数学分析简明教程答案(尹小玲 邓东皋)第三章

合集下载

数值分析简明教程课后习题答案

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案(尹小玲 邓东皋)第一二章

数学分析简明教程答案(尹小玲 邓东皋)第一二章

5.在半径为r得瑟球内嵌入一内接圆柱,试将圆柱的体积表示为其高的函数,并求此函数 的定义域。
h2 解:设其高为h, 那么圆柱的底面半径为R r ; 于是圆柱体积 4 2 V R h
2
hr 2

4
h3
由于圆柱为球的内接圆柱,故有h (0, 2r ).
-2-
6.某公交车路线全长为20 Km, 票价规定如下:乘坐5 Km以下(包含5 Km)者收费1元;超过 5 Km但在15 Km以下(包含15Km)者收费2元;其余收费2元5角。试将票价表示成路线的 函数,并作出函数的图像。 解:设y为票价,x为路程,则有 1 y ( x) 2 2.5 它的函数图像如下: x (0,5] x (5,15] . x (15, 20]
画图板作图
7.一脉冲发生器产生一个三角波,若记它随时间t的变化规律为f (t ), 且三个角分别对应关 系f (0) 0, f (10) 20, f (20) 0, 求f (t )(0 t 20), 并作出函数的图形。 解:由题意可知所求函数为: 2t f (t ) 40 2t 其函数图像为:
2 2 2 2
(2). x1 x2 xn x1 x2 xn ; 证明:使用数学归纳法; i.对于x, y , 总有 x y xy, 于是有 x 2 x y y x 2 2 xy y 2 ; 整理后可得 x y x y ,即当n 2时所证成立。 ii.假设当n k时所证不等式也成立,即 x1 x2 xk x1 x2 xk . iii.当n k 1时,取y x1 x2 xk , 于是有: x1 x2 xk xk 1 y xk 1 y xk 1 x1 x2 xk xk 1 x1 x2 xk xk 1 即当n k 1时所证不等式也成立。 那么由数学归纳法可知题证成立。

级数收敛的判别方法

级数收敛的判别方法

级数收敛的判别方法作者:李春江来源:《中小企业管理与科技·上旬》2010年第04期摘要:级数理论在数学分析中占有很重要的一席之地,而级数理论中,研究无穷级数的收敛性则相当的重要。

仅由收敛原理来判别级数的敛散性,在实际问题中,往往是不可行的。

本文中,主要介绍了比较判别法,柯西判别法,达朗贝尔判别法,拉阿比判别法,对数判别法,双比值判别法,高斯判别法,柯西积分判别法,对于常用的判别法,本文对其有效性做了简单的比较,从而能够使读者更加深入的了解和熟悉各种判别法的使用范围。

关键词:级数收敛发散判别法有效性1 级数的收敛性及其基本性质我们知道,一系列无穷多个数u1,u2,u3,…un,…,写成和式u1+u2+u3+…+un…就称为无穷级数,记为un,且若级数un的部分和数列{Sn}收敛于有限值S,即则称级数un收敛,记为,un=S,也称此值S为级数的和数。

若部分和数列{Sn}发散,则称un发散。

研究无穷级数的收敛问题,首先我们给出大家熟悉的收敛级数的一些基本性质[1]:性质1 若级数un收敛,a为任意常数,则aun亦收敛,且有aun=aun。

性质2 若两个级数un和vn都收敛,则(un±vn)也收敛,且有(un±vn)=un±vn。

性质3 一个收敛级数un,对其任意项加括号后所成级数(u1+u2+…ui )+(ui +1+…ui )+…仍为收敛,且其和不变。

性质4 (收敛的必要条件)若级数un收敛,则un→0(n→∞)。

以上是收敛级数的一些最基本的性质,要指出的是,在实际问题中仅利用收敛原理来判断级数的收敛性,往往是相当困难的,所以在级数的理论中还必须建立一系列的判别法,利用它们就可以简便地来判别相当广泛的一类级数的收敛性,建立和总结这些判别法,就是本文的中心任务。

2 正项级数的收敛性判别一般的数项级数,它的各项可以是正数,负数或零。

现在我们讨论各项都是正数或零的级数,这种级数称为正项级数。

数值方法简明教程作业集答案

数值方法简明教程作业集答案

数值计算方法简明教程第一章1 *1x =1.7; *2x =1.73; *3x =1.732 。

2.3. (1) ≤++)(*3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。

4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。

令3)1()1(1*1021102211021)(-----⨯≤⨯⨯=⨯=n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。

5. 答:(1)*x (0>x )的相对误差约是*x 的相对误差的1/2倍;(2)n x )(* 的相对误差约是*x 的相对误差的n 倍。

6. 根据********************sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =******)()()(tgc c e b b e a a e ++ 注意当20*π<<c 时,0**>>c tgc ,即1*1*)()(--<c tgc 。

则有)()()()(****c e b e a e S e r r r r ++<7.设20=y ,41.1*=y ,δ=⨯≤--2*001021y y 由 δ1*001*111010--≤-=-y y y y ,δ2*111*221010--≤-=-y y y yδ10*991*10101010--≤-=-y y y y即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小1010-倍。

而11010<<-δ,故计算过程稳定。

数学分析简明教程答案(尹小玲邓东皋)第四章

数学分析简明教程答案(尹小玲邓东皋)第四章

x0
x

lim
x0
3x02x 3x2 x0 x
x3

3x02 ;
f '(0 0) lim f (0 x) f (x) lim x3 0 0,
x0
x
x0 x
f '(0 0) lim f (0 x) f (x) lim x3 0 0,
第四章 微商与微分
第一节 微商的概念及其计算
1.求抛物线y x2在A(1,1)点和B(2, 4)点的切线方程和法线方程。
解:函数y x2的导函数为y ' 2x,则它在A(1,1), B(2, 4)的切线斜率分别为
y '(1) 2, y '(2) 4;
于是由点斜式可以求得在这两点的切线方程分别为y 2x 1, y 4x 4.
由于法线斜率与切线斜率的乘积为 1, 故可以求得在这两点的法线斜率分别为
k1


