水闸设计及闸室稳定计算

合集下载

水闸闸室的稳定分析和地基处理

水闸闸室的稳定分析和地基处理

水闸闸室的稳定分析和地基处理闸室在运用、检修或施工期都应该是稳定的。

在运用期,闸室受到水平推力等荷载作用,有可能沿着地基面滑动(通常称为表层滑动),还可能连同一部分地基土体滑动(通常称为深层滑动)。

闸室竣工时,一般地,闸室地基表面所受的应力很大,或者应力分布很不均匀,这不但使闸室高程降低,而且会使闸基倾斜甚至断裂,地基也有可能失去稳定性。

因此,必须验算闸室的稳定性,以保证在各种情况下闸室均能安全可靠地运用。

1荷载计算及组合1.1荷载计算闸室荷载主要有以下7种(图7-44)。

1. 自重自重指闸室自身重力,包括底板、闸墩、胸墙、工作桥及桥墩、交通桥、便桥、闸门及启闭设备等的重力。

2. 水重水重指闸室范围内作用在底板上面的水体重力。

3. 水平水压力水平水压力指胸墙、闸门及闸墩侧面所受到的水平水压力。

当有钢筋混凝土铺盖时(图7-45),止水片以上的水平水压力按静水压力分布考虑;止水片以下缝内的水平水压力按下述方法计算:由于渗流区内任一点的水压力强度等于该点的静水压强(相对于下游水位)与渗透压强之和,在止水片以下的缝内水流状态可以认为是静止的,所以,缝内渗透压强处处相等,其数值即为缝底这一点(图7-45中的第7点)的渗透压强,而缝内静水压强按一般方法计算。

图 7-44 闸室荷载(第5版 图7-41 图名相同)1p 、2p 、3p —水平水压力;zl p —波浪压力;G —底板重;1G —启闭机重;2G —工作桥及桥墩重;3G —胸墙重;4G —闸墩重;5G —闸门重;6G —交通桥重;1w G 、2w G —水重;b p —扬压力;fb p —浮托力;sb p —渗透压力;f F —地基反力;p h —波浪高度;z h —波浪中心线超出计算水位的高度;m L —波浪长度图 7-45 闸室上游水平水压力计算图(单位:m )图7-45所示,已知第7点渗透压强为31.9kPa ,第8点渗透压强为30.5kPa ,通过上述计算即可获得闸室上游面各点水平水压强及其分布情况。

水闸稳定计算

水闸稳定计算

四、闸室稳定计算(1)闸室基底应力计算依据“规范”当结构布置及受力情况对称时按第29页(7.3.4-1)计算。

P max=∑G/A+∑M/WP min=∑G/A-∑M/W式中:P max--闸室基底应力的最大值;P min--闸室基底应力的最小值;∑G--作用在闸室上的全部竖向荷载(KN);∑M--作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(KN·m);A--闸室基底面的面积(m2);W--闸室基底面对于该底面垂直水流方向的形心轴的截面矩(m3)。

在各种情况下,平均基底应力不大于地基允许承载力,最大基底应力不大于地基允许承载力的1.2倍。

(2)沿基底面的抗滑稳定计算依据“规范”抗滑稳定安全系数计算按第30页(7.3.6-1)计算。

K c=(f∑G)/∑H式中:K c--沿闸室基底面的抗滑稳定安全系数;f--闸室基底面与地基之间的摩擦系数,可按第32页表7.3.10规定采用;∑G--作用在闸室上的全部竖向荷载(KN);∑H--作用在闸室上的全部水平向荷载(KN);PmPmax=η=1/2(Pmax Kcφ项目12345678910111213B12 Pmin= Pmax=η=1/2(Pmax注作项24567891011121314B12 Pmin= Pmax=η=1/2(Pmax Kcφ基本资料:B AGM 偏心距e=M/G1222824827-8609.6638-0.34678631Pmin=G/A (1+6e/B )=90.00950921Pmax=G/A (1-6e/B )=127.7711925<500η=Pmax/Pmin= 1.419529933<1.51/2(Pmax+Pmin)=108.8903509满足稳定要求设计钢筋砼容重为25KN/m3,地基允许承载力为0.5mpaB AGM偏心距e=M/Gφ1222822541.6-7767.7857-0.344597830Pmin=G/A (1+6e/B )=81.8320489Pmax=G/A (1-6e/B )=115.9012844<500η=Pmax/Pmin= 1.416331205<1.51/2(Pmax+Pmin)=98.86666667Kc=(Tan φ∑G+Co*A)/∑H=5.852273911>1.2满足稳定要求B AGM 偏心距e=M/G1222820877.8-12234.5848-0.58600929Pmin=G/A (1+6e/B )=64.73906842Pmax=G/A (1-6e/B )=118.3995281<500η=Pmax/Pmin= 1.828872904<2.01/2(Pmax+Pmin)=91.56929825满足稳定要求注:由于本闸的正常挡水位为1625.6m ,当水位上涨时将分级开闸泄水冲沙,所以当水位在校核洪水位时作用在闸室上的水平力很小,所以只需对此工况的地基承载力进行复核。

学习分享-节制闸计算(个人整理)

学习分享-节制闸计算(个人整理)

1、工程等级划分及洪水标准根据《水闸设计规范》SL265-2001对工程规模的划分规定,确定本工程等别为IV 等,主要建筑物按4级设计,本设计确定防洪标准为20年一遇。

