model Builder window, under Model 1 click Creeping Flow.2In the Creeping Flow settings window, locate the Physical Model section.3From the Compressibility list, choose Incompressible flow.Inlet 11In the Model Builder window, right-click Creeping Flow and choose Inlet.2Select Boundaries 2231 and 2232 only.3In the Inlet settings window, locate the Boundary Condition section.4From the Boundary condition list, choose Pressure, no viscous stress.5Locate the Pressure, No Viscous Stress section. In the p0 edit field, type p0.Outlet 11Right-click Creeping Flow and choose Outlet.2Select Boundaries 1, 4, 7, 10, 13, and 16 only.Symmetry 11Right-click Creeping Flow and choose Symmetry.2Select Boundaries 31, 59, 247, 342, 517, 601, 720, 825, 878, 1149, 1300, 1421, 1488, 1748, 1756, 1823, 1912, and 2025 only.M E S H1In the Model Builder window, under Model 1 right-click Mesh 1 and choose Build All.S T U D Y1In the Model Builder window, right-click Study 1 and choose Compute.R E S U L T SVelocity (spf)The first default plot shows the magnitude of the velocity field. Add an arrow plot to visualize the velocity field with the following steps.1In the Model Builder window, under Results right-click Velocity (spf) and choose Arrow Surface.2In the Arrow Surface settings window, locate the Arrow Positioning section.3Find the x grid points subsection. In the Points edit field, type 25.4Find the y grid points subsection. In the Points edit field, type 25.5Click the Plot button.6Click the Zoom Extents button on the Graphics toolbar.Modify the default surface plot to show the velocity magnitude and the pressure field as in Figure 3.Pressure (spf)1In the Model Builder window, under Results right-click Pressure (spf) and choose Surface.2In the Surface settings window, locate the Coloring and Style section.3Clear the Color legend check box.4Click the Plot button.5Click the Zoom Extents button on the Graphics toolbar.Next, set up the second model using the Brinkman equations.R O O TIn the Model Builder window, right-click the root node and choose Add Model.M O D E L W I Z A R D1Go to the Model Wizard window.2Click the 2D button.3Click Next.4In the Add physics tree, select Fluid Flow>Porous Media and Subsurface Flow>Brinkman Equations (br).5Click Next.6Find the Selected physics subsection. In the table, enter the following settings:Physics Solve forLaminar Flow (spf)×7Find the Studies subsection. In the tree, select Preset Studies for Selected Physics>Stationary.8Click Finish.G L O B A L D E F I N I T I O N SParameters1In the Model Builder window, under Global Definitions click Parameters.2In the Parameters settings window, locate the Parameters section.3Click Load from File.4Browse to the model’s Model Library folder and double-click the file pore_scale_flow_parameters.txt.G E O M E T R Y21In the Model Builder window, under Model 2 click Geometry 2.2In the Geometry settings window, locate the Units section.3From the Length unit list, choose µm.Rectangle 11Right-click Model 2>Geometry 2 and choose Rectangle.2In the Rectangle settings window, locate the Size section.3In the Width edit field, type L.4In the Height edit field, type H.5Click the Build Selected button.G L O B A L D E F I N I T I O N SDefine the function, which will be used when setting up the material properties.Image 11In the Model Builder window, right-click Global Definitions and choose Functions>Image.2In the Image settings window, locate the Coordinates section.3In the x maximum edit field, type L.4In the y maximum edit field, type H.5Locate the File section. Click the Browse button.6Browse to the model’s Model Library folder and double-click the file pore_scale_flow_structure.png.7Click the Import button.8Click the Create Plot button to create Figure 4.R E S U L T SM A T E R I A L SMaterial 21In the Model Builder window, under Model 2 right-click Materials and choose Material.2In the Material settings window, locate the Material Contents section.3In the table, enter the following settings:Property Name ValueDensity rho rho0Dynamic viscosity mu eta0Permeability kappa k0/(100*im1(x,y)+0.1)Porosity epsilon1-0.99*im1(x,y)B R I N K M A N E Q U A T I O N SSymmetry 11In the Model Builder window, under Model 2 right-click Brinkman Equations and choose Symmetry.2Select Boundaries 2 and 3 only.Inlet 11In the Model Builder window, right-click Brinkman Equations and choose Inlet.2In the Inlet settings window, locate the Boundary Condition section.3From the Boundary condition list, choose Pressure, no viscous stress.4Select Boundary 4 only.5Locate the Pressure, No Viscous Stress section. In the p0 edit field, type p0.Outlet 11Right-click Brinkman Equations and choose Outlet.2Select Boundary 1 only.M E S H2In the Model Builder window, under Model 2 right-click Mesh 2 and choose Free Triangular.Size1In the Model Builder window, under Model 2>Mesh 2 click Size.2In the Size settings window, locate the Element Size section.3From the Predefined list, choose Extra fine.4Click the Build All button.Free Triangular 11In the Model Builder window, under Model 2>Mesh 2 click Free Triangular 1.2In the Free Triangular settings window, click to expand the Triangulation section.3From the Method list, choose Delaunay.4Click the Build Selected button.Now compute the problem using adaptive mesh refinement.S T U D Y2Solver 21In the Model Builder window, right-click Study 2 and choose Show Default Solver.2Expand the Study 2>Solver Configurations>Solver 2 node.3Right-click Stationary Solver 1 and choose Adaptive Mesh Refinement.4In the Adaptive Mesh Refinement settings window, locate the General section.5From the Adaption in geometry list, choose Geometry 2.6In the Model Builder window, right-click Study 2 and choose Compute.R E S U L T SVelocity (br)1In the Model Builder window, under Results right-click Velocity (br) and choose Arrow Surface.2In the Arrow Surface settings window, locate the Arrow Positioning section.3Find the x grid points subsection. In the Points edit field, type 25.4Find the y grid points subsection. In the Points edit field, type 25.Adjust the color range to reproduce Figure 5.5In the Model Builder window, expand the Velocity (br) node, then click Surface 1.6In the Surface settings window, click to expand the Range section.7Select the Manual data range check box.8In the Minimum edit field, type 1.8e-7. 9Click the Plot button.。

页岩气多尺度渗流数值模拟技术——以昭通国家级页岩气示范区为例

页岩气多尺度渗流数值模拟技术——以昭通国家级页岩气示范区为例

象的模拟,要在宏观模拟中表征上述特殊渗流现象, 合理的做法是引入等效数学模型,如气体状态方程、 渗透率模型及气体吸附模型,使流体和岩石的物理性 质随可测试到的热力学参数(压力、温度、吸附浓度) 发生变化,从而影响孔隙容积和流体相的流动性。在 本文中,公式内的各种物理量均采用国际单位制(SI) 进行说明。
A numerical simulation technology for the multi-scale flow of shale gas and its application in Zhaotong National Shale Gas Demonstration Area
ZHANG Zhuo, YUAN Xiaojun, RAO Daqian, SHU Honglin, YIN Kaigui
第 41 卷增刊 1 2021 年 3 月
天 然 气 工 业 Natural Gas Industry
· 145 ·

页岩气多尺度渗流数值模拟技术
——以昭通国家级页岩气示范区为例
张 卓 袁晓俊 饶大骞 舒红林 尹开贵
中国石油浙江油田公司
摘要 :页岩气藏的渗流机理复杂,沿用传统的油藏数值模拟器表现出了不适应性。为了实现对页岩气藏的有效模拟,引入等效数学 模型——气体状态方程、渗透率模型及气体吸附模型,并且建立嵌入式离散裂缝网格剖分方法,进而开发出流固耦合模型;在此基础上, 基于昭通国家级页岩气示范区 2 口水平井的 Petrel 地质建模成果,利用所建立的流固耦合模型进行压裂后气井的生产历史拟合和预测, 进而开展了参数敏感性分析。研究结果表明 :①流固耦合模型可以考虑孔隙压实和裂缝变形的影响,功能扩展后的数值模拟器可以 更准确地模拟致密介质中的页岩气渗流特征 ;②嵌入式离散裂缝网格剖分方法能够有效提高建模效率和数值模拟计算速度,支撑了 页岩气井生产数据的高效模拟 ;③随着基质渗透率、裂缝渗透率、裂缝长度逐渐增大,页岩气井累计产气量逐渐升高,但增幅略有 变小 ;④随着应力敏感系数的逐渐增大,单井累计产气量逐渐降低,但降幅逐渐变小。结论认为,该数值模拟技术可以应用于页岩 气井的生产动态分析,可以为同类气藏的开发提供借鉴。 关键词 :页岩气 ;多尺度渗流 ;数值模拟 ;嵌入式裂缝 ;流固耦合模型 ;昭通国家级页岩气示范区 DOI :10.3787/j.issn.1000-0976.2021.S1.021

基于XCT技术对水泥基材料性能研究的进展

基于XCT技术对水泥基材料性能研究的进展

基于XCT技术对水泥基材料性能研究的进展本文主要介绍了关于XCT(X射线三维重构显微镜)新型检测技术在水泥基材料方面的研究和应用现状及现阶段存在的问题和不足,为水泥基材料耐久性研究建立一种统一和可靠的研究和分析方法,其最终对混凝土耐久性的评估具有重大价值和现实意义。

标签:XCT技术;图像分析1、传统与新兴技术在水泥基材料性能测试领域的应用在传统的混凝土检测技术当中,大多数是有损检测手段,在实际工程中,通过钻孔取样等方法,对结构本身产生了一定的损害。

在对混凝土结构进行检测时,为了达到能够更加方便,同时不会对检测构件本身造成损害的目的,近些来,在现场出现了很多可用的无损检测技术,基于力学、声学、电阻、化学等一系列无损检测技术,而XCT (X-射线计算机断层扫描技术)作为新的具有前景的一种无损检测技术,特别是在水泥基材料微观结构的研究,表征孔结构特性方面,具有其独特的优势和潜力。

混凝土中钢筋锈蚀的重要原因之一是碳化反应导致混凝土的中性化现象[1-2]。

其中混凝土内部的水化产物氢氧化钙和水化硅酸钙凝胶C-S-H,在具有一定湿度的环境中与大气中CO2反应,生成碳酸钙。

这些碳化产物积累到一定量会对混凝土内部孔隙结构进行填充,从而导致孔隙的微结构和物质组成发生改变,这些孔隙结构和物质的改变将对各种有害物质的传输起到很大的影响作用,最终影响到钢筋的锈蚀速率。

目前对碳化后的水泥基材料物相和微观孔结构的研究方法比较多[3-6],如利用压汞法(MIP)和氮吸附法(BET)对孔隙的研究,扫描电子顯微镜和背散射电子(SEM-BSE),传输—透射电镜(TEM),核磁—磁共振(NMR),热重分析(DTG),X射线衍射(XRD)等,这些测试方法在样品制备和测试时会对样品产生影响,在分析前通常需要干燥处理或者打磨,而在这个过程中样品内部的组分和微观结构不可避免的会发生一定的改变,这对所研究的对象结果产生极大的影响。

而XCT在无损检测领域具有突出的优势和特点,其不需要对样品进行干燥等预处理,可以实现原位测试,精准度较高。

欣维尔_孔隙度_c_xc__理论说明

欣维尔_孔隙度_c_xc__理论说明

欣维尔孔隙度c xc 理论说明1. 引言1.1 概述欣维尔孔隙度和cxc理论是地质科学领域中一种重要的研究方法,它们被广泛应用于岩石、土壤和矿物等材料的孔隙结构分析和研究。

在地质勘探、资源开发、环境保护等领域中,了解材料的孔隙度及其分布对于评估岩石储层性质以及预测水文地质条件具有重要意义。

本文旨在通过对欣维尔孔隙度和cxc理论进行详细说明,探索其计算方法、应用领域以及实际应用中遇到的局限性和挑战。

1.2 文章结构本文共包含五个主要部分,即引言、欣维尔孔隙度理论说明、cxc理论说明、结果与讨论以及结论。

在引言部分,我们将首先概述整篇文章的背景和目的,并简要介绍欣维尔孔隙度和cxc理论的重要性。

接下来的各个部分将依次详细阐述相关内容。

1.3 目的本文旨在深入解释欣维尔孔隙度和cxc理论,介绍其定义、计算方法以及应用领域。

我们将通过实例分析和探讨欣维尔孔隙度与cxc之间的关系,评价不同的孔隙度测定方法,并提出改进建议。

同时,我们也会探讨在实际应用中所遇到的局限性和挑战,以期为相关领域的研究者提供一些参考。

以上是关于文章引言部分的详细内容,请根据这个内容进行进一步撰写。

2. 欣维尔孔隙度理论说明2.1 定义与背景欣维尔孔隙度是指岩石或土壤中的总有效孔隙体积与总体积之比。

在地质领域中,孔隙度是一个重要的参数,用于描述岩石或土壤中可储存流体的能力和渗透性。

欣维尔孔隙度理论基于对岩石或土壤物质中空隙和孔隙结构的研究,为我们提供了评估储层性质和水文地质特征的方法。

2.2 孔隙度的作用与意义孔隙度可以用来评估岩石或土壤的渗透性和储层属性。

它对地下水资源、石油勘探开发、环境地质工程等领域具有重要意义。

通过测定和计算孔隙度,可以了解岩石或土壤的吸水性、透水性以及相应流体在其中传输的速度和规律。

2.3 欣维尔孔隙度的计算方法欣维尔孔隙度可以通过不同方法进行计算,常见的方法包括物理实验法和数学模型法。

物理实验法主要通过测量岩石或土壤样品的体积和质量来计算孔隙度。

多孔介质热质传递国外研究进展

多孔介质热质传递国外研究进展

多孔介质热质传递国外研究进展宋明启;王志国【摘要】给出了多孔介质热质传递研究的基本参数:孔隙率、比面、迂曲度、渗透率、毛细压力.从起始阶段、上升阶段、突破阶段、创新阶段4个典型阶段详细介绍了国外多孔介质热质传递研究的理论成果.初步探析了RMV和REV在多孔介质热质传递未来研究中的应用.为同行业研究者开展此类课题提供了有价值的文献借鉴和理论铺垫.【期刊名称】《低温建筑技术》【年(卷),期】2015(037)007【总页数】3页(P1-2,11)【关键词】多孔介质;热质传递;进展【作者】宋明启;王志国【作者单位】东北石油大学土木建筑工程学院,黑龙江大庆163318;东北石油大学土木建筑工程学院,黑龙江大庆163318;大连理工大学能源与动力工程学院,辽宁大连116024【正文语种】中文【中图分类】TQ021.3多孔介质是由多孔固体骨架构成,孔隙空间中充满单相介质或多相介质。