1 2
,
k2

1; 4
那么由点斜式可以求得在这两点的法线方程分别为y 1 x 3 , y 1 x 9 . 22 42
2.若S vt 1 gt2,求 2
(1)在t 1,t 1 t之间的平均速度(设t 1, 0.1, 0.01); (2)在t 1的瞬时速度。 解:(1)可以求得
x

lim f (3 x) f (3) lim a(3 x) b 32 lim 3a a x b 9 6,
x0
x
x0
x
x0
x
那么必有
解得:a 6,b 9.
3a b 9 0 a 6

Riemann-Lebesgue引理及其应用

Riemann-Lebesgue引理及其应用

目录Riemann-Lebesgue引理及其应用 (1)摘要 (1)关键词 (1)Abstract (1)Key words (1)1.Riemann-Lebesgue引理 (2)型式1 (2)型式2 (2)2.Riemann-Lebesgue引理的证明 (2)2.1Riemann和 (2)2.2 贝塞尔(Bessel)不等式 (4)2.3 Weierstrass逼近定理 (4)2.4 Fourier级数 (5)2.5 无界函数 (6)3.Riemann-Lebesgue引理在分析中的应用 (7)3.1 Riemann-Lebesgue引理在数学分析中的应用 (8)3.2 Riemann-Lebesgue引理在泛函分析中的应用 (13)参考文献 (15)1Riemann-Lebesgue引理及其应用数学计算机科学学院摘要鉴于Riemann-Lebesgue引理在近代分析中扮演着极为重要的角色,本篇论文从Riemann-Lebesgue引理谈起,论文的第一部分着重介绍Riemann-Lebesgue引理的两种型式及其等价形式;第二部分给出该引理的五种证明方法,并说明其在数学思维上的重要性;第三部分则介绍了Riemann-Lebesgue 引理在分析(数学分析和泛函分析)中的若干应用。

关键词Fourier级数;Riemann-Lebesgue引理;收敛定理;弱收敛The Riemann- Lebesgue Lemma and Its Applications ,Academy of Mathematics and Computer ScienceAbstract In view of the Riemann- Lebesgue lemma plays a very important role in modern analysis, this paper from the Riemann- Lebesgue lemma about the first part of the thesis focuses on two types of equivalent form of the Riemann-Lebesgue lemma; the second part of the five kinds of proof of the lemma is given, and its importance in mathematical thinking; the third part introduces the Riemann-the Lebesgue lemma in the analysis (mathematical analysis and functional analysis).Key words Fourier Series;Riemann-Lebesgue Lemma;Covergence Theorem;Weak Covergence.121.Riemann-Lebesgue 引理鉴于Riemann-Lebesgue 引理在近代分析中扮演的极重要角色,关于该引理的发现过程我们在此略去,下面我们直接给出该引理的表述: Riemann-Lebesgue 引理: 若f 为可积函数,则:lim()cos 0,lim ()sin 0,n n f x nxdx f x nxdx ∏-∏→∞∏-∏→∞==⎫⎰⎬⎰⎭实际上,Riemann-Lebesgue 引理有如下两种表现: 型式1:(有界区间) 若])2,0([1∏∈L f 则:201lim()cos 2n f x nxdx ∏→±∞∏⎰=201lim()sin 02n f x nxdx ∏→±∞=∏⎰其等价形式,即表为复数之形式:lim ()n f x ∧→±∞=201lim()sin 02n f x nxdx ∏→±∞=∏⎰型式2:(无界区间) 若1()f L R ∈则:lim ()n f x Λ→±∞=1lim()02inxn f x e dx ∞--∞→±∞=∏⎰由积分之连续性我们可有结论()10()f L R f C R Λ∈⇒∈ ()0C R :表示所有连续函数满足在无穷点为0之集合。

孙山泽抽样调查答案

孙山泽抽样调查答案

孙山泽抽样调查答案【篇一:北京大学数学教学系列丛书(本科生)】t>本科生数学基础课教材《抽象代数Ⅰ》赵春来徐明曜编著《高等代数简明教程》(上册)(第二版)蓝以中编著《数学分析》(第一册)伍胜健编著《数学分析》(第二册)伍胜健编著《数学分析》(第三册)伍胜健编著《高等代数简明教程》(上册)(第二版)蓝以中编著《高等代数简明教程》(下册)(第二版)蓝以中编著《金融数学引论》吴岚黄海编著《概率论》何书元编著《随机过程》何书元编著《抽样调查》孙山泽编著《应用多元统计分析》高惠璇编著《应用时间序列分析》何书元编著《测度论与概率论基础》程士宏编著《偏微分方程》周蜀林编著《偏微分方程数值解讲义》李治平编著《寿险精算基础》杨静平编著《非寿险精算学》杨静平编著《复变函数简明教程》谭小江伍胜健编著《实变函数与泛函分析》郭懋正编著《概率与统计》陈家鼎郑忠国编著【篇二:社会库存数理统计模型设计】西省白酒销售公司近三年的白酒销量分别为10.31万箱、10.73万箱、11.31万箱(1箱=250瓶)。

6个主要营销城市,分别为西安市、咸阳市、汉中市、铜川市、延安市和宝鸡市,白酒主要通过以下7类零售户进行销售:便利店、服务业、商场、其他、超市、烟酒店和食杂店。

各类零售户总量在各个市区的分布情况如下表。

为了了解各个市区合计2万多个零售户的白酒库存情况,公司让各地区130多名经理在不同的零售户类型中分别对大中小经营规模的10-15个零售户做了随机抽样调查,调查数据见附录,包括被调查的零售户的经营规模、其总库存量以及主要11种白酒的相应库存量。