2、闸顶高程、闸门高程确定根据《水闸设计规范》,闸顶高程需根据水闸挡水和过水两种运用情况确定。

外江(西小江)设计洪水位为20年一遇高水位5.10m (钱清站),常水位为3.9m ;内河20年一遇设计洪水位5.38m (萧山站),常水位水位3.9m 。

2.1闸顶高程挡水运用情况闸顶高程需满足:闸顶高程≥正常蓄水位(或最高挡水位)+波浪计算高度+相应安全超高,泄水运用情况闸顶高程需满足:闸顶高程≥设计洪水位(或校核洪水位)+相应安全超高; ⑴波浪要素计算年最大风速v 0=22.5m/s 风区长度 D=80m 风区平均水深H m =3.9m根据SL265-2001规范规定,采用下列公式计算波浪要素:⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=7.02045.0207.020207.013.00018.07.013.0v gH th v gD th v gH th v gh m mm5.02009.13⎪⎪⎭⎫ ⎝⎛=v gh v gT m mmm m L H th gT L ππ222=计算得平均波高h m =0.11m平均波周期T m =1.49s 平均波长L m =3.46m本工程主要建筑级别为4级,波浪累计频率为p=10%, 由h m /H m =0.11/4.02≈0.0,故计算波高h p=5%=0.11×1.71=0.188m ⑵闸顶高程确定挡水工况:闸顶高程≥(正常蓄水位)或最高挡水位+波浪计算高度+相应安全超高外江常水位3.9m ,安全超高为0.3m外江20年一遇设计洪水位5.10m ,安全超高值0.2m 正常蓄水位情况闸顶高程:m d 388.430.0188.09.3=++=∇ 最高当水情况闸顶高程:m c 488.52.0188.01.5=++=∇ 泄水工况:闸顶高程≥设计洪水位+相应安全超高 内河设计洪水位5.38m ,安全超高值0.5m , 故:泄水工况闸顶高程:m d 88.550.038.5=+=∇ 即:取闸顶高程为m 0.6=∇。

04.第四章-水闸

04.第四章-水闸
种型式。 (2)涵洞式水闸。
水闸修建在河、渠堤之下时,便成为涵洞式水闸。根 据水力条件的不同,可分为有压式和无压式两类。
(三)按过闸流量大小分类
大(1)型水闸。过闸流量大于5000m³/s。 大(2)型水闸。过闸流量1000~5000m³/s。 中型水闸。过闸流量为1000~100m³/s。 小(1)型水闸。过闸流量为20~100m³/s。 小(2)型水闸。过闸流量小于20m³/s。
建闸后,为便于行人或车马通行,通常也在 闸墩上设置交通桥。交通桥的位置应根据闸室稳 定及两岸交通连接的需要而定,一般布置在闸墩 的下游侧。
四、分缝与止水
(一)分缝方式与布置
除闸室本身分缝以外,凡是相邻结构荷重相 差悬殊或结构较长、面积较大的地方也要设缝分 开。
(二)止水设备
凡是具有防渗要求的缝中都应设置止水设备。 对止水设备的要求是:①应防渗可靠;②应能适 应混凝土收缩及地基不均匀沉降的变形;③应结 构简单,施工方便。
(2)节制闸。在河道上或渠道上建造,枯水期用以抬高水位满足上游 取水或航运的需要;洪水期控制下泄流量,保证下游河道安全。
(3)冲沙闸。主要建在多泥沙河道上,用于排除进水闸、节制闸前或 渠道淤积的泥沙,减少引水水流的含沙量。
(4)分洪闸。建于天然河道的一侧。用来将超过下游河道安全泄量的 洪水泄入湖泊、洼地等滞洪区,以削减洪峰保证下游河道安全。
四、水闸的等级划分和洪水标准
见书中表格。
第二节 水闸的孔口尺寸确定
一、底板型式选择
闸底板型式有宽顶堰和低实用堰两种。 (1)平底板宽顶堰具有结构简单、施工方便、有利于排 沙冲淤、泄流能力比较稳定等优点;其缺点是自由泄流时 流量系数小,闸后比较容易产生波状水跃。 (2)低实用堰有WES低堰、梯形堰和驼峰堰等型式,其 优点是自由泄流时流量系数较大,可缩短闸孔宽度和减小 闸门高度,并能拦截泥沙入渠;缺点是泄流能力受下游水 位变化的影响显著,当淹没度增加时,泄流能力急剧下降。

水闸闸室结构计算

水闸闸室结构计算

水闸闸室结构计算在闸室布置和稳定分析之后,还需对闸室各部分构件进行计算,验算其强度,以便最后确定各构件的形式、尺寸及构造。

闸室是一个空间结构,受力比较复杂,可用三维弹性力学有限元法计算。

为了简化计算,一般分成胸墙、闸墩、底板、工作桥及交通桥等单独构件分别计算,同时又考虑相互之间的连接作用。

以下仅简要介绍闸墩、底板和胸墙的结构计算。

1闸墩闸墩结构计算的内容主要包括闸墩应力计算及平面闸门槽(或弧形闸门支座)的应力计算。

1. 平面闸门闸墩应力计算平面闸门闸墩的受力条件主要是偏心受压,可假定闸墩为固定于底板上的悬臂梁,其应力状况可采用材料力学的方法进行分析。

闸墩应力主要有纵向应力(顺水流方向)和横向应力(垂直水流方向)。

闸墩每个高程的应力都不同,最危险的断面是闸墩与底板的结合面,因此,应以该结合面作为计算面,并把闸墩视为固支于底板的悬臂梁,近似地用偏心受压公式计算应力。

当闸门关闭时,纵向计算的最不利条件是闸墩承受最大的上下游水位差时所产生的水压力(设计水位或校核水位)、闸墩自重以及上部结构等荷载(图7-48)。

在此情况下,可用式(7-40)验算闸墩底部上、下游处的铅直正应力σ,即 2x G M L A I σσ=∑∑上下 (7-40) 式中:G ∑为铅直方向作用力的总和;x M ∑为全部荷载对墩底截面中心轴x x -的力矩总和;A 为墩底截面面积;x I 为墩底截面对x x -轴的惯性矩,可近似取用()30.9812x I d L =,d 为闸墩厚度;L 为墩底长度。