目前,多孔介质热质传递学已经拓展到很多技术领域和学科前沿,包括:能源材料、环境工程、化学科学、仿生学科、生物医药、农业水利等,逐渐已经成为边缘科学和交叉学科的一个潜在出发点。

在研究多孔介质热质传递过程中,经常涉及一些主要的基本结构参数和基本性能参数。

孔隙率,是指多孔介质内微小孔隙的总体积与多孔介质外表体积的比值。

根据研究的需要,又定义了:有效孔隙率、绝对孔隙率。

比面,是指多孔介质固体骨架总表面积与多孔介质总容积的比值。

迂曲度,是指多孔介质弯曲通道真实长度与连接弯曲通道两端的直线长度的比值的平方。

有的学者也认为迂曲度,是指多孔介质弯曲通道真实长度与连接弯曲通道两端的直线长度的比值倒数的平方,目前学术界没有统一定论。

渗透率,是指在一定流动驱动力推动下,流体通过多孔介质的难易程度。

渗透率又分为:绝对渗透率、相渗透率、相对渗透率。

毛细压力,是指两种互不相溶的流体接触时,它们各自的内部压力在接触面上存在着不连续性,两压力之差[1]。

(1) 起始阶段。

石油英语词汇(M5)

石油英语词汇(M5)

石油英语词汇(M5)石油英语词汇(M5)石油英语词汇(M5)moor coal 沼煤moor peat 高位泥炭moor 沼泽moorage 系泊;系泊费moored sonobuoy 锚系声呐浮标mooreisporites 叉角孢属mooring basin 泊地mooring buoy 系泊浮筒mooring capacity 系泊能力mooring cleat 系泊羊角mooring dolphin 系泊系缆桩mooring force 系泊力mooring head 系泊头mooring island 系泊岛mooring leg 系泊腿mooring line 锚绳mooring pattern 系泊缆布置方式mooring pile 系泊桩mooring pipe 导缆孔mooring platform 系泊平台mooring plug 系泊栓mooring post 系泊柱mooring restraint 系泊约束力mooring ring 系泊环mooring strain 系泊变形mooring swivel 双锚锁环mooring system 系泊系统mooring template 系泊底盘mooring trial 系泊试验mooring tubular 系泊管mooring winch 系泊绞车mooring yoke 系泊轭mooring 停泊mop 地板擦;擦光辊mop 可动油图mop 最高工作压力mop-up 擦除;结束mopa 调制振荡器的功率放大器mopa 主控振荡器的功率放大器mope pole 下管撬杆mopf 可动油图标志mor system 洋中脊系mor 粗腐殖质mor 存储器输出寄存器morainal apron 冰碛平原moraine deposit 冰碛物moraine 冰碛morainic succession 冰碛层序moral hazard 道德危险moral obligation 道义责任moral 道德的;教训;道德morale 纪律morality 道德;道义;品行morass 沼泽;艰难;困境morb 中央海岭玄武岩mordant 腐蚀剂mordanting 媒染;腐蚀mordenite 丝光沸石more or less clause 溢短装条款more strength criterion 莫尔强度准则more 更moretane 莫烷moretanoids 莫烷类morfa 沼泽morgan guaranty trust co. 摩根保证信托公司morgan's theorem 摩根定理morisette expansion reamer 刀翼可撑出的扩眼器morning clearing 午前结算morning drilling report 钻井晨报morning shift 早班morning tour 早班morpheme 词头morphine 吗啡morpho- 形状morphogenesis 地貌成因morphogenetic 地貌成因的morphogenic phase 地貌发生幕morphogenic 地貌成因的morphogeny 地貌形成作用morphographic map 鸟瞰地形图morphography 描述地貌学morpholine 吗啉morphologic analysis 地貌分析morphologic basin 地形盆地morphologic characteristics 地貌特征morphologic deep 深坳陷morphologic expression 形态显示morphologic geotectonics 形态大地构造学morphologic landscape unit 地貌景观单元morphologic modeling 形态模型建立技术morphologic prominence 地貌起伏morphologic region 地貌区;地形区morphologic rheology 形态流变学morphologic species 形态种型morphologic variation 形态变异morphologic vertical zoning 地貌垂直分带morphologic =morphological 形态学的morphologic-structural configuration 地形构造轮廓morphology 形态学;地貌学morphometry 地形测量morphorogenic phase 造山幕morphosculpture 刻蚀地貌morphosequent 地表地貌morphostratigraphic unit 地貌地层单位morphostructural analysis 地貌构造分析morphostructure 地貌构造morphotectonics 地貌构造分析morphotropism 变晶现象;准同形性morphotropy 变形性;变晶;应变morphotype 形态类型morriner 蛇形丘morse code 莫尔斯码morse lamp 莫尔斯信号灯morsel 少量;分成小块mort 搬出钻井工具mort-lake 弓形湖mortality ratio 死亡率mortality 死亡率mortar texture 碎斑结构mortar 灰浆mortgage bond 抵押债券mortgage loan 抵押贷款mortgage 抵押mortise 榫眼槽;沟;孔;接榫;牢固结合mos 金属氧化物半导体mos 金属氧化物硅mos 月数mosaic angle 镶嵌角mosaic assembly 空中照片嵌拼图mosaic block 镶嵌块mosaic breccia 镶嵌角砾岩mosaic color map 镶嵌彩图mosaic crystal 镶嵌晶体mosaic image 镶嵌图象mosaic imaging 镶嵌成象mosaic map 镶图mosaic pattern 镶嵌图案mosaic photo strip 航空连续摄影嵌拼照片mosaic photography 航空嵌拼照相术mosaic texture 镶嵌结构mosaic 拼成的moscovian series 莫斯科统moscow 莫斯科mose 沼泽mosherella 莫希尔牙形石属mosic 金属氧化物半导体集成电路mosquito bill 抽油杆泵之下mosquito 蚊子;蚊式;小型moss land 泥炭沼泽moss peat 高位泥炭moss scale of hardness 莫氏硬度表moss 沼泽mosslike 苔藓状的most advanced industry 尖端产业most favoured license clause 最惠特许条款most favoured nation treatment 最惠国待遇most favoured nation 最惠国most likely duration 最可能持续时间most permeable medium 高渗透多孔介质most permeable system 高渗透系统most permeable zone 高渗透层most probable value 最概然值most significant bit 最高有效位most significant character 最高有效字符most significant digit 最高位most stringent test 最紧检验mot op 电动机拖动的mot 马达mota 粘土mote 微尘;瑕疵moth proofing agent 防蛀剂moth repellent 防蛀剂moth 蛾;摧毁雷达台的导弹;锌褐锰矿;蛀虫mothball 防蠹丸;保藏;后备的;樟脑丸mothballed plant 封存装置mothballed refinery 封存炼厂mothballed 检修好存置备用的mothballing 封存mother cell 母细胞mother crystal 原晶体mother current 主流mother earth 大地mother geosyncline 母地槽mother hubbard packer 一种手工制封隔器mother liquid 母液mother liquor 母液mother lode 母脉mother machine 机床mother map 底图mother metal 母材mother nuclide 母核mother nut 主螺母mother oil 原生石油mother rock 原生岩mother ship 母舰mother solution 母溶液mother substance 油母质mother water 母液mother 母体;母同位素;根本mother-daughter relationship 母子体关系mother-of-coal 丝炭mother-source rock 原始生油岩motherboard 母板motif 主题;基本花纹;动机motile 活动的motility 游动motion compensator unit 运动补偿装置motion compensator 运动补偿器motion model 运动模型motion parts 运动部分motion response 运动反应motion with variable velocity 变速运动motion 运动motion-compensation ability 运动补偿能力motion-sensitive geophone 动敏式检波器motional feedback amplifier 动反馈放大器motional impedance 动生阻抗motional waveguide joint 活动波导管连接motionless 不动的motivating force 驱动力motivation 动机形成motivator 操纵机构;舵motive power 原动力motive 原动的;运动的;动机;促动motivity 发动力;储能motometer 转速计motor boat 摩托艇motor car engine 汽车发动机motor control panel 马达控制面板motor dory 摩托艇motor driven slush pump 电动泥浆泵motor fireman 发动机司机motor frame 电动机架motor fuel 发动机燃料motor gasoline 车用汽油motor grader 机动平地机motor hand 柴油机工motor hoist 电动提升机motor meter 电动机型积算仪表motor octane number 马达法辛烷值motor oil 内燃机机油motor operated switch 电动开关motor operated 电动的motor rule 电动机定则motor spirit 车用汽油motor starter 电机启动器motor supervision 马达监控motor torque 发动机转矩motor truck 载重汽车motor wire brush 电动钢丝刷motor 电动机motor-bent sub combination 马达-弯接头组合motor-bug 机动小车motor-driven turbine pump 电动涡轮泵motor-driven 电机驱动的motor-generator 电动机-发电机组motorboating 汽船声motorbus 公共汽车motorcar 汽车;机动车厢motorcycle 摩托车motordynamo 电动直流发电机motoring test 空转试验motoring 汽车运输;电动回转;倒拖;汽车的motorist 汽车司机;乘汽车旅行者motorization 机动化motorized grader 平地机motorized pipe anchor 电动管锚motorized valve 电动阀motorized 装电动机的;机动化的motorlorry 运货汽车motorman 动力机工motormen motorman的复数motorway 汽车道;快车道mottle 斑点mottled sandstone 杂色砂岩mottled tone pattern 斑点状色调图形mottled 斑点状的mottling 斑块mould oil 滑模油mould =moldmouldboard 型板moulded displacement 型排水量moulded draft 型吃水moulder =moldermoulders oil 陶瓷脱模油moulding compound 模塑料moulding floor 翻砂车间moulding sand 型砂moulding wax 滑模蜡moulding =moldingmoulinet 扇闸mound breakwater 斜坡式防波堤mound seismic reflection configuration 丘形地震反射结构mound 丘mounded facies 丘状相mounded tank 半埋设罐mounded 半埋设的moundy 丘状mount 山mountain apron 山麓冲积裙mountain arc 山弧mountain bog 山地沼泽mountain chain 山脉mountain climate 山地气候mountain coast 山地海岸mountain cork 石棉mountain creep 崩坍mountain effect 山地效应mountain flour 石粉mountain folding 造山作用mountain front 山前带mountain glacier 高山冰川mountain knot 山结mountain leather 石棉mountain making 造山作用mountain meal 硅藻土mountain of dislocation 断层山mountain pitch 山沥青mountain ridge 山脊mountain root 山根mountain slip 地滑mountain soap 皂石mountain station 山区站mountain stream 山区河流mountain tar 胶结沥青mountain topography 山地地形mountain waste 山地岩屑mountain wax 地蜡mountain 山mountain-building movement 造山运动mounted mosaic 裱装镶嵌图mounted 安装好的mounting cost 安装费mounting deflection 安装挠曲mounting flange 固定法兰mounting hole 安装孔mounting list 安装说明mounting plate 装配板mounting pole 安装扒杆mounting 安装;配件mourishment 食物;滋养品mouse ahead 缩小井径钻进mouse hole 小鼠洞mouse trap 鼠笼式打捞器mouse 耗子;灰褐色;鼠标器mouse 无人最小人造地球卫星mousehole drilling 钻小鼠洞mouth bar 河口坝mouth down 口朝下mouth of hook 钩口mouth of shears 冲剪口mouth of tongs 大钳口mouth piece 接口管mouth 口;炉口;输出端movability 移动性movable bed 易搬运物质的河床movable center 弹性顶尖movable coil 动圈movable contact 活动触头movable electrode 可动电极movable element 活动元件movable fit 动配合movable gas saturation 可动气饱和度movable head 可动式磁头movable hydrocarbon 可动油气movable mark 可动刻度标志movable oil index 可动油指数movable oil plot flag 可动油图标志movable oil plot 可动油图movable oil 可动油movable plate 活动片movable platen 