问题:1)抽样的方式是否合理?样本数量是否足够,能否达到95%的置信区间?2)建立数学模型或提出一种算法,用给出的数据估计出每个市区、每种经营规模、每类零售户的总库存量。

(即采用什么样的计算模型推测总体)3)能否用当前的数据预测出下个月(3月份)各市区库存量?(可不做)4)如果需要开发一个程序,输入部分零售户的调查数据(总量和各个规格数量),输出为所有零售户的整体库存,(输出结果可以转换为excel文件),你会怎么做或有什么建议?要求1)首页信息:2)双面打印3)论文不要超过15页,按照数模论文格式和内容书写。

新版东北电力大学数学考研经验考研真题考研参考书

新版东北电力大学数学考研经验考研真题考研参考书

又是一年考研时节,每年这个时候都是考验的重要时刻,我是从大三上学期学习开始备考的,也跟大家一样,复习的时候除了学习,还经常看一些学姐学长们的考研经验,希望可以在他们的经验里找到可以帮助自己的学习方法。

我今年成功上岸啦,所以跟大家分享一下我的学习经验,希望大家可以在我的经历里找到对你们学习有帮助的信息!其实一开始,关于考研我还是有一些抗拒的,感觉考研既费时间又费精力,可是后来慢慢的我发现考研真的算是一门修行,需要我用很多时间才能够深入的理解它,所谓风雨之后方见才害怕难过,所以在室友们的鼓励和支持下,我们一起踏上了考研之路。

虽然当时不知道结局是怎样,但是既然选择了,为了不让自己的努力平白的付出,说什么都要坚持下去!因为是这一路的所思所想,所以这篇经验贴稍微有一些长,字数上有一些多,分为英语和政治以及专业课备考经验。

看书确实是需要方法的,不然也不会有人考上有人考不上,在借鉴别人的方法时候,一定要融合自己特点。

注:文章结尾有彩蛋,内附详细资料及下载,还劳烦大家耐心仔细阅读。

东北电力大学数学的初试科目为:(101)思想政治理论(201)英语一或(203)日语(731)数学分析和(931)高等代数与空间解析几何参考书目为:《数学分析》(第4版)华东师范大学数学系高等教育出版社/20102.《数学分析简明教程》(第2版)邓东皋、尹小玲高等教育出版社/20063.《高等代数》(第3版)北京大学数学系高等教育出版社/20034.《解析几何》(第4版)吕林根、许子道高等教育出版社/2006先综合说一下英语的复习建议吧。

如何做阅读?做阅读题的时候我建议大家先看题干,了解一下这篇文章大致讲什么内容,然后对应题干去阅读文章,在阅读文章的过程中可以把你做出答题选择的依据标注出来,便于核对答案时看看自己的思路是否正确,毕竟重要的不是这道题你最后的答案正确与否,而是你答题的思路正确与否。

此外,每次做完阅读题也要稍微归纳一下错误选项的出题陷阱,到底是因果互换、主观臆断还是过分推断等,渐渐地你拿到一道阅读题就会条件反射出出题人的出题思路,这也有助于你检验自己选择的答案的合理性。

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)
n n n

un vn un vn .
n 1 n 1 n 1



D
4.设级数 un 各项是正的, 把级数的项经过组合而得到的新级数 U n ,即
n 1 n 1


U n 1 ukn 1 ukn 2 ukn1 , n 0,1, 2, , 其中k0 0, k0 k1 k2 kn kn 1 . 若级数 U n收敛,证明原来的级数也收敛。
(2)
n 1

1 4n 2 1

1 1 1 2 n 1 2n 1 2n 1

1 1 1 1 1 1 1 1 lim 1 2 n 3 3 5 5 7 2n 1 2n 1 1 1 1 lim 1 . 2 n 2n 1 2
n
于是可得 Sn 由于 r 1,因此有
r
n 1

n
r cos x r 2 . 1 r 2 2r cos x
2.讨论下列级数的敛散性: (1) n ; n 1 2n 1

lim
n 1 0, 故原级数发散。 n 2n 1 2 由于级数 lim cos
第十章 数项级数
§1 级数问题的提出
1.证明:若微分方程xy '' y ' xy 0有多项式解 y a0 a1 x a2 x 2 an x n ; 则必有ai 0, i 1, 2, , n. 证明:若y a0 a1 x a2 x 2 an x n 微分方程的一个解, 那么 y ' a1 2a2 x 3a3 x 2 nan x n 1 y '' 2a2 6a3 x n(n 1)an x n 2 ; 于是可得 xy '' 2a2 x 6a3 x 2 n(n 1)an x n 1 xy a0 x a1 x 2 a2 x 3 an x n 1. 因此可知 xy '' y ' xy a1 (4a2 a0 ) x (9a3 a1 ) x 2 (n 2 an an 2 ) x n 1 an x n 0 那么由多项式相等可知有 a1 0 2 n an an 2 0 a 0 n 递推可知有ai 0, i 1, 2, , n成立。 n 2.

实变函数简明教程(邓东皋)新版答案

实变函数简明教程(邓东皋)新版答案

E(f

c)
表示
{x

E|f
>
c}

{x

E|f

c},
并令
En,k
=
E(fn
>
c

1 k
),
试证
∩∞
∩∞
∩∞
limn→∞En,k = limn→∞En,k, E(f ≥ c) = limn→∞En,k.
k=1
k=1
k=1
证明: 由 limn→∞En,k ⊆ limn→∞En,k, 知
∩∞
∩∞
limn→∞En,k ⊇ limn→∞En,k;
且为偶
数时,有
0
>
1 n2

2x0
(−1)n
1 n
>
δ
>
−ε;
4

x0 < 0 时,令 n 取奇数,则 y = −x0 ±
x20 + δ,
则当
n>
√1
−x0− x20+δ

为奇数时,有
0
>
1 n2

2x0
(−1)n
1 n
>
δ
>
−ε
从而
limn→∞An ⊆ E2.
再证
limn→∞An ⊇ E2.
∀Q ∈ (x0, y0) ∈ E2, 即 x20 + y02 ≤ 1, 且 (x0, y0) ̸= (0, ±1), 若 x0 = 0, y02 < 1, 故
n
n
n=1
n=1
.
证明: 对任意正整数