图 7-48 闸墩结构计算示意图(第5版 图7-45 图名相同)1p 、2p —上、下游水平水压力;1G —闸墩自重;3p 、4p —闸墩两侧水平水压力;2G —工作桥重及闸门重;z F —交通桥上车辆刹车制动力;3G —交通桥重在水闸检修期间,当一孔检修(即上、下游检修闸门关闭而相邻闸孔过水)时,闸墩承受侧向水压力、闸墩自重及其上部结构重等荷载(图7-48),这是横向计算最不利的情况。

(完整word版)水闸设计

(完整word版)水闸设计

第一章设计资料和枢纽设计1、设计资料1.1工程概况前进闸建在前进镇以北的团结渠上是一个节制闸。

本工程等别为Ⅲ等,水闸按3级建筑物设计。

该闸有如下的作用:(1)防洪。

当胜利河水位较高时,关闸挡水,以防止胜利河的高水入侵团结渠下游两岸的底田,保护下游的农田和村镇。

(2)灌溉。

灌溉期引胜利河水北调,以灌溉团结渠两岸的农田。

(3)引水冲淤。

在枯水季节。

引水北上至下游红星港,以冲淤保港。

1.2 规划数据(1)团结渠为人工渠,其断面尺寸如图1所示。

渠底高程为2194.5m,底宽50m,两岸边坡均为1:2 。

(比例1:100)图1 团结渠横断面图(单位:m)(2)灌溉期前进闸自流引胜利河水灌溉,引水流量为300sm/3。

此时相应水位为:闸上游水位2201.83m,闸下游水位2201.78m;冬春枯水季节,由前进闸自流引水至下游红星港,引水流量为100sm/3,此时相应水位为:闸上游水位2201.44m,闸下游水位2201.38m。

(3)闸室稳定计算水位组合:设计情况,上游水位2204.3m,下游水位2201.0m;校核情况,上游水位2204.7m,下游水位2201.0m。

消能防冲不利情况是:上游水m/3位2204.7m,下游水位2201.78m,引水流量是300s(4)下游水位流量关系:(5)地质资料:① 根据地质钻探报告,闸基土质分布情况见下表:②根据土工试验资料,闸基持力层坚硬粉质粘土的各项参数指标为:凝聚力C=60.0Kpa ;内摩擦角19=ϕ°;天然孔隙比e=0.69;天然容重3KN/m 3.20=γ 建闸所用回填土为砂壤土,其内摩擦角26o ϕ=,凝聚力0c kPa =,天然容重318kN m γ=。

本地区地震烈度在6度。

(6)本工程等别为III 等,水闸按3级建筑物设计。

(7)闸上有交通要求,闸上交通桥为单车道公路桥,桥面净宽4.5m,总宽5.5m ,采用板梁结构。

每米桥长约种80KN 。

水闸渗流稳定及闸室稳定分析

水闸渗流稳定及闸室稳定分析

水闸渗流稳定及闸室稳定分析◎ 常聪聪 中交四航局港湾工程设计院有限公司摘 要:水闸在水利建设中扮演着重要的角色,本文结合闸坝的具体工程实例,详细介绍了水闸渗流稳定和闸室稳定的计算原理及计算步骤,计算结果表明该项目的结构设计方案较安全但偏保守,可进一步优化方案。

本文中所涉及的相关计算可为相似工程案例提供一定的参考。

关键词:水闸;渗流;闸室稳定1.引言水闸作为一种用来调节水位、控制流量且通常水头差不超过30m的低水头水工建筑物,具备挡水和泄水的两重作用,在水利工程建设中得到广泛应用。

水闸的渗流分析和闸室的稳定分析是水闸设计中两个重要部分,国内外众多学者针对该课题做了丰富的研究。

梁佳铭[1]、王建华[2]运用可靠度理论分析了水闸安全的主要影响因素,申向东[3]分析了单孔水闸的抗滑稳定,也有众多学者结合工程实例对水闸闸室的稳定进行了计算分析[4~7]。

改进阻力系数法是计算水闸闸基渗流稳定的重要方法,适应性广,众多水闸案例以此方法为基础进行设计验算[8~10]。

学者们还将水闸渗流分析的有限元分析法和改进阻力系数法作对比[11~14],表明两种方法在计算闸基渗流问题上均可靠,有限元分析法则更偏保守。

本文结合具体工程实例,按照现行规范[15],对水闸的闸基渗流及闸室稳定进行了具体计算分析,对相似案例工程具有一定的借鉴与参考意义。

2.工程概况本工程案例为广东某水闸的重建方案,泄水闸闸孔孔数为12孔,单孔净宽14m,总净宽168m。

根据《水利水电工程等级划分及洪水标准》(SL 252-2017)和《渠化工程枢纽总体设计规范》(JTS 181-1-2009),枢纽按库容分等指标,为Ⅲ等中型工程,建筑物级别为4级。

正常蓄水位为35m,中墩厚2.5m,边墩厚2.0m,上游铺盖长15m,闸室长度25.5m,消力池长30m。

地质条件:工程区域地震活动性较弱,区域地质稳定性良好,工程范围内本枢纽的地层主要有第四系填土层(Q4ml)、第四系冲积层(Q4al)、第四系冲洪积层(Q4al+pl)及石炭系下统大塘阶石磴子段(C1ds),中风化岩物理力学性质好,岩石强度高,分布较稳定,地基承载力较高。