移动模板movable pore volume 流体可驱移的孔隙容积movable property 动产movable pulley 动滑轮movable receiver 活动型接收机movable space 活动间距movable support 可动支架movable water 可动水movable 活动的move about 动来动去move up-dip 向上倾移动move 移动move-off 移开move-on 装上movement capacity 运输能力movement plan 运输计划movement velocity 运动速度movement 运动moveout equation 时差方程moveout filtering 时差滤波moveout function 时差函数moveout scan 时差扫描moveout term 时差项moveout velocity 时差速度moveout-equivalent canonical profile 时差等效标准剖面mover 原动机;推进器movie 电影moving armature geophone 电动式地震检波器moving average cost method 滑动平均成本法moving average 移动平均moving axis 动轴moving ball type viscometer 动球式粘度计moving bed flow pattern 运动砂床流动型式moving bed 移动床moving blade 动叶片moving boundary 移动边界moving casing 活动套管moving component 运动部件moving conductor geophone 电动式地震检波器moving contact 动触点moving coordinate system 运动坐标系moving fault 活动断层moving phase 流动相moving plate 移动板块moving platform correction 活动平台校正moving source-receiver method 移动电源-接收器电磁勘探法moving time 搬家时间moving vane 动叶片moving water 流水moving wave 行波moving window 滑动窗口moving 移动moving-average operator 移动平均算子moving-coil galvanometer 动圈式检流计moving-coil geophone 动圈式检波器moving-interface survey 移动界面测量moving-receiver method 移动检波器法moving-source method 震源移动法moving-window correlation analysis 移动窗相关分析moviola 声象同步装置mower 割草机mows 完全自给的钟形潜水舱mox 金属氧化物mox 金属氧化物电阻moyite 钾长花岗岩moyno pump 莫伊诺单螺杆泵mp method 微孔法mp separator 中压分离器mp steam 中压蒸汽mp 安全设施mp 测量点mp 敷金属纸mp 管汇压力mp 计量泵mp 甲基菲mp 熔点mp 微孔mp 压力计压力mp 造山期mp 中等压力mp 主控制盘mp 最高压力mpa 多倍精度计算mpa 已调脉冲放大器mpa 兆帕mpc 敷金属纸质电容器mpc 最大允许浓度mpd 最大允许剂量mpe 电子仪器零件的机械化生产mpe 多相喷射器mpe 最大容许照射mpg 英里加仑mph 米小时mph 英里小时mphps 英里小时秒mpi fluorescent magnetic particles 荧光磁粉mpi 磁粉探伤法mpi 甲基菲指数mpi 最大容许进气量mpl 可移动的岩石物理学实验室mpl 微电极-邻近侧向测井mpl 岩石力学性质测井曲线mpm 英里分mpn 或然数mpr 多频率电磁波传播电阻率测井仪mpr 甲基菲菲比值mpr 最大压力限制mpr 最大允许产量mps 多用途潜水器mpss 多功能半潜式装置mpt 邻近侧向-微电极测井仪mpu 微处理机mpy 密耳年mqr 乘商寄存器mril 核磁共振成象测井ms th 新钍ms 安全系数ms 材料规格ms 磁致伸缩ms 存储系统ms 分子筛ms 毫秒ms 结构钢ms 均方ms 米秒ms 米制ms 通信;消息;文电ms 微秒ms 英里秒ms 质谱分析法ms 质谱仪ms 中碳钢ms 总开关msa 美国矿物学会msa 主台放大器msa 最小声幅msb 总配电盘msb 最高有效位msc 理科硕士msc 最高有效字符mscf 千标准立方英尺mscfd 千标准立方英尺日msd 多频信号检波器msd 均方地层倾角程序msd 均方偏差msd 质谱检定msd 最高有效位msdta 质谱差热分析mse 均方误差msec 毫秒msec 米秒msec 微秒msec 兆秒mser 均方误差比msf 多级闪蒸msf 信息转换设备msf 中波标准频率msfl 微球形聚焦测井msft 微球形聚焦测井下井仪msg 泥浆比重msg 最小滑动门msi 多参数能谱测井仪msi 中规模集成msi 最小泥质指数msl 平均海平面msp 多炮点处理msp 最大作业压力msp 最高地面压力msr 磁移位寄存器msr 均方根msr 微波扫描辐射计msr 中等抗硫酸盐型mss 多级分离mss 多谱线扫描器mss 通信;消息;文电mss 原稿mss 制造商标准化学会mst 磁导向工具mst 单片系统工艺mst 通用型板mst 微电阻率扫描测井下井仪mst 最低软化点mst 最小生成树mst. 测量msta 质谱热分析mstb 千储罐桶数msv 多用供应船msw 金属绕圈msyn 主同步信号mt 百万吨级mt 磁带mt 大地电磁的mt 多节地层测试器mt 公吨mt 机动车运输mt 联运mt 模变换器mt 泥浆类型mt 平均时mt 汽车运输mt 主定时器;主要时间延迟调节器mt 最大扭矩mt. 测定mt. 矩mt. 山mtbf 故障平均间隔时间mtbm 维修平均间隔时间mtc 磁带机控制器mtc 厘米纵倾力矩mtd 测试深度mtd 磁带磁鼓mtd 平均温差mte 多系统试验设备mtf 调制传递函数mtf 机械定时引信mtf 挪威工程材料协会mtg. 安装mtg. 抵押;抵押契约mtg. 会议mth 磁带信息处理机mth. 月mti 磁带机接口mti 活动目标显示器mti 每英寸纵倾力矩mtit 大地电磁阻抗张量mtl valve tray 塔板定位架浮阀塔盘mtl 平均容许限度;平均耐药量mtl. 材料mtm 操作方法时间测量mtoe 百万吨油当量mtp 顶部最高压力mtp 最高油压mtpa 百万吨年mtr 材料试验反应堆mtr 磁带记录器mtr 多路跟踪雷达mtr 多路无线电信标mtr 泥浆马达mtrbrg 泥浆马达轴承mts 磁带机子系统mts 海洋技术学会mts 压力计-温度计探测器mts. 山脉mttf 平均无故障时间mttff 首次故障前平均时间mttr 平均维修时间mtu 磁带机mtu 主终端设备mu 测量装置;测量单位mu 存储器mu 机械利用mu 监视器mu 质量单位mu-factor μ系数mu-metal μ磁性合金much 许多;大量much-faulted anticline 断裂程度很大的背斜mucilage 粘液;粘胶mucin 粘蛋白muciparous 分泌粘液的muck car 泥车muck 腐殖土muck-stick 铲子mucker 挖沟机mucking 清理管沟muckite 小粒黄色琥珀mucosity 粘性mucous membrane 粘膜mucp 多级离心泵mucus 粘液mud acid treatment 土酸处理mud acid 土酸mud additive 泥浆添加剂mud aggregate 泥粒集合体mud agitator 泥浆搅拌器mud anchor 砂锚mud arrival 泥浆波mud baffle 泥浆挡板mud balance 泥浆比重秤mud bank 泥滩mud bin 泥浆贮藏箱mud bit 钻泥层用钻头mud blanket 毯状泥层mud board 底泥板mud body 泥浆结构mud boulder 泥球mud breccia 泥角砾岩mud bridges 泥饼桥mud buoyancy correction 泥浆浮力校正mud buoyancy 泥浆浮力mud cake buildup 泥饼形成mud cake 泥饼mud channel 泥浆管路mud channeling 泥浆窜流mud circulating system 泥浆循环系统mud clean-up acid 除泥浆酸mud cleaner 泥浆清洁器mud column 泥浆柱mud conditioner 泥浆处理剂mud cone 泥火山mud control 泥浆性能的控制;用泥浆控制井眼mud crack cast 泥裂铸型mud crack 泥裂mud cup 泥浆杯mud damage 泥浆对地层的损害mud decontaminant 泥浆净化剂mud degasser 泥浆除气器mud degassing still 泥浆脱气蒸馏mud density indicator 泥浆密度指示器mud desander 泥浆除砂器mud ditch 泥浆槽mud driven turbine-alternator 泥浆驱动的涡轮发电机mud filter cell 储浆杯mud filtrate 泥浆滤液mud flow fill indicator 灌泥浆指示器mud flow monitor 泥浆流量监测仪mud flow on trips 起下钻时泥浆外溢mud flow rate meter 泥浆流量计mud flowage 泥流mud fluid 泥浆mud flume 泥浆槽mud foreshore 泥质前滨mud furrow 泥裂沟mud gas 泥浆气mud glacier 泥川mud gun 泥浆枪mud hog 泥浆泵mud hopper 泥浆漏斗mud hose 泥浆软管mud house 泥浆房mud hydraulics 泥浆水力学mud in 在充满粘泥浆井中下入mud ingredient 泥浆拼料mud laden fluid 泥浆mud launder 泥浆槽mud line casing support system 泥线套管支承系统mud line suspension system 泥线悬挂系统mud line 泥浆管线;泥线mud lining 结泥饼mud logging 气测井mud loss 泥浆漏失mud lubrication 泥浆压井mud lubricator 泥浆压井器mud making formation 造浆地层mud mixer 泥浆搅拌器mud mixing appliance 配泥浆的设备mud motor 井下动力钻具mud motor-bent sub 泥浆马达-弯接头mud off 泥封mud particles 泥浆中的固体颗粒mud pebble 泥砾mud pellet 泥粒mud piston 泥浆泵活寒mud pit 泥浆池mud plant 泥浆站mud pocket 泥浆包mud pressure indicator 泥浆压力计mud program 泥浆设计mud property ratio 泥浆性能指数mud property 泥浆性能mud pulse valve 泥浆脉冲阀mud pump shock pressure 泥浆泵振动压力mud pumpability 泥浆可泵性mud purification 泥浆净化mud reclamation 泥浆回收mud relief valve 泥浆泵安全阀mud removal agent 泥浆清除剂mud rim 锅炉灰坑的衬泥边缘mud ring 泥饼圈mud rock 泥岩mud salinity 泥浆矿化度mud sample 泥浆试样mud saver bucket 护罩mud saver 泥浆护罩mud scale 泥浆比重计mud scow 移动式钻井泥浆罐;向沼泽地运送管子和设备的大型滑橇mud screen 泥浆筛mud separator 泥浆分离器mud settling sump 泥浆沉淀池mud shaker 泥浆振动筛mud shale 泥页岩mud sheath 泥饼mud sill 排架座木;底基;底梁mud siren 泥浆警报器mud slip 泥浆冲出钻屑mud socket 捞砂筒mud solid 泥浆中的固相物质mud stability 泥浆稳定性mud stalagmite 泥石笋mud stream 泥浆流mud suction hose 泥浆吸入软管mud sump 泥浆池mud system 泥浆循环系统;泥浆体系mud tank 泥浆罐mud thickener 泥浆增稠剂mud thinner 泥浆减稠剂mud travel time 泥浆旅行时间mud turbine generator 泥浆涡轮发电机mud up 泥浆封住油层mud viscosity 泥浆粘度mud volcano 泥火山mud volume totaliser 泥浆体积累加器mud weight balance 泥浆比重天平mud weight indicator 泥浆比重指示计mud weight 泥浆比重mud wt in 进口泥浆比重mud wt out 出口泥浆比重mud 泥浆mud's college education 配制优质泥浆mud-cooling tower 泥浆冷却塔mud-cracked clay 泥裂粘土岩mud-daubed 用泥浆修补的mud-filled 充满泥浆的mud-flow indicator 泥浆流量指示器mud-framework reef 泥格架岩礁mud-gas cutting 泥浆气侵mud-gas logging 泥浆气侵录井mud-gas separator 泥浆-天然气分离器mud-log 井下泥浆测量曲线mud-motor orientation angle 泥浆马达定向角mud-pressure pulses 泥浆压力脉冲mud-propelled turbine 泥浆驱动的涡轮mud-pulse telemetry 泥浆脉冲遥测技术mud-pulse transmitter 泥浆脉冲发射器mud-pulse 泥浆脉冲mud-rock flow 泥石流mud-supported biomicrite 灰泥支撑的生物微晶灰岩mudapron 挡泥板mudcake correction 泥饼校正mudcake effect 泥饼影响mudded off 泥封的mudding action 造壁作用mudding in 在充满泥浆井中下mudding off 造壁mudding up 泥浆制备mudding 泥封muddle 混乱;浑浊muddy intercalation 泥质夹层muddy limestone 泥灰岩muddy rip-up clast 泥浆撕裂碎屑muddy sand 泥质砂层muddy 泥质的mudflat 泥质潮滩mudflow 泥流mudguard 挡泥板mudhole 除泥孔;澄泥箱mudjack 压浆mudlark 清沟工mudlegs 存污管段mudline 泥线mudlump 泥火山mudprone facies 泥坡相mudprone 泥坡的mudpump 抽泥;泥浆泵mudslide platform 抗泥崩平台mudslide 泥崩mudslides 海底泥滑动mudspate 泥流mudstone 泥岩;泥状灰岩mudsupported 灰泥支撑的muff 套筒;保温套;衬套;轴套muffle burner 马弗炉喷燃器muffle furnace 马弗炉muffle 包;蒙住;消声器;马弗炉muffler tail pipe 回气管尾管muffler 消声器;马弗炉;消弧片mugearite 橄榄粗安岩mulching film 地膜muldakaite 次闪辉绿岩mulde 凹地mule foot a bit 钻头偏磨mule head 驴头mule shoe guide 斜口引鞋mule shoe latch 斜口管鞋爪mule skinner's delight 小钻杆mule 骡;牵引车mule's foot 驴蹄形绳结mule-head hanger 驴头上挂抽油杆的装置mule-shoe nipple 斜口管鞋短节muleshoe orientation method 斜口管鞋定向法muleshoe orienting device 斜孔造斜工具muleshoe slinger lock 斜口管鞋投掷锁定器muleshoe sub 斜口接头mull 细软薄布;细腐殖质;混乱;弄糟;研磨muller 研磨机mullet 钻井投资者mullion structure 窗棂构造mullite 模来石mulser 乳化机multcan 多分管的;分管型燃烧室multeity =multiplicitymulti phase region 多相区multi- 多multi-access 多路存取multi-address code 多。