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)

第九章 再论实数系§1 实数连续性的等价描述2211.{}({},{})1(1).1; sup 1,inf 0;(2)[2(2)]; sup ,inf ;1(3),1,(1,2,); sup ,inf 2;1(4)[1(1)]; n n n n n n n n n n k k n n n n x x x x x x nx n x x x k x k x x k n x n ++∞-∞=-===+-=+∞=-∞==+==+∞=+=+- 求数列的上下确界若无上下确界则称,是的上下确界: sup 3,inf 0;(5) sup 2,inf 1;12(6)cos ; sup 1,inf .132n n n n n n n n x x x x x n n x x x n π=====-===-+2.(),(1)sup{()}inf (); (2)inf{()}sup ().(1)sup{()},.,();.0,()..,();.x Dx Dx Dx Dx Df x D f x f x f x f x A f x i x D f x A ii x D f x A i x D f x A ii εεε∈∈∈∈∈-=--=-=-∀∈-≤∀>∃∈->-∀∈≥-∀>设在上定义求证:证明:设即有对有 对使得 于是有对有 对0,().inf (),inf (),sup{()}inf ()x Dx Dx Dx Dx D f x A A f x A f x f x f x ε∈∈∈∈∃∈<-+-==--=-使得 那么即因此有成立。

(2)inf{()},.,();.0,()..,();.0,().sup (),sup (),x Dx Dx DB f x i x D f x B ii x D f x B i x D f x B ii x D f x B B f x A f x εεεε∈∈∈=-∀∈-≥∀>∃∈-<+∀∈≤-∀>∃∈>---==-设即有对有 对使得 于是有对有 对使得 那么即因此有inf{()}sup ()x Dx Df x f x ∈∈-=- 成立。

北方民族大学2020年硕士研究生招生入学考试参考范围

北方民族大学2020年硕士研究生招生入学考试参考范围
同等学力加试科目及参考书目: 概率论与数理统计 复变函数 近世代数 常微分方程
《数学分析简明教程》(第二版),邓东皋、尹小玲编,高等教育出版社,2006 年。 《高等代数》(第三版),北京大学数学系编,高等教育出版社,2003 年。
《数学分析简明教程》(第二版),邓东皋、尹小玲编,高等教育出版社,2006 年。 《高等代数》(第三版),北京大学数学系编,高等教育出版社,2003 年。 《常微分方程》(第三版),王高雄等著,高等教育出版社,2006 年。
《C 程序设计》(第三版)谭浩强主编,清华大学出版社,2000 年 《数据结构》(C 语言版)严蔚敏等编,清华大学出版社,1997 年 《运筹学》(第四版),甘应爱主编,清华大学出版社,2005 年。 《计算机网络》(第五版),谢希仁,电子工业出版社,2013 年。 数学二参照国家统考大纲。
《微机原理与接口技术》,何小海,严华著,科学出版社,2011 年。 《数据库系统概论》(第四版)王珊、萨师煊主编,高等教育出版社,2006 年。 《数字图像处理》(MATLAB 版),冈萨雷斯(美),电子工业出版社,2006 年。 《软件工程》,郑人杰主编,人民邮电出版社,2009。
081203 计算机系统结构应用技术
《C 程序设计》(第三版)谭浩强主编,清华大学出版社,2000 年 《数据结构》(C 语言版)严蔚敏等编,清华大学出版社,1997 年 《微机原理与接口技术》,何小海,严华著,科学出版社,2011 年 《运筹学》(第四版),甘应爱主编,清华大学出版社,2005 年 《计算机网络》(第五版),谢希仁,电子工业出版社,2013 年 数学一参照国家统考大纲
北方民族大学 2020 年硕士研究生招生入学考试参考范围
001 文学与新闻传播学院

数学分析简明教程答案数分3_极限与函数的连续性

数学分析简明教程答案数分3_极限与函数的连续性

lim
n
an
k
a.
(2).若
lim
n
an
a, 则lim n
an
a ; 反之是否成立?;
证明:由于
lim
n
an
a, 那么由定义可以知道:对
0, N, 当n
N 时有an
a
.
由于 an a an a (第二章第二节习题1), 那么可以知道对 0,N , 当n N 时有
an a an a
n ,对于 0, 取N [ 12] 1, 则对于n N, 总有
1
1 1 1 .
n1 n n N 1
2
于是可知 lim( n 1 n) lim
1
0.
n
n n 1 n
(6).lim 10n ; n n!
证明:取M
1010 10!
,则lim 10n n n!
lim M
n
10 10 10 10 .那么对于 11 12 13 n
那么对于
0, 分别取N2
[ 1] 1,
N3
[
1 2
]
1,
N
max( N2,
N3),
于是当n
N
时有
i.当n 3k时,xn 3
3 3 0 ;ii.当n 3k 1时,xn 3
1 n
1 ;iii.当n 3k 2时,有 N
xn 3
1 n
1 N
.即对任意n
N , 都有 xn
3
; 故有lnimxn
证明:对于 0, 取N [1] 1, 则对于n N, 总有
sin n n
1 n
1 N
1 1
.
于是可知lim sin n 0. n n