水闸稳定计算书

水闸稳定计算书

第四章排水闸稳定及结构计算1.各排水闸概况1.1水文资料根据龙门县城堤防总体规划,县城河堤共有5个排水闸,西林河有两个排水闸:龙门中学排水闸和老干局排水闸,白沙河有三个排水闸:师范排水闸、石龙头排水闸、及罗江围排水闸。

河堤上的排水闸主要作用是:平时能正常排泄内积水,洪水到来时关闸挡水,不让洪水涌入。

根据水文资料,排水闸排涝标准按十年一遇(P=10%)洪水,24小时暴雨产生的洪水总量,24小时排干计算。

根据《龙门县城区防洪工程洪水计算书》可知各排水闸的水位资料,详见排水闸洪水成果表1.1-1。

表1.1-1 各排水闸洪水成果表1.2地质资料根据《龙门县城区防洪工程地质勘探可行性研究报告》,可知各排水闸地基主要物理指标表1.2-1。

表1.2-1 各排水闸地基土质主要物理指标表1.3等级与安全系数根据《龙门县城堤防加固工程可行性研究报告》西林河、白沙河大堤加固工程等级为三等,水闸为主要建筑物,其等级为三等,根据《水闸设计规范SL265-2001》,水闸整体抗滑稳定安全系数为:基本组合:1.25;特殊组合Ⅰ:1.10。

土基上闸室基底应力最大值与最小值之比的允许值为:基本组合:2.50;特殊组合3.0.闸基抗渗稳定性要求水平段和出口段的渗流坡降必须小于规范要求,见下表6.0.4。

表6.0.4 水平段和出口段允许渗流坡降值1.4地震烈度龙门县基本地震烈度为Ⅵ,按《水闸设计规范SL265-2001》,设计时不考虑地震作用。

2.主要计算公式及工况2.1闸孔净宽B 0计算公式根据《水闸设计规范SL265-2001》,水闸的闸孔净宽B 0可按公式(A.0.1-1)~(A.0.1-6)计算:2302Hg m QB σε=(A.0.1-1)单孔闸 4001171.01s s b b b b ⎪⎪⎭⎫ ⎝⎛--=ε (A.0.1-2)多孔闸,闸墩墩头为圆弧形时 NN bZ εεε+-=)1( (A.0.1-3)4001171.01Z ZZ d b b d b b +⎪⎪⎭⎫ ⎝⎛+--=ε (A.0.1-4)400000221171.01b d b b b d b b Z b Z b ++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=ε (A.0.1-5)4.000131.2⎪⎪⎭⎫⎝⎛-=H h H h s s σ (A.0.1-6) 式中 0B ——闸孔总宽度(m ); Q ——过闸流量(m 3/s );0H ——计入行近流速水头的堰上水深(m ),在此忽略不计; g ——重力加速度,可采用9.81(m/s 2); m ——堰流流量系数,可采用0.385;ε——堰流侧收系数,对于单孔闸可按公式(A.0.1-2)计算求得或由表A.0.1-1查得;对于多孔闸可按公式(A.0.1-3)计算求得;b 0——闸孔净宽(m );b s ——上游河道一半水深处的宽度(m ); N ——闸孔数;Z ε——中闸孔侧收系数,可按公式(A.0.1-4)计算求得或由表A.0.1-1查得,但表中b s 为b 0+d z ; d z ——中闸墩厚度(m );b ε——边闸孔侧收系数,可按公式(A.0.1-5)计算求得或由表A.0.1-1查得,但表中b s 为b Zb d b ++20; b b ——边闸墩顺水流向边缘线至上游河道水边线之间的距离(m );σ——堰流淹没系数,可按公式(A.0.1-6)计算求得或由表A.0.1-2查得;hs ——由堰顶算起的下游水深(m )。

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

[附录一:泄洪冲砂闸及溢流堰的水力计算1.1设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m。

根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m,过闸水流流态为堰流。

汛期通过闸室的设计洪水流量Q设=1088m3/s,校核洪水流Q校=1368 m3/s。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:Q -、;mb v 2 g H 2S -为淹没系数,取为1.0;m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;£ --为侧收缩系数,先假定为1.0;H---位总水头,初设阶段不考虑行进流速,即假设的堰上水头;b—闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。

初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+ (0.2—0.3m)=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:Q -、. ; mb、2 g H 2S -为淹没系数,取为1.0m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3.£ --为侧收缩系数,先假定为1.0;H---位总水头,初设阶段不考虑行进流速,即假设的堰上水头。

b—闸门净宽计算结果如附表1-1, 1-2 (a)设计洪水情况下:洪水流量Q=1018 m/s。

闸室稳定计算

闸室稳定计算

闸室稳定计算(1)闸室基底应力计算依据“水闸规范”当结构布置及受力情况对称时按第29页(7.3.4-1)计算。

e=B/2-∑M/∑GP max =∑G/A*(1+6*e/B)P min =∑G/A*(1-6*e/B)式中:P max --闸室基底应力的最大值;P min --闸室基底应力的最小值;∑G--作用在闸室上的全部竖向荷载(t );∑M--作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(t ·m);A--闸室基底面的面积(m 2);B --底板沿水流方向的长度(m)。

e --偏心距设计水位273.58底板高程264.24基本资料:闸室的稳定计算钢筋砼容重为2.5t/m3,进口段底板座于强风化白垩系砂砾岩上,中等透水,承载征值300kPa,f'=1.1,C'=1.1MPa。