多孔介质流体动力学

多孔介质流体动力学

多孔介质流体动力学多孔介质流体动力学一、引言多孔介质是指具有复杂空间结构并由连续固体构成的材料。

它在许多领域中具有广泛的应用,例如土壤力学、水文地质学、石油工程等。

多孔介质中流体的运动行为对于诸如渗透率、渗流压力分布和物质输运等方面的问题具有重要意义。

研究多孔介质中流体的动力学行为对于理解和解决实际问题非常重要。

二、多孔介质基本特性1. 渗透率:多孔介质的渗透率是描述介质对流体流动程度的指标。

它与介质的孔隙度、孔径分布和连通性等因素有关。

渗透率越大,介质中的流动越容易。

2. 饱和度:多孔介质中的饱和度是指介质中被流体填充的程度。

通常用饱和度来描述多孔介质中固体和流体的分布情况。

3. 渗流压力分布:多孔介质中流体流动时,由于摩擦阻力和压力梯度的存在,流体的压力分布不均匀。

这种压力分布对于渗流过程的研究非常关键。

三、多孔介质流体动力学模型多孔介质中流体的动力学行为可以通过各种数学模型进行描述。

其中最常用的是达西定律和斯托克斯方程。

1. 达西定律:达西定律描述了多孔介质中的渗流行为,即单位时间内流体通过单位面积的渗透体积。

它可以用如下公式表示:Q = -k(dh/dl)其中,Q是单位时间内的渗流体积,k是渗透率,dh/dl是渗流压力梯度。

2. 斯托克斯方程:斯托克斯方程描述了流体在多孔介质中的运动行为。

它可以用如下公式表示:F = μu + (k/μ)(∇P)其中,F是流体受到的外力,μ是流体的黏度,u是流体的速度,k是渗透率,P是流体的压力。

四、多孔介质流体动力学研究进展多孔介质流体动力学的研究已经取得了很大的进展,并在许多领域中得到了应用。

1. 渗透率测量:通过实验和数值模拟等方法,可以准确地测量多孔介质的渗透率,并进一步研究其对流体流动的影响。

2. 渗透过程模拟:利用数学模型和计算方法,可以模拟多孔介质中的渗透过程,预测流体的动力学行为,并为实际工程问题提供解决方案。

3. 渗流压力分布研究:研究多孔介质中的渗流压力分布,可以帮助我们理解渗透过程中的物质输运机制,进而优化工程设计和提高资源利用效率。

基于prosail模型并在冠层覆盖度参与优化下作物叶面积指数反演方法

基于prosail模型并在冠层覆盖度参与优化下作物叶面积指数反演方法

基于ProSAIL模型的作物叶面积指数反演方法一、引言作物叶面积指数(Leaf Area Index, LAI)是衡量作物生长状态和生产力的重要指标之一。

准确地估计作物的叶面积指数对于作物生长监测、农业管理和粮食生产预测具有重要意义。

然而,传统的基于实地测量或遥感数据分析的LAI估算方法存在成本高、工作量大和时间耗费长等问题。

为了克服这些问题,基于反射率模型的LAI估算方法被广泛研究和应用。

本文将探讨基于ProSAIL模型并在冠层覆盖度参与优化下的作物叶面积指数反演方法。

二、ProSAIL模型基本原理ProSAIL模型是植被反射率模型的一种,它基于能量守恒和光传输原理模拟植被光谱响应。

该模型考虑了植被结构对光的吸收、散射和透射的影响,可以通过输入植被参数如叶面积指数、叶片角度分布和冠层覆盖度等来模拟不同植被类型的光谱响应。

三、冠层覆盖度参与优化的作物LAI反演3.1 数据采集和处理进行作物LAI反演需要获取多光谱遥感数据,如Landsat、MODIS等。

同时,还需要获取作物生长期间的实地LAI观测数据作为参考。

将遥感数据进行预处理,包括大气校正、几何校正和辐射校正等。

3.2 ProSAIL模型参数化ProSAIL模型的参数化是指根据实地观测数据或遥感数据来确定模型的输入参数,如叶面积指数、叶片角度分布和冠层覆盖度等。

通过对接触到的光的比例和各种辐射的比例进行测量与建模,可以获取作物的生物物理参数。

3.3 冠层覆盖度的优化传统的作物LAI反演方法往往忽略了冠层覆盖度的影响,将其视为一个固定的参数。

然而,作物的生长过程中,冠层覆盖度会发生变化,对LAI的估计产生影响。

因此,本方法引入冠层覆盖度作为优化参数,使用优化算法对LAI进行反演。

3.4 优化算法冠层覆盖度的优化可以使用多种优化算法,如遗传算法、粒子群算法等。

这些算法可以通过迭代计算,不断优化冠层覆盖度参数,使得ProSAIL模型得到的光谱响应与实际观测数据拟合最优。

FLUENT软件专业英语词汇表

FLUENT软件专业英语词汇表

FLUENT软件专业英语词汇表Aabort 异常中断, 中途失败, 夭折, 流产, 发育不全,中止计划[任务] accidentally 偶然地, 意外地accretion 增长activation energy 活化能active center 活性中心addition 增加adjacent 相邻的aerosol浮质(气体中的悬浮微粒,如烟,雾等), [化]气溶胶, 气雾剂, 烟雾剂ambient 周围的, 周围环境amines 胺amplitude 广阔, 丰富, 振幅, 物理学名词annular 环流的algebraic stress model(ASM) 代数应力模型algorithm 算法align 排列,使结盟, 使成一行alternately 轮流地analogy 模拟,效仿analytical solution 解析解anisotropic 各向异性的anthracite 无烟煤apparent 显然的, 外观上的,近似的approximation 近似arsenic 砷酸盐assembly 装配associate 联合,联系assume 假设assumption 假设atomization 雾化axial 轴向的Bbattlement 城垛式biography 经历bituminous coal 烟煤blow-off water 排污水blowing devices 鼓风(吹风)装置body force 体积力boiler plant 锅炉装置(车间)Boltzmann 玻耳兹曼Brownian rotation 布朗转动bulk 庞大的bulk density 堆积密度burner assembly 燃烧器组件burnout 燃尽C capability 性能,(实际)能力,容量,接受力carbon monoxide COcarbonate 碳酸盐carry-over loss 飞灰损失Cartesian 迪卡尔坐标的casing 箱,壳,套catalisis 催化channeled 有沟的,有缝的char 焦炭、炭circulation circuit 循环回路circumferential velocity 圆周速度clinkering 熔渣clipped 截尾的clipped Gaussian distribution 截尾高斯分布closure (模型的)封闭cloud of particles 颗粒云cluster 颗粒团coal off-gas 煤的挥发气体coarse 粗糙的coarse grid 疏网格,粗网格coaxial 同轴的coefficient of restitution 回弹系数;恢复系数coke 碳collision 碰撞competence 能力competing process 同时发生影响的competing-reactions submodel 平行反应子模型component 部分分量composition 成分cone shape 圆锥体形状configuration 布置,构造confined flames 有界燃烧confirmation 证实, 确认, 批准conservation 守恒不灭conservation equation 守恒方程conserved scalars 守恒标量considerably 相当地consume 消耗contact angle 接触角contamination 污染contingency 偶然, 可能性, 意外事故, 可能发生的附带事件continuum 连续体converged 收敛的conveyer 输运机convolve 卷cooling wall 水冷壁correlation 关联(式)correlation function 相关函数corrosion 腐蚀,锈coupling 联结, 接合, 耦合crack 裂缝,裂纹creep up (水)渗上来,蠕升critical 临界critically 精密地cross-correlation 互关联cumulative 累积的curtain wall 护墙,幕墙curve 曲线custom 习惯, 风俗, <动词单用>海关, (封建制度下)定期服劳役, 缴纳租税, 自定义, <偶用作>关税v.定制, 承接定做活的cyano 氰(基),深蓝,青色cyclone 旋风子,旋风,旋风筒cyclone separator 旋风分离器[除尘器]cylindrical 柱坐标的cylindrical coordinate 柱坐标Ddead zones 死区decompose 分解decouple 解藕的defy 使成为不可能demography 统计deposition 沉积derivative with respect to 对…的导数derivation 引出, 来历, 出处, (语言)语源, 词源design cycle 设计流程desposit 积灰,结垢deterministic approach 确定轨道模型deterministic 宿命的deviation 偏差devoid 缺乏devolatilization 析出挥发分,液化作用diffusion 扩散diffusivity 扩散系数digonal 二角(的), 对角的,二维的dilute 稀的diminish 减少direct numerical simulation 直接数值模拟discharge 释放discrete 离散的discrete phase 分散相, 不连续相discretization [数]离散化deselect 取消选定dispersion 弥散dissector 扩流锥dissociate thermally 热分解dissociation 分裂dissipation 消散, 分散, 挥霍, 浪费, 消遣, 放荡, 狂饮distribution of air 布风divide 除以dot line 虚线drag coefficient 牵引系数,阻力系数drag and drop 拖放drag force 曳力drift velocity 漂移速度driving force 驱[传, 主]动力droplet 液滴drum 锅筒dry-bottom-furnace 固态排渣炉dry-bottom 冷灰斗,固态排渣duct 管dump 渣坑dust-air mixture 一次风E hyacinth at 2005-11-12 09:20:22EBU---Eddy break up 漩涡破碎模型eddy 涡旋effluent 废气,流出物elastic 弹性的electro-staic precipitators 静电除尘器emanate 散发, 发出, 发源,[罕]发散, 放射embrasure 喷口,枪眼emissivity [物]发射率empirical 经验的endothermic reaction 吸热反应enhance 增,涨enlarge 扩大ensemble 组,群,全体entity 实体entrain 携带,夹带entrained-bed 携带床equilibrate 保持平衡equilibrium 化学平衡ESCIMO-----Engulfment(卷吞) Stretching(拉伸) Coherence(粘附)Interdiffusion-interaction(相互扩散和化学反应) Moving-observer(运动观察者)exhaust 用尽, 耗尽, 抽完, 使精疲力尽排气排气装置用不完的, 不会枯竭的exit 出口,排气管exothermic reaction 放热反应expenditure 支出,经费expertise 经验explicitly 明白地, 明确地extinction 熄灭的extract 抽出,提取evaluation 评价,估计,赋值evaporation 蒸发(作用)Eulerian approach 欧拉法Ffacilitate 推动,促进factor 把…分解fast chemistry 快速化学反应fate 天数, 命运, 运气,注定, 送命,最终结果feasible 可行的,可能的feed pump 给水泵feedstock 填料fine grid 密网格,细网格finite difference approximation 有限差分法flamelet 小火焰单元flame stability 火焰稳定性flow pattern 流型fluctuating velocity 脉动速度fluctuation 脉动,波动flue 烟道(气)flue duck 烟道fluoride 氟化物fold 夹层块forced-and-induced draft fan 鼓引风机forestall 防止fouling 沾污fraction 碎片部分,百分比fragmentation 破碎fuel-rich regions 富燃料区,浓燃料区fuse 熔化,熔融G gas duct 烟道gas-tight 烟气密封gasification 气化(作用)gasifier 气化器generalized model 通用模型Gibbs function Method 吉布斯函数法Gordon 戈登governing equation 控制方程gradient 梯度graphics 图gross efficiency 总效率H hazard 危险header 联箱helically 螺旋形地heterogeneous 异相的heat flux 热流(密度)heat regeneration 再热器heat retention coeff 保热系数histogram 柱状图homogeneous 同相的、均相的hopper 漏斗horizontally 卧式的,水平的hydrodynamic drag 流体动力阻力hydrostatic pressure 静压hypothesis 假设humidity 湿气,湿度,水分含量I identical 同一的,完全相同的ignition 着火illustrate 图解,插图in common with 和…一样in excess of 超过, 较...为多in recognition of 承认…而,按照in terms of 根据, 按照, 用...的话, 在...方面incandescent 白炽的,光亮的inception 起初induced-draft fan 强制引风机inert 无活动的, 惰性的, 迟钝的inert atmosphere 惰性气氛inertia 惯性, 惯量inflammability 可燃性injection 引入,吸引inleakage 漏风量inlet 入口inlet vent 入烟口instantaneous reaction rate 瞬时反应速率instantaneous velocity 瞬时速度instruction 指示, 用法说明(书), 教育, 指导, 指令intake fan 进气风扇integral time 积分时间integration 积分interface 接触面intermediate 中间的,介质intermediate species 中间组分intermittency model of turbulence 湍流间歇模型intermixing 混合intersect 横断,相交interval 间隔intrinsic 内在的inverse proportion 反比irreverse 不可逆的irreversible 不可逆的,单向的isothermal 等温的, 等温线的,等温线isotropic 各向同性的J joint 连接justify 认为K Kelvin 绝对温度,开氏温度kinematic viscosity 动粘滞率, 动粘度kinetics 动力学L Lagrangian approach 拉格朗日法laminarization 层流化的Laminar 层流Laminar Flamelet Concept 层流小火焰概念large-eddy simulation (LES) 大涡模拟leak 泄漏length scale 湍流长度尺度liberate 释放lifetime 持续时间,(使用)寿命,使用期literature 文学(作品), 文艺, 著作, 文献lining 炉衬localized 狭小的logarithm [数] 对数Low Reynolds Number Modeling Method 低雷诺数模型Mhyacinth at 2005-11-12 09:20:44macropore 大孔隙(直径大于1000埃的孔隙) manipulation 处理, 操作, 操纵, 被操纵mass action 质量作用mass flowrate 质量流率Mcbride 麦克布利德mean free paths 平均自由行程mean velocity 平均速度meaningful 意味深长的,有意义的medium 均匀介质mercury porosimetery 水银测孔计, 水银孔率计mill 磨碎,碾碎mineral matter 矿物质mixture fraction 混合分数modal 众数的,形式的, 样式的, 形态上的, 情态的, 语气的[计](对话框等)模式的modulus 系数, 模数moisture 水分,潮湿度molar 质量的, [化][物]摩尔的moment 力矩,矩,动差momentum 动量momentum transfer 动量传递monobloc 单元机组monobloc units 单组mortar 泥灰浆mount 安装,衬底Monte Carlo methods 蒙特卡罗法multiflux radiation model 多(4/6)通量模型multivariate [统][数]多变量的,多元的Nnegative 负Newton-Rephson 牛顿—雷夫森nitric oxide NO2node 节点non-linear 非线性的numerical control 数字控制numerical simulation 数值模拟Ttable look-up scheme 查表法tabulate 列表tangential 切向的tangentially 切线tilting 摆动the heat power of furnace 热负荷the state-of-the-art 现状thermal effect 反应热thermodynamic 热力学thermophoresis 热迁移,热泳threshold 开始, 开端, 极限tortuosity 扭转, 曲折, 弯曲toxic 有毒的,毒的trajectory 轨迹,弹道tracer 追踪者, 描图者, (铁笔等)绘图工具translatory 平移的transport coefficients 输运系数transverse 横向,横线triatomic 三原子的turbulence intensity 湍流强度turbulent 湍流turbulent burner 旋流燃烧器turbulization 涡流turnaround 完成two-scroll burner 双涡流燃烧器unimodal [统](频率曲线或分布)单峰的,(现象或性质) 用单峰分布描述的Vvalidate 使…证实validation 验证vaporization 汽化Variable 变量variance 方差variant 不同的,变量variation 变更, 变化, 变异, 变种, [音]变奏, 变调vertical 垂直的virtual mass 虚质量viscosity 粘度visualization 可视化volatile 易挥发性的volume fraction 体积分数, 体积分率, 容积率volume heat 容积热vortex burner 旋流式燃烧器vorticity 旋量Wwall-function method 壁面函数法water equivalent 水当量weighting factor 权重因数Uunity (数学)一uniform 不均匀unrealistic 不切实际的, 不现实的ZZeldovich 氮的氧化成一氧化氮的过程zero mean 零平均值zone method 区域法一、相关理论书流体力学推荐书目1 《流体力学》吴望一, 上下册经典流体力学书计算流体力学推荐书目1 《计算流体动力学分析》王福军, 清华大学出版社针对性强,一本不错的介绍fluent如何使用的书2 《传热与流体流动的数值计算》帕坦卡S V著, 张政译. 北京: 科学出版社, 1984 介绍有限体积法3 《数值传热学》(第二版), 陶文铨著, 西安交通大学出版社主要介绍有限体积法,内容详细4 《计算传热学的近代进展》, 陶文铨著, 北京: 科学出版社, 2000.5 《Computational Fluid Dynamics-The Basics with Applications》,J.D. Anderson, JR, 2002, McGraw-Hill, 清化大学出版社计算流体力学基础,包括控制方程的推导,差分方程以及应用等,适合于初学者6 《计算流体力学数值模拟》傅维镳偏微分方程特征理论, 差分方法7 《计算流体力学原理》Pieter Wesseling(非入门书籍)计算流体力学比较新的数学理论,适合查找论证二、工程专业问题1 燃烧相关2 航空航天领域可压缩流体计算,如压音速、超音速3 相变(汽蚀)以及流固耦合4 微尺度的流体力学,例如稀薄气体等5 流动、传热与湍流相关三、流体力学相关论坛1 / 已停止接受注册了T_T2 仿真论坛,流体和固体力学都有涉及3 国外论坛,内容十分丰富4 哈工大燃烧工程研究所5 / 流体中文网6 网址大全:精华区x-6-2。