10数学分析简明教程答案(尹小玲邓东皋)[1].pdf

10数学分析简明教程答案(尹小玲邓东皋)[1].pdf

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132−++++='n n x na x a x a a y , 22432)1(1262−−++++=''n n x a n n x a x a a y .从而 134232)1(1262−−++++=''n n x a n n x a x a x a y x , 且 111232210+−−−++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++−−−n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=−−.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'−''−y l l y x y x .解 设nn nx ay ∑∞==,则11−∞=∑='n n n xna y ,22)1(−∞=∑−=''n n nx an n y ,故∑∑∑∞=∞=−∞=−−−−=−−=''−2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=−−=−='−111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'−''−y l l y x y x ,得y l l y x y x )1(2)1(02++'−''−=∑∑∑∑∞=∞=∞=∞=−++−−−−=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++−−−++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++−=+++−−=++−=++−=++++−.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++−+−+−−=⨯⨯⨯++−−=⨯+−−=⨯+−−=−++++−+−−=⨯⨯++−=⨯+−−=+−=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡−+++−+−−+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++−+−+−−++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+−1)15)(45(1n n n ; (2)∑∞=−12141n n;(3)∑∞=−−−1112)1(n n n ; (4)∑∞=−1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+−−=+−15145151)15)(45(1n n n n ,故)15)(45(11161611+−++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+−−++−+−=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+−=n n , 所以级数的和51=S . (2)由于⎪⎭⎫ ⎝⎛+−−=−121121211412n n n ,故 )(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+−=⎪⎭⎫⎝⎛+−−++−+−=n n n n S n . 所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛−−=⎪⎭⎫⎝⎛−=−−∞=∞=−−∑∑n n n n n .(4)12221222121111−=⎪⎭⎫ ⎝⎛−=−∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和nn n S 2226242232++++= ,则 14322222226242221++−++++=n n n nn S , 故1432222222222212121+−+++++=−=n n n n n n S S S 1432222121212121+−⎪⎭⎫ ⎝⎛+++++=n nn112222112112121+−−−⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛−+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=−=−=−∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111−++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111−++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑−=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n −+−++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212−++−+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r,故xr r xr S n n cos 21sin lim 2−+=∞→,因此xr r xr nx r n n cos 21sin sin 21−+=∑∞=. (6)级数的部分和kx r S nk k n cos 1∑==,从而 []x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111−++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111−++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑−=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n −++−++=+,从中解得xr r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212−+−=−+−+−+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221−+−=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=−112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (3)∑∞=+112cosn n π;(4)∑∞=+−1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→−n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+−−=+−13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+−++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+−−++−+−=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+−=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+−=+−+=+++11111)1()1(1n nn n nn n n n n ,从而∞→n 时, 111111131212111→+−=+−++−+−=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++−−)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=−−1122)12(1n n n ; (3)∑∞=−−112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=−+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=−+15sin))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛−11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sinn nn ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛−+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛+122111n n . 解(1)∑∞=+121n nn .由于111lim2=+∞→nn n n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=−−1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤−−−, 而级数∑∞=1222n n收敛,由比较判别法知,原级数收敛. (3)∑∞=−−112n n n n .由于02112lim ≠=−−∞→n n n n ,所以级数∑∞=−−112n n n n 发散. (4)∑∞=12sin n nπ.由于ππ=∞→nn n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故nnn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nnn ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n n n .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n nnn ,故原级数收敛. (9)∑∞=−+12)1(2n nn. 方法1因为∑∑∑∞=∞=−∞=−+=−+11112)1(212)1(2n n n n n n nn ,而∑∞=−1121n n 和∑∞=−12)1(n n n 均收敛,故∑∞=−+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤−+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=−+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→n n nn n n nn n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=−+15sin))1(3(n nnn π.由于4)1(3≤−+n,因此,若∑∞=15sin4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→n n nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛−11cos 1n n n .由于21121sin 2lim 11cos 1lim 22==⎪⎭⎫ ⎝⎛−∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sinlim2=∞→n n n n ,而级数∑∞=121n n 收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim<=∞→nn n n ,故由根式判别法知,级数∑∞=12n n n 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛−+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=−+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=−⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛−+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n nn 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n nn 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n n e e e n n n e n n n nn nn n 222!1212>=⎪⎭⎫ ⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n .因为101)(lim 1lim22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n nn n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛−+122312n n n n .由于1322312lim 2312lim 2<=−+=⎪⎭⎫⎝⎛−+∞→∞→n n n n n n nn ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753−⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=−⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1−=⎪⎪⎭⎫ ⎝⎛−=⎪⎪⎪⎪⎭⎫ ⎝⎛−=⎪⎪⎭⎫ ⎝⎛−⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=−⎪⎭⎫ ⎝⎛−+⋅⋅=−⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛−=⎪⎪⎭⎫⎝⎛−+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛−+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛.(6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp −+−−−=−=⋅=−−+−−⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x −==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122−==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n nn 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+−111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π;(3)∑∞=+−−+111ln)1(n p n n n n ; (4)∑∞=++−+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+−111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+−⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+−⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=−⎥⎦⎤⎢⎣⎡+−⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+−=⎪⎭⎫ ⎝⎛+−∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+−⎪⎭⎫⎝⎛++−⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++−+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++−+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+−11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+−111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+−=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n 的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+−−+111ln)1(n p n n n n .由于0)1(>−+pn n ,011ln <+−n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛−+⎪⎪⎭⎫ ⎝⎛++=+−−−+121ln 1111ln )1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛−+−⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+−−+n n n n p与121+p n 是同阶无穷小量,因而当112>+p,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++−+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++−+=++−+))(()12(2422b n n a n b n n a n ba n a ++++++++−+−=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qp n n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=−==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰−∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p−−∞→−−=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>−<∞+=−.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散. (2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=−=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qp n n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q ,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→q n n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>−=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ−==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >q n n σ,从而σ−≥1)(ln 1n n u n ,而由(1)知∑∞=−11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡−1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>−++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡−1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡−=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎪⎭⎫ ⎝⎛++⋅−=⎪⎪⎭⎫⎝⎛−∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +−++=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++−++⋅++=−−∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+−++=−∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++−++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>−++∑∞=βααααβn nn n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅−++=+n n n n n n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+−−⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡−⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛−∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+−=+−−⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n , 所以当11>+−βα,即βα<时级数收敛;当11<+−βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+−++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++−++++++−++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++−+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max(1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max(1∑∞=n n nv u一定发散.事实上,0),max(≥≥n n n u v u ,而∑∞=1n n u 发散,故),max(1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=−−−+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(−−++−+−=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++−− 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++−− 211212)(,即nna a a n S S S S n S n nn n n +++=++++−−− 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=−=⎪⎭⎫⎝⎛++++−−=+++−∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n n a 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=−1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+−+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=−+12)1(2n nn,由于21232)1(22121→≤−+=≤=nn n n n n n a , 故21lim=∞→nn n a ,而 613221,231223************=⋅==⋅=++−−m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim2=∞→n n nn ; (2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n a n ,由于 )(0)12)(22(!1∞→→++=+n an n u u n n n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>−=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=−−=−>l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>−=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=−+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nn p pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+−1100)1(n nn n;(2)∑∞=12sin ln n n nn π; (3)∑∞=++++−1131211)1(n nnn ;(4)∑∞=−+−2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π; (6)∑∞=−−12)1(3)1(n n n n ;(7))0()1(1>−∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=−12cos )1(n nnn; (10)∑∞=−12sin )1(n nn n;(11))0(sin)1(1≠−∑∞=x nxn n ; (12)∑∞=+−12)1()1(n n n n; (13)++−−+++−−++−−1111131131121121n n ; (14))0(1)1(11>+−∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+−1100)1(n n n n .令100)(+=x x x f ,则2)100(2100)(+−='x x xx f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于 ⎩⎨⎧∈−=−∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=−−−=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f −=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++−1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=−+−2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+−−=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+−−−=−+⋅−=−+−2311)1(1)1(1)1()1(11)1()1()1(n O n n n O n n nn n nn nnnnn ,而级数∑∞=−2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n 发散,因而原级数发散.(5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n −+−=−++=+ππππnn n ++−=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=−−12)1(3)1(n n n n .由于∑∑∞=∞=−=−112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>−∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=−12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin −−+++−+−=n n 1sin )12sin(−+=n ,故1sin 11sin 21sin )12sin(2cos 1≤−+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=−12cos )1(n n n n 收敛,从而原级。