五级建筑物水闸稳定基本组合抗滑稳定系数不小于1.05,特殊组合不小于1.0;最大基底应力与最小基底应力之比基本组合不大于2.0,特殊组合不大于2.5。

22程264.24上游9.34备注体积计算12.5644.3*3.6*0.7+(0.4+0.8)*0.4*0.5*2*3.696.723*4*8.062.25927.06*0.4*0.80.5255*0.35*0.31.444*3*0.123.95520.4*0.4*12.36*21.97760.4*0.4*12.360.546*0.3*0.366.87.62121.8*0.27*7+0.3*0.3*0.3*8+1.98*0.12*12+0.18*0.8*83.66*5*0.1275.8160.5*18*3.6*3.6*0.65427.454441/2*9.8*9.34*9.343.1361/2*9.8*0.8*0.833.7129.8*0.8*4.3196.79380.5*9.8*9.34*4.3,承载力特滑稳定系数不小于组合不大于2.0,特47.86329.34*4.3*3.6-96.720.8*8。

水闸毕业设计--水闸设计

水闸毕业设计--水闸设计

—水闸设计说明书SLUICE DESIGN SPECIFICATION ·设计题目:水闸工程学院名称:专业名称:水利水电工程班级名称:》姓名:学号:指导教师:教师职称:年月日(目录一、设计任务------------------------------- 错误!未定义书签。

-二、设计基本资料-------------------------- 错误!未定义书签。

概述-------------------------------------- 错误!未定义书签。

防洪---------------------------------------------- 错误!未定义书签。

灌溉---------------------------------------------- 错误!未定义书签。

引水冲淤------------------------------------------ 错误!未定义书签。

规划数据 --------------------------------- 错误!未定义书签。

孔口设计水位、流量-------------------------------- 错误!未定义书签。

闸室稳定计算水位组合------------------------------ 错误!未定义书签。

》消能防冲设计水位组合------------------------------ 错误!未定义书签。

地质资料 --------------------------------- 错误!未定义书签。

闸基土工试验资料---------------------------------- 错误!未定义书签。

闸的设计标准 ----------------------------- 错误!未定义书签。

其它有关资料------------------------------ 错误!未定义书签。

闸上交通------------------------------------------ 错误!未定义书签。

(完整版)闸室稳定计算

(完整版)闸室稳定计算

1.50
3.29
3.30
10.87
1.50
73.50
3.30
242.55
1.50
-2.63
3.30
-8.66
1.45
6.09
3.05
18.57
1.00
64.68
0.40
25.87
1.00
8.66
-0.25
-2.17
150.40
-1.700
-255.68
2.82
22.40
-1.700
-38.08
2.82
121.18 18.05 86.74 141.24 122.70 29.11 14.25
启闭机 机房
交通桥 底梁 端梁
桥面板 汽车荷载 防撞护栏
合计
5.50
3.0
16.50
-1.700
-28.05
4.00
2.31
430.00
1.0
430.00
-1.700
-731.00
4.00
60.20
1.42
25.00
1.22
(偏向下游正号)
kN/m2 kN/m2 <2.0

100.00
kN/m2
满足要求,《水闸设计规范》P30,SL265-2001
11.50 11.50
26.57 692.30
6.00
28.67
6.10
7.48
6.35
75.06
6.40
35.84
6.80
45.73
2030.82
25.00
46.97
2.0
93.94
1.500
140.91

水闸设计计算

水闸设计计算

⽔闸设计计算⼀、初步设计兴化闸为⽆坝引⽔进⽔闸,该枢纽主要由引⽔渠、防沙设施和进⽔闸组成,本次设计主要任务是确定兴化闸的型式、尺⼨及枢纽布置⽅案;并进⾏⽔⼒计算、防渗排⽔设计、闸室布置与稳定计算、闸室底板结构设计等,绘出枢纽平⾯布置图及上下游⽴视图。

⼆、设计基本资料1. 概述兴化闸建在兴化镇以北的兴化渠上,闸址地理位置见图。

该闸的主要作⽤有:防洪:当兴化河⽔位较⾼时,关闸挡⽔,以防⽌兴化河⽔⼊侵兴化渠下游两岸农⽥,保护下游的农⽥和村镇。

灌溉:灌溉期引兴化河⽔北调,以灌溉兴化渠两岸的农⽥。

引⽔冲淤:在枯⽔季节,引兴化河⽔北上⾄下游的⼤成港,以冲淤保港。

7.0北⾄⼤成港9.0渠化11.0 兴闸管所兴化闸兴化河兴化镇闸址位置⽰意图(单位:m)2.规划数据兴化渠为⼈⼯渠道,其剖⾯尺⼨如图所⽰。

渠底⾼程为0.5m,底宽50.0m,两岸边坡均为1:2。

该闸的主要设计组合有以下⼏⽅⾯:11.80.550.0兴化渠剖⾯⽰意图(单位:m)2.1孔⼝设计⽔位、流量根据规划要求,在灌溉期由兴化闸⾃流引兴化河⽔灌溉,引⽔流量为300m3/s,此时闸上游⽔位为7.83m,闸下游⽔位为7.78m;在冬季枯⽔季节由兴化闸⾃流引⽔送⾄下游⼤成港冲淤保港,引⽔流量为100m3/s,此时相应的闸上游⽔位为7.44m,下游为7.38m。