渗透系数的英语

渗透系数的英语

渗透系数的英语The concept of permeability is a fundamental aspect of fluid mechanics and is crucial in various fields, including civil engineering, petroleum engineering, and environmental science. The permeability coefficient, also known as the coefficient of permeability, is a quantitative measure of a material's ability to allow the flow of fluids through its porous structure. This parameter is essential in understanding and predicting the behavior of fluids in porous media, such as soil, rock, and other materials.Permeability is a measure of the ease with which a fluid can flow through a porous medium. It is influenced by the size, shape, and interconnectivity of the pores within the material. The permeability coefficient is a numerical value that represents the ease of fluid flow through a specific porous medium under a given set of conditions. This coefficient is typically denoted by the symbol "k" and is expressed in units of area, such as square meters (m²) or darcies (D).The permeability coefficient is not a constant value and can vary depending on several factors, including the properties of the porousmedium, the properties of the fluid, and the flow conditions. The primary factors that affect the permeability coefficient are the porosity, tortuosity, and pore size distribution of the material.Porosity is the ratio of the volume of voids or pore spaces to the total volume of the material. Materials with higher porosity generally have a higher permeability coefficient, as they offer less resistance to fluid flow. Tortuosity, on the other hand, is a measure of the complexity of the flow paths within the porous medium. Materials with a higher tortuosity have a lower permeability coefficient, as the fluid must navigate through a more convoluted path.The pore size distribution also plays a crucial role in determining the permeability coefficient. Materials with larger and more interconnected pores typically have a higher permeability coefficient, as the fluid can flow more easily through the porous structure. Conversely, materials with smaller and less interconnected pores have a lower permeability coefficient, as the fluid encounters greater resistance to flow.In addition to the properties of the porous medium, the properties of the fluid, such as viscosity and density, can also affect the permeability coefficient. Fluids with lower viscosity, such as water, generally have a higher permeability coefficient compared to fluids with higher viscosity, such as oil or honey.The measurement of the permeability coefficient is an essential aspect of understanding and predicting the behavior of fluids in porous media. There are several methods used to determine the permeability coefficient, including laboratory experiments, field measurements, and numerical simulations.One of the most common laboratory methods for measuring the permeability coefficient is the constant-head or falling-head permeameter test. In this test, a sample of the porous material is placed in a permeameter, and a constant or falling head of fluid is applied across the sample. The rate of fluid flow through the sample is then measured, and the permeability coefficient is calculated using Darcy's law, which relates the fluid flow rate to the pressure drop across the sample.Another method for measuring the permeability coefficient is the use of numerical simulations, such as computational fluid dynamics (CFD) or pore-scale modeling. These techniques involve the use of computer models to simulate the flow of fluids through the porous medium, taking into account the complex geometry and topology of the porous structure. By comparing the simulated flow rates to experimental data, the permeability coefficient can be estimated.The permeability coefficient is a crucial parameter in variousapplications, including:1. Soil mechanics and geotechnical engineering: The permeability coefficient is used to determine the rate of groundwater flow, the stability of soil slopes, and the design of drainage systems.2. Petroleum engineering: The permeability coefficient is essential in understanding the flow of oil and gas through reservoir rocks, which is crucial for the exploration, production, and management of hydrocarbon resources.3. Environmental engineering: The permeability coefficient is used to model the transport of contaminants through soil and groundwater, which is important for the design of waste disposal facilities and the remediation of contaminated sites.4. Civil engineering: The permeability coefficient is used in the design of concrete structures, as it influences the durability and performance of the material under various environmental conditions.5. Materials science: The permeability coefficient is studied in the context of porous materials, such as ceramics, membranes, and filters, to understand their ability to allow the flow of fluids or gases.In conclusion, the permeability coefficient is a fundamentalparameter in the study of fluid flow through porous media. It is influenced by the properties of the porous medium and the fluid, and its measurement and understanding are crucial in various fields of engineering and science. The accurate determination and application of the permeability coefficient are essential for the design, analysis, and optimization of systems and processes that involve the flow of fluids through porous materials.。

致密砂岩气藏气水相对渗透率曲线

致密砂岩气藏气水相对渗透率曲线

致密砂岩气藏气水相对渗透率曲线雷刚;董平川;蔡振忠;张正红;董睿涛;杨书;吴子森;曹耐【摘要】以分形几何原理为基础,考虑流体润湿性及毛细管内气水两相流动,建立致密砂岩气水相对渗透率计算模型,通过求解得到气水相对渗透率解析计算公式.研究结果表明:本文模型计算结果与文献实验结果吻合度较高,从而验证了本文模型正确性.气水相对渗透率受到束缚水膜厚度、孔隙结构参数(孔隙分形维数、迂曲度分形维数)和气水黏度比影响.气水相对渗透率曲线随着束缚水膜厚度增大而向右平移.孔隙分形维数越大,气水相对渗透率越大,而迂曲度分形维数越大,气水相对渗透率越低.随着气水黏度比的增大,水相相对渗透率曲线几乎不发生变化,而气相相对渗透率曲线向右上方平移.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2016(047)008【总页数】5页(P2701-2705)【关键词】致密砂岩;孔隙结构;分形;气水相对渗透率;黏度比【作者】雷刚;董平川;蔡振忠;张正红;董睿涛;杨书;吴子森;曹耐【作者单位】中国石油大学石油工程教育部重点实验室,北京,102249;中国石油大学石油工程教育部重点实验室,北京,102249;中国石油天然气股份有限公司塔里木油田分公司,新疆库尔勒,841000;中国石油天然气股份有限公司塔里木油田分公司,新疆库尔勒,841000;中国石油大学石油工程教育部重点实验室,北京,102249;中国石油大学石油工程教育部重点实验室,北京,102249;中国石油大学石油工程教育部重点实验室,北京,102249;中国石油大学石油工程教育部重点实验室,北京,102249【正文语种】中文【中图分类】TE312致密气藏孔隙结构复杂,孔喉细小、渗透率低、储气层高含水饱和度等特点导致气、水两相渗流特征极其复杂,影响致密气藏的开发效果和超低渗透率气井的产能。

针对这一现状对致密气储层复杂的气水流动状态进行研究,对气藏产能的确定和评价具有重要的意义。

Fluent流体数值模拟软件中英对照

Fluent流体数值模拟软件中英对照

Aabort 异常中断, 中途失败, 夭折, 流产, 发育不全,中止计划[任务] accidentally 偶然地, 意外地accretion 增长activation energy 活化能active center 活性中心addition 增加adjacent 相邻的aerosol浮质(气体中的悬浮微粒,如烟,雾等), [化]气溶胶, 气雾剂, 烟雾剂Air flow circuits 气流循环ambient 周围的, 周围环境amines 胺amplitude 广阔, 丰富, 振幅, 物理学名词annular 环流的algebraic stress model(ASM) 代数应力模型algorithm 算法align 排列,使结盟, 使成一行alternately 轮流地analogy 模拟,效仿analytical solution 解析解anisotropic 各向异性的anthracite 无烟煤apparent 显然的, 外观上的,近似的approximation 近似arsenic 砷酸盐assembly 装配associate 联合,联系assume 假设assumption 假设atomization 雾化axial 轴向的Axisymmetry 轴对称的BBaffle 挡流板battlement 城垛式biography 经历bituminous coal 烟煤blow-off water 排污水blowing devices 鼓风(吹风)装置body force 体积力boiler plant 锅炉装置(车间)Boiling 沸腾Boltzmann 玻耳兹曼Bounded central differencing:有界中心差分格式Brownian rotation 布朗转动bulk 庞大的bulk density 堆积密度burner assembly 燃烧器组件burnout 燃尽Ccapability 性能,(实际)能力,容量,接受力carbon monoxide COcarbonate 碳酸盐carry-over loss 飞灰损失Cartesian 迪卡尔坐标的casing 箱,壳,套catalisis 催化channeled 有沟的,有缝的char 焦炭、炭circulation circuit 循环回路circumferential velocity 圆周速度clinkering 熔渣clipped 截尾的clipped Gaussian distribution 截尾高斯分布closure (模型的)封闭cloud of particles 颗粒云close proximity 距离很近cluster 颗粒团coal off-gas 煤的挥发气体coarse 粗糙的coarse grid 疏网格,粗网格Coatingcoaxial 同轴的coefficient of restitution 回弹系数;恢复系数coke 碳collision 碰撞competence 能力competing process 同时发生影响的competing-reactions submodel 平行反应子模型component 部分分量composition 成分computational expense 计算成本cone shape 圆锥体形状configuration 布置,构造confined flames 有界燃烧confirmation 证实, 确认, 批准Configuration 构造,外形conservation 守恒不灭conservation equation 守恒方程conserved scalars 守恒标量considerably 相当地consume 消耗contact angle 接触角contamination 污染contingency 偶然, 可能性, 意外事故, 可能发生的附带事件continuum 连续体Convection 对流converged 收敛的conveyer 输运机convolve 卷cooling duct 冷却管cooling wall 水冷壁coordinate transformation 坐标转换correlation 关联(式)correlation function 相关函数corrosion 腐蚀,锈coupling 联结, 接合, 耦合Cp:等压比热crack 裂缝,裂纹creep up (水)渗上来,蠕升critical 临界critically 精密地cross-correlation 互关联cumulative 累积的curtain wall 护墙,幕墙curve 曲线custom 习惯, 风俗, <动词单用>海关, (封建制度下)定期服劳役, 缴纳租税, 自定义, <偶用作>关税v.定制, 承接定做活的Cyan青色cyano 氰(基),深蓝,青色cyclone 旋风子,旋风,旋风筒cyclone separator 旋风分离器[除尘器]cylindrical 柱坐标的cylindrical coordinate 柱坐标Ddead zones 死区decompose 分解decouple 解藕的defy 使成为不可能Deforming:变形demography 统计Density:密度deposition 沉积derivative with respect to 对…的导数derivation 引出, 来历, 出处, (语言)语源, 词源design cycle 设计流程desposit 积灰,结垢deterministic approach 确定轨道模型deterministic 宿命的deviation 偏差devoid 缺乏devolatilization 析出挥发分,液化作用diffusion 扩散diffusivity 扩散系数digonal 二角(的), 对角的,二维的dilute 稀的diminish 减少direct numerical simulation 直接数值模拟discharge 释放discrete 离散的discrete phase 分散相, 不连续相discretization [数]离散化deselect 取消选定dispersion 弥散dissector 扩流锥dissociate thermally 热分解dissociation 分裂dissipation 消散, 分散, 挥霍, 浪费, 消遣, 放荡, 狂饮distribution of air 布风divide 除以dot line 虚线drag coefficient 牵引系数,阻力系数drag and drop 拖放drag force 曳力drift velocity 漂移速度driving force 驱[传, 主]动力droplet 液滴drum 锅筒dry-bottom-furnace 固态排渣炉dry-bottom 冷灰斗,固态排渣duct 管dump 渣坑dust-air mixture 一次风EEBU---Eddy break up 漩涡破碎模型eddy 涡旋effluent 废气,流出物elastic 弹性的electro-staic precipitators 静电除尘器emanate 散发, 发出, 发源,[罕]发散, 放射embrasure 喷口,枪眼emissivity [物]发射率empirical 经验的endothermic reaction 吸热反应enhance 增,涨enlarge 扩大ensemble 组,群,全体enthalpy 焓entity 实体entrain 携带,夹带entrained-bed 携带床Equation 方程equilibrate 保持平衡equilibrium 化学平衡ESCIMO-----Engulfment(卷吞)Stretching(拉伸)Coherence(粘附)Interdiffusion-interaction(相互扩散和化学反应)Moving-observer(运动观察者)exhaust 用尽, 耗尽, 抽完, 使精疲力尽排气排气装置用不完的, 不会枯竭的exit 出口,排气管exothermic reaction 放热反应expenditure 支出,经费expertise 经验explicitly 明白地, 明确地extinction 熄灭的extract 抽出,提取evaluation 评价,估计,赋值evaporation 蒸发(作用)Eulerian approach 欧拉法Ffacilitate 推动,促进factor 把…分解fast chemistry 快速化学反应fate 天数, 命运, 运气,注定, 送命,最终结果feasible 可行的,可能的feed pump 给水泵feedstock 填料Filling 倒水fine grid 密网格,细网格finite difference approximation 有限差分法flamelet 小火焰单元flame stability 火焰稳定性flow pattern 流型fluctuating velocity 脉动速度fluctuation 脉动,波动flue 烟道(气)flue duck 烟道fluoride 氟化物fold 夹层块forced-and-induced draft fan 鼓引风机forestall 防止Formulation:公式,函数fouling 沾污fraction 碎片部分,百分比fragmentation 破碎fuel-lean flamefuel-rich regions 富燃料区,浓燃料区fuse 熔化,熔融Ggas duct 烟道gas-tight 烟气密封gasification 气化(作用)gasifier 气化器Gauge 厚度,直径,测量仪表,估测。