数学分析简明教程答案(尹小玲 邓东皋)数分11_广义积分

数学分析简明教程答案(尹小玲 邓东皋)数分11_广义积分

解:由于 sin xdx有界, ln ln x 单调下降趋于零,因此由狄理克雷判别法可知积分收敛;但是
0
ln x
由于
ln ln x sin x sin2 x , X ,当x X时成立
ln x
x
因此积分仅是条件收敛。
-3-
4.设f (x) h(x) g(x), a x ; h(x)在任意有限区间[a, A]上可积,又
立,那么
f (x)dx
a
x0 f (x)dx
a
f (x)dx
x0
x0 f (x)dx
a
ldx
x0
x0 a
f
(x)dx
lim
x
l(
x
x0
)
这与积分 f (x)dx收敛矛盾。 a
由柯西收敛原理可知当积分 f (x)dx收敛时, 0, A a,当A', A'' A时有 a
第十一章 广义积分
§1 无穷限广义积分
1.求下列积分的值:
(1)
2
x
1 2
1
dx
1 2
2
1 x 1
x
1 1
dx
1 2
ln
x x
1 1
2
1 2
lim ln
x
x x
1 1
ln
2 1 2 1
1 2
ln 3.
(2)
dx 1 1 x(1 x2 ) 2
dx2 1 1 x2 (1 x2 ) 2
a
x
-5-
9.设f (x)单调下降趋于零, f '(x)在[0, )连续,求证 f '(x) sin2 xdx收敛。 0

北京大学数学科学学院金融数学与精算学考研参考书

北京大学数学科学学院金融数学与精算学考研参考书

北京大学数学科学学院金融数学与精算学考研参考书1.数学分析邓东皋,尹小玲编著《数学分析简明教程》高等教育出版社2006方企勤编著,《数学分析》(第三册)上海科学技术出版社,20022.高等代数蓝以中编著,《高等代数简明教程》(第2版),北京大学出版社,2007,上册、下册第6、7章3.初等概率论何书元编著,《概率论》,北京大学出版社,2005,第一章至第六章4.数理统计陈家鼎等编著,《数理统计学讲义》,高等教育出版社,2006年5月第二版,第一至第四章、第七章5.金融数学引论吴岚,黄海编著,《金融数学引论》,北京大学出版社,2005年8月第1版,第一章至第七章育明教育【喜报】38人考研状元集训营,20人考上北大、人大、清华、复旦。

【喜报】36人考研冲刺集训营,16人考上北大、清华。

【喜报】“三跨”学员隋JiaLun(378分)36天考上北京师范大学。

【喜报】2013年,育明教育包揽北京大学国际关系(378分)、城环(409分)、政管(402分)共11个专业状元。

【喜报】2013年,育明教育包揽北外汉教、翻硕、法语等6个专业状元。

【喜报】2013年,育明教育共有126人考上北大、人大、中财、贸大、五道口经济金融类研究生,众多学员成绩400+,最高分464分。

【喜报】2013年,育明教育包揽北大(402分)、人大(396分)、北师大(378分)等6大名校行政管理状元。

【喜报】“三跨”学员马Lin(402分)以第一名考上对外经贸大学翻译硕士国际会议传译。

【育明小陈提醒大家】专业课复习一定要赶早,不要在起跑线上就输给对手。

复习要有针对性,在备考复习过程中,考研信息的收集很重要,信息是第一位的:你信息收集的越多,越充分,你的认识就会越全面、正确。

要尽全力收集到目标院校专业课的笔记、课件、讲义、历年真题等资料。

特别是历年真题要认真研究几遍,因为历年真题考查的重合率是很高的。

往往一道题目三四年前考过,现在又会以其它形式变相的来考查!将历年真题与笔记、课件、讲义等结合学习,这样才能够做到更有重点的复习。

10_数学分析简明教程答案(尹小玲_邓东皋)[1]