2.2闸室稳定计算⽔位组合(1)设计情况:上游⽔位10.3m,浪⾼0.8m,下游⽔位7.0m。

(2)校核情况:上游⽔位10.7m,浪⾼0.5m,下游⽔位7.0m。

2.3消能防冲设计⽔位组合(1)消能防冲的不利⽔位组合:引⽔流量为300m3/s,相应的上游⽔位10.7m,下游⽔位为7.78m。

(2)下游⽔位流量关系下游⽔位流量关系见表3.地质资料3.1闸基⼟质分布情况根据钻探报告,闸基⼟质分布情况见表层序⾼程(m)⼟质情况标准贯⼊击数(击)Ⅰ11.75~2.40 重粉质壤⼟9~13Ⅱ 2.40~0.7 散粉质壤⼟8Ⅲ0.7~-16.7坚硬粉质粘⼟(局部含铁锰结核)15~21Q(m3/s)0.0 50.0 100.0 150.0 200.0 250.0 300.0 H下(m)7.0 7.20 7.38 7.54 7.66 7.74 7.783.2 闸基⼟⼯试验资料根据⼟⼯试验资料,闸基持⼒层为坚硬粉质粘⼟,其内摩擦⾓?=190,凝聚⼒C=60.0Kpa ;天然孔隙⽐e=0.69,天然容重γ=20.3KN/m 3,⽐重G=2.74,变形模量0E =4104?KPa ;建闸所⽤回填⼟为砂壤⼟,其内摩擦⾓?=260,凝聚⼒C=0,天然容重γ=18KN/m 3;混凝⼟的弹性模量E h =710.32?KPa 。

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算引言:水闸是一种用来控制水流的工程构筑物,供水、排水、防洪等工程都需要用到水闸。

在设计水闸时,需要考虑到水闸的稳定性,以确保其能够长时间稳定地承受水流的冲击力。

本文将介绍水闸设计及闸室稳定计算的相关内容。

一、水闸设计:1.水闸类型选择:根据工程的具体需求,选择合适的水闸类型,如引力闸、卧式闸、立式闸等。

2.水闸尺寸计算:根据工程的流量要求和水头要求,计算水闸的尺寸,包括设闸宽度、设闸高度等。

3.水闸结构设计:根据水闸类型和尺寸,设计水闸的结构,包括闸板、边墙、水封、导流堤以及启闭机构等。

4.材料选择:选择适合的材料,以确保水闸的耐久性和稳定性,如混凝土、钢材等。

二、闸室稳定计算:闸室稳定计算是水闸设计中的重要环节,可以通过计算闸室结构的稳定性,预测其在水流冲击力下的表现。

1.水流力计算:根据水闸的流量要求,计算水流的流速和冲击力等参数。

2.受力分析:根据水流的冲击力和闸室的结构,进行受力分析,计算闸室所受的水力力、重力力和土壤力等。

3.结构稳定性计算:根据受力分析结果,计算闸室的结构稳定性,包括抗倾覆力,抗滑动力和抗浮力等。

4.附加稳定性计算:考虑到现实工程中的其他因素,如地震力、温度变化等,进行附加稳定性计算。

5.结果评估:根据稳定性计算结果,评估闸室结构的稳定性,确定其能否满足设计要求。

结论:水闸设计及闸室稳定计算是水闸工程设计中的重要环节,能够保证水闸在长期使用中的稳定性和安全性。

设计师需要综合考虑水流力、结构受力以及其他因素,制定合理的设计方案。

未来,随着科技的发展,水闸设计及闸室稳定计算也将不断更新,以满足更高水平的设计需求。

水闸稳定计算

水闸稳定计算
(2)摩擦桩
当硬土层埋深较深时,桩只能插入到软土层的一定深 度,利用桩与周围土壤的摩擦力支承上部荷载,称为摩擦 桩。水闸多采用摩擦桩。
.
(四)其他方法 振冲砂桩法、强夯法、高压
旋喷法、真空预压法等等。
.
回答以下问题:
1、水闸稳定分析包括哪些内容?计算公式是 什么?
2、水闸地基处理有哪些方法? 3、换土垫层进行地基处理时,砂垫层的作用
1.作用
在软土层厚度较大的地基上,桩基础是解决地基 承载力不足的有效方法。设置桩基础后,能够提高 地基的承载力和抗滑稳定性,减少沉陷量。
2.桩基础型式(按施工方式分)
桩基础按施工方式分为:打入混凝土预制桩和钻 孔灌注混凝土桩两种。
(1)打入式预制桩
打入式预制桩一般采用钢筋混凝土桩,直径 d=0.25~0.55m。现场预制桩的长度在25~30m;工厂 预制桩一般长不超过12m,便于运输。
当闸室抗滑稳定安全系数不能满足规范规定的允许安 全系数时,可采取下列措施提高闸室稳定性。
(1) 适当将闸门向闸室下游一端移动布置,或将底板向上 游端适当加长,充分利用闸室水重。(增加G)
(2) 改变闸室结构尺寸,增加自身重量。
•增加底板厚度时,由于其位于水下,受到水的浮力,有 效重量小,不经济。
•增加闸墩厚度时,虽然增加了自重,但同时也增加了闸 室前缘宽度和挡水面积,因而也同时增加了水平推力。
(5-39)
式中 f’——闸室基底面与岩石地基之间的抗剪断摩擦系数, 查表5—17;
C’——闸室基底面与岩石地基之间的抗剪断粘结力, kPa,查表5—17
闸室稳定性的判断,要求 :
土基上: KC [K土] [K土]查表5-13 岩基上: KC [K岩] [K岩]查表5-14

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

[附录一: 泄洪冲砂闸及溢流堰的水力计算设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程。

根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程,过闸水流流态为堰流。

汛期通过闸室的设计洪水流量Q 设=1088m 3/s,校核洪水流Q 校=1368 m 3/s 。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式: 232Hg mb Q δε=δ- 为淹没系数,取为;m ---为流量系数,因为是前面无坎的宽顶堰所以m=; ε--为侧收缩系数,先假定为;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头; b —闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。