基于vof和csf方法的变截面毛细流动数值建模

基于vof和csf方法的变截面毛细流动数值建模

基于vof和csf方法的变截面毛细流动数值建模毛细流(Pore Flow)是一种重要的现象,出现在铰接了微小空间(如晶圆封装、微机械加工、离散介质中)的可穿透介质中。

毛细流过程受空间固有属性的影响,因而是极具挑战性的计算目标。

基于该概念的数学建模,可以精确地模拟毛细流的流动行为、传热过程等,以揭示毛细流液体的物理和流体力学特性。

根据毛细流现象及其影响因子,从相应的数学模型中可以总结出两种经典的数值解法用于毛细流模拟,即VOF(Volume of Fluid)方法和CSF(Continuum Solute Flow)方法。

VOF法是一种二维和三维空间内液面积分散的数学方法,该方法基于液体质点满足均一质量守恒(mass conservation)的前提,实现两种相空间的渗流以及液体的生成或液滴的二维或三维形态的变化。

该方法引入接缝因子( interfacial tension factor ),实现多相混合物(mixture)的动态划分,进而解释真实有效半径(Effective Radius)等物理属性。

CSF方法是一种基于局部平衡条件(Local equilibrium condition)的流体滚动(fluid rolling)模型,按照基于有限体系(finite system)的理论,使用拉格朗日平衡控制方程(The Largrange Control Eequation)建立场方程开展模拟,可以精确地模拟毛细流中的流体运动及其内部力学加载效应。

这种模型的应用是在解释毛细流中的流变介质特性,诸如流变指数、流体变形和自旋行为,以及毛细流动过程中的液体/气体交换和传输现象。

基于以上两种数值方法,可以开展变截面毛细流动的建模,这是一种通过空间分辨率控制参数,从而实现变截面复杂流动模拟的数学方法。

该方法认为,毛细流动过程受到空间形状和尺寸的影响,因而构建了密集的空间网格,从而实现空间解析度的精确模拟。

FLUENT中常见的单词

FLUENT中常见的单词

abort 异常中断, 中途失败, 夭折, 流产, 发育不全,中止计划[任务] accidentally 偶然地, 意外地accretion 增长activation energy 活化能active center 活性中心addition 增加adjacent 相邻的aerosol浮质(气体中的悬浮微粒,如烟,雾等), [化]气溶胶, 气雾剂, 烟雾剂ambient 周围的, 周围环境amines 胺amplitude 广阔, 丰富, 振幅, 物理学名词annular 环流的algebraic stress model(ASM) 代数应力模型algorithm 算法align 排列,使结盟, 使成一行alternately 轮流地analogy 模拟,效仿analytical solution 解析解anisotropic 各向异性的anthracite 无烟煤apparent 显然的, 外观上的,近似的approximation 近似arsenic 砷酸盐assembly 装配associate 联合,联系assume 假设assumption 假设atomization 雾化axial 轴向的battlement 城垛式biography 经历bituminous coal 烟煤blow-off water 排污水blowing devices 鼓风(吹风)装置body force 体积力boiler plant 锅炉装置(车间)Boltzmann 玻耳兹曼Brownian rotation 布朗转动bulk 庞大的bulk density 堆积密度burner assembly 燃烧器组件burnout 燃尽capability 性能,(实际)能力,容量,接受力carbon monoxide COcarbonate 碳酸盐carry-over loss 飞灰损失Cartesian 迪卡尔坐标的casing 箱,壳,套catalisis 催化channeled 有沟的,有缝的char 焦炭、炭circulation circuit 循环回路circumferential velocity 圆周速度clinkering 熔渣clipped 截尾的clipped Gaussian distribution 截尾高斯分布closure (模型的)封闭cloud of particles 颗粒云cluster 颗粒团coal off-gas 煤的挥发气体coarse 粗糙的coarse grid 疏网格,粗网格coaxial 同轴的coefficient of restitution 回弹系数;恢复系数coke 碳collision 碰撞competence 能力competing process 同时发生影响的competing-reactions submodel 平行反应子模型component 部分分量composition 成分cone shape 圆锥体形状configuration 布置,构造confined flames 有界燃烧confirmation 证实, 确认, 批准conservation 守恒不灭conservation equation 守恒方程conserved scalars 守恒标量considerably 相当地consume 消耗contact angle 接触角contamination 污染contingency 偶然, 可能性, 意外事故, 可能发生的附带事件continuum 连续体converged 收敛的conveyer 输运机convolve 卷cooling wall 水冷壁correlation 关联(式)correlation function 相关函数corrosion 腐蚀,锈coupling 联结, 接合, 耦合crack 裂缝,裂纹creep up (水)渗上来,蠕升critical 临界critically 精密地cross-correlation 互关联cumulative 累积的curtain wall 护墙,幕墙curve 曲线custom 习惯, 风俗, <动词单用>海关, (封建制度下)定期服劳役, 缴纳租税, 自定义, <偶用作>关税v.定制, 承接定做活的cyano 氰(基),深蓝,青色cyclone 旋风子,旋风,旋风筒cyclone separator 旋风分离器[除尘器]cylindrical 柱坐标的cylindrical coordinate 柱坐标dead zones 死区decompose 分解decouple 解藕的defy 使成为不可能demography 统计deposition 沉积derivative with respect to 对…的导数derivation 引出, 来历, 出处, (语言)语源, 词源design cycle 设计流程desposit 积灰,结垢deterministic approach 确定轨道模型deterministic 宿命的deviation 偏差devoid 缺乏devolatilization 析出挥发分,液化作用diffusion 扩散diffusivity 扩散系数digonal 二角(的), 对角的,二维的dilute 稀的diminish 减少direct numerical simulation 直接数值模拟discharge 释放discrete 离散的discrete phase 分散相, 不连续相discretization [数]离散化deselect 取消选定dispersion 弥散dissector 扩流锥dissociate thermally 热分解dissociation 分裂dissipation 消散, 分散, 挥霍, 浪费, 消遣, 放荡, 狂饮distribution of air 布风divide 除以dot line 虚线drag coefficient 牵引系数,阻力系数drag and drop 拖放drag force 曳力drift velocity 漂移速度driving force 驱[传, 主]动力droplet 液滴drum 锅筒dry-bottom-furnace 固态排渣炉dry-bottom 冷灰斗,固态排渣duct 管dump 渣坑dust-air mixture 一次风EBU---Eddy break up 漩涡破碎模型eddy 涡旋effluent 废气,流出物elastic 弹性的electro-staic precipitators 静电除尘器emanate 散发, 发出, 发源,[罕]发散, 放射embrasure 喷口,枪眼emissivity [物]发射率empirical 经验的endothermic reaction 吸热反应enhance 增,涨enlarge 扩大ensemble 组,群,全体enthalpy 焓entity 实体entrain 携带,夹带entrained-bed 携带床equilibrate 保持平衡equilibrium 化学平衡ESCIMO-----Engulfment(卷吞)Stretching(拉伸)Coherence(粘附)Interdiffusion-interaction (相互扩散和化学反应)Moving-observer(运动观察者)exhaust 用尽, 耗尽, 抽完, 使精疲力尽排气排气装置用不完的, 不会枯竭的exit 出口,排气管exothermic reaction 放热反应expenditure 支出,经费expertise 经验explicitly 明白地, 明确地extinction 熄灭的extract 抽出,提取evaluation 评价,估计,赋值evaporation 蒸发(作用)Eulerian approach 欧拉法facilitate 推动,促进factor 把…分解fast chemistry 快速化学反应fate 天数, 命运, 运气,注定, 送命,最终结果feasible 可行的,可能的feed pump 给水泵feedstock 填料fine grid 密网格,细网格finite difference approximation 有限差分法flamelet 小火焰单元flame stability 火焰稳定性flow pattern 流型fluctuating velocity 脉动速度fluctuation 脉动,波动flue 烟道(气)flue duck 烟道fluoride 氟化物fold 夹层块forced-and-induced draft fan 鼓引风机forestall 防止fouling 沾污fraction 碎片部分,百分比fragmentation 破碎fuel-lean flamefuel-rich regions 富燃料区,浓燃料区fuse 熔化,熔融gas duct 烟道gas-tight 烟气密封gasification 气化(作用)gasifier 气化器generalized model 通用模型Gibbs function Method 吉布斯函数法Gordon 戈登governing equation 控制方程gradient 梯度graphics 图gross efficiency 总效率hazard 危险header 联箱helically 螺旋形地heterogeneous 异相的heat flux 热流(密度)heat regeneration 再热器heat retention coeff 保热系数histogram 柱状图homogeneous 同相的、均相的hopper 漏斗horizontally 卧式的,水平的hydrodynamic drag 流体动力阻力hydrostatic pressure 静压hypothesis 假设humidity 湿气,湿度,水分含量identical 同一的,完全相同的ignition 着火illustrate 图解,插图in common with 和…一样in excess of 超过, 较...为多in recognition of 承认…而,按照in terms of 根据, 按照, 用...的话, 在...方面incandescent 白炽的,光亮的inception 起初induced-draft fan 强制引风机inert 无活动的, 惰性的, 迟钝的inert atmosphere 惰性气氛inertia 惯性, 惯量inflammability 可燃性injection 引入,吸引inleakage 漏风量inlet 入口inlet vent 入烟口instantaneous reaction rate 瞬时反应速率instantaneous velocity 瞬时速度instruction 指示, 用法说明(书), 教育, 指导, 指令intake fan 进气风扇integral time 积分时间integration 积分interface 接触面intermediate 中间的,介质intermediate species 中间组分intermittency model of turbulence 湍流间歇模型intermixing 混合intersect 横断,相交interval 间隔intrinsic 内在的inverse proportion 反比irreverse 不可逆的irreversible 不可逆的,单向的isothermal 等温的, 等温线的,等温线isotropic 各向同性的joint 连接justify 认为Kelvin 绝对温度,开氏温度kinematic viscosity 动粘滞率, 动粘度kinetics 动力学Lagrangian approach 拉格朗日法laminarization 层流化的Laminar 层流Laminar Flamelet Concept 层流小火焰概念large-eddy simulation (LES) 大涡模拟leak 泄漏length scale 湍流长度尺度liberate 释放lifetime 持续时间,(使用)寿命,使用期literature 文学(作品), 文艺, 著作, 文献lining 炉衬localized 狭小的logarithm [数] 对数Low Reynolds Number Modeling Method 低雷诺数模型macropore 大孔隙(直径大于1000埃的孔隙) manipulation 处理, 操作, 操纵, 被操纵mass action 质量作用mass flowrate 质量流率Mcbride 麦克布利德mean free paths 平均自由行程mean velocity 平均速度meaningful 意味深长的,有意义的medium 均匀介质mercury porosimetery 水银测孔计, 水银孔率计mill 磨碎,碾碎mineral matter 矿物质mixture fraction 混合分数modal 众数的,形式的, 样式的, 形态上的, 情态的, 语气的[计](对话框等)模式的modulus 系数, 模数moisture 水分,潮湿度molar 质量的, [化][物]摩尔的moment 力矩,矩,动差momentum 动量momentum transfer 动量传递monobloc 单元机组monobloc units 单组mortar 泥灰浆mount 安装,衬底Monte Carlo methods 蒙特卡罗法multiflux radiation model 多(4/6)通量模型multivariate [统][数]多变量的,多元的negative 负Newton-Rephson 牛顿—雷夫森nitric oxide NO2node 节点non-linear 非线性的numerical control 数字控制numerical simulation 数值模拟table look-up scheme 查表法tabulate 列表tangential 切向的tangentially 切线tilting 摆动the heat power of furnace 热负荷the state-of-the-art 现状thermal effect 反应热thermodynamic 热力学thermophoresis 热迁移,热泳threshold 开始, 开端, 极限tortuosity 扭转, 曲折, 弯曲toxic 有毒的,毒的trajectory 轨迹,弹道tracer 追踪者, 描图者, (铁笔等)绘图工具translatory 平移的transport coefficients 输运系数transverse 横向,横线triatomic 三原子的turbulence intensity 湍流强度turbulent 湍流turbulent burner 旋流燃烧器turbulization 涡流turnaround 完成two-scroll burner 双涡流燃烧器unimodal [统](频率曲线或分布)单峰的,(现象或性质) 用单峰分布描述的validate 使…证实validation 验证vaporization 汽化Variable 变量variance 方差variant 不同的,变量variation 变更, 变化, 变异, 变种, [音]变奏, 变调vertical 垂直的virtual mass 虚质量viscosity 粘度visualization 可视化volatile 易挥发性的volume fraction 体积分数, 体积分率, 容积率volume heat 容积热vortex burner 旋流式燃烧器vorticity 旋量wall-function method 壁面函数法water equivalent 水当量weighting factor 权重因数unity (数学)一uniform 不均匀unrealistic 不切实际的, 不现实的Zeldovich 氮的氧化成一氧化氮的过程zero mean 零平均值zone method 区域法。