10_数学分析简明教程答案(尹小玲_邓东皋)[1]

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin))1(3(n nnn π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctann nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na 收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin4n nnπ收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散.(15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→n n n n ,故由根式判别法知,级数∑∞=12n n n收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21limln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n nnn n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n .因为101)(lim 1lim22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n nn n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim 2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n nn ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()l n(l n ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln )1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max(1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n ∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12c o s n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。

数值分析简明教程课后习题答案

数值分析简明教程课后习题答案

数值分析简明教程(第二版)课后习题答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--算法1、 (,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(,题2) 证明方程210)(-+=x e x f x 在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点. 又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二误差1.(,题8)已知e=…,试问其近似值7.21=x ,71.22=x ,x 2=,718.23=x 各有几位有效数字并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字;因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

浅谈无理函数不定积分的求解方法

浅谈无理函数不定积分的求解方法

浅谈无理函数不定积分的求解方法摘要:我们将自变量包含在根式之下的函数称为无理函数。

这样的特点使得无理函数不定积分,在通常情况下求解较为复杂。

对于一个无理函数来说,大多数情况下,较常见的情况是同一个无理函数有多个求不定积分的方法,如何从多种不定积分求解方法中选出最优的解法,就是一个我们需要考虑的问题了。

本文旨在将以往的无理函数不定积分求解方法进行综述,探讨各个方法在求解上的应用与具体使用过程。

同时,总结了对一些常见的无理函数不定积分类型的常用解法。

为无理函数不定积分的求解提供一种思路。

关键字:无理函数不定积分计算方法Abstract:We usually call the function which have one or more arguments under the radical as irrational function. The feature of irrational function makes the irrational function integral become tough problem for we to solve. For an irrational function, in most cases, the more common situation is the same irrational function with multiple indefinite integral method. So, how to select an optimal solution from a variety of indefinite integral method, is a problem that we need to consider.This article aims to past the irrational function of indefinite integral solution method to carry on the summary, discusses the application of various methods on solving the use with specific process. At the same time, summarizes the irrational function of some common indefinite integral types of commonly used method. In order to provide a way to solve the irrational function indefinite integral problems.key words:irrational function indefinite integral method1.无理函数不定积分的求解方法通常情况下,我们对无理函数不定积分的求解通常都会先对无理函数部分做前置处理工作。

实数基本定理的互证

实数基本定理的互证

实数基本定理的互证有关实数系一些基本等价性质的互证柯华忠中山大学应用数学04级实数系的七个基本性质的互相推证似乎不易掌握(要证次),但细细分析证明的思路,可发现一些共同的模式。

但凡事有了套路都容易使人的思维产生惯性,十分不利于多角度、多侧面地认识客体。

为此,本文在叙述笔者总结的模式以外,还提供几个不在模式内的证明。

I;三种模式(i)“切”所谓“切”,是指运用Dedekind分割的思路,根据实数连续性得到一个特殊的临界点。

此思路最典型的运用非实数基本定理莫属。

但考虑到实数基本定理中构造上类(或下类)往往循以下形式:B={x | x是满足性质P的数集的上界}(或A={x | x是满足性质P的数集的下界}),于是A|B所确定的唯一实数r是B的下确界(同时也是A的上确界),所以可运用实数基本定理的地方均可用确界定理处理。

考虑到用确界定理叙述起来较方便,以下证明均采用确界定理。

单调有界定理和区间套定理:分别见课本P295-296 及P297 。

由此二处证明可见,证明的关键是存在性,而点的唯一性是由被证明定理本身的条件所保证的。

这是一种一般性现象。

除Borel有限覆盖定理外,其余六条基本性质均断言某种特殊点的“唯一存在”性质:这在实数基本定理是上类的最小值点或下类的最大值点,在确界定理是确界点,在单调有界定理是极限点,在区间套定理是公共点,在致密性定理是某子列的收敛点,在Cauchy收敛准则是极限点。

对这些定理的证明的关键是推出上述特殊点的存在性,而唯一性总可由定理本身的约束条件得到。

这从一个侧面反映了这些实数基本性质不外是对实数这一对象的不同角度的描述而已。

Borel定理设是的一个覆盖。

设B=x |有E的有限子覆盖。

由于Ea s.t. Ea,故在a右侧有B中元素,即B非空。

设=supB, 下证 b不成立。

否则 0, 0,s.t. -+。

不妨设=-,, 则。

由B的构造知有E的有限子覆盖,则构成了上的一个有限覆盖,这与矛盾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:对于n都有
1 那么对于 , 取N [ ] 1, 对于n N , 总有


因此可知 lim
n
n2 n 1. n n为偶数 . n为奇数 1 1 1 n 1 1 .则对于 0, 取N [ ] 1,当n N时总有 n n n
n 1 n (3).lim xn 1, 其中xn n n 1 n 证明:对于n, 都有 xn 1 xn 1
n
我们取1 a b, 可知存在N1 , 当n N1时有 an a a b,即b an 2a b.得证。
(4).若 lim an a, 且an 0, 则 lim an a .
n n
证明:由于 lim an a,那么由极限的定义可以知道:对于 0, N ,当n N时有 an a .
n
反之不成立,例如an (1) n , 有 lim an 1 , 而 lim an 1(极限不存在).
n n
(3).若 lim an a, 且a b, 则存在N ,当n N时,有an b;
n
证明:由于 lim an a,那么由极限的定义可以知道:对于 0, N , 当n N时有 an a .
3 3n 2 n 3 3 3 那么对于 , 取N [ ] 1, 对于n N , 总有 2 . 2n 1 2 n 3

因此可知 lim
3n n 3 . n 2n 2 1 2
2
-3-
(2).lim
n
n2 n 1; n n2 n 1 n n2 n n n 1 1 , n n2 n n n ( n 2 n n) n n2 n 1 1 1 . n n 1