初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(—0.3m )=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式: 232Hg mb Q δε=δ- 为淹没系数,取为m ---为流量系数,因为是前面无坎的宽顶堰所以m=;计算溢流堰时因为溢流堰为折线形实用堰m=.ε--为侧收缩系数,先假定为;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。

b —闸门净宽计算结果如附表1-1,1-2(a )设计洪水情况下:洪水流量Q=1018 m 3/s 。

水位 (m)过闸总流量(m 3/s) 过堰总流量 (m 3/s ) 实际总流量(m 3/s )1054(b )校核洪水情况下:洪水流量Q=1368 m 3/s水位 (m )过闸总流量 (m 3/s ) 过堰总流量 (m 3/s ) 实际总流量 (m 3/s )经过计算泄洪冲砂闸净宽96m ,溢流堰长度95m ,设计洪水位校核洪水位。

水闸的概念及计算

水闸的概念及计算

第八章 水 闸§8-5 闸室的布置和构造 教学容底板、闸墩、工作桥、交通桥 一、底板按形状分:有水平底板、低实用堰底板(上游水位高,流量又受限制)。

河宽、孔多。

需用横缝将闸室分成若干闸段(每个闸段可分为一孔、两孔、三孔) 按底板与闸墩的连接方式分:整体式、分离式整体式闸底板与闸墩浇筑成整体,墩中分缝。

(也有闸室底板中间分缝的) 底板形式⎭⎬⎫⎩⎨⎧--kpa 4030较差,箱式底板:地基承载力实心底板适用于松散地基,地震烈度较高的地区分离式单孔底板上设双缝,将底板与闸墩分开适用:坚基,紧密的地基上,不会产生不均匀沉降。

底板顺水流方向的长度:满足上部结构布置,结构强度和抗滑稳定要求。

二、闸墩材料:常用混凝土、浆砌石、少筋混凝土。

作用:分隔闸孔,支承闸以与上部结构。

材料:砼或浆砌石。

外形轮廊:过闸水流平顺,侧向收缩小,以加大过水能力。

分方形、三角形、半圆形、流线形。

高程:上游高出最高水位并有一定超高。

长度:与闸底板顺水流长度相同。

上、下游侧:铅直或10:1~5:1竖坡。

闸墩厚度:满足强度,稳定要求,决定于工作门槽深度和门 槽颈部厚度。

门槽颈部厚度最小值为0.5m 门槽深0.3m 槽宽0.5~1.0 缝墩:1.2~1.5检修门槽与工作门槽之间须保持1.5 ~2.0m 净距。

胸墙与检修门槽之间也应留足1.0m 以上的间距。

三、闸门检修门---平门----位置:上游侧工作门--弧门平门--位置:① 上游侧②下游侧(利用水重帮助闸室稳定) 闸门顶部高程:应高于可能最高蓄水位。

四、胸墙固定式、活动式作用:减少闸的高度,减轻立门重和降低对启闭机重量的要求。

布置位置:置于门后--闸门紧靠胸墙,且止水效果好而简单;门前---止水结构复杂,易于磨损,有利于启闭,钢丝绳不易磨损•顶高程:顶与闸墩齐平。

底梁梁底高程:满足堰流的要求,堰顶高程+堰顶下游水深+ (0.2m)。

厚度:不小于0.15~0.2m 结构形式:板式、梁板式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[附录一:泄洪冲砂闸及溢流堰的水力计算1.1设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m。

根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m,过闸水流流态为堰流。

汛期通过闸室的设计洪水流量Q设=1088m3/s,校核洪水流Q校=1368m3/s。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:δ- 为淹没系数,取为1.0;m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头;b—闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。

初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(0.2—0.3m)=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m 采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:δ- 为淹没系数,取为1.0m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3.ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。

b—闸门净宽计算结果如附表1-1,1-2(a)设计洪水情况下:洪水流量Q=1018 m3/s。

(b)校核洪水情况下:洪水流量Q=1368 m3/s经过计算泄洪冲砂闸净宽96m,溢流堰长度95m,设计洪水位1855.8m校核洪水位1856.30m。

泄洪冲砂闸净宽为96m,每孔取净宽8m,边墩宽0.8m ,中墩宽1.0m缝墩1m。

1.2泄洪冲砂闸地板渗透稳定计算1)地板渗流计算 1、确定地基计算深度 (1)计算e T水平投影长度0L =10m ,铅直投影长度0S =1.5m ; 因为0S L =6.67>5;所以0.5e T =⨯0L =0.5⨯10=5m ;所以地基不透水层的有效计算深度为5.0m 。

(2)计算各段Aa 阻力系数 1:S=1.5m ,T=5m ;2:L=0.75m ,T=5m , 120S S ==;()120.7X L S S Tξ-+==0.153:S=0.5m ,T=5m , 3.1416π=;4:L=8.5m ,S 1 =0.5m ,T=5m ,2S =0.5m ;()120.7X L S S Tξ-+==1.365:S=0.5m ,T=5m , 3.1416π=; 6:L=0.75m ,T=5m , 120S S ==;()120.7X L S S Tξ-+==0.157:S=1.5m ,T=5m ;(3)计算各段水头损失i h :总水头损失H ∆=3.90m ;i i Hh ξξ∑∆=; 在234.3=∑ξ 列表计算各段水头损失h i ;(4)进出口水头损失值的修正 1进口处修正系数1B ;12'11.211220.059B T S T T =-⎡⎤⎛⎫⎡⎤++⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦;式中S=1.5m,T=5m,'T =5m; 代入得1B =1.01;1B >1所以不用进行修正; 2出口处修正系数2B'T =3.5m , T=5m , S=1.5m ;2B =0.857〈1.0,所以出口处要修正。