MULTISCALE DIGITAL ROCK MODELING FOR RESERVOIR SIM

MULTISCALE DIGITAL ROCK MODELING FOR RESERVOIR SIM

专利名称:MULTISCALE DIGITAL ROCK MODELING FOR RESERVOIR SIMULATION发明人:HURLEY, Neil F.,ZHAO, Weishu,ZHANG,Tuanfeng申请号:US2012/027037申请日:20120228公开号:WO2012/118864A3公开日:20121213专利内容由知识产权出版社提供专利附图:摘要:Methods for upscaling digital rock modeling data are described. Core-plug samples for pore-scale modeling are strategically chosen using whole-coreminipermeability grids and conventional CT (Computed Tomography) scans. Pore models or pore-network models are used for flow modeling. Computed numerical SCAL (Special Core AnaLysis) properties are validated using laboratory-derived data, then they are used to populate borehole-scale models. Borehole-scale models use MPS (Multi-Point Statistics) to combine minipermeability grids and conventional CTscans of whole core with electrical borehole images to create 3D numerical pseudocores for each RRT (Reservoir Rock Type). SCAL properties determined from pore-scale models are distributed for each petrophysical facies in numerical pseudocores. Effective SCAL properties computed from various MPS borehole-scale realizations or models are used to populate interwell-scale models for each RRT. At the interwell scale, seismic attributes and variogram statistics from LWD (logging while drilling) data are used to populate digital rock models. Effective properties computed from flow simulations for interwell volumes are used to populate full-field scale models. At the full-field scale, outcrop analogs, sequence stratigraphy, forward stratigraphic models, diagenetic models, and basin-scale models are combined using MPS to improve flow simulations. At every stage, REVs (representative element volumes) are computed to be certain rock heterogeneities have been captured.申请人:SCHLUMBERGER TECHNOLOGY CORPORATION,SCHLUMBERGER CANADA LIMITED,SERVICES PETROLIERS SCHLUMBERGER,SCHLUMBERGER HOLDINGS LIMITED,SCHLUMBERGER TECHNOLOGY B.V.,PRAD RESEARCH AND DEVELOPMENT LIMITED,HURLEY, Neil F.,ZHAO, Weishu,ZHANG, Tuanfeng地址:300 Schlumberger Drive Sugar Land, Texas 77478 US,525-3rd Avenue S. W. Calgary, alberta T2P 0G4 CA,42 rue Saint Dominique F-75007 Paris FR,P.O. BOX 71 Craigmuir Chambers Road Town Tortola 1110 VG,Parkstraat 83-89 NL-2514 JG The Hague NL,P.O. Box 71 Craigmuir Chambers Road Town Tortola 1110 VG,5 Chestnut Street, Apt 1 Boston, Massachusetts 02108 US,1205 Hancock Street, Apt. 304 Quincy, Massachusetts 02169 US,17 Frances Road Lexington, Massachusetts 02421 US国籍:US,CA,FR,VG,NL,VG,US,US,US 代理人:LAFFEY, Bridget et al.更多信息请下载全文后查看。

两种常用表面活性剂在砂岩表面吸附特性的分子模拟

两种常用表面活性剂在砂岩表面吸附特性的分子模拟

两种常用表面活性剂在砂岩表面吸附特性的分子模拟徐加放;付元强;田太行;刘洪军;孙泽宁;孙中富【摘要】Two surfactants widely used in oilfield-SDBS(sodium dcdecyl benzene sulfonate) and sodium stearate being taken as research objectives,and silica as rock,the multi-crystal cell models of two surfactants are established using Materials Studio( MS)soft-ware. The dynamic molecular simulation results show that,the molecules of SDBS more easily gather than those of sodium stearate, which makes its CMC (critical micelle concentration) lower; SDBS more quickly reaches to stable temperature,its final temperature is high-er ; SDBS more slowly reaches to stable energy, and its final energy is lower. The results can provide reference for the selection of oilfield surfactants and the development of new high-performance surfactants.%探索和研究表面活性剂在砂岩表面的吸附特性,对于正确选择表面活性剂及其使用浓度,开发新型、高效、功能型表面活性剂具有重要意义.采用Materials Studio (MS)软件,以二氧化硅作为理想岩层,以十二烷基苯磺酸钠和硬脂酸钠两种油田常用表面活性剂为研究对象,建立了一个含水的多晶胞模型.通过动态模拟表明:十二烷基苯磺酸钠比硬脂酸钠更易发生聚集,使临界胶束浓度降低;温度稳定快,最终温度高;能量稳定慢,最终能量低.为今后油田用表面活性剂的选择和新型高效表面活性剂的开发提供了一种可借鉴的方法.【期刊名称】《西安石油大学学报(自然科学版)》【年(卷),期】2012(027)005【总页数】4页(P50-53)【关键词】表面活性剂;吸附;砂岩;分子模拟;油田化学【作者】徐加放;付元强;田太行;刘洪军;孙泽宁;孙中富【作者单位】中国石油大学石油工程学院,山东青岛266555;中国石化国际石油工程公司叙利亚分公司,北京100010;中国石油渤海钻探公司,天津300450;中国石油大学石油工程学院,山东青岛266555;中国石油大学石油工程学院,山东青岛266555;中国石油大学石油工程学院,山东青岛266555【正文语种】中文【中图分类】TE122分子模拟又称“计算机模拟”或“计算机实验”,是一种根据实际体系在计算机上进行的实验.通过比较模拟结果与实际体系的实验数据来检验模型的准确性,并可检验由模型导出的解析理论所作的简化近似是否成功[1-2].用分子模拟不但可以模拟现实中能进行的实验过程,而且可以用来模拟、研究如分子在各种表面上的动态行为、分子的结构、分子运动的特征、蛋白质的折叠等现代物理实验方法难以计量的物理现象与物理过程.一般说来,分子模拟方法主要有4种:量子力学方法、分子力学方法、分子动力学和分子蒙特卡洛方法[3-5].分子模拟已成为化学、物理、生物、材料研究中的有力工具,是人们继实验与理论研究之外,了解、认识微观世界的“第三种手段”.在石油化工领域,分子模拟技术可以用来开发新型驱油剂、缓蚀剂、纳米调剖颗粒、黏土防膨剂,重油加氢以及稠油降黏剂等[2,7-8].表面活性剂在油田中被广泛应用于钻井液与完井液技术、压裂酸化技术、强化采油技术、泡沫排液技术、冲砂洗井采气技术、油气集输技术等[9].根据表面活性剂的分子结构和官能团的不同,既可以用作泡沫剂、防水锁剂、乳化剂、润湿反转剂、润滑剂、减阻剂、防膨剂等,又可以用作消泡剂、破乳剂等.表面活性剂在地层表面的吸附量和吸附特性(吸附方式、吸附量、吸附和扩散速度以及自组装行为等)对表面活性剂的选择起到至关重要的作用[9-11].2.1 MS 软件Materials Studio 5.0是由美国Accelry公司开发完成的目前全球范围内惟一能够提供分子模拟、材料设计以及化学信息学和生物信息学全面解决方案和相关服务的一个模块化模拟与数据管理软件.可以帮助研究者构建、显示和分析分子、固体及表面的结构模型,并研究、预测材料的相关性质.2.2 表面活性剂在二氧化硅表面吸附模型的建立(1)建立水分子模型,并进行初步的能量优化;(2)建立二氧化硅晶胞并进行能量优化;(3)表面活性剂十二烷基苯磺酸钠和硬脂酸钠分子模型的建立及其位能模型的选取.用MS软件对离子晶体或含离子键的混合晶体进行优化时,离子键在建模过程中是相连的,但进入能量优化阶段,需要将这些金属离子和氧离子之间的键剪掉(这是MS软件的特殊要求,不会影响优化后的结果);(4)建立二氧化硅3D超晶胞模型并进行能量优化;(5)向二氧化硅晶胞模型中导入表面活性剂分子,同时导入水分子,建立模拟系统,并进行能量优化.优化后模拟系统如图1所示.由表1可以看出:当系统结构趋于稳定时,体系能量降低,符合自然界能量趋于最低定律;体系能量优化前以范德华力(Van der Waals)为主,优化后以静电力为主;优化前总势能非常大,而优化后总势能为负值,说明体系已经稳定.两种表面活性剂在键能、键角等有明显不同.3.1 十二烷基苯磺酸钠体系(1)模拟过程:激活能量优化后的超晶胞3D窗口;点击modules→discover→dynamics,进行动态模拟.(2)模拟结果见图2、图3和图4.3.2 硬脂酸钠体系(1)模拟过程:同十二烷基苯磺酸钠体系.(2)模拟结果分别见图5、图6和图7.3.3 结果分析(1)晶胞结构图从图2和图5的平衡吸附构型可以看出,两种表面活性剂均稳定地吸附在二氧化硅表面上,其中亲水基靠近表面产生稳定的吸附,这主要是由于表面活性剂亲水基中的极性原子(S、O等)与固体表面之间强烈的静电相互作用造成的;而疏水链远离二氧化硅表面发生明显的扭曲或弯曲现象,并通过疏水作用产生相互交织,且与水层之间存在一定的间隙,阻碍了水分子向二氧化硅表面的吸附.进一步分析发现,十二烷基苯磺酸钠在二氧化硅表面产生团聚现象,形成了胶束;而硬脂酸钠则仍旧以单分子形式吸附,并未形成明显的胶束结构,这表明十二烷基苯磺酸钠的临界胶束浓度低于硬脂酸钠的临界胶束浓度.(2)温度-时间关系从图3和图6中温度随时间的演化曲线可以看出,十二烷基苯磺酸钠体系的温度达到平衡需要的时间较短,体系稳定更快,最终温度高.这是由于两种表面活性剂在二氧化硅表面吸附结构不同造成的.(3)能量-时间关系从图4和图7中能量随时间的演化曲线可以看出,硬脂酸钠体系的能量在较短的时间内就能达到平衡,且最终的能量高于十二烷基苯磺酸钠体系的能量.而十二烷基苯磺酸钠体系在模拟过程中,体系能量先升高后降低,最终达到稳定状态,这是因为十二烷基苯磺酸钠分子开始以单分子形式吸附在固体表面,能量处于较高状态;随后形成胶团结构,分子之间的相互作用增强,使得体系能量降低,吸附结构更加稳定,此时的表面活性剂浓度为临界胶束浓度值.(1)两种表面活性剂的碳链都有明显的扭曲或弯曲现象,但十二烷基苯磺酸钠比硬脂酸钠更易发生聚集,有明显的团聚现象,使临界胶束浓度降低.(2)十二烷基苯磺酸钠体系温度稳定较快,最终温度高.(3)硬脂酸钠体系能量稳定较快,体系能量高于十二烷基苯磺酸钠体系.建议进一步扩大对油田用表面活性剂的吸附和水化特性进行模拟,为今后油田用表面活性剂的选择和新型高效表面活性剂的开发提供理论依据.【相关文献】[1]曹斌,高今森,徐春明.分子模拟技术在石油相关领域的应用[J].化学进展,2004,16(3):291-296.CAO Bin,GAO Jin-sen,XU Chun-ming.The applications ofmolecular simulation technology in the fields of petroleum[J].Progress in Chemistry,2004,16(3):291-296. [2] Chennamsetty N.Molecular simulation of surfactant selfassembly:from mono-scale to multi-scale modeling[J].Science,2006(5):1-48.[3] Jain P,Stenby EH,Von Solms positional simulation of in-situ combustion EOR:a study of process characteristics[C].SPE 129869,2010.[4] MH Zhou,KW Li.Molecularmodeling and its application to developing chemicals for wettability alteration to gaswetness[C].SPE 140131,2011.[5] Boek E.Pore scale simulation of flow in porousmedia using Lattice-Boltzmann computer simulations[C].SPE 135506,2010.[6]赵福麟.油田化学[M].东营:中国石油大学出版社,2010.ZHAO Fu-lin.Oilfield Chemistry[M].Dongying:Press of China University of Petroleum,2010.[7]宋其圣,郭新利,苑世领,等.十二烷基苯磺酸钠在SiO2表面聚集的分子动力学模拟[J].物理化学学报,2009,25(6):1053-1058.SONG Qi-sheng,GUO Xin-li,YUAN Shi-ling,et al.Molecular dynamics simulation of Sodium Dodecyl Benzene Sulfonate aggregation on silica surface[J].Acta Physico-Chimica Sinica,2009,25(6):1053-1058.[8]朱森.Gemini表面活性剂的性能表征及计算机模拟研究[D].天津:天津大学,2006.ZHU Sen.Capacity and Computer Simulation of Gemini Surfactants[D].Tianjin:Tianjin University,2006.[9]周效全,范波.试论油田化学药剂与表面活性剂的关系[J].石油与天然气工业,2002,31(1):37-40.ZHOU Xiao-quan,FAN Bo.A discussion on the relationship of Oilfield chemicals and surfactants[J].Petroleum and Gas Industry,2002,31(1):37-40.[10]周雅萍,赵庆辉,刘宝良,等.化学驱油方法提高稠油油藏采收率实验研究[J].精细石油化工进展,2011,12(5):3-9.ZHOU Ya-ping,ZHAO Qing-hui,LIU Bao-liang,et boratory study on increasing oil recovery ofheavy oil reservoir by chemical flooding[J].Advances in Fine Petrochemicals,2011,12(5):3-9.[11]赖璐,梅平,段明峰,等.Gemini表面活性剂的合成、表征及性能测定[J].大学化学,2011,26(3):62-64.LAILu,MEIPing,DUAN Ming-feng,et al.Gemini surfactant's synthesization,characterization and performance measurement[J].University Chemistry,2011,26(3):62-64.。

页岩气井生产过程异常诊断方法研究——以涪陵页岩气田为例

页岩气井生产过程异常诊断方法研究——以涪陵页岩气田为例

石油地质与工程2022年1月PETROLEUM GEOLOGY AND ENGINEERING 第36卷第1期文章编号:1673–8217(2022)01–0117–05页岩气井生产过程异常诊断方法研究——以涪陵页岩气田为例李牧(中国石化重庆涪陵页岩气勘探开发有限公司,重庆408000)摘要:涪陵页岩气田开发已超过7年,井筒积液、油管腐蚀穿孔、管柱堵塞等问题逐渐显露,严重影响气井的正常生产。

为提高涪陵气田页岩气井异常判别的准确性,基于“U”型管原理,建立气井生产过程合理油套压差计算方法,从8种组合方式中优选出H&B—B&B组合模型作为井筒多相流流动计算模型,并优选了振荡式冲击携液模型计算临界携液气量。

结合各类异常情况动态过程分析,形成了页岩气井井筒积液、油管堵塞、油管异常窜漏的几类典型特征曲线,并综合井口放喷、气举验证、流压测试、井下电视等手段,建立了一套页岩气井生产过程异常诊断与现场排查方法。