因此有 lim (2).lim
n 1 0. n n 2 1
sin n ; n n
1 证明:对于 0, 取N [ ] 1, 则对于n N , 总有

sin n 1 1 1 . n n N 1

于是可知 lim 1 ; n!
n
sin n 0. n
n n n n
-5-
6.设xn a yn (n 1, 2,), 且 lim( yn xn ) 0, 求证: lim yn lim xn a.
n n n
证明:由于xn a yn,因此有a xn 0, yn a 0; 于是有 yn a yn a yn a a xn yn xn , xn a a xn a xn yn a yn xn ; 又因为 lim ( yn xn ) 0,即对于 0, N , 当n N时,有yn xn yn xn ; 那么对于
n4 n4 n 1 . (3 n n)(2 n ) 6 n n n n n n n
1 1 那么对于 0, 分别取N 2 [ ] 1, N 3 [ 2 ] 1, N max( N 2 , N 3 ), 于是当n N时有


i.当n 3k时, xn 3 3 3 0 ; ii.当n 3k 1时, xn 3 xn 3

2 2 n n n n . n 2 1 2 2 ( 1) a a n 2 n(n 1) 2 2 因此 lim n 0. n a n
(8).lim
n! ; n n n n! 1 2 3 n 1 n 1 1 ;因此对于 0, 取N [ ] 1, 则对于 n n n n n n n n n! 1 1 1 . nn n N 1
n 3k n 3k 1 (k 1, 2,). n 3k 2
3n 1 1 1 3 ; n n n 1 n 1 n 3 n n 2 n 3 3 n n 3 n n 3 n n
xn 3 2 当n 3k 2时,

n (1) 2 2n 2 2 2 . 2 n 1 n n n 1 [ 2 ] 1

于是可知 lim
n (1) 0. n n2 1
2
-1-
(5).lim( n 1 n );
n
证明: lim( n 1 n ) lim
n
n
那么对于 '

a
0, N , 当n N时有: an a
an a an 0 an a '. an a a a
因此有 lim an a成立.
n
4.极限的定义是否可以改成下面的形式?其中“ ( ”是逻辑符号,表示“存在” ) (1) 0, N 0, 当n N时,有 xn a ; (2) 0, N 0,当n N时,有 xn a ; (3) 0, N 0, 当n N时,有 xn a M ( M 为常数). 答:这三种都是可以的,它们都是可以很容易的推导出课本中给的定义,也很容易用课 本中的定义推导出这三者。不过第三个里面的“M 为常数”,最好改为“M 为正常数”。 5.若{xn yn }收敛,能否断定{xn }{ , yn }也收敛? 答:不能; 例如:xn (2) n , yn (1)n , 显然 lim xn yn lim(2) n (1) n 2,而 lim xn与 lim yn不存在。
1 1 ; iii.当n 3k 2时,有 n N
1 1 .即对任意n N , 都有 xn 3 ; 故有 lim xn 3. n n N
-4-
3.用定义证明: (1).若 lim an a, 则对任一个正整数k , 总有 lim an k a;

因此 lim
1 2 3 n 0. n n3
1 (10).lim( a n ), a 1. n n 证明:由(7)可知对于 1,N1 ,当n N1时,有 2 [ ] 2, N max( N1 , N 2 )则对于n N , 总有 n 1 1 1,即 n ;因此对 0, 取N 2 n a a n
(3).lim
n
1 1 1 1 1 证明:对于 0, 取N [ ] 1, 则对于n N , 总有 . n! n N 1

于是可知 lim
n
1 0. n!
(4).lim
n (1) 2 ; n n2 1
2 证明:对于 0, 取N [ ] 2, 则对于n N , 总有
第三章 极限与函数的连续性
第一节 极限问题的提出 第二节 数列的极限 1.用定义证明下列极限为零: n 1 (1) lim 2 n n 1 2 证明:对于 0, 取N [ ] 1, 则对于n N , 总有

n 1 2n 2 2 2 . n2 1 n2 n N 2
n
(2).若 lim an a, 则 lim an a ; 反之是否成立? ;
n n
证明:由于 lim an a, 那么由定义可以知道:对 0, N ,当n N时有 an a .
n
由于 an a an a (第二章第二节习题1), 那么可以知道对 0, N ,当n N时有 an a an a 于是有 lim an a .
n
0, N , 当n N时,有 yn a yn xn yn xn , xn a yn xn yn xn ; 于是得 lim yn lim xn a.
n n
7.利用极限的四则运算法则求极限:
(2) lim (2) n 3n n ( 2) n 1 3n 1 2 3 ( )n ( )n 3 3 lim n 2 n 1 3 3 ( ) 3 ( ) n 1 3 3 2 3 lim( ) n lim( ) n n 3 n 3 2 n 1 3 lim 3 ( ) lim 3 ( ) n 1 n n 3 3 0 1 1 . 03 3
10n ; n n ! 1010 10n 10 10 10 10 10 M lim M .那么对于 0, 取N [ , 则 lim ] 1, n n n! n 10! 11 12 13 10n 10 10 10 10 10 10 10n M M M .因此 lim 0. n n ! 10 M n! n n 11 12 13
证明:对于n, 总有 n N , 总有

因此 lim
n
n! 0. nn
-2-
(9).lim
1 2 3 n ; n n3
n 1 n 1 2 3 n n 1 2n 1 1 2 证明:对于n, 总有 2 2 ;因此对 0, 取N [ ] 1, 3 3 n n 2n 2n n 则对于n N , 总有 1 2 3 n 1 1 1 . n3 n N 1
n n
证明:由于 lim an a, 那么由定义可以知道:对 0, N1 , 当n N1时有 an a .
n
那么取N N1 k , 则对 0, N , 当n k N N1 k时有 an k a . 因此 lim an im xn 1. n n N 1

3 3n 1 (4).lim xn 3, 其中xn n n 1 n 2 3 n n xn 3 3 3 0; 证明:当n 3k时, xn 3 当n 3k 1时,
相关文档
最新文档