出口段水头损失减小值为:H 7=⨯;h ∆=0.828-0.710=0.118m ;H 6=0.181+0.118=0.299(5)计算各角隅点的渗压水头并列表:(6)绘制渗压水头分布图(7)闸底板水平段渗透坡降和渗流坡降的计算: 1闸底板水平段平均渗透坡降x J :闸底板的轮廓线由6点至11点,水平投影m L 50.8=。

[]28.0~22.0193.05.864.1116≤==-=L H H J x ; 2出口处得出逸坡降0J :出口处既11点至12点,渗透距离为m S 50.1'=。

[]55.0~50.047.05.171.0'12110<==-=SH H J ; []0J 、[]x J 参见SL265—2001《水闸设计规范》所以满足允许渗透比降。

1.3 泄洪冲砂闸地板抗滑稳定计算根据《水闸设计规范》SL265——2001闸室稳定计算宜取相邻顺水流向永久缝之间的闸段为计算单元,选取中间两孔闸室作为计算单元。

附图1-4计算单元选取示意图:自重荷载:根据《水工钢筋混凝土结构学》中钢筋混凝土按线性分布荷载为25 KN/m 3。

根据水闸的基本尺寸设计对其进行荷载计算。

作用在水闸上的自重荷载有:底板:()[]KN G 75.268255.05.15.020.110=⨯⨯⨯⨯+⨯= 闸墩:()()[]KN G 5.123725105.45.04.55.0=⨯⨯⨯+⨯=闸门:根据《水闸》闸门为弧形露顶式B ≤10m ,所以42.033.0H H B K K G s b c = Hs ——设计水头;Kc ——材料系数,本工程取1;Kb ——孔门宽度系数,本工程Kb=0.472; H ——孔口高度;闸门:42.033.0H H B K K G s b c = ()吨16.41.49.28472.00.142.033.0=⨯⨯⨯⨯=G=4.16×10=41.6KN工作桥,交通桥及其梁:KN G 25.926255.03.0195253.0419=⨯⨯⨯⨯+⨯⨯⨯= 根据算出的闸门的数据参考《闸门与启闭设备》采用双吊点卷扬式160241376--+⨯φ型启闭机,该启闭机的自重为2.55吨。

启闭机:G=2.55*10=25.5KN根据SL265—2001《水闸设计规范》中应该选取不同的荷载组合作为不同的工况对闸室的稳定进行验算看闸室是否安全。

第一种工况选为完建无水的状况附表1-6 泄洪闸荷载计算成果表(完建无水期)完建无水工况下的闸室稳定计算根据SL265-2001《水闸设计规范》中地基承载力公式:式中minmaxP —完建无水期基底压力的最大和最小值,kPa ;∑G —作用在闸室上的全部竖向荷载,(包括基础底面的上的扬压力)KN ;∑M —作用在闸室上的竖向和水平荷载对于闸底板垂直于水流方向的形心轴的力矩(kN.m );A —闸室基底的面积(m 2);W —闸室基底面对于该底面垂直水流方向的形心轴的截面矩(m 3);地基承载力不均匀性验算公式: []ηη≤=minmax p p根据计算结果,判断是否满足要求。

根据SL265-2001《水闸设计规范》野云沟河床多是漂石、卵、碎石、角石、砾砂及少量的粉土,粉砂胶结而成,所以属于中等坚实η取2.0所以满足要求第二种工况为上游为正常引水为下游无水的工况(此工况为最不利工况)正常当水期荷载计算及抗滑稳定验算:附图1—5水闸稳定计算水重作用力意图:2⨯7.2=9.3+=⨯S⨯458.0.113.25.0m水水重:KN⨯⨯=11=G183210.1645附图1-6水闸稳定计算水平压力作用力意图:水平压力:渗透压力:3591⨯⨯+=)10(KNW=⨯102/711907.0.3浮托力:KN⨯⨯(=⨯+10⨯=101W10459.520.375)计算结果列于表:附表1-7 泄洪闸闸室荷载计算成果表(正常挡水期)根据SL265-2001《水闸设计规范》中地基承载力公式:式中minmaxP —完建无水期基底压力的最大和最小值,kPa ;∑G —作用在闸室上的全部竖向荷载,(包括基础底面的上的扬压力)KN ;∑M —作用在闸室上的竖向和水平荷载对于闸底板垂直于水流方向的形心轴的力矩(kN.m );A —闸室基底的面积(m 2);W —闸室基底面对于该底面垂直水流方向的形心轴的截面矩(m 3);地基承载力不均匀性验算公式: 根据计算结果,判断是否满足要求。

不均匀系数验算 故满足要求。

闸室基底面的抗滑稳定计算:根据SL265-2001《水闸设计规范》中的闸室抗滑稳定计算公式: 式中:f —闸室与地基的摩擦系数;由张世儒 《水闸》查表7-8.∑G —作用在闸室上的全部竖向荷载,kN ;∑P —作用在闸室上的全部水平荷载,kN ;根据喀拉沟渠首的不同运行工况选最不利工况(上游为设计引水为时)对闸室抗滑稳定进行验算。

因为喀拉沟河床多是漂石、卵、碎石、角石、砾砂,再根据SL265-2001《水闸设计规范》表 f 取0.4。

因为喀拉沟渠首工程水闸为3级,根据SL265-2001《水闸设计规范》在基本荷载工况下抗滑稳定安全系数为[]25.1=c K 。

[]25.145.2=>=c c K K 所以,满足抗滑稳定要求。

相关文档
最新文档