现场应用表明,采用该套方法可实现页岩气井生产过程异常情况的准确判断,有效保证了异常气井的高效治理,可在类似页岩气田推广应用。

关键词:页岩气井;异常诊断;合理油套压差;临界携液气量中图分类号:TE357 文献标识码:AStudy on abnormal diagnosis method of shale gas well production processAll Rights Reserved.--by taking Fuling shale gas field as an exampleLI Mu(Chongqing Fuling Shale Gas Exploration & Development Co., Ltd., SINOPEC, Chongqing 408000, China) Abstract: Fuling shale gas field has been developed for more than 7 years. Abnormal conditions such aswellbore effusion, tubing corrosion and string plugging are gradually revealed, which seriously affect thenormal production of gas wells. In order to improve the accuracy of abnormal discrimination of shale gas wellsin Fuling gas field, based on the principle of "U" tube, the calculation method of reasonable casing pressuredifference in gas well production process is established. The H&B-B&B combination model is selected as themultiphase flow calculation model of Fuling shale gas field, and the oscillating impact liquid carrying modelis optimized to calculate the critical liquid carrying capacity According to the dynamic process analysis,several typical characteristic curves of wellbore effusion, tubing plugging and abnormal tubing leakage areformed. A set of abnormal diagnosis and field investigation methods for shale gas well production process isestablished by integrating wellhead blowout, gas lift verification, flow pressure test and downhole television.Field application shows that this method can accurately judge the abnormal conditions in the productionprocess of shale gas wells, effectively ensure the efficient treatment of abnormal gas wells, and can bepopularized and applied in similar shale gas fields.Key words: Shale gas well; abnormal diagnosis; reasonable oil pressure difference; critical gas flow rate涪陵页岩气田的开发采用大规模水力加砂压裂改造技术,气井生产过程中,井筒中为气液两相流收稿日期:2021–04–01;修改日期:2021–07–08。

Physically Representative

Physically Representative
4000 3500
Axial stress (psi)
3000 2500 2000 1500 E=0.45E6
E=1.11E6 γ = 0.28 E=1.22E6 γ = 0.28 E=0.56E6 γ = 0.21
E=1.35E6 γ = 0.29 1000 γ = 0.14 E=1.61E6 500 γ = 0.36
Grain displacements Update bond conductances
A3: Physically Representative Micro-Mechanical Models of Fluid-Filled Granular Media
Research Tasks
Simulate experiments (project A2)
A3: Physically Representative Micro-Mechanical Models of Fluid-Filled Granular Media
Summary
Key deliverable

3D, mechanistic model of single phase flow and stress/strain on an assemblage of grains Synthesis of proven technologies Synthesis of experiment + simulation
• •
Quantitative insight into conditions for sand production Basis for constitutive relationships to be used in continuum models
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Transp Porous Med(2012)94:461–464DOI10.1007/s11242-012-0047-4Pore-Scale Modeling of Multiphase Flow and Transport: Achievements and PerspectivesV.Joekar-Niasar·M.I.J.van Dijke·S.M.HassanizadehPublished online:20July2012©Springer Science+Business Media B.V.2012When Irvin Fatt wrote his classical paper on pore-network modeling(Fatt1956),he would probably not have thought that thisfield would become one of the largestfields of research in the porous media discipline.Pore-scale modeling has found its way as an expandingfield of research for understanding the physics offlow and transport in porous media.In addition,it is becoming a valuable tool for prediction of petrophysical properties as part of the so-called Digital Rock Physics approaches,thus supplementing and replacing expensive and time con-suming laboratory experiments.The recent popularity of pore-level modeling can also be attributed to advances in visualization of the pore space,to very high image resolution,and to the steady increase in computing power.This has made it possible to deal with a multitude of processes in the pore space and interactions with the solid phase(van Dijke and Piri2007). The focus of this special issue of Transport in Porous Media is to provide an overview of some recent developments of various techniques for pore-scale modeling of multiphaseflow and reactive transport.1Classification of Pore-Scale MethodsThe biggest challenge in pore-scale modeling of multiphaseflow under transient conditions is the tracking of thefluid–fluid interfaces and contact lines.Determination of the positions and shapes of interfaces in time and space will provide almost all the required information,such as V.Joekar-Niasar(B)Innovation and Research&Development,Shell Global Solutions International,Kessler Park1,2288GS Rijswijk,The Netherlandse-mail:vjoekar@M.I.J.van DijkeInstitute of Petroleum Engineering,Heriot-Watt University,Edinburgh EH144AS,UKS.M.HassanizadehDepartment of Earth Sciences,Utrecht University,3584CD Utrecht,The Netherlands462V.Joekar-Niasar et al. saturation,capillary pressure,interfacial areas,andflow patterns.Based on the approach for tracking the interfaces,the models can be classified into sharp and diffuse interface methods.Traditionally,approaches based on pore-network models(PNM)have been the most com-mon pore-scale modeling methods.Pore-network models require extensive preprocessing (network extraction)to discretize the imaged irregular pore space into simple geometrical objects(nodes and bonds).Then,simplified versions of the relevant conservation laws are solved within this discretized representation using effective parameters for each pore object.More recently,a variety of approaches have been developed that involve,more or less, direct application of computationalfluid dynamics(CFD)to the imaged pore space.But they require complicated discretization within the irregular pore geometry,as well as mesh refinement around,for instance,fluid–fluid interfaces.CFD models can be classified as either continuum or particle based.Examples of continuum-based methods are the Level Set(LS) method(cf.Prodanovi´c and Bryant2006),the volume offluid(V oF)method(Hirt and Nichols1981),and the density functional method(DFM)(cf.Dinariev2003).Main particle-based methods are the lattice–Boltzmann(LB)method(cf.Gunstensen and Rothman1993; Pan et al.2004)and the smoothed particle hydrodynamics(SPH)method(cf.Tartakovsky and Meakin2005).Particle-based models require extensive post-processing to determine fluid–fluid interfaces and to calculate saturations.Detailed reviews of different pore-scale modeling techniques have been provided by Blunt(2001),Meakin and Tartakovsky(2009), and Joekar-Niasar and Hassanizadeh(2012a).Suitability of different pore-scale modeling techniques for a given application depends on many aspects,such as the governing equations,assumptions underlying the pore-scaleflow and transport equations,as well as the length-scales of the(computational)domain.While the lower scale limit of a pore-scale technique is determined by the scale of the governing equations,the upper scale limit is set by the computational power.For instance,a typical pore-network model considers each pore unit as a computational node,while LB or SPH models may typically consider hundreds of computational points within a single pore unit. Consequently,the simulation scale for the latter models will be much smaller for a given hardware configuration.2Content of This IssueThis issue gives an overview of some recent pore-scale modeling works,such as pore-net-work modeling and LB as upscaling tools for different applications in porous media.Several fundamental concepts are covered in this issue:fundamental understanding of dynamics of two-phaseflow using dynamic pore-network models(Joekar-Niasar and Hassanizadeh (2012b))or LB simulation(Ramstad et al.(2012)),evaluation of petrophysical properties of dual porous media(Bauer et al.(2012)),upscalling of two-phaseflow(Tsakiroglou(2012)), diagenetic effects of cementation and compaction on porous mediaflow(Mousavi and Bryant (2012)),and upscaling of reactive transport(Kim and Lindquist(2012)).Moreover,genera-tion of pore networks based on the statistical properties or direct generation of the network are other main lines of research as discussed in Jiang et al.(2012)and Chareyre et al.(2012).Bauer et al.(2012)present a dual-pore-network approach(D-PNM)based onµ-CT images at different length scales of bimodal porous media.Their multiscale method supplements a pore network at the coarser scale with pore elements representing the underlyingfiner scale (microporosity),and is used to calculate petrophysical properties.Tsakiroglou(2012)also presents a multiscale method and shows how his pore-network model can be used as anPore-Scale Modeling of Multiphase Flow and Transport463 upscaling tool for two-phaseflow properties.Similarly,Kim and Lindquist(2012)use a pore-network model as a tool to upscale reaction rates from the pore to the core scale.Mousavi and Bryant(2012)present simulations of two-phaseflow properties in pore-net-work models,for which the pore topology and geometry have been modified to represent the diagenetic effects of cementation and compaction.Jiang et al.(2012)present a workflow for the construction of pore networks that are statis-tically equivalent to networks extracted directly from3D-rock images.They discuss whether the extracted pore networks are statistically representative for the generation of pore networks extracted at multiple length scales.Chareyre et al.(2012)present a new method for the direct construction of the pore network for a dense sphere packing and they simulate Stokesflow in the pore space.Their results agree well with high resolutionfinite-element calculations. The method is proposed as a framework to study the induced forces of thefluid acting on grains in a porous medium.Joekar-Niasar and Hassanizadeh(2012b)present a full dynamic pore-network model that considers two separate pressurefields for two phases.It simulates the evolution offluid–fluid interfaces and their appearance and disappearance.They have simulated several drainage and imbibition events(including scanning curves)to investigate the relation between capillary pressure,saturation,and specific interfacial area under non-equilibrium conditions.Finally, Ramstad et al.(2012)present a LB model for two-phaseflow for a network based on X-ray microtomography images of Bentheimer and Berea sandstone.The model is able to mimic both unsteady and steady-state experiments for measuring relative permeability.3OutlookThe papers in this special issue provide a limited but still diverse overview of applications of pore-scale models that can be used for multi-scale modeling and upscaling(Bauer et al. 2012;Tsakiroglou2012;Kim and Lindquist2012);dynamics of multiphaseflow in porous media(Joekar-Niasar and Hassanizadeh2012b;Ramstad et al.2012)as well as effects of topological changes of porous media onflow properties(Mousavi and Bryant2012;Jiang et al.2012;Chareyre et al.2012).Although there have been significant achievements in pore-scale modeling,many open questions remain.For example:•Consistency across pore-scale models Different methods of pore-scale modeling are based on different governing equations for the same physical problem.However,the consis-tency among these models and across different scales is yet to be addressed.In addition, we need to apply our techniques at the appropriate scale.For example,particle-based methods are intrinsically more suited for scales close to the molecular level.•Characterization and data management Imaging techniques provide detailed information about the porous media topology and geometry.With tremendous improvements in image resolution,the available data would be even greater.However,are all these data required to calculate simple petrophysical properties?Moreover,do we need to employ detailed and complicated physically based models to calculate simple and static properties?•Multi-physics problems Many industrial processes involve multiple physical processes, while the pore-scale models often focus on single physical processes.Therefore,we need to determine how multiphysics problems can be included in pore-scale modeling.For example,the structure of,and therefore theflow and transport in porous media,as well as their wetting properties will be altered by geochemical processes in the pore space.464V.Joekar-Niasar et al.•Upscaling and coupling across scales We need to address how information provided by pore-scale models can be used for the improvement of reservoir or largefield-scale models?This also raises the question whether current effective parameters,for example relative permeability as function of phase saturation,are still adequate.In addition,up-scaling of pore-scale results is necessary to validate against experimental observations at larger scales.These are examples of fundamental questions that need to be studied for further development and wide range of application of pore-scale models.ReferencesBauer,D.,Youssef,S.,Fleury,M.,Bekri,S.,Rosenberg,E.,Vizika,O.:Improving the estimations of pe-trophysical transport behavior of carbonate rocks using a Dual Pore Network approach combined with computed micro tomography.TiPM(2012).doi:10.1007/s11242-012-9941-zBlunt,M.J.:Flow in porous media—pore-network models and multiphaseflow.Curr.Opin.Colloid Interface Sci.6(3),197–207(2001)Chareyre,B.,Cortis,A.,Catalano,E.,Barthelemy E.:Pore-scale modeling of viscousflow and induced forces in dense sphere packings.TiPM(2012).doi:10.1007/s11242-011-9915-6Dinariev,O.Y.:Description of aflow of a gas-condensate mixture in an axisymmetric capillary tube by the density-functional method.J.Appl.Mech.Tech.Phys.44(1),84–89(2003).doi:101023A102178591493 Fatt,I.:The network model of porous media.I.Capillary pressure characteristics.Pet.Trans.AIME207, 144–159(1956)Gunstensen,A.K.,Rothman,D.H.:Lattice-Boltzmann studies of immiscible two-phaseflow through porous media.J.Geophys.Res.98(B4),6431–6441(1993)Hirt,C.W.,Nichols,B.D.:V olume offluid(VOF)method for the dynamics of free put.Phys.39,201–225(1981)Jiang,Z.,van Dijke,M.I.J.,Wu,K.,Couples,G.D.,Sorbie,K.S.,Ma,J.:Stochastic network generation from 3D rock images,TiPM(2012).doi:10.1007/s11242-011-9792-zJoekar-Niasar V.,Hassanizadeh S.M.:Analysis of fundamentals of two-phaseflow in porous media using dynamic pore-network models:a review.J.Crit.Rev Environ.Sci.Technol(2012a).doi:10.1080/ 10643389.2011.574101Joekar-Niasar,V.,Hassanizadeh,S.M.:Uniqueness of capillary pressure-saturation and specific interfacial area under nonequilibrium conditions.TiPM,(2012b)Kim,D.,Lindquist,W.B.:Dependence of pore-to-core up-scaled reaction rate onflow rate in porous media.TiPM(2012).doi:10.1007/s11242-012-0014-0Meakin,P.,Tartakovsky,A.M.:Modeling and simulation of pore-scale multiphasefluidflow and reactive transport in fractured and porous media.Rev.Geophys.47,RG3002(2009)Mousavi,M.,Bryant,S.:Connectivity of pore space as a control on two-phaseflow properties of tight-gas sandstones.TiPM(2012).doi:10.1007/s11242-012-0017-xPan,C.,Hilpert,M.,Miller,C.T.:Lattice-Boltzmann simulation of two-phaseflow in porous media.Water Resour.Res.40,W01501(2004).doi:10.1029/2008RG000263Prodanovi´c,M.,Bryant,S.L.:A level set method for determining critical curvatures for drainage and imbibi-tion.J Colloid Interface Sci304,442–458(2006)Ramstad,T.,Idowu,N.,Nardi,C.,ˇRren,P.:Relative permeability calculations from two-phaseflow simulations directly on digital images of porous rocks,TiPM,(2012).doi:10.1007/s11242-011-9877-8 Tartakovsky,A.M.,Meakin,P.:A smoothed particle hydrodynamics model for miscibleflow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor put.Phys.207, 610–624(2005)Tsakiroglou,C.D.:A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media.TiPM (2012).doi:10.1007/s11242-011-9882-yvan Dijke,M.I.J.,Piri,M.:Introduction to special section on modeling of pore-scale processes.Water Resour.Res.43,W12S01(2007).doi:10.1029/2007WR006332。

相关文档
最新文档